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Abstract

A statement of Shannon's noisy channel coding theorem.

Shannon's Noisy Channel Coding Theorem

It is highly recommended that the information presented in Mutual Information1 and in
Typical Sequences2 be reviewed before proceeding with this document. An introductory
module on the theorem is available at Noisy Channel Theorems 3.

Theorem 1: Shannon's Noisy Channel Coding

The capacity of a discrete-memoryless channel is given by

C = maxpX(x) {I (X;Y ) |pX (x)} (1)

where I (X;Y ) is the mutual information between the channel input X and the
output Y . If the transmission rate R is less than C, then for any ε > 0 there exists
a code with block length n large enough whose error probability is less than ε. If
R > C, the error probability of any code with any block length is bounded away
from zero.

Example 1:

If we have a binary symmetric channel with cross over probability 0.1, then the
capacity C ≈ 0.5 bits per transmission. Therefore, it is possible to send 0.4 bits per
channel through the channel reliably. This means that we can take 400 information
bits and map them into a code of length 1000 bits. Then the whole code can
be transmitted over the channels. One hundred of those bits may be detected
incorrectly but the 400 information bits may be decoded correctly.

∗http://creativecommons.org/licenses/by/1.0
1http://cnx.rice.edu/content/m10178/latest/
2http://cnx.rice.edu/content/m10179/latest/
3http://cnx.rice.edu/content/m0073/latest/
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Before we consider continuous-time additive white Gaussian channels, let's concentrate
on discrete-time Gaussian channels

Yi = Xi + ηi (2)

where the Xi's are information bearing random variables and ηi is a Gaussian random
variable with variance σ2

η. The input Xi's are constrained to have power less than P

1
n

n∑
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(
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2
)
≤ P (3)

Consider an output block of size n

Y = X + η (4)

For large n, by the Law of Large Numbers,
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2
)

=
1
n

n∑
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(|yi − xi|)2

)
≤ ση

2 (5)

This indicates that with large probability as n approaches in�nity, Y will be located in an
n-dimensional sphere of radius

√
nση

2 centered about X since (|y − x|)2 ≤ nση
2

On the other hand since Xi's are power constrained and ηi and Xi's are independent
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≤ P + ση

2 (6)

|Y| ≤ n
(
P + ση

2
)

(7)

This mean Y is in a sphere of radius
√

n (P + ση
2) centered around the origin.

How many X's can we transmit to have nonoverlapping Y spheres in the output domain?
The question is how many spheres of radius

√
nση

2 �t in a sphere of radius
√

n (P + ση
2).
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Exercise 1:

How many bits of information can one send in n uses of the channel?

Solution:

log2
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1 +

P
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2

)n
2
)

(9)

The capacity of a discrete-time Gaussian channel C = 1
2 log2

(
1 + P

ση
2

)
bits per channel

use.
When the channel is a continuous-time, bandlimited, additive white Gaussian with noise

power spectral density N0
2 and input power constraint P and bandwidth W . The system

can be sampled at the Nyquist rate to provide power per sample P and noise power

ση
2 =

∫W

−W
N0
2 df

= WN0

(10)
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Figure 1

The channel capacity 1
2 log2
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N0W

)
bits per transmission. Since the sampling rate is

2W , then

C =
2W
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)
bits/trans. x trans./sec (11)

C = W log2

(
1 +

P

N0W

)
bits
sec

(12)

Example 2:

The capacity of the voice band of a telephone channel can be determined using the
Gaussian model. The bandwidth is 3000 Hz and the signal to noise ratio is often
30 dB. Therefore,

C = 3000log2 (1 + 1000) ≈ 30000
bits
sec

(13)

One should not expect to design modems faster than 30 Kbs using this model of
telephone channels. It is also interesting to note that since the signal to noise
ratio is large, we are expecting to transmit 10 bits/second/Hertz across telephone
channels.
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