
1

Robust Incremental Polygon Triangulation for Fast Surface Rendering
Subodh Kumar

Department of Computer Science

Johns Hopkins University

Baltimore, MD 21218, USA

subodh@cs.jhu.edu

Abstract: This paper presents a simple, robust and practical, yet fast algorithm for triangulation of
trimmed Bézier surfaces. Points on the surface are input to our algorithm by a sampling scheme. A set
of polygons (more generically, a planar straight-line graph, or PSLG) is formed from these samples,
which are then triangulated. We also show how to update the triangulation when the samples, and
hence the polygons, are updated. The output of the algorithm is a set of triangle strips. The algorithm
avoids long and thin triangles. In addition, it also detects if the sampling of the trimming curve forms
any non-simple polygons and corrects the triangulation by adding more samples. We report an
implementation of the algorithm and its performance on extensive simulation.

Keywords: Surface rendering, CAD, Triangulation, Polygon, PSLG, Computational geometry.

1 Introduction
View dependent surface triangulation is a popular technique for interactive display and walkthroughs of large geometric
models like those of ships and submarines. Such real-time inspection in a virtual environment provides the sense of space
and is crucial for simulation based design. It can reduce the time and cost of manufacturing by reducing the need for full-
scale mockups. Such view-dependent techniques enable fast rendering by generating more polygons only the region of
high detail close to the viewer and less in other regions. However, such schemes require re-sampling, and re-
triangulation of surfaces every frame. To facilitate these operations, we present an incremental triangulation algorithm
for parametric surfaces that allows addition and deletion of samples. The algorithm for re-sampling is presented
elsewhere [KML96,Kum96].

Our system uses the Bézier representation as its basic parametric primitive. In particular, trimmed Bézier and Non-
uniform Rational B-spline (NURBS) forms are widely used to represent complex models in engineering and other
domains. A number of techniques have recently been proposed for sampling and tessellation of trimmed Bézier surfaces
[RHD89,AES94,LC93,PR95,KML96]. In particular, [KM95] proposes an incremental triangulation algorithm. Our
algorithm allows incremental updates as well and is comparatively more efficient in terms of worst case complexity,
expected complexity, and observed behavior. Additionally, in the trapezoidation step, we have incorporated simplicity
detection at almost no extra cost. Consequently, our implementation is much robust. We also avoid producing long and
thin triangles. Furthermore, unlike most recent algorithms, we directly generate triangle strips, which are more efficient
to render than triangles are on current graphics systems. Several asymptotically efficient polygon triangulation algorithms
are known [CI84,Cha91,CTV89,FM84,Sei91] but most are difficult to implement and they do not ensure triangle quality.
Recently researchers have shown how to ensure triangle quality using Steiner points [BDE92,BE92,Mit93,MSR94]. For
example, in two dimensions, it is possible to triangulate a polygon using triangles with angles at most 7/8π using O(n2 log
n) Steiner points in time O(n2 log2 n) [Mit93]. Unfortunately, these Steiner points greatly increase the number of triangles
generated. Moreover, Steiner points need to be added on polygon edges. In our application such on-edge Steiner points
can result in cracks [KML96] and must be avoided. At the same time our polygons include strategically placed vertices
and an enclosed grid, which helps us generate good-quality triangles on average without having to pay the extra cost for
it. (Note that inclusion of grid vertices does not reduce the complexity of the polygon-triangulation problem.) The rest of
this paper is organized as follows. In section 2, we describe the application and provide the problem description. Section
3 describes the curve-tracing step that is used to construct the planar straight-line graph (PSLG). In this paper, we present
the algorithm mainly in terms of polygons but all steps and proves hold for all PSLGs. In general, we triangulate PSLGs
but quickly reduce them to polygons. Section 4 discusses PSLG triangulation. In section 5, we describe our data
structures for efficient point location and present the incremental algorithm. Finally, we provide the implementation
results in section 6 and conclude in section 7.

2

2 Problem Description

A tensor product parametric surface, S (u,v), is defined by a vector function over the domain (u,v) = [0,1] × [0,1].
Optionally, a closed sequence of trimming curve, Ci(t), each defined over the domain t = [0,1] may be defined on the
domain of S (see Fig. 1). For brevity, we will refer to the sequence as a single trimming curve, C. The trimming curve
restricts the domain of S. Depending on the orientation of the curve, we either discard the part of domain of S enclosed
by it or that enclosing it. In this paper, we only consider the trimming curves that comprise a single connected component
(other than the regular 0-1 domain boundary). Reducing multiple components to this case follows the same principle as
described in [KM95]. Before triangulation, the surface and the trimming curves are uniformly sampled. The sampling is
performed for every frame in an interactive graphics simulation. Since the sampling density for a surface does not change
much in consecutive frames, it is more efficient to modify the triangulation of the previous frame than to re-generate the
whole triangulation anew. For a discussion of sampling techniques, please refer to [KM95,KML96]. This paper is
concerned with producing a triangulation of these sampled points. In particular:

• The initial input to the algorithm is a grid of points and a closed polygonal chain (Fig. 1(b)) on the u-v domain.
These input points are uniformly distributed on the domain and the screen-space distance between adjacent points is
bounded. In addition, an update involving an addition or deletion of one of the grid-lines or a sample on the curve
may be performed. While multiple changes on a surface can be simultaneously handled, it is easier to describe the
algorithm in terms of a single update at a time.

• The output is a triangulation such that no triangles lie outside the domain restricted by the trimming curve’s
tessellation. In addition, no edge of the triangles generated may be greater than twice the maximum distance between
adjacent input samples.

• Long and thin triangles are undesirable for smooth shading. However, since the input to our triangulation routine is
generated by a uniform sampling, the points are usually well distributed. Thus, an exact Delaunay triangulation is not
necessary. Using simple heuristics, we are able to obtain fat triangles in practice.

• Since triangle strips can be displayed much more efficiently than a list of triangles, the output of our algorithm is a
set of triangle-strips. We follow the OpenGL convention for these strips. We avoid triangle fans, since fans tend to
produce higher degree vertices in the triangulation. We keep the number of vertices adjacent to a given vertex in the
triangulation small in order to lower the cost of incremental updates to the triangulation (see Section 5).

• No Steiner points may be added on the trimming polygon (i.e., the sampled trimming curve), since doing it
independently of adjacent surfaces can lead to cracks in the tessellation of the model. Additionally, we do not
introduce Steiner points elsewhere on the domain either, thus saving the extra triangles and keeping the point
location query simple.

• Note that trimming curves are non self-intersecting. However, a sparse sampling of the trimming curve can still
produce non-simple polygons. While uncommon, non-simple polygons do occur and can cause most triangulation
algorithms to fail. Instead of assuming that the input polygon is simple, which can require very high sampling
density, we check for such cases at little additional cost and thence make the polygon simple by increasing the
sampling only when necessary.

In our application domain, a significant number of instances of the algorithm are executed every frame. The size of each
instance is relatively small. Thousands of surfaces are re-triangulated per frame. (We ran several experiments to
characterize sampling sizes in typical surface-model walkthroughs.The number of surface samples range mostly from 4
to 100, the number of curve samples range mostly from 5 to 100 and the number of points in a non-empty cell ranges

surface
domain

v

u

trimming
 curve

u-line

v-line

(a) (b) (c)

Figure 1

cell

3

from 1 to 5.) Hence, in addition to simplicity and robustness, the constants of complexity of the triangulation algorithm
are crucial to interactive performance. The space requirement per surface is not quite critical, but it is prohibitive to
maintain a large data structure for each surface across all frames. To speed up point location operations (required for
incremental updates), we use the natural partitioning provided by the grid sampling of the surfaces domain and discard all
other auxiliary data structures, which are re-constructed every time they are needed. Before we describe the construction
of this data structure, we introduce some notation. Without loss of generality, assume that the curve is specified clock-
wise and the part of the domain to be triangulated is enclosed by the trimming curve.

Definitions: The polygon corresponding to the tessellated trimming curve consists of points pi (see Fig. 1). The surface
grid points are denoted by gij. We also denote a vertical grid line (a sequence of sample points) by ui and horizontal lines
by vi. i and j range from 0 to the corresponding sampling sizes. We also refer to the u and v coordinates of a point, p, on
the domain as its u-value or u(p) and v-value or v(p), respectively. Each rectangle formed by four adjacent grid points is
called a cell. The part of the domain between two consecutive grid lines is called a strip.

3 Polygon Tracing

The surface grid provides a natural partition of the domain. We trace the trimming polygon, i.e. process pis in polygon

order, assigning each point pi to the grid cell it lies in, cell(pi). The tracing step generates the PSLG that we seek to
triangulate (Fig. 1(c) shows an example in thick lines.). During this process, we also construct auxiliary data useful for
triangulation. In addition, we compute all intersections of the polygon with u-lines. For each cell, we keep a list of
intersections of the polygon with its left boundary in increasing order of their v-values. We discard all degenerate
intersections, i.e. if a polygon segment is collinear with a u-line or a v-line, we remove all corresponding grid points from
consideration. We store the following information during curve-tracing:

For each intersection, I, of the polygon segment, pi-pi+1, with a u-line, uj:

• Mark I as MIN, if u(pi) > u(pi+1). Mark as MAX otherwise. (u(pi) ≠ u(pi+1) as degenerate intersections are not
allowed — only grid points and lines that lie strictly inside the trimming polygon are included in the PSLG)

• Store v(I), the v-value of the intersection. (Keep multiple intersection with a cell boundary sorted by v-value.)

• Store Maximum(v(I)) and minimum(v(I)) attained by the polygon in the u-strip containing pi. These bound the quads.

• Store a pointer to pi+1. For each cell’s left and right u-boundaries we maintain a linked list of all intersections with
that boundary. Note that in the worst case a cell could have O(n) intersections with a polygon with n vertices.
However, since the cells and polygons follow the same sampling rule and highly winding trimming curves are tough
to generate, the number of intersections of most cell boundaries is small, if not 0 or 1.

If the entire trimming polygon lies within the same cell, no intersections are detected. This case does occur in practice,
especially for surfaces with small on-screen area or with degree 1×1. It means the polygon lies within the same cell. In
such cases, typically the number of points on the polygon is small as well. If that is not the case, additional grid lines may
be included solely for curve tracing, thus ensuring that the number of points in a cell is still small.

We generate the quads and the PSLG using what amounts to a modified sweep line algorithm. We find MIN-MAX pairs
on each u-line and a corresponding MIN-MAX pair on its adjacent u-line. (see Fig. 2(a)). The pairs on each line are
available in the sorted order. Note that adjacent MIN-MIN or MAX-MAX pairs indicate non-simple polygon. The
matching of pairs on adjacent line (to obtain a strip of quads) is as simple as matching the ith pair on both lines, except the
two special cases shown in Figs. 2(b) and 2(c), when polygon chain turns back to intersect the current line instead of the

quad

ui ui

1 M

2 M

3 M

4 M

5 m

6 m

(a) (b) (c)

Figure 2: Curve Tracing (Segments of the PSLG are indicated by dots)

Stored min
v-value

Stored max
v-value

Flagged
MAX

Flag:
MIN

max

min

4

adjacent line. For case (b), we generate an extra pair on the u-line ui, discard it (for matching purposes). For case (c), we
insert an extra MIN-MAX pair on ui for matching.

4 Triangulation

Our basic triangulation scheme is based on trapezoidation [CI84,Sei91]. The basic idea of this technique is demonstrated

in Figure 3. Trapezoidation of a PSLG (shown in thick solid lines) is obtained by drawing horizontal rays (i.e. dashed
lines parallel to the u axis) at each vertex of the graph limited in both directions by the first segment (or vertex) the ray
intersects. The PSLG segments and horizontal lines form a set of trapezoids. The diagonals (shown in thin solid lines) of
these trapezoids that connect two vertices of the PSLG partition the PSLG into a set of uni-monotone polygons. Uni-
monotone polygons consist of a single v-monotone chain and another line-segment. For a discussion and proofs, we refer
the reader to [Sei91,FM84]. It can be shown (we omit the proof here) that the line-segments mentioned above, call them
monotone segments, are all PSLG segments, and thus small in length for our application. We will exploit this fact while
triangulating these monotone polygons.

4.1 Monotone Triangulation

A number of simple O(n) algorithms for triangulating monotone polygons have been proposed [FM84,GJPT78] and

implemented [NM95]. However, all of them tend to produce triangle fans and long and thin triangles, both undesirable
properties for our purpose. We propose another algorithm, equally efficient in practice that produces better triangle strips.
Our approach is motivated partly by [HM83] and [RR94]. Designed for uni-monotone polygons, our algorithm is much
simpler and more efficient. We use a u-tree. A u-tree maintains all the local u-minima and can be constructed in O(n).
The invariant for a u-tree node is as follows: it stores the vertex with the minimum u-value of all its children. All vertices
above it (i.e. with higher v-value) are kept in its left sub-tree and all vertices below it are kept in the right sub-tree. Fig.
4(a) illustrates the basic idea of tree construction. A u-tree can be constructed incrementally in a single pass over the n
vertices of the polygon in O(n) + O(k2), where k is the number of local u-minima. Processing the minima in a random

polygon

Horizontal visibility v-line

Trapezoid
diagonal

Figure 3: Trapezoidation

(a) Our triangulation (b) Inevitable Fan (c) Unlikely Thin Triangles

Figure 4: Triangulating Monotone Polygons

 Top monotone

Bottom monotone

vb

vt

5

order reduces the expected cost to O(n + k log k). However, k is typically less than 3-4 and processing the vertices in the
polygon order is sufficient in practice. Once the u-tree is constructed, we produce the triangle strips in O(n) time as
follows:

• Maintain pointers to the current root vm, current top, vt, and bottom, vb, vertices of the chain

• While vt and vb both have lower u-value than vm does:

Add the one with lower u-value, say vt, to the strip, Replace vt by the next vertex on the polygon

• Otherwise,

§ Add vt, vm and vb to the current strip and output it.

§ Diagonals vt -vm and vb - vm subdivide the polygon into two v-monotone polygons, the left sub-tree of the current
u-tree corresponds to the top polygon and the right sub-tree corresponds to the bottom polygon. Proceed
recursively (Fig. 4(a)).

Note that the procedure above uses a diagonal between vt and vb only if both lie to the left of the minimum u-valued
inflection vertex between them and thus are visible to each other. Due to this advancing front like technique, high degree
triangles are less likely to occur. Further, u(vt) – u(vb) is small, as the corresponding monotone segment is short (see Fig.
4(c) for an example). Hence long and thin triangles of the kind shown in Fig. 4(c) do not occur. However, thin triangles
can be generated due to horizontal trapezoidation, if two trapezoids vertically adjacent to each other are both thin (see
Fig. 6(a)). This is a general shortcoming of our scheme since we avoid skinny triangles only during the second phase:
monotone polygon triangulation. While it may be possible to devise an algorithm not based on trapezoidation, we have
found the trapezoidation scheme to be very robust. It fails only if the input polygon is non-simple or almost non-simple.
Hence, it is more appropriate to implement special cases for such (rare) thin monotone polygons generated by
trapezoidation. In practice, we avoid diagonalizing thin trapezoids and thus obtain more than a single u-monotone chain.
An extension of the monotone triangulation algorithm described above works for this case. Note also that sometimes
fans are inevitable as shown in Fig. 4(b) – no other triangulations exist.

4.2 Simplicity Detection

Although it is not common for a polygon input to the triangulation algorithm to be non-simple, if left undetected, it can
cause the triangulation to fail and display to become invalid. However, we pose the simplicity detection in terms of
horizontal visibility lines used in the trapezoidation. Subsequently, a minor modification to the trapezoidation algorithm
helps us detect if edges pi-pi+1 and pj-pj+1 of the polygon intersect. If they do, we compute extra samples on the curve
between t(pi) and t(pi+1) and between t(pi+1) and t(pj+1) and retry. Since polygons are rarely non-simple, the extra cost of
sampling and iterating is acceptable. Simplicity check is straightforward after realizing that the horizontal line
corresponding to some vertex of a non-simple polygon is inconsistent. We define inconsistency as follows:

Definitions: A point q is visible to point p if the line segment pq does not intersect the given PSLG. Segment s is visible
to p if a points on s is visible from p. Point p is on the interior with respect to an oriented segment pi-pi+1 visible to p, if
it lies on the right hand side of pi-pi+1. Also on the interior are all points r on the line segment pq, where q is the point on
pi-pi+1 such that v(q) = v(p). A point is inconsistent if it is on the interior with respect to some edge of the polygon while
on the exterior with respect to another. If a point is not inconsistent we call it consistent.

Clearly, each non-simple polygon has inconsistent points on its boundary. In fact:

Theorem: one of the polygon vertices, pi, must be inconsistent, if the polygon is non-simple.

Proof: Note that a vertex is inconsistent if any point on the horizontal line through it is inconsistent. To sketch a proof,
consider two edges pi-pi+1 and pj-pj+1 that intersect. There are four possible cases to consider. Two are shown in Figs. 5(a)

pi

Pj+1

Pi+1

Pj

 p

Pk pi
Pj+1

Pi+1 Pj

 p

 Pk

 Pl

 s

(a: Case I) (b: Case II) (c)

Figure 5: Simplicity Verification

6

and 5(b), the other two are symmetric. Neighboring interior points are shown shaded for each edge. The black dots show
examples of inconsistent points.

CASE I: If either pj+1 or pj+1 is horizontally visible from the other edge, we have found an inconsistent vertex. Otherwise,
there must exist occluding edges and vertices. The vertex with the minimum v-value greater than v(p), p being the point
of intersection, must be visible to both pi-pi+1 and pj-pj+1 and is hence inconsistent.

CASE II: Consider the segment s, that is horizontally visible from p. If both the end points of s are visible from p, one of
these must be inconsistent. Otherwise, there must exist minima and maxima vertices pk and pl on either side of the
horizontal visibility line through p. (One of these points may lie on s.) If s is oriented upwards, pk is inconsistent,
otherwise, pl is inconsistent. Strictly speaking, the argument above holds only if any given segment has only one
intersection with the rest of the polygon and if no segments are horizontal. However, by using transitivity, the first
restriction may be removed and by rotating the input (or topologically sorting it), the second restriction may be removed.

Thus, simplicity detection can be performed while constructing the horizontal visibility line for trapezoidation. The only
remaining operation is to verify that the two ends of the visibility line are both in the exterior or both in the interior. (As a
special case, for the minimum and maximum v-valued vertices, if the visibility line is locally in the interior, there must
exist other segments visible along this visibility line. Fig. 5(c) shows a case in point with the corresponding smooth curve
overlaid.)

5 Incremental Update

Before we explain the incremental update, we need to consider the data structure for triangulation. Since the number of
surface patches can be quite large, we keep the size of data-structure cached per patch small. In addition to the triangle
strips, for each v-strip on the domain, we maintain a list of triangle strips intersecting that v-strip, i.e., we keep a pointer
to the first vertex of each entering triangle strip. In addition, if one of the strip-edges is also an edge of the trimming
polygon, we mark it so. This structure is similar to the one proposed in [MSZ96], which allows point locations, in
expected O(n1/3)) time. However, we do not maintain adjacencies between strips and cannot “walk” from a random
triangle. We directly walk the appropriate strips. Another difference is that [MSZ96] maintains all adjacencies explicitly;
we easily infer those from the strips. It is possible for us to retain pointers between adjacent strips as well, however since
the number of strips crossing a cell is typically small, we do not lose much performance by explicitly searching for
adjacent strips in any cell.

The types of updates to our triangulation is limited for our application (see [KM95,KML96] for details):

i) A segment pi-pi+1 may be replaced by piq and qpi+1 (and vice versa), call these update segments.

ii) A grid line ui (or vi) could be added or deleted: call it the update line.

The incremental triangulation has the following main steps:

• Re-trace to compute new PSLG

• Delete triangles intersected by the update features (segment or line)

• Re-triangulate the hole

(a) Thin Trapezoids (b) Triangle Fan (long and thin) (c) Our Triangle Strips

Figure 6

Thin polygon generated
by trapezoidation

7

The first two steps need some explanation. For all update types, we first need to determine if any quads are added or
deleted. Thus, we need to re-trace the polygon. However, we need only re-trace the new segments in case (i). No other
segments may change. In case (ii), we must retrace all segments intersected by the update line. By searching for strips in
all cells intersected by the update line, we can determine the polygon edges that bound the edges intersected by the line.
We only need to re-trace between these pairs of bounds. Any quads introduced by this re-tracing are diagonalized. A
quad intersected by the new feature is deleted, if it contains an intersection with the trimming polygon, otherwise it is
bisected. Similarly if the deletion of a feature results in the deletion of an intersection, a new quad is generated or two
quads are merged. The quads added or deleted in the previous step are also included in the set of update features. Parts of
a grid line that result in a quad bisection are deleted.

To locate an update feature in the current triangulation, we start randomly in each triangle-strip crossing the
corresponding v-strip and walk across triangle boundaries until all triangles adjacent to the feature are located. A strip
intersected by an update feature is split into two or more (disjoint) pieces. Each intersected triangle is deleted from the
strip. We re-triangulate this hole (which is again a PSLG) using the algorithm described in Section 4.

6 Implementation and Performance

We augmented the publicly available implementation of Seidel’s triangulation algorithm [NM95] with our algorithm
and plugged it into a Bezier surface rendering system. We performed a suite of tests on a variety of Bezier surfaces
on a Silicon Graphics Indigo 2 system with Maximum Impact graphics. We compared our results with those of
[NM95] by plugging that in. [NM95] uses the algorithm by [FM84] for monotone triangulation. In practice, our
implementation results in less than 10% slow-down in one-time triangulation. (Here we compare the times for the
first time triangulation performing no incremental triangulation.) For the cost of this slowdown, our system
generates far better triangles, and, more importantly, it never fails – the code does not crash and the result is always
correct. Our triangulation is of significantly better quality: the smallest angles goes up from 11.3 degrees to 33.7
degrees on average. The degree of our triangulation is better as well (see Table 1). Furthermore, we generate
triangle strips obtaining a rendering speed-up of more than 60% over triangles. A surface-patch needs re-
triangulation in less than 20% of the frames on average, and is just re-rendered 80% of the time. The speed-up in
triangulation obtained by using an incremental technique over one triangulating from scratch every time sampling
changes is almost 90%. Also, note that our implementation is more robust due to the simplicity check. We have
performed millions of triangulations without any failure using our implementation.

Model Num.
Patches

Triangulation
time1

Minimum
angle1

Avg.
Degree1

Triang.
time2,3

Triang.
Time2,4

Minimum
angle2

Avg.
Degree2

Total frame
time2

Brakehub 560 32 10.5 9.2 33 14 33.5 1.8 24

Torpedo 1201 59 16.1 11.1 62 28 34.2 2.1 42

Pivot 4101 61 14.9 10.8 68 38 31.1 2.2 66

TorpRoom 17032 131 8.4 14.4 143 81 25.3 3.9 110

1. [NM95] implementation: No simplicity check, skinny polygons, generated triangles
2. Includes simplicity check, fat polygons, triangle strip generation
3. First instance of the triangulation
4. Subsequent updates

Table 1: Performance of our Triangulation algorithm on an SGI Octane with 195MHz R10k. (Statistics are
per frame averaged over more than 5,000 frames. Time is in milliseconds, angle is in degrees.)

7 Conclusion

We have presented a simple, robust, efficient and incremental algorithm for triangulating points on a surface. This
includes both the generation of the polygons and their triangulation. To contrast our method of polygon generation
with that of [KM95], that approach is cell based and attempts to find polygons around each cell. In spite of the
higher overhead of this search, [KM95]’s method results in similar sized polygons. Furthermore, we do not need to
handle a large number of special cases, nor do we need the clean-up stage, which can be quite slow. In addition to
being more efficient, our algorithm directly produces triangle strips and generates better quality triangles. However,
due to strip splitting procedure, the strips tend to become fragmented after a while. Currently we perform complete
re-triangulation periodically. A slightly more complicated approach could avoid splitting strips by adding extra
vertices in the middle. Our algorithm also verifies that a polygon is simple at little additional cost. While infrequent,
if left undetected, a non-simple polygon can cause a system to crash. While it is possible to extend our incremental
algorithm to perform constrained Delaunay triangulation, we believe the cost does not justify the minor benefit. One

8

limitation of our system is its independence from the surface parameterization. We only guarantee triangle quality in
the domain. Thus our triangulations may still be long and skinny for severely skewed parameterizations. In our
experience most surface models do not suffer from such skews. Our algorithm works well in the common cases.

References

[AES93] S.S. Abi-Ezzi and L.A. Shirman.The scaling behavior of viewing transformations. IEEE Computer Graphics
and Applications, 13(3):48—54, 1993.

[AES94] S. Abi-Ezzi and S. Subramaniam, Fast Dynamic Tessellation of Trimmed NURB Surfaces, Computer Graphics
Forum, 13(3), 107—126, 1994. (Eurographics ’94.)

[BDE92] M. Bern, D. Dobkin and D. Eppstein. Triangulating polygons without large angles. Proc. 8th Annual ACM
Symp. Comput. Geom., pages 222—231, 1992.

[BE92] M. Bern and D. Eppstein. Polynomial-size nonObtuse triangulation of polygons. Proc. 7th Annual ACM Symp.
Comput. Geom., pages 342—350, 1991.

 [CH90] C. Cherfils and F. Hermeline. Diagonal swap procedures and characterizations of 2d-delaunay triangulations.
Math. Modeling and Num. Analysis , 24(5):613—625, 1990.

[Cha91] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom. , 6:485—524, 1991.

[CI84] B. Chazelle and J. Incerpi. Triangulation and shape-complexity. ACM Trans. Graph. , 3(2):135—152, 1984.

[CTV89] K. Clarkson, R. E. Tarjan, and C. J. Van Wyk . A fast Las Vegas algorithm for triangulating a simple
polygon. Discrete Comput. Geom. , 4:423—432, 1989.

[EKA84] M. Edahiro, I. Kokubo, and Ta. Asano. A new point-location algorithm and its practical efficiency: comparison
with existing algorithms. ACM Trans. Graph. , 3:86—109, 1984.

[FM84] A. Fournier and D. Montuno. Triangulating simple polygons and equivalent problems. ACM Transactions on
Graphics , 3:153—174, 1984.

[GJPT78] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating a simple polygon. Inform.
Process. Lett. , 7:175—179, 1978.

[HM83] S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proc. 4th Internat. Conf. Found. Comput.
Theory , volume 158 of Lecture Notes in Computer Science , pages 207—218. Springer-Verlag, 1983.

[KM95] S. Kumar and D. Manocha. Efficient rendering of trimmed NURBS surfaces. Computer-Aided Design ,
27(7):509—521, July 1995.

[KML96] S. Kumar, D. Manocha, and A. Lastra. Interactive display of large NURBS models. IEEE Transactions on
Visualization and Computer Graphics , 2(4):323—336, Dec 1996.

[Kum96] S. Kumar. Interactive Display of Parametric Spline Surfaces. Ph.D. Thesis, University of North Carolina, 1996.

[LC93] W.L. Luken and Fuhua Cheng. Rendering trimmed NURB surfaces. Computer science research report
18669(81711), IBM Research Division, 1993.

[Mit93] S. Mitchell. Refining a triangulation of a planar straight-line graph to eliminate large angles. Proc. 34th Annual
IEEE Symposium on Foundation of Computer Science (FOCS). Pages 583—591, 1993.

[MSR94] M. Bern, S. Mitchell and J.Rupert. Linear-Size nonobtuse triangulation of polygons. . Proc. 10th Annual ACM
Symp. Comput. Geom., pages 221—230, 1994.

[MSZ96] E. M”ucke, I. Saias, and B. Zhu. Fast randomized point location without preprocessing in two- and three-
dimensional Delaunay triangulations. In Proc. 12th Annual ACM Symp. Comput. Geom. , pages 274—283,
1996.

[NM95] A. Narkhede and D. Manocha. Fast polygon triangulation based on Seidel’s algorithm. In A. Paeth, editor,
Graphics Gems V, Academic Press, 1995.

[PR95] L. Piegl and A. Richard. Tessellating trimmed NURBS surfaces. Computer Aided Geometric Design ,
27(1):16—26, 1995.

[RHD89] A. Rockwood, K. Heaton, and T. Davis. Real-time rendering of trimmed surfaces. ACM Computer Graphics,
23(3):107—117, 1989. (SIGGRAPH Proceedings).

[RR94] R. Ronfard and J. Rossignac. Triangulating multiply-connected polygons: A simple, yet efficient algorithm.
Comput. Graphics Forum , 13(3):C281—C292, 1994.

[Sei91] R. Seidel. A simple and fast randomized algorithm for computing trapezoidal decompositions and for
triangulating polygons. Computational Geometry Theory & Applications , 1(1):51—64, 1991.

