Linear Algebra
\# MATRIx INVERSE \rightarrow denoted by A^{-1}, and defined as $A^{-1} A=I$
\# $\begin{aligned} T_{0} \text { solve sytim of Linear } & =n s \rightarrow \\ A x & =b\end{aligned}$

$$
\begin{aligned}
A x & =b \\
A^{-1} A x & =A^{-1} b \\
I x & =A^{-1} b
\end{aligned}
$$

* Linear Dependence And Span \rightarrow
- For A^{-1} to exist $A_{x}=b$ must have exactly one solution for every value of b.
s It can have no solution, one solution ar infinitely many solution. It an not have more than one but less than so solution because if x and y are solutions then so is $z=\alpha x+(1-\alpha) y$ for any real α.
- Essentially b is linear combination of columns of A is we are trying to find it b can be formed using linear combination of column of A.

$$
\sum_{i} x_{i} \cdot A_{: i}=b
$$

* SPAN \rightarrow set of all points obtainable by linear combination of original vectors.
$\Rightarrow T_{0}$ find solution of $A x=b$ means whether b lies in column span of A or not.
\Rightarrow For $b \in R^{m}$ to lie in column span of A, the column spin must be R^{m}.
- Linear Independence \rightarrow A set of vectors is linearly independent if no vector is linear combination of a subset of vectors.
\Rightarrow For column span of A to be R^{m} there must exist m linearly independent vectors is for $A_{m \times n}, n \geqslant m$.
Also to hove atmost one solution $n=m$, making A a square matrix.
* Singular MATrix \rightarrow A square matiox with linearly dependent columns.
$\#$ Norms \rightarrow
* L^{p} norm $\Rightarrow\|x\|_{p}=\left(\varepsilon_{i}\left|x_{i}\right|^{p}\right)^{1 / P}$
- Popular norms \rightarrow
(1) L^{2} norm $\rightarrow\|x\|_{2}=\left(\sum_{i}\left|x_{i}\right|^{2}\right)^{1 / 2} \rightarrow$ Often we use squared
(2) L^{\prime} norm $\rightarrow\|x\|_{1}=\sum_{i}\left|x_{i}\right|$ L^{2} norm.
(3) L^{∞} norm $\rightarrow\|x\|_{\infty}=\max _{i}\left|x_{i}\right| \rightarrow$ As p increases x_{i} with max value will dominate the sum.
(3) Forbenius norm \rightarrow Norm of matrix
$\|A\|_{F}=\sqrt{\sum_{i, j} A_{i j}^{2}}$ (just an intuition)
* Unit Vector $\rightarrow A$ vector with unit L_{2} norm is $\|x\|_{2}=1$
- Orthogonal vectors \rightarrow Two vectors x and y are orthogonal if $x^{\top} y=0$
\Rightarrow Orthonormal vectors \rightarrow if $x^{\top} y=0$ and $\|x\|_{2}=1$ and $\|y\|_{2}=1$
- Orthogonal matrix \rightarrow Mabix with orthogonal rows is
$A^{\top} A=A A^{\top}=T$

$$
\begin{aligned}
A^{\top} A & =A A^{\top}=I \\
\Rightarrow \quad A^{-1} & =A^{\top}
\end{aligned}
$$

\# Eigen Decomposition \rightarrow

* Just like integers can be decomposed into prime factors, matrices can be decoruposed into other matrices that reveal properties.
* An eigenvector of a square matrix A is a nonzero vector v such that multiplication by A alters only scale of v.

$$
\text { i } \quad A v=\lambda v
$$

eigen value eigen vector

- If v is eigenvector of A then so is suv for $s \in R, s \neq 0$ with same eigen value.
* Eigendecomposition of $A \rightarrow$

$$
\begin{aligned}
& A=V \operatorname{diag}(\lambda) v^{-1} \\
& V \rightarrow\left[v^{(1)}, v^{(2)}, \ldots, v^{(n)}\right] \\
& \lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]
\end{aligned}
$$

+ Every real symmetric matrix $A \rightarrow$

$$
A=Q \wedge Q^{\top}
$$

$Q \rightarrow$ Orthogonal matrix of eigenvectors of A
$\Lambda \rightarrow$ diagonal matrix of eigenvalues of A.
$\Rightarrow A$ scales the spaces by ${\lambda_{i}}$ in the divectilon $v^{(i)}$.

After multiplication

Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have a matrix \boldsymbol{A} with two orthonormal eigenvectors, $\boldsymbol{v}^{(1)}$ with eigenvalue λ_{1} and $\boldsymbol{v}^{(2)}$ with eigenvalue λ_{2}. (Left)We plot the set of all unit vectors $\boldsymbol{u} \in \mathbb{R}^{2}$ as a unit circle. (Right)We plot the set of all points $\boldsymbol{A} \boldsymbol{u}$. By observing the way that \boldsymbol{A} distorts the unit circle, we can see that it scales space in direction $\boldsymbol{v}^{(i)}$ by λ_{i}.

* A matrix is singular it any of the eigenvalues are 0 .
* A matrix whose eigenvalues are all toe \rightarrow Positive Definite A matrix whore eigenvalues ale all-ve \rightarrow Negative Definite
If positive or $0 \rightarrow$ Positive semidefinite If negative or $\mathrm{O} \rightarrow$ Negative semidefinite
* For positive semi definite matrix \rightarrow

$$
\left.\begin{array}{r}
\forall x \quad x^{\top} A_{x} \geqslant 0
\end{array}\right] \rightarrow \text { we can use this property to }
$$ the semi definite or not.

\# Singular Value decomposition \longrightarrow

* SVD decomposes a matiox into singular values and vectors.
- $A=U D V^{\top}$
$u \rightarrow m \times m$ (Left singular rectors)
$D \rightarrow m \times n$ (Diagonal of D are Singular values of A)
$V \rightarrow n \times n$ (Right singular vectors)
\# Modre-Penrose Pseudoinverse \rightarrow
If A is not invertible then we can compute it pseudo inverse using SVD as

$$
A^{+}=V D^{+} U^{\top}
$$

$D_{D}^{+}=$reciprocal of elements of diajoral matrons
\# Trace And Determinant \rightarrow

* Trace $\rightarrow \quad \operatorname{Tr}(A)=\sum_{i} A_{i, i}$

$$
\begin{aligned}
& \|A\|_{F}=\sqrt{\operatorname{Tr}\left(A A^{\top}\right)} \\
& \operatorname{Tr}\left(A^{\prime}\right)=\operatorname{Tr}\left(A^{\top}\right) \\
& \operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A)
\end{aligned}
$$

More generally, $\operatorname{Tr}\left(\prod_{i=1}^{n} p^{(i)}\right)=\operatorname{Tr}\left(F^{(n)} \cdot \prod_{i=1}^{n-1} F^{(i)}\right)$

$$
\Rightarrow \operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

* Determinant \rightarrow Product of all eigen values of A. For singular mabix, $\operatorname{diter}(A)=0$
\# Principal Component Analysis
- Say wee have date $\left\langle x^{(i n} y_{i=1}^{m}\right.$
- There is high correlation blu x_{1} and x_{2}, is even if dato is in $2 D$ it is more ans
 les in D.
* Underlying question is con we do dimensionality reduction is we project $x^{(i)}$ on \vec{u} to get $\left\{z^{(i)}\right\}_{i=1}^{m}$ where $z^{(i)}=u^{\top} x^{(i)}$ such that most of the "information" in dote is still captured
* Unless the date is perfectly correlated there will be some loss.
- We want to find best set of $\left\{u_{1} \ldots u_{12}\right\}$

Q Why proved the date?
(1) Discovering hidden patterns in the data (correlation etc)
(2) Pouting onto a lower dimensional space makes things tuoctable, For $x^{\text {in }} \in R^{n} \quad k \ll n$.
(3) Helps in reducing noise in data,
\# How to quantity lows of information \rightarrow Variance

$$
\operatorname{Var}\left(\sum x^{(i n} y_{i z 1}^{m}\right)=\sum_{j=1}^{n}\left[\frac{1}{m} \sum_{i=1}^{m}\left(x_{j}^{(i)}-\mu_{j}^{i n}\right)^{2}\right]
$$

Let $\left\{z^{i n}\right\}_{i=1}^{m} \rightarrow$ projection over $\left\{u_{1} \ldots u_{22}\right\}$ then $\operatorname{Var}\left(\left\{z^{i n}\right\}_{i=1}^{m}\right)$ should
be close to variance of original data.
Problem Statement \rightarrow Given $\left\{x^{(i)}\right\}_{i=1}^{m} x^{(i)} \in R^{n}$.
Find $\left(u_{1}, \ldots, u_{k}\right) \quad u_{l} \in R^{n} \forall l, u_{l}^{\top} u_{l}=1$
sit.

$$
\begin{aligned}
& x^{(i n} \sim z^{(i)} \rightarrow \text { projection of } x^{n} \text { on }\left\{u_{l}\right\} \\
\Rightarrow & z_{l}^{(i)}=x^{(i)^{\top}} u_{l}
\end{aligned}
$$

st $\operatorname{var}\left(\left\{z^{(i)}\right\}_{i z 1}^{m}\right)$ is maximized
(1) We first normalize the points so that resulting data has 0 mem and unit variance. (This is so that all features are on same "scale" y height and weight are on same scale)

$$
x_{1}^{(i)} \longleftarrow\left(\frac{x_{1}^{(i)}-\mu_{1}}{\sigma_{1}}\right)
$$

mean, $H_{j}=\frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)} H_{j}=0 \quad$ After transformation.
variance, var $=\frac{1}{m} \sum_{i=1}^{m} x_{j}^{i_{1}^{2}}=1$
mean of z alory dimension $J, \mu_{l}^{2}=\frac{1}{m} \sum_{i=1}^{m} x^{i(1)^{\top}} u_{l}$

$$
\begin{aligned}
& =\left[\frac{1}{m} \sum_{i=1}^{m} x^{i n}\right]^{\top} u_{l} \\
& =\mu^{\top} u_{l}=0 \cdot u_{l}=0
\end{aligned}
$$

$$
\begin{aligned}
& \# \operatorname{Var}\left(\left\{z^{i n}\right\}_{i=1}^{m}\right)=\sum_{l=1}^{K} \frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)^{\top}} u_{l}\right)^{2} \quad(\because \text { mean is } 0) \\
& =\sum_{l=1}^{k} \frac{1}{m} \sum_{i=1}^{m}\left(u_{l}^{\top} x^{(i)}\right)\left(x^{(i)^{T}} u_{l}\right) \\
& =\sum_{l=1}^{K} \xrightarrow[E m p e r i c a l ~ c o v a r i a n c e ~ M a t r i x ~]{k}_{u_{l}^{T}}^{\left[\frac{1}{m} \sum_{i z 1}^{m} x^{i n} \cdot x^{(i)^{\top}}\right]} u_{l} \\
& \begin{array}{r}
=\sum_{l=1}^{k} u_{l}^{\top} \sum u_{l} \quad\left(\text { Here } \sum_{1 k}=\frac{1}{m} \sum_{i=1}^{m} x_{j} x_{i n} x_{k}\right) \\
\\
\text { emperial_covariance }\left(x_{j}, x_{k}\right)
\end{array}
\end{aligned}
$$

Our objectim: $\underset{u_{1}, \ldots, u_{l}}{\operatorname{argmax}} \sum_{l=1}^{k} u_{l}^{\top} \sum u_{l}$
subject to (1) $\left\|u_{1}\right\|_{2}^{2}=1$
(2) $u_{l_{1}}^{\top} u_{l_{2}}=0 \quad \forall l_{1} \neq l_{2}$
\# Assume $k=1$, result then generalizes
Objective $\rightarrow \max _{u_{l}} u_{l}^{\top} \varepsilon u_{l}$ subset to $u_{l}^{\top} u_{l}=1 \quad$ constrained optimization $\begin{gathered}\text { problem }\end{gathered}$ problem
We will use Langragion to solve above problem.

$$
L\left(u_{l}, \lambda\right)=u_{l}^{\top} \varepsilon u_{l}+\lambda\left[1-u_{l}^{\top} u_{l}\right]
$$

Primal $\rightarrow \max _{u_{l}}\left(\min _{\lambda} L\left(u_{l}, \lambda\right)\right)=\max _{u_{l}} \min _{\lambda} u_{l}^{\top} \delta u_{l}+\lambda\left[1-u_{l}^{\top} u_{l}\right]$
Dual $\rightarrow \min _{\lambda}\left(\max _{u_{l}} L\left(u_{l}, \lambda\right)\right)=\min _{\lambda} \operatorname{mox}_{u_{l}} u_{l}^{\top} \varepsilon u_{l}+\lambda\left[1-u_{l}^{\top} u_{l}\right]$

Maximizing wot u_{l} gradient should vanish \rightarrow

$$
\begin{gathered}
\nabla_{u_{l}}\left[u_{l}^{\top} \Sigma u_{l}-\lambda\left(1+u_{l}^{\top} u_{l}\right)\right]=2 \sum u_{l}-2 \lambda u_{l}=0 \\
\Rightarrow \quad \sum^{2} u_{l}=\lambda u_{l} \\
\quad \text { scalar }
\end{gathered}
$$

$n \times m$ matrix $\quad u_{l} \in R^{n}$
$\Rightarrow \lambda$ is eigenvalue of Σ and u_{l} is the eignenector
$\underset{u_{1}, \ldots, u_{k}}{\operatorname{argmax}} \sum_{l=1}^{K} u_{l}^{\top} \varepsilon u_{l} \quad$ constraint $\rightarrow \quad u_{l}^{\top} u_{1}=1 \quad \forall l$

$$
u_{l_{1}}^{\top} u_{l_{2}}^{\top}=0 \quad l_{1} \neq l_{2}
$$

Solution to above problem:- $\begin{aligned} & u_{l} \text { are ign vectors of } \sum \\ & -\lambda_{l} \text { are ign value }\end{aligned}$

- d_{l} are deign values of Σ that caftur amount of variance amoy u_{l}.
\# Principal components are vectors corresponding to largest k eigen values
of Σ_{i} of Σ
\Rightarrow Objective reduces to find eigen values and eigen vectors of Σ and keep u_{1}, \ldots, u_{k} corresponding to top k eigenvalues of Σ.
$\Rightarrow \lambda_{l}$ is proportional to amount of variance captured in u_{l}.
\# To find eigenvalue and eigenvectors \rightarrow (1) Eigen Decomposition
(2) Singular Value Decomposition.
\# We can write $\Sigma_{i}=\frac{1}{m} x^{\top} x$ whew x is the data matrix.
\Rightarrow Problem reduces to finding Top k eigenvalues of $\frac{1}{m} x^{\top} x$
Let $A=\frac{1}{m} x^{\top} x$
$A=Q \wedge Q^{-1}=C \wedge Q^{\top}$ as Q are orthonormal

Challenges is that computing $A=\frac{1}{m} x^{\top} x \rightarrow O\left(n^{2} m\right)$
and eigandecomposition will be $\rightarrow O\left(n^{3}\right)$
if nom of resample $n \gg m \rightarrow$ too expensive.
\# Using SVD \rightarrow

$$
\begin{array}{ll}
A=U D V^{\top} & U \text { and } V \text { are orthonormal } \\
(\mathrm{mam})(\mathrm{m} \times n)(n \times n)
\end{array}
$$

- Columns of V are eignvectars of A
- Entries of D are square root of sign values of A.

Complexity of SVD $\rightarrow O\left(\operatorname{nin}\left(m^{2} n, n^{2} m\right)\right)$

Q $x=U D V^{\top}$ show that $x^{\top} x$, show that columns of v are iengrrect on of $x^{\top} x$ and Diogoral entries of $D^{\top} D$ ane eigenvalue of $x^{\top} x$.

$$
\begin{aligned}
x^{\top} x & =\left(U D V^{\top}\right)^{\top}\left(U D V^{\top}\right) \\
& =V D^{\top} U^{\top} U D V^{\top} \\
& =V D^{\top} D V^{\top} \quad\left(\because U^{\top} V=I\right)
\end{aligned}
$$

