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Abstract—Existing Iris Presentation Attack Detection (IPAD)
systems do not generalize well across datasets, sensors and
subjects. The main reason for the same is the presence of
similarities in bonafide samples and attacks, and intricate iris
textures. The proposed DFCANet (Dense Feature Calibration
Attention-Assisted Network) uses feature calibration convolution
and residual learning to generate domain-specific iris feature
representations at local and global scales. DFCANet’s channel
attention enables the use of discriminative feature learning
across channels. Compared to state-of-the-art methods, DF-
CANet achieves significant performance gains for the IIITD-
CLI, IIITD-WVU, IIIT-CSD, Clarkson-15, Clarkson-17, NDCLD-
13, and NDCLD-15 benchmark datasets. Incremental learning
in DFCANet overcomes data scarcity issues and cross-domain
challenges. This paper also pursues the challenging soft-lens
attack scenarios. An additional study conducted over contact
lens detection task suggests high domain-specific feature modeling
capacities of the proposed network.

Index Terms—Feature calibration, iris-spoofing, channel atten-
tion.

I. INTRODUCTION

Iris Presentation Attack Detection (IPAD) handles attacks
from cosmetic contact lenses, holographic eyes, textured con-
tact lenses, prosthetic eyes, printed iris images, iris videos,
paper iris printouts, drug-induced iris manipulation and fake
eyeballs [1]–[3]. LivDet-Iris is an international competition
series launched in 2013 to assess the current state-of-the-art in
IPAD by the independent evaluation of algorithms [2], [4]. In
addition, results from the LivDet-Iris 2017 [5] and LivDet-Iris
2020 [4] competitions illustrated that state-of-the-art methods
still obtain limited accuracy in IPAD. Under the stringent
evaluation protocols introduced in the same, generalization
has been observed to be affected [3], [6]. This degradation
in performance was eminently observed for unseen-attack
and cross-dataset scenarios, where characteristics of testing
samples differ from the samples considered for training.

Iris images are characterized by complex iris patterns,
as well as morphological artifacts included in the annular
structure of the eye, such as eyelashes. Another challenging
aspect is that the iris biometric remains concealed within
limited boundaries throughout the image. Uneven lighting con-
ditions and occluded image capture further degrade attention to
important details. Iris segmentation in unconstrained scenarios
is thus a difficult problem. The problems discussed above
deepen when IPAD algorithms are evaluated in cross-domain

scenarios. Soft-Lens situations bear high visual similarity to
normal iris images. Ironically, this aspect has received very
limited attention in the literature [7]–[9]. Fig. 1 illustrates var-
ious realistic evaluation scenarios such as Inter-Sensor, Cross-
Dataset, Inter-Subject and specifically Soft-Lens-as-Attack im-
pends extreme challenges for IPAD algorithms. The following
pertinent points arise:

• What domain-specific characteristics accentuate the sepa-
ration between bonafide and presentation attack samples?

• A consistent IPAD performance even in challenging
cross-domain scenarios with drastic training-testing drift.

• Good performance in data-scarce, unconstrained, and
zero preprocessing conditions.

We present DFCANet to take advantage of local-global feature
learning, and thus generalizing well for unseen and cross-
domain IPAD scenarios. It is observed that the iris has similar
textures existing at both local and global scales [9]. As
illustrated in Fig. 1 there exists a significant difference between
the activations of the attack and the bonafide samples at
the local and global levels. The proposed DFCANet identi-
fies and accentuates local features and their global context
in attacks, differentiating them from bonafide samples. Our
model operates on raw iris images without any preprocessing,
and has a feature calibration-assisted backbone network for
robust IPAD. To validate the efficacy of the proposed model,
we perform challenging experiments and extensive ablation
studies on seven benchmark data sets, namely IIITD-CSD,
Clarkson-15, Clarkson-17, NDCLD-13, NDCLD-15, IIITD-
WVU, and IIITD-CLI. Our main contributions are as follows:

• DFCANet extracts domain-specific knowledge in terms
of local-global iris patterns using residually connected
iris feature calibration, for accentuated discrimination
between bonafide and attack images.

• Our extensive experimentation on seven benchmark
datasets considers both settings: soft-lens as bonafide
(defined well in the literature) and the more realistic soft-
lens as an attack. (Normal images and soft-lens cases
are visually similar!) DFCANet effectively differentiates
normal images from soft or textured contact lenses.

• DFCANet is validated on challenging cross-domain
settings, namely, cross-dataset, inter-sensor, and inter-
subject settings. DFCANet also achieves good general-
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Fig. 1. Iris Presentation Attack Detection involves challenging cross-domain evaluation (Cross-Dataset, Inter-Sensor and Inter-Subject) as well as Soft-Lens
situation as attacks and artifacts. The proposed DFCANet generalizes well over these settings by virtue of joint local-global feature modeling.

ization performance in contact lens detection.
• Our incremental learning for low-data regimes works well

on the challenging NDCLD-13 dataset.
The remainder of the paper is structured into four main

sections. Section II critically reviews the existing work on
IPAD with an emphasis on deep learning-based methods.
Section III presents the methodology of our approach and
includes the details of the network and training considered
in this work. Section IV provides details about the data sets,
experiments, and testing protocol used for performance eval-
uation. In Section V, we present the parameters and the run-
time analysis. Key findings and discussions are summarized
in Section VI.

II. RELATED WORK

In recent years, many studies on iris biometrics have
started to employ deep learning schemes [10], [11] and
presented remarkable progress in IPAD performance. The
hand-crafted features have also shown significant progress in
IPAD, specifically for intra-dataset testing scenarios. However,
their progress is still far from satisfactory to new application
scenarios [12]. The well-known handcrafted features that have
been used in IPAD include hierarchical visual codebook [13],
local binary pattern [14], weighted local binary pattern [15],
spatial pyramidal matching [16]. In contrast, IPAD based on
deep learning approaches [8], [17], [18] work well due to their
ability to extract highly domain specific iris representations.
The first work that proposed a deep architecture for IPAD
was called SpoofNet [17]. Recently, [19] attempted to explore
iris liveness detection and contact lens identification in near-
infrared images. Moreover, some of the schemes explored the
combination of hand crafted features with deep learning and
achieved good results [7], [11]. Unlike fusion of hand crafted
and CNN features, authors in [20] presented a multi-layer

deep fusion scheme extracting different level of information
from multiple layers of the network. Similarly, in [21], the 2D
(textual) and 3D (shape) features of the iris image combined
to address the problem of spoof detection. Apart from fusion
schemes, most recently, attention based deep learning frame-
work named pixel wise binary supervision network [8] was
given to capture fine grained pixel level information that can
be emphasized for making accurate IPAD decisions. In [18],
authors presented an explainable attention-guided IPAD that
can improve both the generalization and explanation capability
of existing approaches. The existing IPAD approaches mainly
employ LivDet-Iris datasets [5] by performance evaluation
of independent algorithms [4]. Authors in [22], presented
DensePAD method to detect presentation attacks by utilizing
DenseNet-121 architecture. Similarly, [10], also exploited the
architectural benefits of DenseNet to propose an IPAD scheme
that was tested on four different sub-datasets of the LivDet-Iris
2017 [5] and LiveDet-Iris 2020 [4] datasets. Although their
method achieved good results on LivDet-Iris 2017 datasets
[5], but performance dropped in the case of cross-dataset
scenarios. In recent work [23], authors presented a generalize
IPAD to resolve degrade in performance of DNN’s against un-
seen dataset, unseen sensor, and different imaging conditions.
Likewise in [24], authors addressed the problem of domain
shift in IPAD algorithms under cross dataset scenarios. Some
other studies have been developed to create synthetic iris-
like patterns using a generative adversarial network [25] with
applications to IPAD. However, these methods are not scalable
to more than two domains and often show instability in the
presence of multiple domains. [26] proposed domain invariant
styling n/w to generate good quality iris synthetic images to
assist in training IPAD models for better performance. Some
recent studies have been reporting survey papers [1], [2], [27],
new datasets [28] and conducting IPAD competitions [4], [5],
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Fig. 2. The proposed DFCANet has three main blocks namely, the DenseNet-121 backbone network, the Iris Feature Calibration Network (IFCNet) (Sec. III-A)
and the Channel Attention Module (CAM) (Sec. III-B). A key feature of IFCNet is the 5 Feature Calibration Convolution (FC-Conv) module for local and
global feature extraction, which this diagram also shows in detail. The CAM output is used for the bonafide versus attack classification.

[29] that has increased the potential of DNN based IPAD
approaches under constrained environments. Recent trends
in IPAD are to mix synthetic and actual data to make the
network more domain-specific [9], [26], [30], and to improvise
performance on unseen domains [31] and open set scenarios
[32]. Limited research was presented on gender bias solutions
in IPAD [33], [34], which has a lot of potential to advance
the state-of-the-art in this domain. In summary, future IPAD
systems must be generalized well to attenuate illegal access to
biometric systems by leveraging deep learning algorithms.

III. METHODOLOGY

In the Section I, we highlighted three design consideration
points for IPAD networks, basing on the same we hypothesize
the following: i) Iris contains the similar pattern in local neigh-
borhoods. These patterns are spread across the entire iris. ii)
These correlated locally spread patterns constitute a globally
homogeneous pattern. iii) Jointly at local and global scales,
there is a significant difference between activations of attack
and bonafide samples (illustrated in Fig. 1). The DFCANet
architecture (Fig. 2) accordingly has 3 major components: a
DenseNet121 backbone, the Iris Feature Calibration Network
(IFCNet), and the Channel Attention Module (CAM).

A. IFCNet and Backbone Network

DFCANet extracts preliminary but generic iris features from
a pre-trained backbone network (fine-tuned during training).
Instead of other conventional backbone networks (ResNet [35],
Inception [36]), the choice of DenseNet-121 [37] has been
motivated by its prevalent usage in IPAD literature [10], [18]

as well as the benefits of dense feature-flow. The dense con-
nections in DenseNet-121 enable interactions between locally-
learnt patterns at lower layers, to be robustly correlated with
globally located representations at higher layers. We input
224× 224× 3 iris images without segmentation or normaliza-
tion. Features from the 51st layer are extracted, resulting in
output dimensions being R(56×56×128). IFCNet (Fig. 2) takes
this as its input. IFCNet has 5 FC-Blocks stacked. A FC-Block
comprises Feature Calibration Convolutions (FC-Conv) [38]
with residual connections.
FC-Conv: Local-Global Features for IPAD Domain-
Specificity: FC-Conv (Fig. 2) facilitates the tuning of local
features (extracted in a region restricted by the kernel size),
in accordance with a global feature hierarchy. The input
IϵRH×W×C is split across the channel dimensions into two
equal halves I1 and I2. Height, width and channel dimensions
are respectively, H , W and C. The first half operates through
a regular 2D-Convolution, while the second half is made to go
through both local feature extraction head (LFEH) and global
feature extraction head (GFEH) in a parallel manner.

Let F1 represent the first convolution over I1. The corre-
sponding output is given by I

′

1ϵR
H×W×C/2. This convolution

learns non-linear relationships across one half of the channels.
In LFEH, I2 is operated using a regular 2D-Convolution F3.
This is a local convolution because of its localized receptive
field. The resulting output is I

′

2−LocalϵR
H×W×C/2. Simulta-

neously in GFEH, I2 is down-sampled using Average-Pooling
(Avg.Pool()), followed by a 2D-Convolution (F4) and finally,
bilinear upsampling (Up(.)). Reduction in spatial dimensions
with average pooling lets the model develop representations
on the basis of globally compressed information. The output
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of GFEH I
′

2−Global is

I
′

2−Global = Up(F2(Avg.Pool(I2))); I
′

2−LocalϵR
H×W×C/2

(1)
Next, the output of the upsampling is added with I2 i.e., the
original input to LFEH and GFEH. This ensures stability in
flow of gradients as well as highlights important features.
The generated output is activated through a sigmoid (σ)
to undermine the essential spatial regions with respect to
understanding global characteristics. Finally, in the feature
calibration step, element-wise multiplication (⊗) of the outputs
of GFEH and LFEH is performed. This operation highlights
the important local features with respect to the global feature
representation. Another 2D Convolution (F4), succeeds the
same, and as a result generates I

′

2ϵR
H×W×C/2. The last

convolution (F4) facilitates extraction of joint features over
locally and globally correlated representations. The entire
operation can be mathematically summarized as follows:

I
′

2 = F4(I
′

2−Local ⊗ σ(I
′

2−Global + I2)); I
′

2ϵR
H×W×C/2 (2)

The final output of FC-Conv is the concatenation of I
′

1

and I
′

2 (YFCϵR
H×W×C). The convolutions F3 and F2 are

activated by ReLU while the convolutions F1 and F4 are
activated linearly but are succeeded by batch normalization
and ReLU activation. Furthermore, F1, F3 and F4 adhere
to the same kernel size k1. F2 has a bigger kernel-size k2
for capturing greater global contexts. Accredited to a limited
number of channels per kernel, the parameter efficiency of
FC-Conv is significantly higher than regular 2D Convolutions.
Hence, FC-Conv allows for stacking multiple layers and in-
turn, captures highly non-linear relationships. Table I describes
the architecture of IFCNet.

TABLE I
DESCRIPTION OF DIFFERENT PARAMETERS OF IFCNET

Model Sub-
module k1 k2 Avg.

Pooling
o/p
channels

FC Block1 FC Conv1 (3,3) (7,7) (11,11) 128
FC Conv2 (3,3) (7,7) (11,11) 128
FC Conv3 (3,3) (7,7) (11,11) 128

FC Block2 FC Conv1 (3,3) (7,7) (11,11) 128
FC Conv2 (3,3) (7,7) (11,11) 128
FC Conv3 (3,3) (7,7) (11,11) 128

Avg. Pool 2D Pool Size = (2,2) - - Strides = (2,2) 256
(1×1) Conv2D - - - - 256
FC Block3 FC Conv1 (3,3) (5,5) (9,9) 256

FC Conv2 (3,3) (5,5) (9,9) 256
FC Conv3 (3,3) (5,5) (9,9) 256

FC Block4 FC Conv1 (3,3) (5,5) (9,9) 256
FC Conv2 (3,3) (5,5) (9,9) 256
FC Conv3 (3,3) (5,5) (9,9) 256

Avg. Pool 2D Pool Size = (2,2) - - Strides = (2,2) -
(1×1) Conv2D - - - - 512
FC-Block5 FC Conv1 (3,3) (3,3) (7,7) 512

FC Conv2 (3,3) (3,3) (7,7) 512
FC Conv3 (3,3) (3,3) (7,7) 512

B. Channel Attention Module (CAM)

Channel attention accentuates feature discriminability
through weighing essential channels and suppressing others
(and stabilizes training, as well). CAM [18] (Fig. 2) takes

in a XϵRN×C′ feature map, where C′ and N respectively
represent channel dimensions and spatial axes clubbed in
a single dimension. Then, the input and the corresponding
transpose are multiplied and have a Softmax activation. For the
resulting activation map U ϵ RC′ × C′ , each of the elements
Uij is a weight measuring the importance of jth channel with
respect to ith channel. At broader level, U captures inter-
channel interactions. Finally, matrix product between input
(X) and activation map (U ) is performed. The output is
reshaped in image tensor format and the original input feature
map is added. The CAM output comprises channels scaled in
accordance with their respective distinctiveness.

C. Output Network and Training Details

CAM features are followed by global average pooling and
a couple of fully connected layers. During backpropagation,
Adam optimizer is employed, while images are augmented
with zooming, shearing, spatial shifts and brightness varia-
tions. Training is performed for 200 epochs and the model
achieving maximum validation (testing) accuracy is chosen
and is saved. The proposed framework has been implemented
using TensorFlow 2.5 while all the experimentation has been
conducted in NVIDIA’s RTX-3090 GPU.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we have conducted experiments under chal-
lenging strategies including: i) cross-sensor, ii) intra-sensor
and iii) combined sensor. Furthermore, to demonstrate the ef-
fectiveness of the IFCNet and CAM structures independently,
the ablation experiments are conducted and compared with the
proposed framework. Comparisons with other state-of-the-art
methods are also conducted. In addition, we introduce baseline
experiments based on incremental learning are performed. To
have a better check on generalizability, we also performed
cross-dataset and contact-lens detection experiments.

A. Datasets and Evaluation Protocols

The proposed framework is evaluated on seven benchmark
datasets comprising various types of presentation attacks cap-
tured by a variety of sensors. This section can be passed over,
without any loss in continuity.

1) IIITD-CLI dataset [39] and Evaluation Protocol: This
dataset is composed of 6750 dual-eye ocular images collected
from 101 subjects. Two eye-scanners: cogent and vista F2AE
have been employed for the task. The dataset comprises con-
tact lens-based attacks i.e. soft and textured lenses. Following
the literature - A-PBSNet [8], MVANet [23], ELF [9]], we first
exclude soft lenses for conducting comparison with the state-
of-the-art. However, we also perform other experiments con-
sidering Soft-Lens-as-Attack (SLA). The following instance
(SLA) is challenging as it gives a very similar appearance to
a bonafide iris image. This scenario was taken into account
because of two reasons: i) There is a high possibility that
soft-lens can be used as a spoofing medium, ii) Establishing
a baseline over a challenging question that can an IPAD
algorithm effectively differentiate between bonafide images
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and any form (soft or textured) contact lenses. For conducting
experiments with this dataset, 50-50% data was split for
training and testing in a hold-out fashion.

2) NDCLD’13 dataset [40] and Evaluation Protocol: This
dataset comprises two datasets ND-I and ND-II collected from
two different sensors, AD100 IrisGuard and LG4000 respec-
tively. Similar to IIIT-CLI, this dataset comprises bonafide
iris images and soft, textured contact lens images. Keeping
consistent with literature [A-PBSNet [8], MVHF [7]], we have
considered textured and soft contact lenses. To be specific, we
have considered Soft-Lens-as-Bonafide (SLB) for comparison
with state-of-the-art, while for the remaining experiments, we
considered Soft-Lens-as-attack (SLA). Both ND-I and ND-
II have been provided with a training and testing set. ND-I
consists of 600 images in training, and 300 images in testing.
For the case of ND-II, there are 3000 images given under
training and 1200 images for testing.

3) IIITD-CSD dataset [41] and Evaluation Protocol:
IIITD-CSD consists of print, scan, textured and soft contact
lens based attacks. It is the largest dataset considered in this
study. In total, it consists of 17036 ocular-iris images. For eye
scan, Cogent and Vista F2AE sensors had been utilized while
for print and scan attacks HP Flatbed Optical Scanner and
Cogent-CIS 202 was used. The experimental protocol con-
sidered Soft -lens-as-Bonafide (SLB) [DESIST [41], MVHF
[7]] for comparison with state-of-the-art. However, for the
other experiments soft-lens as attack (SLA) was taken into
account. Experimentation in both SLA and SLB involved 50-
50% splitting for training and testing set in a holdout fashion.

4) IIITD-WVU dataset [5] and Evaluation Protocol:
The IIITD-WVU is a subset of LivDet-2017 Challenge, and
presents one of the most challenging cross-dataset scenarios
for IPAD algorithm evaluation. The dataset consists of 6250
training iris images captured via Cogent, CIS202 and Vista
F2AE sensors in constrained environments. For evaluation,
4209 images are captured for a different set of subjects
and also via different sensor (Iris Shield MK2120U). The
testing images have been captured in both constrained (indoor)
and unconstrained (outdoor) settings to further deepen the
challenge. The attacks present in the dataset includes con-
tact lenses and printouts for both real and contact lens iris.
Since the dataset does not have soft contact lenses, we have
only evaluated the proposed model over the provided testing
dataset.

5) Clarkson-17 dataset [5] and Evaluation Protocol:
The Clarkson-17 is a subset of LivDet-2017 Challenge, and
presents the challenging unseen patterned lens based attacks.
The training set consists of three types of iris images: a 2469
number of live images, a 1346 number of printed iris images,
and a 1122 number of patterned contact images. There are in
total 3158 images from spoof (print and patterned lens attacks)
and bonafide classes.

6) NDCLD15 dataset [42] and Evaluation Protocol:
This dataset has a total number of 7300 images that were
captured by two sensors, IrisGuard AD100 and IrisAccess
LG4000. The images were collected under MIR illumination
and controlled environments. Alongside NDCLD’13, this is
a next data version in NDCLD series which contains three

type of iris images, namely: wearing no lenses, soft lenses,
and textured lenses. Keeping consistent with literature [42],
we have considered 6000 iris images randomly for training
and 1300 iris images for testing.

7) Clarkson-15 dataset [5] and Evaluation Protocol:
This dataset was captured using two types of sensors: Dalsa
and LG sensors, where image capture characteristics differ
significantly. There are a total of 1078 live images, 1431
patterned contact lens images, and 1746 printed images are
in this dataset. The training subset contains 700 live, 873
patterned contact lens, and 846 printed images. The testing
subset contains 378 live, 558 patterned contact lens, and 900
printed images.

B. Performance Metrics

We use state-of-the-art metrics [7], [8] and ISO standards
[43]: Attack Presentation Classification Error Rate (APCER),
Bonafide Presentation Classification Error Rate (BPCER), and
Average Classification Accuracy (AA).

TABLE II
INTRA-SENSOR EXPERIMENTAL RESULTS

Datasets Training Testing AA APCER BPCER ACER
IIITD-CSD Cogent Cogent 99.33 2.03 0.31 1.17

Vista Vista 99.80 0.40 0.17 0.27
IIITD-CLI Cogent Cogent 98.90 1.52 0.87 1.19

Vista Vista 99.79 0.41 0.90 0.25
NDCLD13 LG4000 LG4000 95.91 9.75 1.25 5.50

AD100 AD100 76.00 44.00 14.00 29.00

C. Experimental Results and Discussions

1) Intra-Sensor Experiments: Intra-Sensor experiment in-
volved training the model on data from a sensor, while testing
it on the data from the same sensor. Results obtained under this
setting has been tabulated in Table II . The proposed DFCANet
attains significant performance in all the three datasets. For the
Vista trained and Vista tested model on IIITD-CLI dataset,
ACER obtained is 0.25% and is the lowest amongst all the
models. A comparative performance is observed for the Vista
trained and Vista tested model of the IIITD-CSD dataset. In
NDCLD’13 dataset, for the model trained-tested on LG4000
dataset, the obtained average accuracy of 95.91% is significant.
However, the same model is comparatively less robust in
classification of bonafide attempts. In fact, it is evident that
when the proposed model is trained and tested on similar
sensor, there is low APCER but lower BPCER i.e., the model
is more robust for detecting spoofs. From the mentioned
observation, it can be inferred that the decision boundaries
learnt by the model is more spanning in the attack class’s
region. A possible reason for the same can be multi-cluster and
multi-center data formations of the attack class. It can also be
concluded from the table that the model is better for Cogent
and Vista sensors, when compared with LG4000 and AD100.
A specific reason for the same can be sensing inconsistencies
and cross-user evaluation in NDCLD’13 dataset. Particularly,
the data from AD100 sensor comprises of just 600 images and
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Fig. 3. DET plot for comparing different intra-sensor experiments

TABLE III
INTER-SENSOR EXPERIMENTAL RESULTS

Datasets Training Testing AA APCER BPCER ACER
IIITD-CSD Cogent Vista 99.33 0.41 0.72 0.56

Vista Cogent 96.49 13.98 0.87 7.42
IIITD-CLI Cogent Vista 99.19 0.31 1.04 0.67

Vista Cogent 95.52 10.10 1.64 5.87
NDCLD’13 LG4000 AD100 90.22 13.00 8.16 10.58

AD100 LG4000 85.88 25.74 8.20 16.97

hence in the same case, highly limited training quantities do
not match with the architectural depths of the DFCANet.

2) Inter-Sensor Experiments: Inter-sensor experiments
have been conducted to validate the performance of the
proposed model in environments contrasting to the training.
Training-testing strategy in this experiment involved utilization
of entire data from one sensor in training while from the
other in testing. Table III tabulates performances achieved
by various models under this strategy. It can be concluded
from the results that DFCANet is robust enough to capture
the intricacies in cross sensor settings. Specifically, for the
case of IIITD-CLI and IIITD-CSD the performance obtained is
encouraging. The models tested on Vista sensor obtain ACER
as low as 0.56% and 0.67% respectively. Fig. 4 illustrates the
comparative performance of inter-sensor based experimental
results using DET curves. Similarly, the average accuracy’s
attained by the same is significantly higher. The drop in
performance for this challenging experimental setup is not
stark when compared with the Intra-Sensor experiments. A
point to highlight is that unlike Intra-sensor experiments, the
model attains superlative performance in IIITD-CSD dataset
when compared with IIITD-CLI dataset. It can also be inferred
that for most of the models, APCER is relatively higher than
the BPCER. For NDCLD’13 dataset, this scenario is quite
challenging for the model although the average accuracies
obtained are significantly high. For training on AD100 and
testing on LG4000, we have used all the 900 examples from
AD100, but while testing, only 900 random examples from
the LG400 dataset were sampled. In such low-data regime,
DFCANet attains significant average accuracy of 85.88%.

Fig. 4. DET plot for comparing different inter-sensor experiments

TABLE IV
COMBINED-SENSOR EXPERIMENTAL RESULTS

Dataset AA APCER BPCER ACER
IIITD-CSD 98.02 2.43 1.54 1.99
IIITD-CLI 99.09 1.69 0.51 1.10
NDCLD13 93.00 8.00 6.50 7.25

3) Combined Sensor Experiments: Combined sensor ex-
periments involve training the model on 50% data of available
sensors while in testing the remaining 50% of the data is
used. These experiments elucidate the overall performance
attained by a model in a specific dataset. The results from
this experiment have been tabulated in Table IV. Performance
of the IIITD-CLI trained model is the most optimal. A low
ACER of 1.10% and high accuracy of 99.09% for the same
represents the above-forth mentioned. For IIITD-CSD, and
NDCLD’13, the respective performances obtained are also sig-
nificant. Since NDCLD’13 involves cross-subject evaluation,
the obtained performance is relatively lower than the other
two datasets. There is an overall increment for NDCLD’13 in
comparison with inter and intra-sensor experiments, the reason
for the same is expanded and more directed training data.
Similarly, to previous models (inter-sensor and intra-sensor)
APCER remains higher than BPCER. This suggests that the
model is more robust in classifying attacks. The inferences
drawn from the numerical metrics of this experiment also
coincide with the respective DET plot (Fig. 5). The plot
highlights significant performance obtained by DFCANet on
IIITD-CLI and IIITD-CSD datasets.

TABLE V
INCREMENTAL LEARNING EXPERIMENTAL RESULTS

Experiment Training Testing AA APCER BPCER ACER
Intra-sensor AD100 AD100 80.33 36.00 11.50 23.75

LG4000 LG4000 94.66 6.75 5.62 5.68
Inter-sensor AD100 LG4000 85.44 15.18 14.23 14.70

LG4000 AD100 90.22 21.60 4.16 12.53

Combined AD100+
LG4000

AD100+
LG4000 93.93 11.20 3.50 7.35
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Fig. 5. DET plot for comparing combined sensor experiments

4) Incremental Learning Experiments: To bring about
gains in performance for NDCLD’13, we leveraged the IIITD-
CLI pre-trained model to fine-tune with NDCLD’13. As both
IIITD-CLI and NDCLD’13 are composed of congruent charac-
teristics, we chose the combined sensor model from IIITD-CLI
for transfer of its weights. A particular reasoning behind this
is that combined sensor model has been trained upon the most
diverse dataset; therefore, its generalizability will be very high.
Table V presents experimental results. From the same table
(row 1), when compared to setting without transfer (Table II,
row 6), a prominent gain of 4.33% in average accuracy for
the Intra-Sensor experiment of AD100 is observed. Similarly,
there is an increase for the combined setting. Then again,
there is an incremental gain in ACER of approximately 2.
27% for the Inter-Sensor experiment of AD100 training and
LG4000 testing, compared with the non-incremental counter-
part (Table III, row 6). These enhancements in performance
can be accredited to transfer of iris feature understandings
by the IIITD-CLI combined sensor model. Nevertheless, there
is a slight decrement in performance for LG4000 model for
Intra- and Inter-sensor experimentation. A possible reason
can be difference in morphological and textural properties of
data in LG4000 and IIITD-CLI. To validate the significance
of incremental learning, we perform a t-SNE based analysis
in Appendix 1 (Supplementary Material). It can be inferred
from the same that for incremental-learning embeddings from
bonafide and attack classes are more separated as well as more
clustered within the same class

5) Cross-Dataset Experiments: To validate efficacy in
the proposed model, we have conducted experiments in the
cross-dataset setting. In this set of experiments, the use of
NDCLD’13 and IIITD-CLI datasets has been carried out, with
the reason being similar characteristics for attacks between
the two. The experimental setup involved training the model
with complete data of three sensors while testing on the
remaining one. Table VI, encompasses the results obtained
in this experiment. The highest performance in this setting is
achieved when the Vista sensor is evaluated while the other
three (Cogent, LG4000, and AD100) are used in training. The

following model achieves correct classifications of 98.66%
while maintaining a low ACER of 1.21%. It can be concluded
from the table that whenever testing is performed on the
IIITD-CLI dataset, results are significant, but the challenge
remains for testing on any of the NDCLD13 sensors. From
the results obtained in Incremental Learning Experiments and
Cross-Dataset experiments, it can be inferred that LG4000 has
different image properties than the other three. This is not the
case with the AD100 sensor, as including it in training helps
the model overcome the training subtleties and, in turn, leading
to enhanced performance.

TABLE VI
CROSS-DATASET EXPERIMENTAL RESULTS

Training Testing AA APCER BPCER ACER
Cogent+Vista+
LG4000 AD100 84.44 37.33 4.66 21.00

Cogent+Vista+
AD100 LG4000 73.76 67.68 5.46 36.22

Cogent+AD100+
LG4000 Vista 98.66 0.94 1.48 1.21

Vista+LG4000+
AD100 Cogent 95.71 6.21 3.20 4.71

D. Ablation Study on use of IFCNet and CAM

In order to validate contribution in performance by each
of the individual components of DFCANet, an ablation study
has been conducted. We removed one component at a time and
trained the model over the challenging NDCLD’13 combined
sensor dataset. Results of this study can be referenced from
Table VII. It can be inferred from the following table that
DFCANet outperforms all other models except the individual
IFCNet. The main reason for the same is DenseNet extract-
ing generic but not domain-specific features. The problems
becomes more intricate with learning being performed over
limited training data from NDCLD’13 dataset. This forbids
DenseNet to generate better representations for IFCNet to
calibrate at local and global scales. In contrast, the IFCNet
operates individually and leverages domain-specific learning
to attain high-end performance. However, DFCANet is optimal
in terms of average accuracy by 0.60% than the next-best
performing model while it attains a significantly low BPCER
and APCER. The role of CAM in highlighting the important
channels for improving representation can be observed from
comparison between DFCANet and DenseNet+IFCNet model.
In the same comparison there is a gain of 2.65% in terms of
ACER when CAM is introduced in the pipeline. A contrary
case to this is also observed when CAM is utilized along
IFCNet. To be specific, for this case there is a significant
drop in performance (both ACER and Avg. Accuracy) in
comparison to DFCANet. This can be accredited to CAM,
which emphasizes less attention to more discriminative chan-
nels. Few other insightful observations of this ablation study
are with regard to properties of IFCNet. Firstly, for IFCNet
there is a performance gain of 2.66% and 0.90% in Average
Accuracy and ACER, respectively, compared to DenseNet.
Secondly, whenever it is removed from the pipeline there is
a degradation in performance while increment in ACER. It is
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also worthwhile mentioning that when DenseNet is not used
in combination with IFCNet there is significant increment in
ACER. However, when DenseNet is replaced with ResNet50
[35], a performance drop is observed with respect to both
Average Accuracy and ACER. This can be attributed to
improved feature flow within DenseNet compared to ResNet.

TABLE VII
ABLATION STUDY ON THE NDCLD’13 DATASET

Model AA APCER BPCER ACER
DenseNet 92.20 7.00 8.20 7.60
DenseNet + IFCNet 92.40 5.20 8.80 6.99
DenseNet + CAM 90.20 10.20 9.60 9.90
IFCNet 94.66 10.80 2.60 6.70
IFCNet + CAM 90.20 13.60 7.90 10.75
ResNet50 + IFCNet + CAM 92.40 8.00 7.74 7.77
DFCANet 93.00 8.00 6.50 7.25

TABLE VIII
IFCNET AND ATTENTION-BASED MODELS: A COMPARISON

Model AA (%) APCER (%) BPCER (%) ACER
Comparison with Local and Global IFCNet variants

IFCNet-local 94.00 5.08 6.50 5.75
IFCNet-global 88.13 24.00 5.80 14.90

Comparative Study over significance of FC-Conv
Conv2D 87.60 23.00 7.10 15.05
SENet [44] 87.26 27.60 5.30 16.45
CBAM [45] 83.80 29.60 6.50 5.75
GALA [46] 66.66 100.00 0.00 50.00
ViT [47] 79.73 25.80 17.50 21.00
GENet [48] 91.06 19.20 3.80 11.50
IFCNet (Proposed) 94.66 10.80 2.60 6.70

E. t-SNE Representation and Analysis
Using t-SNE plots, a visual demonstration over decision

boundaries and class discrepancies has been presented in
Fig. 6. This has been illustrated for the models corresponding
intra and inter-sensor experiments. From the trained models,
embeddings of the test set were extracted from the last
fully connected layer and fed t-SNE. From the plots, stark
separative boundaries between bonafide and attack samples
can be observed. Both attack and bonafide embeddings are
tightly clustered within themselves while their variance is
evident. Also, the multi-center nature of the attack samples
can be inferred from the plots. The following characteristics of
attack samples is induced due to the presence of soft-textured
lenses in the class. This elucidates about the added challenge
in Soft-Lens-as-Attack (SLA) scenarios. At the same time, the
well separated plots give evidence of DFCANet’s robustness.
As shown, the t-SNE plots in Fig. 6 (a, b, c) of intra-sensor
experiments have more distinctive nature in comparison to
inter-sensor plots in Fig. 6 (d, e, f). With respect to the datasets,
NDCLD’13 appears slightly challenging, because of its cross-
user evaluation. Nevertheless, a significant discrepancy be-
tween attack and bonafide samples is also observed within
both inter- and intra-sensor experiments of NDCLD’13.

F. Ablation Study: Local-Global Feature Calibration
The ablation study is at two levels. First, we analyze the im-

pact of the local and global feature extraction heads of IFCNet.

Next, we study the significance of the FC-Conv mechanism
in IFCNet (Sec. III-A) over state-of-the-art attention-based
modules. For both of these studies, we perform evaluation
over the combined-sensor setting of NDCLD’13 dataset while
adhering to SLA protocol.
1) Impact of Local and Global Feature Extraction Heads
in IFCNet: For this ablation, we consider three variants of
IFCNet, i.e., i) IFCNet-Local: It follows the same architecture
of IFCNet but from each of the FC-Conv, GFEH is removed.
ii) IFCNet-Global: Similar to IFCNet-Local this also encom-
passes the same architecture of IFCNet but in FC-Conv, LFEH
is not present. iii) The proposed IFCNet model (shown in
Figure 2). Further, to investigate the quality of the features
learned, we compare the feature map outputs of each of these
models (see Fig. 7 (a)). Along with this, we also analyze the
outputs of Grad-CAM [50] in Fig. 7 (b).

In Table VIII, we have evaluated the results of this ablation,
from the same it can be inferred that when both LFEH and
GFEH are utilized in FC-Conv, performance gains (in average
accuracy) of 0.66% and 6.53% are observed for IFCNet-Local
and IFCNet-Global, respectively. Owing to capture of only
global information, IFCNet-Global is unable to learn minute
morphological patterns and curvilinear features, which are
essential for IPAD. On the other hand, high-end performance
attained by IFCNet-local can be accredited to its ability of
understanding features at local-scales and the hierarchical
convolutional architecture. Particularly, this is because these
locally-extracted representations are correlated globally with
increased receptive field. Next, we analyze the feature maps
(7(a)) and from the same following inferences were drawn:
The activations of IFCNet are formulated in joint correspon-
dence with a combination of local-global features. For the
case of IFCNet-local, at initial layers regions which carry
discriminative patterns are highlighted (refer to the first row
and fourth row of Figure 7), while for the case of IFCNet-
Global, as expected representations are generated with respect
to overall spatial contexts (refer to the second row and fifth
row of Figure 7). In contrast, IFCNet from the initial layers
emphasizes edges and textures. It is also evident that IFCNet-
Global learns smoother features which correspond to an overall
morphology and spatial-pattern distribution. When considering
IFCNet-Local, minute discriminative details are not highly
activating for the later layers. A possible reason for the same
is IFCNet-Local not being able to correlate multi-scales. In
order to strengthen the above-mentioned points, we analyze
the gradient-based activated regions in the iris images using
Grad-CAM. This allowed us to look into the iris regions that
are discriminative for the model. It is clear from Figure 7(b);
(row 3 and 6), that IFCNet identifies those regions as dis-
criminative that are of significance between both local and
global representations. In contrast, IFCNet-local Figure 7(b);
column 1) emphasizes learning features from smaller image
patches; therefore, it is unable to correlate the representations
between these patches. This makes the model focus on limited
spatial contexts. IFCNet-global (in Figure 7(b); column 2)
on the other hand, gets activated globally and not to very
specific regions. Thus, it find it challenging to emphasize on
discriminative but small-sizes image patches.
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TABLE IX
INTRA-SENSOR COMPARISON FOR IIITD-CLI DATASET IN TERMS OF AA (IN %)

Sensor LBP
[6]

mLBP
[39]

MVANet
[23]

DCCNet
[19]

APBS
[8]

DeepI
[49]

ELF
[9] DenseNet DenseNet

(SLA) IFCNet IFCNet
(SLA) DFCANet DFCANet

(SLA)
Cogent 77.46 80.87 94.90 98.71 99.57 96.79 95.09 99.47 97.97 98.17 97.22 99.21 98.90
Vista 76.01 93.97 95.91 99.30 100.00 98.09 97.12 99.38 99.79 99.38 99.66 99.59 99.79

(a) Cogent-Cogent IIITD-CSD (b) Vista-Vista IIITD-CLI (c) LG4000-LG4000 NDCLD’13

(d) Cogent-Vista IIITD-CSD (e) Vista-Cogent IIITD-CLI (f) LG4000-AD100 NDCLD’13
Fig. 6. Illustration of data modeling abilities of proposed DFCANet for Intra-sensor (a, b, c) and Inter-sensor (d, e, f) experiments conducted over all the
three datasets: IITD-CSD, IIITD-CLI and NDCLD’13

Fig. 7. Feature maps and Grad-CAM outputs for IFCNet, IFCNet-Global and
IFCNet-Local (The last row in (a and b) represents final Conv-layer output).

2) FC-Conv: A Comparative Study: In this subsection,
we replaced FC-Conv with different modules and the re-
spectively formulated models were compared with IFCNet.
Following modules have been used for comparison: i) Vanilla
2D-Convolution (Conv2D), ii) Attention-based: SENet [44],
CBAM [45], ViT [47] (we used 4 encoder layers and 8

attention heads) and iii) Local-Global context based: GALA
[46], GENet [48]. Obtained empirical results have been tabu-
lated in Table VIII. It is evident from the same that IFCNet
outperforms the other models under comparison by at least
3.60% and 4.80% in terms of average-accuracy and ACER
respectively. This highlights the importance of FC-Conv.
Conv2D model captures only local-contexts, while channel
attention based modules like SENet, CBAM emphasizes only
on global-contexts. This leads to sub-optimal performance.
For ViT performing well in low-data regime is challenging
because it lacks inductive-bias. While GALA and GENet
operates on local and global contexts, but unlike FC-Conv
they does not have channel splitting mechanism which induces
diversity between both local and global features. Owing to the
same, FC-Conv outperforms them by significant margins. We
also illustrate Grad-CAM based comparison of this study in
Appendix 2 (Supplementary Material). The same illustrates
that FC-Conv-based IFCNet better emphasizes discriminative
iris-features and hence outscores other models.
G. Comparative Analysis with State-of-the-Art IPAD Methods

This section presents a comparison of the proposed DF-
CANet with the state-of-the-art. As mentioned earlier, unlike
the standard approaches [7]–[10] placing soft contact lens as
a bonafide attempt, we considered it a spoofing attack also.

1) Comparison on IIIT-CLI Dataset: Table IX reports
the comparative-results for intra sensor conducted on IIITD-
CLI dataset. Average accuracy over Intra-Sensor experiment
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TABLE X
COMBINED-SENSOR COMPARISON FOR THE IIITD-CSD DATASET

Method APCER(%) BPCER(%) ACER(%)
wLBP [15] 29.94 14.39 19.66
DESIST [41] 25.58 2.47 14.02
MVHF [7] 1.82 0.72 1.27
YOLO-CNN [51] 0.72 1.81 1.26
DenseNet (SLB) 0.42 3.06 1.74
DenseNet (SLA) 8.11 0.87 4.49
IFCNet (SLB) 3.02 3.99 3.48
IFCNet (SLA) 4.85 2.15 3.50
DFCANet (SLB) 1.71 1.53 1.62
DFCANet (SLA) 2.43 1.54 1.99

of the PAD system has been considered as the comparative
metric by most of the previous works, hence we have con-
sidered the same. We have made a comparison with respect
to two protocols, namely i) Soft- Lens-as-Attack (SLA) and
ii) Textured Lens vs Real (as endorsed by [ [8], [9], [23]]).
Firstly, it is evident from the comparison between SLA and
textured lens vs bonafide models that for the case of the
Cogent Sensor, SLA is significantly challenging. For the Vista
Sensor, performance in both protocols is quite comparable.
This highlights the intrinsic challenge in SLA scenarios.
Considering comparison with other models in the literature,
DFCANet outperforms most of the previous approaches [ [6],
[19], [23], [39], [49]] by a significant gap. It is also essential to
mention that the proposed DFCANet performs at par with the
current state-of-the-art [8], under both evaluation protocols.
Unlike [8], it does not require binary masks or any other
complex training mechanisms. Further, DFCANet outperforms
[9] by significant margins. Although [9] highlights rich iris
textures, its CNN-based feature extraction process does not
involve emphasizing on IPAD domain-specific features (which
our DFCANet does). Hence, we conclude high performing ca-
pabilities from these comparisons. The high-end performance
achieved by the DFCANet can be accredited to its capacity to
learn locally inherent iris textures and structure with respect
to globally spread patterns. It can also be observed that in
both the protocols, IFCNet obtains significant results. This
justifies feature calibration convolutions. However, DFCANet
outperforms both DenseNet and IFCNet by a margin of almost
0.93% and 1.78% respectively in the case of SLA protocol for
cogent sensor, while there are gains also in the Vista Sensor.
On an overall basis, the following comparative study reinforces
the fact that Cogent sensor’s images are more challenging to
classify as compared to the Vista case.

2) Comparison on IIIT-CSD Dataset: For comparing the
obtained results with previous works [7], [15], [41], [51]
on the challenging dataset IIIT-CSD, DFCANet, IFCNet and
DenseNet have been evaluated under combined sensor protocol
over Soft- Lens-as-Attack (SLA) and Soft-Lens-as-Bonafide
(SLB) scenarios. As shown in Table X, the ACER for the pro-
posed DFCANet is as low as 1.62% and 1.99% under the SLB
and SLA scenarios respectively. It is evident that the proposed
model DFCANet (SLB) performs comparatively with most of
the state-of-the-art models (refer Table X). DFCANet achieves
0.89%, 1.21% and 12.5% better performance than [9], [51]
and [52] respectively, in terms of average accuracy. The SLA

variant of DFCANet is also attains comparable performance
with with previous baselines, which are trained over the less
challenging SLB protocol. It is worthwhile mentioning that
unlike [7], [19], [52], DFCANet does not depend upon hand-
crafted features or in-depth preprocessing. This grants DF-
CANet a low inference time and end-to-end pipeline (refer to
Section V for DFCANet’s inference time analysis.) Compared
to individual components, that is, DenseNet and IFCNet, the
proposed method DFCANet achieved an overall performance
gain (in terms of ACER) of 2.50% and 1.51% for the SLA
scenario. While the same are 0.12% and 1.86% for the case
of SLB. Another significant observation is that IFCNet (SLB)
performed extremely well compared to the previous works.
Furthermore, IFCNet (SLA) also outperforms the respective
DenseNet (SLA) counterpart by significant margins in ACER.
This highlights the prominence of local-global iris feature un-
derstanding established by DFCANet and IFCNet. To highlight
these results, DET plots for the corresponding experiment
have been plotted in Appendix 3 (Supplementary material).
The same illustrates several facts: i) DFCANet outperforms its
individual components IFCNet and DenseNet, and ii) the SLA
protocol is comparatively challenging than the SLB protocol.

3) Comparison on NDCLD’13 Dataset: In NDCLD’13, as
defined in [3], [7], [8], we have first compared the performance
of DFCANet using the Soft-Lens-as-Bonafide (SLB) protocol.
Additionally, we have also taken the results of Soft-Lens-as-
Attack (SLA) protocol from DFCANet into account. Table XI
tabulates the following comparison, in which state-of-the-
art works [3], [7], [8] have been followed with intra-sensor
experiments. It is evident from the results that the model
considering SLA attempt finds it challenging to differenti-
ate between a soft-lens and corresponding normal images.
This fact is further highlighted numerically with a drastic
5. 38% and 29. 00% decrease in ACER for the LG4000
and AD100 sensors, respectively, compared to the proposed
model considering SLB. Furthermore, it is also clear that under
the following challenging protocol, the proposed DFCANet
generalizes well for the LG4000 sensor, but due to limited
training data, the quantities for the AD100 sensor performance
get degraded. However, in the SLB protocol, the proposed
DFCANet achieves state-of-the-art results. For the AD100
sensor, there is a 0.00% error while for the LG4000 error
remains as low as 0.12%. Since, the model is designed in
accordance to SLA protocol, the performance of the proposed
model for IPAD with SLB is sub-optimal and can be enhanced
with dedicated hyperparameterization.
When separate components of DFCANet are considered, they
also attain comparable performance. Specifically, IFCNet eval-
uated under both the scenarios of SLB and SLA obtains
a performance gain of 32.00% and 0.74% (in ACER) re-
spectively when compared against DenseNet counterpart for
AD100 Sensor. Similarly, when APCER and BPCER are
considered, a significant bias of the DenseNet model can be
observed, while the same is not true for IFCNet. Intrinsic bias
of DenseNet towards bonafide class is a result of relatively
less domain-specific feature learning while a highly-varying
dataset (NDCLD’13) contributes further to the same. IFCNet
emphasizes the local-global feature hierarchy and and per-
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TABLE XI
INTRA-SENSOR COMPARATIVE IPAD RESULTS ON NDCLD’13. SLB – SOFT-LENS-AS-BONAFIDE, SLA – SOFT-LENS-AS-ATTACK.

Sensor
Metric
(%)

wLBP
[15]

DESIST
[41]

MVHF
[7]

A-PBS
[8]

MSA
[3]

AG-PAD
[18]

D-NetPad
[10]

DenseNet
(SLB)

DenseNet
(SLA)

IFCNet
(SLB)

IFCNet
(SLA)

DFCANet
(SLB)

DFCANet
(SLA)

LG4000 APCER 2.00 0.50 0.00 0.00 0.00 1.12 1.12 1.12 2.75 0.12 4.50 0.00 9.75
BPCER 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.25 5.12 0.25 1.25
ACER 1.50 0.50 0.00 0.00 0.00 0.56 0.56 0.56 4.87 0.18 4.81 0.12 5.50

AD100 APCER 9.00 2.00 1.00 0.00 1.00 0.00 0.00 49.00 0.00 0.00 29.00 0.00 44.00
BPCER 14.00 1.50 0.00 0.00 0.00 1.00 0.00 16.00 57.00 1.00 26.50 0.00 14.00
ACER 11.50 1.75 0.50 0.00 0.50 0.50 0.00 32.50 28.50 0.50 27.74 0.00 29.00

TABLE XII
PERFORMANCE COMPARISON FOR IIITD-WVU DATASET (IN %)

Metrics Winner
[5]

Spoofnet
[53]

Metafusion
[11]

DNetPAD
[10]

MDCDANet
[54]

MLF
[20]

MSA
[3]

APBS
[8]

ELF
[9]

FAM
[24] DenseNet IFCNet DFCANet

APCER 29.40 0.34 12.32 36.41 17.44 5.39 2.31 8.86 - 1.00 19.65 29.20 16.80
BPCER 3.99 36.89 17.52 10.12 12.53 24.79 19.94 4.13 - 12.68 5.73 1.39 6.75
ACER 16.70 18.62 14.92 23.27 14.98 15.09 11.13 6.50 3.54 6.84 12.69 15.29 11.78

forms well. Compared to previous methods, IFCNet achieves a
comparable performance with the state-of-the-art baseline [3],
[7], [8], [10], [18], [20]. [10], [18] do not evaluate the IPAD
framework on the NDCLD’13 dataset. For a fair comparison
of our DFCANet with the state-of-the-art, we reproduced the
results of [10], [18] on NDCLD’13 dataset. One can observe
from Table XI, that both our proposed models - IFCNet
and DFCANet outperform [10], [18] by significant margins.
Though [10], [18] try to capture local-global information, they
do not distill domain-specific spatial contexts into channel-
dimensions (which DFCANet does). Further, since all: [10],
[18] and DFCANet follow the same initial DenseNet-based
pipeline, the superior performance of DFCANet over these two
approaches validates the importance of IFCNet (the feature
calibration sub-network). Next, we have illustrated misclassi-
fications by DFCANet in Fig. 8 (a). It is evident from the
same that most of the misclassifications in both attack and
bonafide are mainly due to SLA. Uneven lighting conditions
and morphological artifacts also influence the performance.
Thus, in order to robustly model SLA scenarios, more abrupt
changes between the boundary of lens and iris must be
captured.

4) Comparison on IIITD-WVU Dataset In addition to
performing various cross-domain experiments, in this section
we evaluate the performance of DFCANet and its sub-modules
(IFCNet and DenseNet) over the challenging IIITD-WVU
dataset (a subset of LivDet-2017 Challenge). Specifically, this
is an ideal dataset for cross-conditions settings as it inculcates
cross-subject, cross-sensor and even varying environments for
training and testing. The results obtained in the experiment
have been illustrated in Table XII. It is evident from the same
that DFCANet attains significant performance of 11.78% in
terms of ACER. Furthermore, DFCANet outperforms LivDet-
2017 benchmark [5] along with D-NetPAD [10], and other
well known studies such as [11], [20], [53], [54]. DFCANet
also attains highly comparable performance with respect to [3],
which relies on highly pre-processed representations which
are difficult to realize in unconstrained settings. DFCANet’s
performance is comparatively inferior to [8], [9], [24], though
[8] uses binary supervision masks (restricting its general-

izability). [24] uses unsupervised target domain knowledge,
while DFCANet follows a simpler end-to-end training and
evaluation pipeline. Nevertheless, in contrast to these baselines
[8], [9], [24], DFCANet’s architecture has been designed over
relatively simpler datasets. It generalizes significantly well
over challenging cross-domain settings. When DFCANet is
compared with its sub-modules, it achieves 3.51% and 0.91%
better ACER score than IFCNet and DenseNet respectively.
Also, both IFCNet and DenseNet at their end outperform
previous baselines [5], [10], [11], [53].This highlights that with
capturing local global contexts in iris via IFCNet, DenseNet
representations are enriched, and hence DFCANet leads to bet-
ter performance. To gain further insights upon contributions of
each of these modules of DFCANet, corresponding ROC plots
have been plotted in Appendix 4 (Supplementary Material). It
is evident from the same figure that DFCANet attains lower
error rates when compared against both DenseNet and IFCNet.
We have also analyzed failure cases in Fig. 8 (b). It is evident
from the figure that iris images with rare appearance causes
misclassification of bonafide images. While in the attack class,
lenses that have lesser intricate patterns are misclassified.
Unconstrained capture of iris and other morphological artifacts
also poses challenges on the model. These cases motivate
requirement of evaluation upon ’in-the-wild’ settings.

Fig. 8. Misclassified examples from the NDCLD’13 and IIITD-WVU
datasets. For NDCLD’13, examples are from combined sensor SLA exper-
iments. Here, attack samples have high visual similarity with bonafide ones.
Cross-domain evaluation and imaging artifacts further complicate matters.

5) Comparison on Clarkson-17 Dataset Evaluation on
this dataset is characterized by unseen patterned lens attacks.
The results obtained in the experiment for the dataset have
been summarized in Table XIII. DFCANet attains a relatively
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TABLE XIII
PERFORMANCE COMPARISON FOR CLARKSON-17 DATASET (IN %)

Metrics DNetPad [10] Spoofnet [53] PBS [8] APBS [8] FAM [24] Yolo-CNN [51] EyePAD++ [55] DenseNet IFCNet DFCANet
APCER 5.78 33.00 8.97 6.16 6.10 2.43 7.29 5.25 13.40 1.81
BPCER 0.94 20.00 0.00 0.81 0.81 0.00 0.79 3.34 5.55 5.08
ACER 3.36 16.50 4.48 3.48 3.45 1.61 3.65 4.29 9.47 3.44

lower or comparative ACER in comparison to almost all the
well known state-of-the-art frameworks [8], [10], [24], [53].
Besides, DFCANet attains the least APCER score [8], [10],
[19], [24], [53], [55]. This indicates our model misclassifies the
least number of spoof samples. Both DFCANet and [55] do not
involve any preprocessing, but DFCANet attains marginally
better performance than [55]. Concretely, [55] achieves high-
performance on the basis feature sharing between authen-
tication and IPAD tasks. However, it attains awareness to
particular identities (on which is trained on) and hence is
not ideal for cross-subject evaluation. DFCANet on the other
hand embanks on a domain-specific IPAD design and does
not face these challenges. Further, DFCANet also outperforms
both IFCNet and DenseNet by respective margins of 6.03%
and 0.85% in terms of ACER. Similar results in terms of error
rates is also evident from the DET-curve plotted in Appendix
5 (Supplementary Material).

6) Comparison on Clarkson-15 Dataset In this experi-
ment, the presentation attack images acquired by both the
sensors are considered together. The obtained results are
summarised in Table XIV. It is observed that DFCANet
outperforms Yolo-CNN [51] on the Clarkson-15 dataset in AA.
When comparison is done for the variants of DFCNet, there
are two-fold observations: i) DFCANet attains higher AA than
both of its variants. ii) IFCNet on the other hand, outperforms
both DFCANet and DenseNet in terms of ACER. These two
observations emphasize the importance of local-global feature
calibration.

TABLE XIV
PERFORMANCE COMPARISON FOR CLARKSON-15 DATASET (IN %)

Metrics Yolo-CNN [51] DenseNet IFCNet DFCANet
APCER 2.92 3.17 0.7 3.04
BPCER 1.12 5.35 2.2 1.36
ACER 2.02 4.26 1.53 2.20
AA 97.74 95.09 98.02 98.29

7) Comparison on NDCLD-15 Dataset Comparative anal-
ysis of the proposed DFCANet with its model counterparts and
state-of-the-art [6], [7], [15], [21], [41] has been evaluated on
the NDCLD-15 dataset. Note that the evaluation protocol for
NDCLD-15 data has not been uniformly adopted in literature.
OSPAD [21] considered easier setting of 4,068 images from
LG4000 sensor only. While, A-PBS [8] adopted 5-fold cross
validation over 7,300 images, and BSIF [42] mentions about
4-Fold Cross-Validation. Thus, it follows that comparison
(results tabulated in Table XV) against other state-of-the-art
approaches [7], [21] is inadequate. Nevertheless, DFCANet
demonstrated a relatively close result with [21], it also
significantly outperformed [6], [15], [41] in terms ACER.

TABLE XV
PERFORMANCE COMPARISON (4-FOLD) FOR NDCLD-15 DATASET (IN %)

Metrics
OSPA
[21]

LBP
[6]

wLBP
[15]

DESIST
[41]

MHVF
[7] DenseNet IFCNet DFCANet

APCER 7.14 6.15 50.58 29.81 1.92 10.29 9.15 7.16
BPCER 8.57 38.70 4.41 9.22 0.39 21.21 19.34 21.35
ACER 7.85 22.43 27.50 19.52 1.15 13.01 12.89 13.13

H. Contact Lens Detection: A Case Study

To further verify generalizability of our model, we took
into account the contact lens detection task and compared
the proposed model with existing works in the literature
[56], [57]. For this part of the study, we have considered
NDCLD’13 dataset for training and testing. Data from LG4000
and AD100 were combined and split into two equal halves for
the three-class classification. In Table XVI, we have tabulated
the results of the comparison for contact lens detection under
combined sensor experiments. Since all previous attempts to
detect contact lenses have been using class-based matching,
[19] involved validation using three class classifications. From
Table 12, it is evident that DFCANet outperforms previous
methods by 3-8% in performance. It was noticed that the
major amount of misclassification in this experiment were
between soft contact lenses and bonafide. This further validates
the challenge in SLA settings. Nevertheless, the significant
performance of DFCANet is a measure of its robustness.

TABLE XVI
COMBINED-SENSOR CONTACT LENS DETECTION: NDCLD’13

Method ContlensNet [56] GHCLNet [57] DCCNet [19] DFCANet
Avg. Acc. 85.45 87.01 90.04 93.00

V. PARAMETER AND DETECTION RUN-TIME ANALYSIS

As a matter of practical interest, it is essential for the
IPAD-algorithm to be fast during inference time. Hence, in
this section, we analyze the detection run-time and number
of parameters for DFCANet and its variants. In Table XVII,
detection run-time have been reported in milliseconds for
both GPU (Tesla P100 – 16GB) and CPU (Haswell 2.30
GHz, 4 cores, 16 GB). DFCANet requires 40.9 ms and 270.4
ms on GPU and CPU respectively to execute a detection.
These time periods are significantly low and are comparable
to detection time required by other low-parametric variants
such as DenseNet and DenseNet+CAM. In terms of parameter,
DFCANet though utilizes the large number of parameters, but
trades-off high performance.
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TABLE XVII
PARAMETER AND RUN-TIME ANALYSIS OF DFCANET

Model Network
Parameters Run-time (ms)

GPU CPU
DenseNet 480833 31.6 77.3
DenseNet + IFCNet 14824257 40.6 264.7
DenseNet + CAM 480833 33.4 81.9
CAM 0 - -
IFCNet 14446081 95.5 3700.0
DFCANet 14824357 40.9 270.4

VI. CONCLUSIONS

Existing IPAD algorithms are burdened with performance
penalties in cross-domain scenarios which do not make them
ideal for newer formats of iris-based presentation attacks. To
this end, this paper proposed IPAD domain specific DFCANet,
which emphasizes on learning joint correlations between
coherent patterns found at local and global scales. Exper-
iments conducted on the IIITD-CSD, IIITD-CLI, NDCLD-
13, NDCLD-15, Clarkson-15, Clarkson-17, and IIITD-WVU
datasets show that the DFCANet is not only effective in
intra-domain settings but generalizes well enough for vari-
ous cross-domain scenarios while operating under non-ROI
extracted images. We introduce a challenging Soft-Lens-as-
Attack (SLA) experiment as a benchmark. To overcome such
stark challenges and enhance learning in a low-data regime,
an incremental learning based methodology was introduced.
However, a subtle research gap remains open. The SLA
protocol introduced requires more robust modelling of iris
features, and for that in a future work spatio-periodic and
local-global features shall be explored. Another limitation of
this work is that it does not seek into unseen attack paradigm
and ’in-the-wild’ settings. These forms of evaluation will be
considered along with the extension of the analysis to more
challenging attacks and datasets.
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