H MATRIX INVERSE \rightarrow denoted by A^{T} and defined as $A^{T}A = I$ # To solve system of Linear =ns \rightarrow An = b $A^{T}An = A^{T}b$ $In = A^{T}b$

LINEAR DEPENDENCE AND SPAN -

- + For A' to exist An=15 must have exactly one solution four every value of 5.
- * It can have no solution, one solution on infinitely mony solution. It can not have more than one but less than ∞ solution because if n and y are solutions then so is $\frac{z = \alpha \pi + (1 \alpha) y}{1 + \alpha}$ for any sread α .
- * Essentially b is linear combination of columns of A is we are trying to find if b can be formed using linear combination of columns of A. $\Xi z_i \cdot A_{ii} = b$
- * SPAN → set of all points obtainable by linear combination of original vectors.
 ⇒ To find solution of Ax=b means whether b lies in column spon of A or not.
 ⇒ For ber^m to lie in column spon of A, the column spon must be not.

- LINEAR INDEPENDENCE → A set of vectors is linearly independent if no vector is linear combination of a subset of vectors.
 ⇒ For column span of A to be R^M there must exist in linearly independent vectors is for A_{mxn}, n ≥ m.
 Also to have at most one solution n=m, making A a square molicity.
- * Singular MATRIX A square matrix with linearly dependent columns,

Norms
$$\rightarrow$$

* L^P norm \Rightarrow $||\alpha||_{p} = (\sum_{i} |a_{i}|^{p})^{1/p}$
* Popular norms \Rightarrow
(i) L² norm \Rightarrow $||\alpha||_{2} = (\sum_{i} |a_{i}|^{2})^{1/2} \rightarrow Often we use aquared
(a) L1 norm \Rightarrow $||\alpha||_{1} = \sum_{i} |a_{i}|$ L² norm.
(b) L² norm \rightarrow $||\alpha||_{2} = \sum_{i} |a_{i}| \rightarrow A_{x}$ p increases a_{i} with max
value will dominate the som.
(c) Forbenius norm \Rightarrow Norm of matrix (just an intuition)
 $||A||_{F} = \sqrt{\sum_{i} A_{ij}^{2}}$
* Unit Vector \Rightarrow A vector with unit L₂ norm is $||\alpha||_{2} = 1$$

EIGEN DECOMPOSITION →

* Just UKs integers can be decomposed into prime factors, matrices can be decomposed into other matrices that reveal properties. + An eigenvector of a square matrix A is a non zero vector v such that multiplication by A alters only scale of re. i Av = Xv eigen vetor eigen vetor * If v is eigenvector of A then so is s.v for sER, s=D with some Veigen value. + Eigendecomposition of A → $A = V \operatorname{diag}(A) V^{-1}$ $V \rightarrow [V^{(1)}, V^{(2)}, \dots, V^{(n)}]$ $\lambda = \left[\lambda_1, \lambda_2, \dots, \lambda_n\right]$

+ Every real symmetric matrix
$$A \rightarrow A = Q \wedge Q^{T}$$

 $A = Q \wedge Q^{T}$
 $Q \rightarrow Orthogonal matrix of eigenvectors of A
 $\Lambda \rightarrow diagonal matrix of eigenvalues of A.$
 $\Rightarrow A$ scales the spaces by A_{i} in the direction U^{i} .$

Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have a matrix \boldsymbol{A} with two orthonormal eigenvectors, $\boldsymbol{v}^{(1)}$ with eigenvalue λ_1 and $\boldsymbol{v}^{(2)}$ with eigenvalue λ_2 . (*Left*)We plot the set of all unit vectors $\boldsymbol{u} \in \mathbb{R}^2$ as a unit circle. (*Right*)We plot the set of all points $\boldsymbol{A}\boldsymbol{u}$. By observing the way that \boldsymbol{A} distorts the unit circle, we can see that it scales space in direction $\boldsymbol{v}^{(i)}$ by λ_i .

* A nation 12 singular iff any of the eigenvalues are 0.
* A matrix whose eigenvalues are all tre → Positive Definite A matrix whose eigenvalues are all tre → Negative Definite If positive are 0 → Positive semidufinite If negative are 0 → Positive semidufinite
* For positive semidefinite matrix → Vm m^T Ax ≥ 0] → we can use this property to prove if a matrix A is tre semi definite are not.

SINGULAR VALUE DECOMPOSITION →
* SNO duamposes a mobil into singular values and vertices.
* A= UDV
U → mxm (Left singular vertices)
D → mxm (Diagonal of D au Singular values of A)
V → nxm (Right singular vertices)
MOORE - PENROSE PSEUDOINVERSE →
If A is not invertible then we can comput its pseudo inverse
U A is not invertible then we can comput its pseudo inverse
D = seciprocal of elements of diagonal maties
D = Tr(A) = E A;;
I All = =
$$\sqrt{Tr(AA^T)}$$

Tr(A) = Tr(A^T)
Tr(A) = Tr(A^T)
Tr(ABC) = Tr(CABC) = Tr(BCA)
More generally, Tr($\frac{11}{12}$ $F^{(D)}$) = Tr($F^{(D)}$, $\frac{11}{12}$ $F^{(D)}$)
Deturminant → Product of all sign values of A. for singular
matur, deter(A) = D

PRIN<u>CIPAL COMPONENT ANALYSIS</u>
Sow we have date in the second date in

- * Underlying quarties is can us de dimensionality reduction is we project $x^{(i)}$ on \overline{u} to get $\{z^{(i)}y_{i=1}^m\}$ where $z^{(i)}=\overline{u}\cdot z^{(i)}$ such that most of the information in data is still captured
- * Unless the data is perfectly correlated there will be some loss.
- " we want to find best set of {u, ... u,2}

How to quantify low af information -> Variance

$$\operatorname{Var}(2\pi^{in}y_{12}^{m}) = \sum_{j=1}^{n} \left[\frac{1}{m} \sum_{i=1}^{m} (\pi^{in}_{j} - \mu_{j}^{n})^{2} \right]$$

Let $\left\{ \sum_{j=1}^{in} \int_{12}^{m} projection over \left\{ u_{1} - u_{2} \right\} \right\}$ then $\operatorname{Var}(2\pi^{in}y_{12}^{m})$ should

be close to variance of original data.
Problem Statement
$$\rightarrow$$
 limin $(\pi^{(i)} \mathcal{J}_{iz}^{m}, \pi^{(i)} \in \mathbb{R}^{n})$.
Find $(u_{11}, ..., u_{k})$ $u_{k} \in \mathbb{R}^{n} \quad \mathcal{H}_{k}, u_{k}^{T} u_{k} = 1$
sit:
 $\pi^{(i)} \sim z^{(i)} \longrightarrow projection of \pi^{(i)} on (u_{k})$
 $\Rightarrow z_{k}^{(i)} = \pi^{(i)T} u_{k}$
sit:
 $\pi^{(i)} \sim z^{(i)} \longrightarrow projection of \pi^{(i)} on (u_{k})$

() We first normalize the points so that resulting data has O mean and unit variance. (This is so that all features are on some "scale" og height and weight aver on same scale) $\chi_{1}^{(i)} \leftarrow \left(\frac{\chi_{1}^{1} - \mu_{1}}{\chi_{1}^{1} - \mu_{2}}\right)$ mean, $H_3 = \frac{1}{m} \sum_{i=1}^{m} \frac{x_i}{x_j} + \frac{1}{2} = 0$ After transformation. vouiance, $Vau = \frac{1}{2} \sum_{j=1}^{m} \frac{1}{2} = 1$ mean of z along dimension J, $\mu_{1}^{z} = \frac{1}{m} \sum_{i=1}^{m} \chi_{i}^{inT} u_{1}$ $= \left[\frac{1}{m} \sum_{i=1}^{m} x_{i}^{(i)} \right]^{i} U_{i}$ $= \mu^{T} u_{L} = 0 \cdot u_{1} = 0$

If Assume K=1, second then generalizes Objective $\rightarrow \max_{u_1} u_1^T \leq u_2$ subject to $u_1^T u_1 = 1$ forstrained optimizatin u_2 broblem We will use Longragion to solve above problem. $\lambda(u_1, d) = u_1^T \leq u_2 + \lambda[1 - u_1^T u_2]$

Rimal
$$\rightarrow \max_{U_{1}} \left(\min_{\lambda} L(U_{1},\lambda) \right) = \max_{U_{1}} \min_{U_{1}} \min_{U_{1}} U_{1}^{T} \sum_{U_{1}} \pm \lambda \left[1 - U_{1}^{T} U_{1} \right]$$

Dual $\rightarrow \min_{\lambda} \left(\max_{U_{1}} L(U_{1},\lambda) \right) = \min_{\lambda} \max_{U_{1}} U_{1}^{T} \sum_{U_{1}} \pm \lambda \left[1 - U_{1}^{T} U_{1} \right]$
Maximizity wit U_{1} gradient should vanish \rightarrow
 $\nabla_{U_{1}} \left[U_{1}^{T} \sum U_{2} - \lambda \left(1 \pm U_{1}^{T} U_{2} \right) \right] = 2 \sum U_{1} - 2\lambda U_{1} = 0$
 $\Rightarrow \sum U_{1} = \lambda U_{1}$
 $+ \sum_{u_{1}} \sum_{u_{1}} \sum_{u_{1}} u_{u_{1}} \sum_{u_{1}} u_{u_{1}} = 0$
 $\Rightarrow \lambda \text{ is eigenvalue of Ξ and U_{1} is the eigenvector
 $u_{1} \cdots_{u_{k}} \sum_{u_{1}} U_{1}^{T} \sum U_{1}$ constraint $\rightarrow U_{1}^{T} U_{1} = 1$ $\forall 1$
 $u_{1} \cdots_{u_{k}} \sum_{u_{1}} U_{1}^{T} \sum U_{1}$ constraint $\rightarrow U_{1}^{T} U_{1} = 0$ $J_{1} \pm J_{1}$
Solution to above problem :-. u_{1} are eigenvectors of Ξ
 $+ d_{1}$ are observed on U_{2} .
 $\#$ Principal Lombonent are vectors consultationally to Longest \forall eigen values
of Ξ
 $\Rightarrow Objective incloses to find eigen values and cign vectors of Ξ
 $ard keep U_{1}, \dots, U_{k}$ corresponding to top $\forall k$ eigenvalues of Ξ .$$

⇒
$$A_{1}$$
 is proportional to amount of variance captured in U₁.
To find eign value and sign vertors $\rightarrow 0$ Eigen Decomposition
(a) Singular Value Decomposition.
We can write $\Xi = \frac{1}{m} x^{T}x$ where X is the data matrix.
⇒ Problem induces to finding Top X eigenvalues of $\frac{1}{m} x^{T}x$
Let $A = \frac{1}{m} x^{T}x$
 $A = 0 \wedge 0^{T} = 0 \wedge 0^{T}$ as 0 are orthonormal
Challenge is that computing $A = \frac{1}{m} x^{T}x \rightarrow 0(n^{2}m)$
ord eigenducomposition will be $\rightarrow 0(n^{3})$
If normal axamples $n \gg m \rightarrow too$ expensive.
Using $SVD \rightarrow$
 $A = UDV^{T}$
 U and V are orthonormal
(norm) (norm) (norm)
* (atomns of V are eigenvectore by A
* Entries of D are square most of eigen values of A.
Longlixity of $SVD \rightarrow 0$ ($nvin(m^{2}n, n^{2}m)$)

$$\begin{aligned} x^{\mathsf{T}} x &= (U D V^{\mathsf{T}})^{\mathsf{T}} (U D V^{\mathsf{T}}) \\ &= V D^{\mathsf{T}} U^{\mathsf{T}} U D V^{\mathsf{T}} \\ &= V D^{\mathsf{T}} D V^{\mathsf{T}} \quad (\because U^{\mathsf{T}} U^{\mathsf{T}}) \end{aligned}$$

Q X= UDV^T show that x^Tx, show that columns of v one eigenvector of x^Tx and Digonal entries of D^TD are eigenvalue of x^Tx.