
Image Based Indoor
Localization

Assistech Lab, IIT Delhi

Motivation: Blind people have difficulties in

finding their way through

unknown buildings. There being

no special aid or instrument,

whatsoever, available to them,

their only ways of navigating in a

new surrounding are their walking

stick & constantly asking

passersby for help. This deprives

them of their sense of

independence and freedom.

Our aim is to build a navigation system
without adding much /any additional
equipment to the infrastructure of the
building, and unlike the systems that
rely on beacons to find the location of
user, thus increasing the feasibility and
minimizing cost.

Approaches that didn’t work (so well) !!

● SURF, SIFT with bf-matcher didn’t give as accurate results as

SURF with knn matcher.

● ASIFT which accounts for relative orientation of images being

compared has very slow processing (to process a 30 sec

video it took almost 4-5mins).

● KAZE with cosine distance instead of lowe’s ratio test.

● ORB with bf-matcher.

● We tried to make an efficient algorithm but it didn’t work

properly so we increased the search domain for a query

frame

CURRENT APPROACH

Database creation

● A Graph program takes a 2D image

map of a floor as input and enables

the user to manually define and mark

the nodes and edges on the map.

● We then create videos of each edge

and store the information about the

descriptors and key points of the

distinct frames generated from the

video.

● For 720p edge videos for SIT first

floor, database size is around 20 MB.

Increasing efficiency for database creation

● Storing only distinct frames to reduce

redundancy.

● Converting all images to grayscale to

increase comparison speed and reduce

memory usage.

● Disregarding blurry frames. They are found

using variance of Laplacian. More the

variance more the blurriness.

● Overlooking the frames which have

features less than a particular threshold

Similar Images

Blurred
Images

Less Feature
Images

Image Comparison

● We use OpenCV’s SURF to extract features from images.

● KNN matcher is used to match these features and good matches are filtered

using Lowe’s ratio test.

● Fraction match between two images is calculated based on no of features

matched. When this fraction exceeds a certain threshold images are

considered ‘matched’.

● To further filter the good matches, the slope of the line connecting the

corresponding features is calculated. If the slope exceeds a certain threshold,

it is not a match.

Matches found using KNN + Lowe’s test (contain some false matches)

Above Matches with slope greater than threshold removed (contain less false matches)

Query and localisation (1)

● The user’s device is used to capture

a video stream and is transferred via

wifi to the host system and the

frame speed is taken to be 2fps.

● At each instant, a frame is captured

from the video stream, converted to

grayscale, checked for blurriness

and features extracted.

Query and localisation (2)
● Our algorithm takes into account the best-found matches of the last 5 query

frames for determining the location.

● For e.g., If the last 5 frames give matches as follows:

Query frame no. Edge no. whose

frame in database

has matched

The frame no. of

edge in database

which has matched

60 2 1

61 2 1

62 3 5

63 None None

64 2 1

Then the current location
will be declared as 1st
frame in edge no. 2.

Query and localisation (3)

● Taking the most frequent matches ensures the accuracy of

localisation in case :

○ there are false matches, or

○ if the user’s camera is obstructed by random

persons/objects for some time, or

○ if the person stops midway

Query and localisation (4)

The query domain is

determined at each stage

based on the current

location. For determination

of the starting edge, the

query frame is matched with

the first frame of each edge.

*Query domain for
starting edge indicated
in black

Query and localisation (5)
Once the edge is found, the subsequent

query frames are first compared with the

frames of the found edge, and if no

match is found (happens when the edge

changes or the frame is random and

doesn’t correspond to any frame in the

database), the frames of nearby edges (

those sharing a common node with the

current edge) are compared.

*Query domain (after
first stage) indicated in
black

← Current edge

Query and localisation (6)
● The fraction of edge traversed is calculated using the timestamp of the best-

matched frame (in the database) of the edge.

● For e.g., if the frames in an edge are as follows:

If the best matched frame is #2, then the fraction of edge traversed = 150/ 200

= 0.75. This implies user is at ¾th of the edge.

● This information of the current edge and fraction traversed is used to display

the current location of the user on the map.

Frame no. 0 1 2 3 4

Time stamp 0 55 150 172 200

Sample Video 1

http://drive.google.com/file/d/1VejTXfLHslfWeMuJ3B6ZaeFKCQ57bQKk/view
http://drive.google.com/file/d/1VejTXfLHslfWeMuJ3B6ZaeFKCQ57bQKk/view

Sample Video 2

http://drive.google.com/file/d/1KP12MMX2vUQSw2oVIyblaiGVpsjYe-zR/view
http://drive.google.com/file/d/1KP12MMX2vUQSw2oVIyblaiGVpsjYe-zR/view

Limitations

1. The query domain is limited

2. Point localisation is not absolutely accurate

3. Lighting and background conditions

4. Using SURF for feature detection and limitation on walking speed.

5. High resolution and good quality camera is required

6. Doesn’t work well in highly crowded places

1. The query domain is limited

● At each point, only the frames of current or adjoining edges

can be queried due to time constraints.

● If large no of continuous frames is not matched due to

irregular frames in the query video or the database, then the

algorithm can catch up with the current location if the person

is still on the last known current edge or its adjoining edges.

● However, if the current edge and its adjoining edge is missed

completely because of no matches, then the algorithm fails

because his current location will be out of the query domain.

2. Point localisation is not absolutely accurate

● Though it yields good results, the representation on the map

is only indicative of the best-matched frame in the current

edge.

● Its accuracy depends on the best-found match among the

frames of the edge, and the density of the database.

3. Lighting and background conditions

● Because image matching does not yield good results

in varied lighting conditions, localization is reasonable

only if the lighting conditions are somewhat similar at

the time of database creation, and at the time of the

query. Also the working is best at night when lighting

conditions are even throughout.

● In case of buildings like SIT, where sunlight plays a

heavy role in lighting during the day, separate

databases have to be created for the morning,

afternoon and evening for good results.

● Also in SIT, the main gate adjacent to wall is

completely made of glass due to which the

background changes are very drastic in the edge

facing the wall due to which the detection is not

proper.

4. Using SURF for feature detection and
limitation on walking speed

● Though SURF gives reasonable results, it is far from perfect.

● It is inconsistent in terms of features detected and gives very

low percentage match for even very similar images

● The waking speed of the person must be limited to 0.5-0.7 of

normal walking speed of average human being due to

hardware constraint on processing.

5. High resolution and good quality camera is required

● Camera should be preferably more than 2 mp

● Prefered video resolution is 720p

● Camera with optical stabilization is required

● Camera with more dynamic range handle image matching

better

6. Doesn’t work well in highly crowded places

● Image matching is not good if there is a lot of crowd in the

testing time

● This happens because the crowd covers the major section of

the stable background and the matcher is not able to give

good results.

References
1. Blur detection with OpenCV

https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/

2. More research in image-based localisation

https://pdfs.semanticscholar.org/c695/642def74bbd772ab39a3f1e592937fd8

7a5d.pdf

https://www.sciencedirect.com/science/article/pii/S0167865515000744

1. Asift matcher

https://github.com/opencv/opencv/blob/master/samples/python/asift.py

1. Converting image to bag of words using KMeans on Surf Descriptors and

training svm to generate classes to group similar images.

https://kushalvyas.github.io/BOV.html

https://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
https://pdfs.semanticscholar.org/c695/642def74bbd772ab39a3f1e592937fd87a5d.pdf
https://github.com/opencv/opencv/blob/master/samples/python/asift.py
https://kushalvyas.github.io/BOV.html

Future
Improvements

● We can use pedometer and

phone compass along with

our algorithm to improve

results.

● We can also place QR codes

on important locations to fine

detect the location further

and even improve accuracy of

our algorithm

Thank you

