
 
LINEAR ALGEBRA

MATRIXINVERSE denoted
by
A and defined as A As I

To solve
systemnear usAn b

A An A b
I n A b

LINEARDEPENDENCE AND SPAN

for A to exist An b must have exactly one solution for
every valueof b

s it can have no solution one solution on infinitely merry
solution It cannot have more then one but lessthan a

solution because if n andy
are solutions then so is

z y for any meal x
Essentially b is linear combination of columns of A ie we
are trying to find it b can be formed using linear combination

of
columns

of
A

g n A i b

SEEN a setof all points obtainable by linear
combinationof

original vectors
To find solution of An b means whether b lies in colum
spanof A or not
For bermto lie 9h column spanof A the columnspan mustbe
RM



LINEAR INDEPENDENCE Asetof vectors is linearly independent

if no vector is linear combinationof a subset of vectors
For column spanof it to be 12M theremust exist m linearly
independent vectors is for Amm n 3M

Also to have atmost one solution in m making
A a square

matrix

SinaLARNERIx Asquarematrixwith linearly dependent

columns

NORMS

LP norm HnHp flail
Popularnorms

L norm 11mHz film f Often weuse squared

L norm 11m11 Ini l L norm

E norm Hallo mixInit Asp increases ni with max
value willdominate thesum

Forbenius norm Normofmatrix
11All p g

just an intuition

Unit vector Avectorwith unit Lz norm is 11mHz I

Orthogonal
vectors Two vectors n and

y
are orthogonal it

nty O
Orthnormal vectors if pitya 0 and 11mHz and

My1h21



Orthogonal matrix Matrix with orthogonal rows in
ATA AAt I
A AT

EIGEN DECOMPOSITION

Just like integers can be decomposed into prime factors matrices

can be decomposed into other matrices that mayeat properties
An

eigenvector of a squarematrix A is a nonzero vector

u such that multiplication by A alters only
scale of ie

ie Au tu
j

eigenvalue
eigenvector

If v is eigenvector of A then
so is s.ie for SER sto

with same eigenvalue

Eigendecomposition of
A

a u
diag

a ni
v uh uh u

A t tz n tn

Every mealsymmetricmatrix
A

A not
a orthogonal matrix of eigenvectors of A
n

diagonal matrixof eigenvalues of
A

A scales the spacesby di in the direction u



A matrix is singular if anyof
the

eigenvalues are 0

Amatrix whose
eigenvalues

are all ve Positive Definite

A matrix whose
eigenvalues

are all ve Negative Definite

If positive or 0 Positive semidefinite

if negative on o Negative
semidefinite

For positive semidefinite matrix

In atAn 30 Is we can use this property to
prove it a matrix it is
we semi definite or not



SINGULARVALUEDECOMPOSITION

SVD decomposes a matrix into singularvalues and vectors
A UDyT

u mxm Cleft singularvectors
D man Diagonalof Dane singular

valuesof
A

v in xn
Right singular

vectors

1 MOORE PENROSE PSEUDOINVERSE

If A is not invertible then we can compute its pseudo invehee
using

s D M

at vDtut
D reciprocal of elements of diagonal

Matri

D

TRACE AND DETERMINANT

Trace TrCA Ai

HAH THAT
Tr A Tr At
Tr ABC Tr CAB Tr BCA

More
generally Tritt Ft Tr F III F

Tr AB To BA

Determinant Product of all eigenvalues of A Forsingular
matrix ditch A O



PRINCIPAL COMPONENT ANALYSIS

n

say
we have date Ln hint

r I
There is high correlation b

w SAT

Mnand nz ie even if data c 7

is in 2D it is more oh n GRE

less in ID

Underlying
question is can we do dimensionality reduction.ie

we project n on it to get Kimi where z a uTn
such that most of the information in data is still captive
Unless the data is perfectly correlated therewill be some
loss
wewant to find best setof Lu un's

why longed the
date

Discovering hidden patterns in thedatacorrelationetc

Projecting onto a lower dimensional efacemakes things
tractable for a E R K aan

Helps in reducing noise in data

Howtoquantify to of information Variance

vaultnisiat g.IE inj iiit5
let Ld'T projection over Iu u then Van 12 3,7 should



be close to varianceof original
data

Problemstatment Given In bi n t Rn

find µ Uk UeCRnHd UfUee I
s t

n n z projection of n onLuis
dig n Tue

at uan Lahti is maximized

we first normalize the points so that resultingdata has 0mean
and unit variance this is so that all features are on same
scale y height andweight are on same scale

ng f
mean µ Im Img ng Hy 0

Alliance van En ng
z

After transformation

mean
of z along

dimensiond tie in7 n
t

we

Ei nJue

HTwe O u eO



VanC da t e In EF naive i mean is 0

K M

Ein E ufn kn
t

uedai iz

E ui.fi nMniiiJue
Empenicalcovariancematrix

uieuefueneiaiia.aesiiinii
empirical covariance ng n

1K
Our objective augmex

E yet Eiu
del

le in µ
subject to Huelife

we uh O Hd the

Assume K 1 result then generalizes
Objective my

ueTE.ae subject
to uetue I constrained optimiate

problem

we will use Langragian
to solve above problem

Hue d net Euett I uetue



Primal
mug
x min Hue D may nyinufGuetta

uteue

Dual wig mugxHued ngn mueexufeu t I uetue

Maximizingwot
u gradients vanishas

the CUTEy d it uetuel 2Que Que O

E u due
t scalar

mmmatrix UeCRn

t is
eigenvalue of E and Ue is the eigenvector

angmax at UetEiu constraint uetue I l

u guk UefUI O l 14

Solution to above problem we are eigenvectors of 8

deane eigenvalues of
8 thatcapture

amount of variance among me

Principal components are vectors corresponding
to
largest

12
eigenvalues

ga
Objective

reduces to find
eigenvaluesand eigenvectors of

and keep u uh corresponding to top k eigenvaluesofQ



he is proportional to amount of variance captured inUe

To find eigenvalue and eigenvectors EigenDecomposition

Singular
Value Decomposition

we can write Q f x'T where X ie thedata matrix

Problem maduces to findingTop k eigenvaluesof
x'I

let it xTx

A Once NOT as a are orthonormal

challenges is that computing
A laxix Oln'm

and
eigen

decomposition will be off
it numof examples

n om too expensive

Using S D

p u put v andVane orthonormal

mom Mxn nm

columnsof v ane eigenvectors of A
Entries of Dave square root of eigenvalues of A

Complexity of 0 min m2n n m



Q X UDvt show that xTx showthat columns of are eigenvectorof
xTx and Diagonal entering DTD Aue eigenvaluesof xTx

T tXTX UDVT VDV

VDTUTvDVT

v DTDVT UTU I

SOME QUESTIONS

T
Wiehe I Al

N

theAtn j
E


