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Computer programming is an art form, like the
creation of poetry or music - Donald Knuth

If computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,
And they’ll read our email,
Till we get crypto that’s quantum, and daunt ’em.

- Jennifer and Peter Shor

To read our E-mail, how mean
of the spies and their quantum machine;
be comforted though,
they do not yet know
how to factorize twelve or fifteen.

- Volker Strassen
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Early algorithms

n! =







1 if n = 0
n× (n−1)! otherwise

O(n) multiplications. Euclid’s Elements. 300 BC.

gcd(m,n) =







m if n = 0
gcd(n,m mod n) otherwise

O(logn) steps. Euclid’s Elements. 300 BC.
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Early algorithms

xn =







1 if n = 0
x× xn−1 otherwise

O(n) multiplications. Dates back to the Egyptians. 2000
BC.

xn =















1 if n = 0
x× sqr(xn/2) if odd(x)
sqr(xn/2) if even(x)

O(logn) multiplications. Acharya Pingala in Chandah
Sutra. 200 BC.
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Models of computation

Recursive functions: Inductively defined functions f : N
n→ N

RAM model: Any programming language that supports assignment,
if-then-else, while-do, an infinite array, 0 and s← s+1.

Turing machine: A mathematical model due to Alan Turing (1936).
Consists of an infinite tape, a finite state control, a read-write head and
a program.

Circuit model: Acyclic logic circuits of n input bits consisting of NAND,
FANOUT and CROSSOVER; whose description can be generated by a
Turing machine.
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Church-Turing thesis

All reasonable models of computations have turned out to be equivalent
in terms of what they can compute.

There can be a Universal Turing machine which can be used to simulate
any Turing machine.

The Universal Turing machine completely captures what it means to
perform a computational task by algorithmic means.

The above has led to the assertion called the Church-Turing thesis:
If an algorithm can be performed on any piece of hardware (including a mod-
ern computer) then there is an equivalent algorithm for a Universal Turing
machine which performs the same task.

Quantum Computing – p.6/28



J � I

What about efficiency?
Roughly speaking, an efficient algorithm is one which runs in time
polynomial in the size of the input.

In contrast, an inefficient algorithm takes super-polynomial (typically
exponential) time.
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Strengthened version of Church-Turing thesis: Any algorithmic process
can be simulated efficiently using a Turing machine.
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Decision problems and complexity classes
Decision problems:

Given a composite integer m and l < m, does m have a non-trivial factor
less than l?

Does a given graph have a Hamiltonian cycle?

Complexity classes:
P is the class of decision problems that a UTM can solve in polynomial
time.

NP is the class of decision problems whose solutions a UTM can verify
in polynomial time.
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Does “coin toss” help?

Consider a function f : {0, . . . ,2n−1}→ {0,1}.
Suppose we are given that f (x) is either constant (0 or 1 for all values of
x) or balanced (0 for exactly half for all possible x and 1 for the other
half).

Our problem is to decide what type f is?

Clearly, any deterministic algorithm will take at least 2n−1 +1 queries in
the worst case.

Alternatively, we can choose k (fixed) values of x uniformly at random. If
f (x) is different for any two conclude balanced, else conclude constant.
In the later case there is a non-zero probability of error, equal to 2−k.

The probability bound is arbitrary. Chernoff bound can be used to amplify
the probability to near 0 with only a few (logarithmic) repetitions.
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Randomized algorithms
Solovay and Strassen showed, in mid 1970’s, that a randomized algorithm
could determine whether a number n is a prime (with an arbitrarily low
probability 2−k) or a composite (with certainty) in O(k log3 n) time.

No efficient deterministic algorithm was known for the problem till
Manindra Agarwal et. al. in 2003.

Strengthened version of Church-Turing thesis: Any algorithmic process
can be simulated efficiently using a probabilistic Turing machine.

BPP is the class of problems that can solved efficiently using a
probabilistic TM.
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What is (not) known about complexity?
Some other complexity classes: L, PSPACE, EXP.

It is known that L⊆ P⊆ NP⊆ PSPACE⊆ EXP.

Is P = NP?

It is also known that P⊂ EXP and L⊂ PSPACE. Hence at least one of
the inclusions above must be strict. Which one?

Also, clearly, P⊆ BPP
If an NP-Complete problem can be solved in time t, then all problems in
NP can be solved in time poly(t).

Where does Quantum fit in?

P⊆ BQP⊆ PSPACE
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Quantum bits

Two possible states
∣

∣0
〉

and
∣

∣1
〉

.

A qubit can also be in a linear combination (superposition) of states
∣

∣ψ
〉

= α
∣

∣0
〉

+β
∣

∣1
〉

α,β ∈ C and |α|2 + |β|2 = 1

Thus, a qubit is a vector in a 2D vector space over the complex field.
∣

∣0
〉

and
∣

∣1
〉

are called computational basis states. They form an
orthonormal basis.

We cannot examine a qubit to determine its state. That is, we cannot
measure α and β. States are unobservable.

When we measure we get
∣

∣0
〉

with probability |α|2 or
∣

∣1
〉

with
probability |β|2. Measurement collapses the system to one of the basis
states.

qubit’s are decidedly real.
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How much information in a qubit?
Infinite number of points on the surface of a sphere. Representation of a
state will require infinite number of bits. Can we store the entire
Mahabharat in a qubit?

Misleading, because measurement will collapse the state to either
∣

∣0
〉

or
∣

∣1
〉

. Only one bit of information from a measurement.

But how much information if we do not measure?

Trick question. But it appears that when nature evolves closed quantum
systems it maintains all continuous variable. Key to quantum computation.

qubit states can be manipulated and transformed in interesting ways that
can lead to meaningful measurement outcomes.
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Multiple qubits
For two classical bits we can have four states 00, 01, 10 and 11.

Correspondingly, for a 2 qubit system we have four computational basis
states:

∣

∣00
〉

,
∣

∣01
〉

,
∣

∣10
〉

and
∣

∣11
〉

.

The 2 qubit state is
∣

∣ψ
〉

= α00
∣

∣00
〉

+α01
∣

∣01
〉

+α10
∣

∣10
〉

+α11
∣

∣11
〉

= ∑x∈{0,1}2 αx
∣

∣x
〉

We could measure only the first qubit. If we get
∣

∣0
〉

wp |α00|2 + |α01|2,

the post measurement state is
∣

∣ψ′
〉

=
α00
∣

∣00
〉

+α01
∣

∣01
〉

√
|α00|2+|α01|2

Tensor product of two vector spaces V (dimension k) and W (dimension
l) is V ⊗W (dimension kl). If

∣

∣v1
〉∣

∣v2
〉

. . .
∣

∣vk
〉

and
∣

∣w1
〉∣

∣w2
〉

. . .
∣

∣wl
〉

are
the bases for V and W , then a basis for V ⊗W is
{
∣

∣vi
〉

⊗
∣

∣w j
〉

: 1≤ i≤ k,1≤ j ≤ l}.
Hilbert space is a very large space. Nature somehow finds extra storage
when we combine two subsystems.
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Entangled states
A fantastic 2 qubit state is the Bell state or EPR pair

∣

∣ψ
〉

=

∣

∣00
〉

+
∣

∣11
〉

√
2

There are no single qubit states
∣

∣a
〉

and
∣

∣b
〉

such that
∣

∣ψ
〉

=
∣

∣ab
〉

.

On measuring the first qubit we get
∣

∣0
〉

or
∣

∣1
〉

with equal probability.

Post measurement state is
∣

∣ψ′
〉

=
∣

∣00
〉

or
∣

∣ψ′
〉

=
∣

∣11
〉

. Measurement of
the second qubit gives exactly the same result as the first.

The two qubits are correlated or entangled.

The measurement correlations in the Bell state is stronger than could
exist in two components of any classical system.

Another key component of quantum computing.
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Quantum computation
In the classical circuit model computational algorithms are described by
wires and logic gates (NAND).

Only one non-trivial 1 bit gate - NOT.

Quantum analogue: α
∣

∣0
〉

+β
∣

∣1
〉

→ α
∣

∣1
〉

+β
∣

∣0
〉

(the quantum NOT acts
linearly).

Can be represented by a matrix

X =





0 1
1 0



 ; X





α

β



=





β

α





All quantum gates U must be unitary operators: U †U = I.

Quantum operations are reversible.
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Important single qubit gates
Pauli matrices:

X =





0 1
1 0



 ; Y =





0 −i
i 0



 ; Z =





1 0
0 −1



 ;

Hadamard:

H =
1√
2





1 1
1 −1





α|0〉 + β|1〉 H α
|0〉+|1〉√

2
+ β

|0〉−|1〉√
2

|0〉 H
|0〉+|1〉√

2

|1〉 H
|0〉−|1〉√

2
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Multiple qubit gates
Controlled NOT (CNOT)

|A〉 • |A〉

|B〉 ⊕ |B ⊕ A〉

∣

∣00
〉

→
∣

∣00
〉

;
∣

∣01
〉

→
∣

∣01
〉

;
∣

∣10
〉

→
∣

∣11
〉

;
∣

∣11
〉

→
∣

∣10
〉

Swap

|A〉 • ⊕ • |B〉

|B〉 ⊕ • ⊕ |A〉

∣

∣A,B
〉

→
∣

∣A,A⊕B
〉

→
∣

∣A⊕ (A⊕B),A⊕B
〉

=
∣

∣B,A⊕B
〉

→
∣

∣B,((A⊕B)⊕B
〉

=
∣

∣B,A
〉

A typical quantum circuit

|q0〉 • •

V

LL������ ________

�������

________

��
��
��
�

|q1〉 X Z
U

|q2〉 • •
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Quantum copying?
Classical cloning

x
C

x

y = 0 x ⊕ y = x

Quantum cloning?
α|0〉 + β|1〉 • α|0〉 + β|1〉

|0〉 ⊕ α|0〉 + β|1〉

[

α
∣

∣0
〉

+β
∣

∣1
〉]∣

∣0
〉

= α
∣

∣00
〉

+β
∣

∣10
〉

→ α
∣

∣00
〉

+β
∣

∣11
〉

Have we cloned? For a general state ψ = α
∣

∣0
〉

+β
∣

∣1
〉

,
∣

∣ψ
〉∣

∣ψ
〉

= α2∣
∣00
〉

+αβ
∣

∣01
〉

+αβ
∣

∣10
〉

+β2∣
∣11
〉

Actually quantum cloning is not possible
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Bell states
Use Hadamard and CNOT

|x〉 H •

|y〉 ⊕

∣

∣00
〉

→
(∣

∣00
〉

+
∣

∣11
〉)

/
√

2 = β00
∣

∣01
〉

→
(∣

∣01
〉

+
∣

∣10
〉)

/
√

2 = β01
∣

∣10
〉

→
(∣

∣00
〉

−
∣

∣11
〉)

/
√

2 = β10
∣

∣11
〉

→
(∣

∣01
〉

−
∣

∣10
〉)

/
√

2 = β11
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Classical computation on quantum machines:
Toffoli gates

Any classical computation can be realized by logic circuits consisting
NAND gates, FANOUT and CROSSOVER.

Reversible quantum gates can realize the above:

a • a

b • b

c ⊕ c ⊕ ab

(a,b,1) → (a,b,1⊕¬(ab)) = ¬(ab)

(1,b,0) → (1,b,b)

What about coin toss?

|0〉 H

LL������ ________

�������

________

��
��
��
�
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Classical computation on quantum machines:
clean-up

We have that (x,a)→ ( f (x),g(x))

We have CNOT, so we can create a as needed (x,0)→ ( f (x),g(x))

We can also use CNOT to create a copy of x, not to be changed later

(x,0,0)→ (x, f (x),g(x))

Suppose we start with a fourth register also

(x,0,0,y)→ (x, f (x),g(x),y)

Use CNOT to add f (x) to the fourth register leaving the machine in state

(x, f (x),g(x),y⊕ f (x))

Using the circuit to reverse f (x), we obtain (x,0,0,y⊕ f (x))

Write the action of the circuit as (x,y)→ (x,y⊕ f (x))

Only polynomial overheads. P⊆ BQP.
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Quantum parallelism

|0〉+|1〉√
2

= x

Uf

x = |0〉+|1〉√
2

|0〉 = y y ⊕ f(x) = |0,f(0)〉+|1,f(1)〉√
2

A single f (x) circuit can evaluate the function at multiple values of x.

Input and output entangled.

What can we do with this?
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Extension to multiple qubits

Parallel action of two Hadamard gates: H⊗2

|0〉 H

|0〉 H

(

∣

∣0
〉

+
∣

∣1
〉

√
2

)(

∣

∣0
〉

+
∣

∣1
〉

√
2

)

=

∣

∣00
〉

+
∣

∣01
〉

+
∣

∣10
〉

+
∣

∣11
〉

2

More generally, the result of performing Hadamard on n qubits initially
all in

∣

∣0
〉

state is (H⊗n)
1√
2n ∑

x∈{0,1}n

∣

∣x
〉

Extremely efficient: n gates produce equal superposition of 2n states.
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Deutsch’s algorithm

|0〉 H
Uf

H

|1〉 H

∣

∣ψ0
〉

=
∣

∣01
〉

;
∣

∣ψ1
〉

=
[

1√
2 (
∣

∣0
〉

+
∣

∣1
〉

)
][

1√
2 (
∣

∣0
〉

−
∣

∣1
〉

)
]

Applying U f to the state
∣

∣x
〉

(
∣

∣0
〉

−
∣

∣1
〉

)/
√

2 we obtain
∣

∣x
〉

(
∣

∣0⊕ f (x)
〉

−
∣

∣1⊕ f (x)
〉

)/
√

2
=

∣

∣x
〉

(
∣

∣ f (x)
〉

−
∣

∣1⊕ f (x)
〉

)/
√

2
= (−1) f (x)∣

∣x
〉

(
∣

∣0
〉

−
∣

∣1
〉

)/
√

2

∣

∣ψ2
〉

=















±
[
∣

∣0
〉

+
∣

∣1
〉

√
2

][
∣

∣0
〉

−
∣

∣1
〉

√
2

]

if f (0) = f (1)

±
[
∣

∣0
〉

−
∣

∣1
〉

√
2

][
∣

∣0
〉

−
∣

∣1
〉

√
2

]

if f (0) 6= f (1)
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Deutsch’s algorithm
After the final Hadamard

∣

∣ψ3
〉

=















±
∣

∣0
〉

[
∣

∣0
〉

−
∣

∣1
〉

√
2

]

if f (0) = f (1)

±
∣

∣1
〉

[
∣

∣0
〉

−
∣

∣1
〉

√
2

]

if f (0) 6= f (1)

∣

∣ψ3
〉

=±
∣

∣ f (0)⊕ f (1)
〉

[
∣

∣0
〉

−
∣

∣1
〉

√
2

]

Measuring first qubit gives f (0)⊕ f (1). Only one evaluation of f (x).

Faster than is possible with any classical apparatus.

Can easily be extended to n bits

|0〉 / H⊗n

Uf

H⊗n

|1〉 H
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Other results
Peter Shor (1994) gave an O(n3) quantum algorithm for factoring an n bit
number. The best known classical algorithm for the problem is number
field sieve which works in exp(O(n1/3 log2/3 n)).

Lov Grover (1995) gave an O(
√

n) quantum algorithm for search in an
unstructured search space of size n.

If an O(logn) algorithm could be found for search it would have
established that NPC problems can be solved efficiently on quantum
computers.
Not to be - Grover’s algorithm has been proved to be optimal.

Is P⊂ BQP? .
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Some wisdom
“All of this will lead to theories [of computation] which are much less rigidly
of an all-or-none nature than past and present formal logic. They will be of a
much less combinatorial, and much more analytical, character. In fact, there
are numerous indications to make us believe that this new system of formal
logic will move closer to another discipline that has been little linked in the
past with logic. This is thermodynamics, primarily in the form it was received
from Boltzmann, and is that part of theoretical physics which comes nearest in
some of its aspects to manipulating and measuring information”

- John Von Neumann, Collected Works, Vol. 5, pg. 304.
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