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Abstract

Let G = (V, E) be an undirected weighted graph on |V | = n vertices, and |E| = m edges.
A t-spanner of the graph G, for any t ≥ 1, is a subgraph (V, ES), ES ⊆ E, such that the distance
between any pair of vertices in the subgraph is at most t times the distance between them in the graph
G. Computing a t-spanner of minimum size (number of edges) has been a widely studied and well
motivated problem in computer science. In this paper we present the first linear time randomized
algorithm that computes a t-spanner of a given weighted graph. Moreover, the size of the t-spanner
computed essentially matches the worst case lower bound implied by a 43 years old girth conjecture
made independently by Erdős [26], Bollobás [19], and Bondy & Simonovits [21].

Our algorithm uses a novel clustering approach that avoids any distance computation altogether.
This feature is somewhat surprising since all the previously existing algorithms employ computation
of some sort of local or global distance information which involves growing either breadth first search
trees up to θ(t)-levels or full shortest path trees on a large fraction of vertices. The truly local ap-
proach of our algorithm also leads to equally simple and efficient algorithms for computing spanners
in other important computational environments like distributed, parallel, and external memory.

Keywords: Graph algorithms, Randomized algorithms, Shortest path, Spanner

1 Introduction

A spanner is a (sparse) subgraph of a given graph that preserves approximate distance between each pair
of vertices. More precisely, a t-spanner of a graph G = (V,E) is a subgraph (V,ES), ES ⊆ E such
that, for any pair of vertices, their distance in the subgraph is at most t times their distance in the original
graph. The parameter t is called the stretch factor associated with the t-spanner. The concept of spanners
was defined formally by Peleg and Sch äffer [29] though the associated notion was used implicitly by
Awerbuch [8] in the context of network synchronizers.
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(ICALP), pages 384-396, 2003.
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The concept of spanner is a beautiful graph theoretic concept in its own right. Moreover, spanners are
quite useful in various applications in the area of distributed systems and communication networks. In
these applications, spanners appear as the underlying graph structure. In order to build compact routing
tables [31], many existing routing schemes use the edges of a sparse spanner for routing messages.
In distributed systems, spanners play an important role in designing synchronizers. A synchronizer,
introduced by Awerbuch [8], is a mechanism to simulate a synchronized distributed algorithm in an
asynchronous environment. Awerbuch [8], and Peleg and Ullman [30] showed that the quality of a
spanner (in terms of stretch factor and the number of spanner edges) is very closely related to the time
and communication complexity of any synchronizer for the network. In particular, if there exists a t-
spanner of size m′ for the network, then a synchronizer can be built that achieves O(t) time complexity
and O(tm′) communication complexity.

An efficient algorithm for computing a sparse spanner may prove to be useful in efficient computation
of all pairs approximate shortest paths also since the running time of most of the shortest path algorithms
is proportional to the number of edges in the graph. Running such an algorithm on a sparse spanner would
achieve subcubic time at the expense of computing slightly stretched, instead of exact, distances. With
this simple observation as one of the core ideas, spanners are used implicitly in a number of algorithms
for computing all pairs approximate shortest paths [10, 15, 22, 37].

Spanners are also used in computational biology [11] in the process of reconstructing phylogenetic
trees from matrices whose entries represent genetic distances among contemporary living species. They
are also used in machine embeddings in parallel architecture [18]. For a number of other applications,
please refer to the papers [6, 8, 29, 31].

Lower bound on the size of a t-spanner : All the applications of spanners require a t-spanner of
smallest possible size (the number of edges). Therefore, from a graph theoretic perspective, the following
question arises : How sparse can a t-spanner be ? To answer this question, Peleg and Sch äffer [29], and
more recently Thorup and Zwick [37] have tried to establish a lower bound on the size of a spanner in
terms of its stretch factor. These results use the following simple relationship between the stretch of a
spanner and the girth (length of the smallest cycle) of a graph.

A graph has girth at least t + 2 if and only if it does not have a t-spanner other than the graph itself.
A classical result from graph theory shows that every graph with n1+1/k edges must have a cycle

of length at most 2k. (Alon et al. [3] show that even 1
2n1+1/k edges are in fact enough). It has been

conjectured by Erdős [26], Bollobás [19], and Bondy and Simonovits [21] that this bound is indeed tight.
Namely, for any k ≥ 1, there are graphs with Ω(n1+1/k) edges that have girth greater than 2k. However,
the proof exists only for the cases k = 1, 2, 3 and 5. Since any graph has a bipartite subgraph with
at least half the edges, the conjecture implies the existence of graphs with Ω(n1+1/k) edges and girth
at least 2k + 2. These graphs can’t have any t-spanner for t < 2k + 1, except the graph itself. This
establishes a lower bound of Ω(n1+1/k) on the worst case size of a spanner with stretch 2k or 2k − 1.

1.1 An overview of the existing techniques and algorithms

The distance between any two vertices in not merely a function of the edges in their local neighborhood.
However, the task of selecting a sparse set of edges that approximates all pairs distances can be achieved
by ensuring a proposition which is somewhat local. Suppose we have a subset ES ⊂ E that ensures the
following proposition for every edge (x, y) ∈ E\ES .

2



Pt(x, y) : the vertices x and y are connected in the subgraph (V,ES) by a path consisting of at most
t edges, and the weight of each edge on this path is not more than that of edge (x, y).

Consider any pair of vertices u, v ∈ V , and the shortest path Πuv between the two in the graph G =

(V,E). It follows that, each edge e on this path, that is missing in the subgraph (V,ES), is stretched
by a factor at most t. Applying this argument for each missing edge on the path Πuv , it follows that the
shortest path is stretched in the subgraph by factor t at most. In other words, (V,ES) is a t-spanner of G.
A number of existing algorithms [6, 10, 22] in fact, to compute a t-spanner, are based on this approach
of ensuring Pt for each missing edge.

Alth öfer et al. [6] gave the first algorithm for computing a t-spanner for weighted graphs. Their
algorithm is similar to Kruskal’s algorithm for computing a minimum spanning tree. The edges of the
graph are processed in the increasing order of their weights. To begin with, the spanner ES = ∅ and the
algorithm adds edges to it gradually. The decision as to whether an edge, say (u, v) has to be added (or
not) to ES is made as follows:

If the distance between u and v in the subgraph induced by the current spanner edges ES is more
than t · weight(u, v), then select and add the edge to ES , otherwise discard the edge.

It follows that Pt(x, y) would hold for each edge missing in ES , and so at the end of the process,
the subgraph (V,ES) will be a t-spanner. Moreover, the girth of the graph (V,ES) is at least t + 1.
Note that a graph with more than n1+1/k edges must have a cycle of at most 2k edges (see [3]). Hence
for t = 2k − 1, the above algorithm computes a (2k − 1)-spanner of size O(n1+1/k), which is indeed
optimal based on the lower bound mentioned earlier. A simple O(mn1+1/k) implementation of the
algorithm follows easily. Recently Roditty and Zwick [35] gave an O(kn2+1/k) time implementation
which is based on a simple algorithm for incrementally maintaining a single source shortest paths tree
up to a given distance.

Algorithms of computing spanners have appeared implicitly in the preprocessing phase of a number
of data structures for computing approximate shortest paths [10, 22, 37]. The motivation behind these
data structures is to store all pairs approximate distances compactly in subquadratic space and answer any
approximate distance query efficiently. These data structures include neighborhood covers by Awerbuch
et al. [10], pairwise covers by Cohen [22], and approximate distance oracles by Thorup and Zwick
[37]. In fact spanner lies implicitly at the core of all these data structures, and these algorithms compute
spanners as a byproduct. The algorithms of Awerbuch et al. [10] and Cohen [22] employ construction of
breadth first search (BFS) trees up to level ≥ k from a fraction of vertices. Cohen’s algorithm requires
expected O(mn1/k) time to produce a spanner with size O(kn1+1/k) and stretch (2k + ε), which is a bit
larger than the optimal (2k − 1) stretch. The algorithm of Awerbuch et al. achieves stretch 64k which
is even larger. The fastest known algorithm for computing a (2k − 1)-spanner with essentially optimal
size-stretch trade off is by Thorup and Zwick [37]. Their algorithm computes a (2k − 1)-spanner of size
O(kn1+1/k), and its expected running time is O(kmn1/k). Their algorithm employs construction of full
shortest paths trees from O(n1/k) vertices.

All the previously existing algorithms for computing a (2k − 1)-spanner involve local or global
distance computation : building either BFS trees up to level ≥ k or full shortest paths trees from a
fraction of vertices. In fact, it seems quite natural also, at least at first glance, that the task of computing a
spanner - “selecting a sparse set of edges that approximates the pairwise distances” might require some
sort of distance computation. However, note that there is a worst case Ω(m) bound on the best known
algorithm for computing just a single shortest paths tree or a k-level BFS tree for any k > 1. Therefore,
pursuing any such approach that involves distance computation can not lead to a linear time algorithm
for computing a (2k − 1)-spanner.
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1.2 Our contribution

Perhaps surprisingly, we prove that a (2k − 1)-spanner of essentially optimal size can be computed
without any sort of (local or global) distance computation, and that too in just linear time. To achieve this
goal, we employ a novel clustering approach in order to ensure the proposition Pt for each non-spanner
edge. The main result (c.f. Theorem 4.3) of this paper is the following :

Given a weighted graph G = (V,E), and integer k > 1, a spanner of (2k − 1)-stretch and
O(kn1+1/k) size can be computed in expected O(km) time.

The simplicity of the algorithm can be judged from the fact that our algorithm for computing a (2k − 1)-
spanner executes O(k) rounds, and in each round it essentially explores adjacency list of each vertex to
prune dispensable edges. This extremely local approach is so useful that our algorithm can be adapted
very easily in various other computational environments with arguably optimal performance as follows.

• In synchronous distributed model, a (2k − 1)-spanner of expected O(kn1+1/k) size can be com-
puted in O(k2) rounds and the total communication complexity will be O(km) (see Theorem 5.1).
Thus, the time complexity and communication complexity are away from optimal by a factor of at
most k2 and k respectively.

• In the external memory model, a (2k−1)-spanner of O(kn1+1/k) size can be computed essentially
in the same (expected) time as that of sorting m integers in external memory (see Theorem 5.2).
Unlike having a linear time complexity in RAM model, integer sorting in external memory has
same lower and upper bound as that of general sorting [1]. Needless to say, sorting is one of the
most primitive tasks in external memory.

• In CRCW PRAM model, a (2k − 1)-spanner of expected O(kn1+1/k) size can be computed with
optimal speed-up in O(kτ) steps for any τ ≥ log∗ n (see Theorem 5.4). The algorithm employs
primitive parallel subroutines like computing the smallest element, semisorting and multiset hash-
ing.

With a little variation of our 3-spanner algorithm, one gets a parameterized 3-spanner, which plays a
crucial role in improving the running time of existing algorithms for all pairs approximate shortest paths
problem [15, 14]. A parameterized 3-spanner defined for a graph G = (V,E) and a subset S ⊂ V (as a
parameter) is a 3-spanner with the additional feature that it preserves all those paths whose vertices are
neither adjacent to nor members of the set S. It is this unique feature of “achieving sparseness while
preserving some essential distances” that it is employed in constructing approximate distance oracles
(introduced by Thorup and Zwick [37]) in quadratic time [15].

1.3 Other related work

The notion of a spanner has been generalized in the past by many researchers. We present a brief de-
scription of this work below.

Additive spanners : A t-spanner as defined above approximates pairwise distances with multiplicative
error, and can be called a multiplicative spanner. In an analogous manner, one can define spanners that
approximate pairwise distances with additive error. Such a spanner is called an additive spanner and
the corresponding error is called surplus. However, very little is done in the area of additive spanners.
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Aingworth et al. [2] presented the first additive spanner of size O(n3/2 log n) with surplus 2, and the
construction was slightly improved by Dor et al. [24], and Elkin and Peleg [25]. Baswana et al. [16]
presented a construction of O(n4/3) size additive spanner with surplus 6. It is a major open problem if
there exists any sparser additive spanner.

(α, β)-spanner : Elkin and Peleg [25] introduced the notion of (α, β)-spanner for unweighted graphs,
which can be viewed as a hybrid of multiplicative and additive spanners. An (α, β)-spanner is a subgraph
such that the distance between any pair of vertices u, v ∈ V in this subgraph is bounded by αδ(u, v)+β,
where δ(u, v) is the distance between u and v in the original graph. Elkin and Peleg showed that an
(1 + ε, β)-spanner of size O(βn1+δ), for arbitrarily small ε, δ > 0, can be computed at the expense of
sufficiently large surplus β. The surplus, though independent of n, depends quite heavily on ε and β. In
particular, β(ε, δ) = 2(log 1/δ−1)(log log 1/δ+log 1/ε). Recently Thorup and Zwick [38] introduced a spanner
where the additive error is sublinear in terms of the distance being approximated. They show that for an
unweighted graph, there exists a spanner of size O(kn1+1/k) such that for any pair of vertices u, v ∈ V ,

if δ(u, v) = d, then the distance between them in the spanner is at most d + O(d1− 1
k−1 ).

Distance Preservers : Another graph object similar to spanner is the distance preserver, which has been
recently introduced by Bollobás et al. [20]. A subgraph is said to be a d-preserver if it preserves exact
distances for each pair of vertices which are separated by distance at least d. Efficient construction of
d-preservers has been presented in [20, 23].

Light-weight spanners : In some applications of the spanner, there is a cost factor associated with each
edge, which is equal to its weight. For such applications, it is essential to compute a spanner with very
few edges and very small total edge weight. A lightness parameter is defined for a subgraph as the ratio
of total weight of all its edges and the weight of the minimum spanning tree of the graph. Awerbuch et
al. [9] showed that for any weighted graph and integer k > 1, there exists a polynomially constructible
O(k)-spanner with O(kρn1+1/k) edges and O(kρn1/k) lightness, where ρ = log(Diameter).

In addition to the above work on the generalization of spanners, a lot of work has also been done on
computing spanners for special classes of graphs, e.g., chordal graphs, unweighted graphs, and Euclidean
graphs. For chordal graphs, Peleg and Sch äffer [29] designed an algorithm that computes a 2-spanner of
size O(n3/2), and a 3-spanner of size O(n log n). For unweighted graphs, Halperin and Zwick [27] gave
an O(m) time algorithm to compute a (2k − 1)-spanner of O(n1+1/k) size. Salowe [36] presented an
algorithm for computing a (1 + ε)-spanner of a d-dimensional complete Euclidean graph in O(n log n+
n
εd ) time. However, none of the algorithms for these special classes of graphs seem to extend to general
weighted undirected graphs.

1.4 Organization of the paper

The paper has been organized as follows. In the following section, as a warm-up, we present an O(m)

expected time algorithm for computing a 3-spanner, and expose some of the key ideas (clustering of
vertices) that we formalize and extend in section 3. We present our linear time sequential algorithm
for computing (2k − 1)-spanner in section 4. We outline the distributed, external memory, and parallel
algorithms for computing a (2k − 1)-spanner in section 5.

Throughout the paper, unless stated otherwise, we assume that the undirected graph has the aug-
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Figure 1: (a) an undirected weighted graph (b) an augmented adjacency list representation

mented adjacency lists representation, wherein for each edge (u, v), the two nodes associated with the
edge (in the adjacency lists of each of u and v) have addresses of each other. See Figure 1 given below.

This representation will be helpful in the following way. The graph is undirected and therefore, an
edge, say (u, v) appears twice : once each in the adjacency lists of u and v. While processing vertex u,
if we decide to delete an edge (u, v) from the graph, we have to delete the edge from the adjacency list
of vertex v too. The above representation makes it possible to perform this operation in constant time.

If the initial graph has simple adjacency lists representation, we can get its augmented adjacency
lists representation in O(m) processing time. Without loss of generality, it is also assumed that all edge
weights are distinct.

2 Computing a 3-spanner

In order to compute a 3-spanner of a given weighted graph G = (V,E), the objective is to select O(n3/2)

edges to be included in the spanner out of (potentially θ(n2)) edges E of the graph, and still ensure that
the distance between any pair of vertices in the spanner is not more than three times their actual distance.
To meet the size constraint of a 3-spanner a vertex, on an average, should contribute

√
n edges to the

spanner. So the vertices with degree O(
√

n) are easy to handle since we can select all their edges in the
spanner. The vertices with higher degree pose the following problem : which O(

√
n) edges should be

chosen out of potentially θ(n) edges incident on a (high degree) vertex ? Our algorithm employs a novel
clustering scheme for such vertices. To begin with, we have a set of edges E ′ initialized to E, and empty
spanner ES . The algorithm processes the edges E ′, moves some of them to the spanner ES and discards
the remaining ones. It does so in the following two phases.

1. Forming the clusters :
We choose a sample R ⊂ V by picking each vertex independently with probability 1√

n
. We form

clusters (of vertices) around the sampled vertices. Initially the clusters are {{u}|u ∈ R}. Each
u ∈ R will be referred to as the center of its cluster. We process each unsampled vertex v ∈ V −R
as follows.

(a) If v is not adjacent to any sampled vertex, we move every edge incident on v to ES .

(b) If v is adjacent to one or more sampled vertices, let N (v,R) be the sampled neighbor that is
nearest 1 to v. We move the edge (v,N (v,R)) to ES along with every edge that is incident

1Ties can be broken arbitrarily. However, it helps conceptually to assume that all weights are distinct
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on v with weight less than that of (v,N (v,R)). The vertex v is added to the cluster centered
at N (v,R).

As a last step of the first phase, we discard all those edges (u, v) from E′ where u and v are not
sampled and belong to the same cluster.

Let V ′ be the set of vertices corresponding to the endpoints of the edges E ′ left after the first phase.
It follows that each vertex from V ′ is either a sampled vertex or adjacent to some sampled vertex,
and the step 1(b) has partitioned V ′ into disjoint clusters each centered around some sampled
vertex. Also note that, as a consequence of the last step, each edge of the set E ′ is an inter-cluster
edge. The graph (V ′, E′), and the corresponding clustering of V ′ is passed onto the second phase.

2. Joining vertices with their neighboring clusters :
We process each vertex v of graph (V ′, E′) as follows. Let E ′(v, c) be the edges from the set E ′

incident on v from a cluster c. For each cluster c incident to v, we move the least-weight edge from
E′(v, c) to ES and discard the remaining edges.

Let us first bound the number of edges added to the spanner ES during the algorithm described above.
Note that the sample set R is formed by picking each vertex randomly independently with probability
1√
n

. It thus follows from elementary probability that for each vertex v ∈ V , the expected number of

incident edges with weight less than that of (v,N (v,R)) is at most
√

n. Thus the expected number of
edges contributed to the spanner by each vertex in the first phase of the algorithm is at most

√
n. The

number of edges added to the spanner in the second phase is O(n|R|). Since the expected size of the
sample R is

√
n, therefore, the expected number of edges added to the spanner in the second phase is

O(n3/2). Hence the expected size of the spanner ES at the end of the algorithm described above is
O(n3/2). Since we can verify the number of edges added to the spanner, we will repeat the algorithm if
it exceeds 2n3/2; the expected number of repetitions will be O(1) (using Markov’s inequality).

We will now show that ES has the required properties of a 3-spanner. From the description of the
first phase of the algorithm, the following Lemma holds.

Lemma 2.1 If an edge (u, v) ∈ E is not present in ES at the end of the first phase, then the weight of
edge (u, v) is greater than or equal to the weight of the edge between v and N (v,R) (the center of the
cluster to which v belongs).

The proximity of vertices of a cluster to its center relative to the external vertices (as mentioned in Lemma
2.1) is used in the following lemma to bound the stretch of the spanner by 3.

Lemma 2.2 For each edge (u, v) ∈ E\ES , the assertion P3(u, v) holds.

Proof: It follows from the first phase of the algorithm that u (as well as v) is adjacent to one or more
vertices of the sample R, and therefore u (as well as v) belongs to some cluster. There are two cases
now.
Case 1 : (u and v belong to same cluster)
Let u and v belong to the cluster centered at x ∈ R (see Figure 2). It follows from Lemma 2.1 that there
is a 2-edge path u − x − v in the spanner with each edge not heavier than the edge (u, v). This provides
a justification for discarding all intra-cluster edges at the end of first phase.
Case 2 : (u and v belong to different clusters)
Clearly the edge (u, v) was removed from E ′ during phase 2, and suppose it was removed while process-
ing the vertex u. Let v belong to the cluster centered at x ∈ R (see Figure 3).

7



PSfrag replacements
x

u v

Figure 2: vertex u belongs to the same cluster as the vertex v

PSfrag replacements

xu v

v′

Figure 3: vertex u does not belong to the cluster containing vertex v

In the beginning of the second phase let (u, v ′) ∈ E′ be the least weight edge among all the
edges incident on u from the vertices of the cluster centered at x. So it must be that weight(u, v ′) ≤
weight(u, v). The processing of vertex u during the second phase of our algorithm ensures that the edge
(u, v′) gets added to ES . Hence there is a path Πuv = u − v′ − x − v between u and v in the spanner
ES , and its weight can be bounded as follows.

weight(Πuv) = weight(u, v′) + weight(v′, x) + weight(x, v)

≤ weight(u, v′) + weight(u, v′) + weight(u, v) {using Lemma 2.1 }
≤ 3 · weight(u, v) {follows from the second phase of the algorithm}

2

Using the above lemma, it follows that the spanner (V,ES) has stretch 3.

Lemma 2.3 Both phases of the algorithm for computing a 3-spanner can be executed in O(m) time.

Proof: Without loss of generality we assume that the vertices are numbered 1 to n. The random sample
R can be chosen in O(n) time. Also the nearest sampled neighbor for a vertex v ∈ V can be computed
by a single traversal of the adjacency list of the vertex v. Let N be the array storing nearest sampled
neighbor for each vertex (if exists). The remaining task of the first phase is to select (and add to the
spanner), for each vertex v, all the edges incident with weight less than that of the edge (v,N (v,R)).
This can be performed by traversing adjacency list of each vertex.

In the second phase of the algorithm, for each vertex v and a cluster neighboring to v, we have to
select the least weight edge between the two. For this purpose, we use an auxiliary array A[1..n] whose
entries point to null initially. Let E ′(v) be the list of edges incident on vertex v in the beginning of the
second phase. We scan the list E ′(v), and process an edge (v, w) as follows. Let x ∈ R be the center of
the cluster to which the vertex w belongs (note that the center of the cluster to which vertex w belongs
can be accessed in constant time from N [w]). If A[x] points to null, we shall make A[x] point to the edge
(v, w). Otherwise let A[x] already points to some edge, say (v, y). In this case, we shall make A[x] point
to the lighter (having less weight) of the two edges (v, y) and (v, w), and discard the other edge from
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the list E ′(v). It is easy to observe that once all the edges incident on v have been processed, the list
E′(v) consists of only the least weight edges between v and its neighboring clusters; and these (and only
these) edges are stored (through pointers) in array A. Now we perform another scan of this list E ′(v),
and move each edge (v, w) in the list to ES , and also make A[N [w]] point to null. It can be seen that in
this way, just by two traversals of the list E ′(v), we can select (and add to the spanner) the least weight
edge incident on v from each neighboring clusters of v, and discard other edges. Also note that the array
A is restored to its initial state (all its entries pointing to null) to be used for another vertex.

Thus with an extra space (arrays A and N ) of O(n) size, both the phases of the algorithm for com-
puting a 3-spanner can be implemented in O(m) time.

2

We can thus conclude that for a given weighted undirected graph, a 3-spanner of size O(n3/2) can be
computed in O(m) expected time.

3 Key ideas underlying the (2k − 1)-spanner algorithm

As mentioned in the beginning, the task of computing a (2k − 1)-spanner for a graph G = (V,E)

reduces 2 to finding a subset ES ⊂ E such that P2k−1(e) holds for each edge e ∈ E\ES . Now, in
order to pick such a set ES of O(kn1+1/k) edges from potentially θ(n2) edges in a given graph, the
key idea is to partition the set of vertices into suitable clusters. Recall from the previous section how
the clustering of the vertices (by grouping each vertex with its nearest sampled neighbor) proves to be
crucial in the computation of a 3-spanner. It was the smaller number of these clusters compared to the
number of vertices that helped in getting a bound on the size of the 3-spanner, and it was the proximity
of the vertices within a cluster that ensured a bound on the stretch of the spanner.

Our algorithm for computing a (2k − 1)-spanner employs a clustering induced by a set of edges. We
now formally define this clustering and a parameter called radius of a cluster that captures the proximity
of the vertices of the same cluster compared to the vertices outside the cluster.

3.1 Definitions and notations

The following definitions and notations are in the context of a given weighted graph G = (V,E).

Definition 3.1 A cluster is a subset of vertices. A clustering of V ′ ⊆ V is a partition of V ′ into
clusters. As will soon become clear in the context of our algorithm, each cluster is a singleton set in
the beginning, and other vertices are added to the cluster as the algorithm proceeds. We shall denote
this (unique) oldest member of a cluster as the center of the cluster. Formally, a clustering C can be
represented by a function fC : V → V such that fC(u) is the center of the cluster to which the vertex
u belongs. Note that fC(u) = fC(v) if and only if vertices u and v belong to same cluster. Hence the
function fC associated with the clustering C can be used to determine whether any two vertices belong
to the same cluster or not.

We now define a clustering induced by a set of edges :

Definition 3.2 Given a graph G = (V,E), a set of edges E ⊆ E induces a partition of set V into clusters
in the following natural way : two vertices belong to a cluster if they are connected by a path Π ⊆ E .
(In other words, each connected component is a cluster). We refer to this clustering as the clustering

2Note that this implies a stronger property than required by a spanner.
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induced by E . For a cluster c in this clustering, we shall use E(c) ⊆ E to denote the edges defining the
connected component associated with the cluster c.

Definition 3.3 Consider a clustering C induced by some E ⊆ E in a given graph G = (V,E). The
radius of a cluster c ∈ C is the smallest integer r such that the following holds :

For each edge (x, y) ∈ E\E , x ∈ c, there is a path Π ⊆ E(c) from x to fC(x) of at most r edges
each having weight not more than that of the edge (x, y).

Definition 3.4 A clustering C induced by E ⊆ E is a clustering of radius ≤ i in the graph G = (V,E)

if each of its cluster has radius ≤ i.

We shall use the following notations in the rest of the paper.

• E′(x, c) : the edges from the set E ′ that are between the vertices of cluster c and the vertex x.

• E′(c1, c2) : the edges from the set E ′ with one endpoint in cluster c1 and another endpoint in
cluster c2.

• min(E′) : the least weight edge from the set E ′.

Our algorithm exploits the properties of a clustering of bounded radius as mentioned in the following
two Lemmas.

Lemma 3.1 Let C be a clustering of radius i induced by E in a graph G = (V ′, E ∪ E′), and let c ∈ C
be a cluster. If set E has been included in the spanner, then for any vertex u /∈ c, picking the least weight
edge from the set E ′(u, c) in the spanner will ensure that the proposition P2i+1(e) holds for each edge
e ∈ E′(u, c).

Proof: Let the edge (u, y) of weight α be the least-weight edge from the set E ′(u, c). Let (u, x) be anyPSfrag replacements

u vy

x

α

β
Πvx

Πyv

weight ≤ iα

weight ≤ iβ

Cluster c

Figure 4: Ensuring that the proposition P2i+1 holds for the set E ′(u, c).

other edge of weight β ≥ α from the set E ′(u, c) (see Figure 4). Since the radius of the cluster c is at
most i, therefore, there is a path Πvx ⊆ E(c) between vertex x and the center v of the cluster c, and
its weight is at most i times β. Using the same argument, we deduce that there is a path Πyv ⊆ E(c)

from vertex y to v with weight at most iα. Thus there is a path Πux from vertex u to vertex x formed

10



by concatenating the edge (u, y) and the paths Πyv , Πvx in this order; and its weight can be bounded as
follows.

weight(Πux) = weight(u, y) + weight(Πyv) + weight(Πvx)

≤ α + iα + iβ ≤ β + iβ + iβ {since α ≤ β}
= (2i + 1)β

Therefore, we can conclude that if E has been included in the spanner, then adding the edge (u, y) to the
spanner makes the proposition P2i+1(e) true for each edge e ∈ E ′(u, c). 2

Along similar lines we can prove the following Lemma.

Lemma 3.2 Let C be a clustering induced by E in a graph G = (V ′, E ∪ E′), and let c1, c2 ∈ C be two
clusters having radius i and j respectively. If set E has been included in the spanner, then picking the
least weight edge from the set E ′(c1, c2) in the spanner will ensure that the proposition P2i+2j+1 holds
for the entire set E ′(c1, c2).

4 Algorithm for computing a (2k − 1)-spanner

4.1 An overview

The algorithm is based on the key observations of a clustering of finite radius mentioned in Lemmas 3.1
and 3.2. It begins with a set E ′ initialized to E, and empty spanner ES . The algorithm processes the
edges E′, moves some of them to ES and discards the remaining ones. Like the 3-spanner algorithm, it
does so in two phases as follows.

The first phase is called ‘forming the clusters’ phase and it executes k−1 iterations. The ith iteration
begins with a clustering of radius (i − 1). During the ith iteration, a set of edges from E ′ are moved to
the spanner such that the proposition P2i−1 holds for a possibly large set of edges by Lemma 3.1, which
are thus discarded from E ′. A new clustering is obtained again for the endpoints of the edges left in
E′. In every successive iteration, the expected number of clusters reduces by a factor of n1/k while the
radius of clusters increases by at most one unit. At the end of k − 1 iterations, we obtain a clustering

that consists of expected n1− k−1
k = n1/k clusters. This clustering consisting of very few clusters and

not-so-large radius is passed onto the second phase of the algorithm.
The second phase is called ‘vertex-cluster joining’ phase. In this phase, each vertex selects the least

weight edge from each neighboring cluster and adds it to the spanner (as in the case of 3-spanner).
The algorithm is over at the end of the two phases described briefly above. In another variation

called ‘cluster-cluster joining’, we execute only b k
2 c iterations of the first phase, and then add the least

weight edge between each pair of neighboring clusters to the spanner. The ‘cluster-cluster joining’ phase
employs Lemma 3.2 to ensure that P2k−1 holds for all those edges which are present in the set E ′ after
bk

2 c iterations but are not selected in the spanner finally. The advantage of this slight variation is the
following. For unweighted graphs, it computes a (2k − 1)-spanner that achieves a stretch strictly better
than (2k − 1) for any pair of vertices separated by distance larger than one.

4.2 Details of the algorithm

We now describe the details of the two phases of our algorithm for computing a (2k − 1)-spanner of a
weighted graph G = (V,E).
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Phase 1 : Forming the clusters
This phase executes k − 1 iterations. The ith iteration begins with tuple (V ′, E′, ES , Ci−1, Ei−1), where
ES is the partially built spanner, E ′ is the set of edges for which the proposition P2i−1 does not hold yet,
V ′ is the set of endpoints of edges E ′ ∪ Ei−1 for some Ei−1 ⊆ ES and Ci−1 is a clustering induced by
Ei−1 in the graph (V ′, Ei−1 ∪ E′).

Initially, i.e., in the beginning of the first iteration the sets are E′ = E, V ′ = V, ES = E0 = ∅, and
the clustering C0 is {{v}|v ∈ V }.

The ith iteration performs the following four steps in the fixed order.

1. Forming a sample of clusters : A sample Ri of clusters is chosen by picking each cluster from the
clustering Ci−1 independently with probability n− 1

k . The set Ei is initialized to those edges of set
Ei−1 that define the clusters of Ri. As a consequence, the clustering Ci is initialized to Ri.

2. Finding nearest neighboring sampled cluster for each vertex : For each vertex v ∈ V ′ not belong-
ing to any sampled cluster, compute its nearest neighboring cluster (if any) from the set Ri; note
that it would be the cluster from Ri which is incident on v with the lightest edge among all clusters
of Ri, and not the cluster with the center at least distance from v. Therefore, it would require each
vertex to just scan its adjacency list to compute its nearest neighboring sampled cluster (if any).

3. Adding edges to the spanner : To select the spanner edges in the ith iteration, process each vertex
v ∈ V ′, that does not belong to any sampled cluster, according to the following two cases.

(a) If v is not adjacent to any sampled cluster, then for each cluster c ∈ Ci−1 adjacent to v, we
add the least weight edge from the set E ′(v, c) to ES , and discard the edges E ′(v, c) from
the set E′.

(b) If v is adjacent to one or more sampled clusters, let c ∈ Ri be the cluster that is adjacent
to v with edge, say ev , of least weight among all the clusters incident on v from the set Ri.
We add the edge ev to the sets ES and Ei

3, and discard the entire set E ′(v, c) from E ′. In
addition, we do the following. For each cluster c′ ∈ Ci−1 adjacent to vertex v with an edge
of weight less than that of ev , we add the least weight edge from the set E ′(v, c′) to ES , and
remove E′(v, c′) from E′.

After this 3rd step of the ith iteration, note that the edges remaining in the set E ′ are only those
whose endpoints either belong to or are adjacent to some cluster in Ri. The following crucial ob-
servation follows directly from the construction of set Ei (during steps 1 and 3(b) of the algorithm).

Observation 4.1 In the clustering Ci induced by Ei, each cluster c ∈ Ci is the union of a sampled
cluster R ∈ Ri with the set of all those vertices from V ′ for whom R was the nearest neighboring
sampled cluster in Ci−1.

4. Removing intra-cluster edges : All the intra-cluster edges (whose both endpoints belong to the
same cluster) of the clustering Ci are eliminated from E ′.

The tuple (V ′, E′, ES , Ci, Ei) at the end of step 4 above is passed onto the (i + 1)th iteration of the first
phase.

Observation 4.1 gives a formal description of the clusterings defined in the successive iterations of
the algorithm. The following theorem is the key to understanding of the way the algorithm works, and
will also be used for proving its correctness.

3This ensures that Ei is always a subset of the spanner.
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Theorem 4.1 The following assertion holds for each iteration j ≥ 0.
A(j) : The clustering Cj induced by the set Ej in the algorithm is a clustering of radius j in (V ′, Ej ∪E′).

Proof: We shall prove the theorem by induction on j ≥ 0.
Base Case : j = 0 : In the beginning of the algorithm, E0 = ∅, the clustering is C0 = {{v}|v ∈ V },
and V ′ = V,E′ = E. It is easy to observe that each cluster in C0 is a cluster of radius 0 in the graph
G = (V,E). Therefore, the assertion A(0) holds.
Induction Hypothesis : j < i : Let the assertion A(i − 1) hold.
Proof of assertion A(i) :
Recalling the observation 4.1, a cluster c ∈ Ci is actually a union R ∪ NR, where R ∈ Ri and NR is
the set of all those vertices of set V ′ for whom the cluster R is the nearest neighboring sampled cluster
(see Figure 5). The center of the cluster R ∪ NR is the same as that of the cluster R (see Definition 3.1).
Since R ∈ Ri ⊆ Ci−1, it follows from the induction hypothesis that R is a cluster of radius i − 1 in the

PSfrag replacements

o x y ∈ R

∈ NR≤ (i − 1) edges

Cluster c

Figure 5: A cluster c ∈ Ci as a union R ∪ NR

clustering induced by Ei−1. That is, for each edge (x, y) ∈ E ′, x ∈ R, there is a path Πxo ⊆ Ei−1(R)

from x to the center o of the cluster R consisting of at most i−1 edges each of weight not more than that
of (x, y). Since the edges of set Ei−1(R) are present in Ei too (see step 1 of the algorithm), the radius of
cluster R is i − 1 also in the clustering induced by Ei.

Now consider a vertex v ∈ NR. During the ith iteration, we add to the set Ei (and to the spanner), the
edge ev of least weight from the set E ′(v,R). Let u ∈ R be the second endpoint of edge ev . Therefore,
there is a path Πvo ⊆ Ei formed by concatenating ev with Πuo ⊆ Ei that consists of at most i edges and
the weight of each edge on this path is not more than that of ev (invoke induction hypothesis with x = u

and y = v). Moreover, as can be noticed from step 3(b) of the algorithm, there is no edge left in the set
E′ which is incident on v with weight less than that of ev . Hence the weight of each edge on the path
Πvo is not more than that of any edge (v, z) ∈ E ′ at the end of the ith iteration. These statements hold
for each v ∈ NR. Hence R ∪ NR is a cluster of radius i in the graph G = (V ′, Ei ∪ E′).

Similar arguments can be given for any other cluster in the clustering Ci. Thus the assertion Ai holds.
Hence by the principle of mathematical induction, the assertion Aj holds for all j ≥ 0. 2

Using Lemma 3.1 and the theorem given above, we can state the following theorem.

Theorem 4.2 For each edge e ∈ E ′ eliminated from the graph in the first phase, the proposition P2k−2

holds.

Proof: Let (u, v) be an edge eliminated from E ′ during the ith iteration. Note that the edges are elimi-
nated from the set E ′ only in the third or the fourth step of the ith iteration.
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Case 1 : (The edge (u, v) is eliminated from E ′ during step 3)
Without loss of generality, assume that the edge (u, v) was eliminated while the vertex u was processed
(the case for v is symmetric). Note that we surely add the least weight edge between u and the cluster
to which the vertex v belongs. It follows from Theorem 4.1 that each cluster during the ith iteration has
radius at most i − 1. Therefore, using Lemma 3.1 the proposition P2i−1 holds for the edge (u, v).
Case 2: (The edge (u, v) is eliminated during step 4).

In this case both u and v must have been assigned to the same cluster, say c ∈ Ri. It follows from
the step 3 of the ith iteration that the edge (u, v) is at least as heavy as the edge min(E ′(u, c)) that we
add to the spanner. Moreover, Theorem 4.1 implies that c is a cluster of radius i − 1. Therefore, there
is a path Πuo (likewise Πvo) from u (likewise v) to the center o of the cluster c consisting of at most i

spanner-edges, each of weight not more than that of (u, v). Thus the path formed by concatenating the
paths Πuo,Πov in this order is a path between u and v consisting of at most 2i spanner-edges, each of
weight no more than that of (u, v). In other words P2i holds for the edge (u, v).

Since there are k−1 iterations in the first phase, it follows that P2k−2 holds for each edge eliminated
from the graph in the first phase. 2

Lemma 4.1 The number of edges added to the spanner by the first phase is O(kn1+1/k), and its expected
running time is O(km).

Proof: Let v be a vertex belonging to the set V ′ during the ith iteration of the first phase. All the neigh-
bors of the vertex v are grouped into their respective clusters of the clustering Ci−1. Let c1, c2, · · · , cl be
the clusters adjacent to v, and arranged in the increasing order of the weight of their least-weight edge
incident on v, i.e., the least weight edge from the set E ′(v, cj) is lighter (has smaller weight) than the
least weight edge from the set E ′(v, cj+1) for all j < l.

It follows from the algorithm that for the cluster cj adjacent to v, we add just one edge (the least
weight edge) from the set E ′(v, cj) to the spanner if none of the clusters preceding it, i.e., c1, · · · , cj−1

are sampled. Since each cluster is sampled independently with probability n−1/k, the probability that
we add an edge from E ′(v, cj) to the spanner is (1 − n−1/k)j−1. Thus the expected number of edges
contributed to the spanner by a vertex v ∈ V ′ is given by

j=l
∑

j=1

(

1 − n−1/k
)j−1

≤ 1

n−1/k
= n1/k

Thus the expected number of edges added to the spanner in the ith iteration is bounded by n1+1/k. We
repeat an iteration if the number of edges exceeds 2n1+1/k; the expected number of repetitions will be
O(1) (using Markov’s inequality). There are total k − 1 iterations in the first phase, so the total number
of edges added to the spanner in the first phase is O(kn1+1/k).

We now address the running time of the first phase of the algorithm. An iteration of this phase begins
with choosing a random sample of clusters and finding the neighboring sampled cluster nearest to each
vertex. It is easy to perform these steps in O(|E ′|) time. The remaining steps of the iteration (selecting
min(E′(v, c) and/or eliminating E ′(v, c)) are similar to the second phase of the algorithm for computing
a 3-spanner, and thus can be implemented in O(|E ′|) time using an extra O(n) size space as follows from
Lemma 2.3. Thus the running time of an iteration is O(|E ′|) = O(m). As mentioned above, an iteration
will be repeated for expected constant number of times to ensure that the number of edges contributed
to the spanner in the iteration is of the order of n1+1/k. Since there are total k − 1 iterations in the first
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phase, therefore, the expected running time of the first phase is O(km). 2

Remark. For an unweighted graph, each vertex would add only a single edge to the spanner in each
iteration of the first phase except the iteration in which it is eliminated; during this iteration the expected
number of edges that this vertex contributes is at most n1/k. Hence the expected number of edges added
to the spanner in the first phase is O(n1+1/k + kn) if the graph is unweighted.

Let E′ be the set of edges left in the graph at the end of first phase, and let V ′ be the set of endpoints
of edges E ′ ∪ Ek−1. We pass the graph (V ′, E′) and the clustering Ck−1 of V ′ to the second phase. Note
that Ck−1 is a clustering of radius at most k − 1 in the graph (V ′, Ek−1 ∪ E′) (see Theorem 4.1).

Phase 2: Vertex-cluster joining
The second phase is similar to the second phase of our 3-spanner algorithm, and executes the following
step.

• For each vertex v ∈ V ′ and each cluster c ∈ Ck−1,
add the least weight edge from set E ′(v, c) to the spanner ES , and discard E ′(v, c) from E ′.

For each edge of E ′ that is not added to the spanner in the second phase, we apply the same argument as
that of case 1 in the proof of Theorem 4.2 with i = k. Hence the proposition P2k−1 holds for every edge
eliminated in the second phase. Using this fact in conjunction with Theorem 4.2, we can conclude that
the set ES at the end of the two phases is a (2k − 1)-spanner of the given graph G = (V,E).

Since there are n1/k clusters in Ck−1, the number of edges added to ES by the second phase is at most
n1+1/k. As mentioned above, the execution of this phase is similar to the second phase of the 3-spanner
algorithm which takes O(m) time using Lemma 2.3. We have thus proved the following main theorem
of this paper.

Theorem 4.3 Given a weighted graph G = (V,E), and integer k > 1, a spanner of stretch (2k − 1)

and size O(kn1+1/k) can be computed in expected O(km) time (for an unweighted graph, the size of the
spanner is O(n1+1/k + kn)).

4.3 An alternative to second phase : Cluster-cluster joining

There can be a slight variation in the algorithm described in previous subsection that can save a factor
of 2 in the number of edges in (2k − 1)-spanner. This does not give us any asymptotic improvement
in the size. However, for unweighted graphs, this variation would ensure a stretch which is strictly less
than 2k − 1 for all paths of length more than one. The variation in the algorithm is the following. We
don’t execute all k − 1 iterations of the first phase. Instead, we stop after bk2 c iterations, and then as
an alternative to the second phase, we join each pair of neighboring clusters with the least weight edge
between them. The new algorithm is described below.

1. Execute bk
2 c iterations of the first phase.

The set Eb k
2
c of edges partitions the vertices V ′ into the clustering Cb k

2
c that consists of expected

n1− 1
k
b k

2
c number of clusters. Moreover, the Theorem 4.1 implies that Cb k

2
c is a clustering of radius

bk
2 c.

The graph (V ′, E′) with the clustering Cb k
2
c is passed on to the following phase of the algorithm.
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2. Cluster-cluster joining :

• If k is odd, then for each pair of clusters c, c′ ∈ Cb k
2
c, we add the least weight edge between

the two clusters to the spanner. To execute this, first we merge the adjacency lists of all
the vertices belonging to same cluster in the clustering Cb k

2
c. We process the merged list

associated with a cluster c as follows. For each cluster c′ ∈ Cb k
2
c incident on c, we select and

add the least weight edge from the set E ′(c, c′) to the spanner.

• If k is even, then for each pair of neighboring clusters c ∈ Cb k
2
c, c

′ ∈ Cb k
2
−1c, we add the

least-weight edge between the two clusters to the spanner. To execute this, first we merge the
adjacency lists of all the vertices belonging to same cluster in the clustering Cb k

2
c. For each

cluster c′ ∈ Cb k
2
−1c incident on c, we select and add the least weight edge from set E ′(c, c′)

to the spanner.
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Figure 6: ‘cluster-cluster joining’ phase of the new algorithm

Figure 6 shows how the clusters are joined in ‘cluster-cluster joining’ phase of our new algorithm for
building the spanners of stretch 3,5,7 and 9 (i.e., k = 2, 3, 4, 5).

Theorem 4.1 implies that Cb k
2
c and Cb k

2
c−1 are clusterings of radius b k

2 c and bk
2 c − 1 respectively.

Therefore it follows from Lemma 3.2 that the proposition P2k−1 holds for each edge of the graph that is
processed by ‘cluster-cluster joining’ phase but not added to the spanner. So the new algorithm indeed
computes a (2k − 1)-spanner. Also note that for both odd and even cases of k as described above, the
processing of a cluster c ∈ Cb k

2
c is similar to the way we process a vertex in the second phase of the

algorithm for 3-spanner (see Section 2). Hence the new algorithm still has an expected running time of
O(km).

Lemma 4.2 The expected number of edges added to the spanner during the ‘cluster-cluster joining’
phase is at most n1+1/k.

Proof: We have to analyze the cases of odd and even k. However, we will deal only with the case of odd
k since the case of even k is similar. Let k = 2` + 1.

Let Xv
i be a random variable which is one if a cluster centered at v appears in Ci, and zero otherwise.

Let Ni be the number of clusters in the clustering Ci. The expected number of edges added to the spanner
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during the ‘cluster-cluster joining’ phase is
∑

v∈V

Pr[Xv
` = 1] · E[N` − 1|Xv

` = 1]

As described earlier, the algorithm starts with the clustering C0 = {{v}|v ∈ V }, and a cluster in Ci

survives in Ci+1 independently with probability n−1/k. It thus follows that Pr[Xv
i ] = n−i/k. Owing

to the independence used in the sampling of clusters, it also follows that the expected number of clusters
in Ci is bounded by n1−i/k + 1 irrespective of whether or not there is a cluster in Ci which is centered at
any particular vertex v. So the expected number of edges added to the spanner during the ‘cluster-cluster
joining’ phase can be bounded as follows
∑

v∈V

Pr[Xv
` = 1] · E[N` − 1|Xv

` = 1] ≤
∑

v∈V

Pr[Xv
` = 1] · n1−`/k

= n1−`/k
∑

v∈V

n−`/k = n2−2`/k = n1+1/k {since k = 2` + 1}

2

In the following subsection, we shall show that the new algorithm (with ‘cluster-cluster joining’ phase)
described above would produce spanners with better stretch in case of unweighted graphs.

4.4 Spanners with improved stretch for unweighted graphs

The concept of (α, β)-spanner was introduced by Elkin and Peleg [25] (and briefly mentioned in section
1.3).
Definition 4.3: An (α, β)-spanner of an unweighted graph G = (V,E) is a subgraph (V,ES) such
that for all vertices u, v ∈ V , the distance δ∗(u, v) between them in the spanner is related to their actual
distance δ(u, v) as :

δ∗(u, v) ≤ α · δ(u, v) + β

It can be seen that a (2k−1)-spanner defined earlier is indeed a (2k−1, 0)-spanner. In an (α, β)-spanner
a single edge may be stretched by as much as α + β. However the stretch of a long path would be pretty
close to α. It is desirable to have smaller multiplicative stretch α at the cost of increased additive stretch
β. Now we shall show that a (2k − 1)-spanner of an unweighted graph computed by our new algorithm
described above is indeed a ( 3

2k, k − 1)-spanner. We provide the proof for the case when k is odd.
However, similar proof can be easily provided for the case when k is even.

First we state the following lemma that follows immediately from ‘cluster-cluster joining’ phase of
the new algorithm.

Lemma 4.4 Let G = (V,E) be a given unweighted graphs and (V,ES) be a (2k − 1)-spanner as
computed by the new algorithm. If (x, y) is an edge, and both x and y belong to clusters c, c ′ ∈ Cb k

2
c,

then there is a path of length at most k in the spanner between the centers of the clusters c and c ′.

We introduce a notation at this point. For a vertex x ∈ V , c(x) is the vertex x itself if x does not
appear in the clustering Cb k

2
c, otherwise c(x) is the center of the cluster containing x in this clustering.

In the latter case, there is a path from x to c(x) of length at most b k
2c.

Lemma 4.5 Let (u, v) be an edge in a given unweighted graph G = (V,E), and (V,ES) be a (2k − 1)-
spanner computed by the new algorithm. There is a path between c(u) and c(v) in the spanner (V,ES)

with length at most k − 2 + b k
2 c.
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Proof: If neither u nor v belong to the clustering Cb k
2
c and so c(u) = u, c(v) = v, then it must be that

the edge (u, v) got eliminated in some iteration i < b k
2 c of the first phase. So it follows from Lemma

3.1 that there is a path of length at most k − 2 between c(u) and c(v) in the spanner. If u as well as v

belong to some (same or different) clusters in Cb k
2
c, then Lemma 4.4 implies that there is a path of length

at most k in the spanner that connects c(u) and c(v).
If v belongs to the clustering Cb k

2
c while u does not belong (or vice versa), then there is a path from

c(u) (same as vertex u) to c(v) of length k − 2 + b k
2 c in the spanner : moving from u to v requires at

most k − 2 steps using Lemma 3.1, and moving from v to c(v) requires at most b k
2c steps. 2

Let u = v0, v1, · · · , vl = v be the shortest path Πuv between u and v in the original graph. Consider
the sequence 〈c(v0), c(v1), · · · , c(vl)〉. It follows from Lemma 4.5 that there is a path between c(u) and
c(v) in the spanner with length (k − 2 + b k

2 c)l < 3
2kl. Moreover, moving from u to c(u) (likewise

moving from c(v) to v) requires at most b k
2c steps in the spanner. Hence, there is a path from u to v in

the spanner of length at most 3
2kl + k − 1. In other words, the spanner is a ( 3

2k, k − 1)-spanner. The size
of the spanner is also O(n1+1/k + kn) instead of O(kn1+1/k) (refer to the remark stated after the proof
of Lemma 4.1).

Theorem 4.4 An undirected unweighted graph G = (V,E) can be processed in expected linear time to
compute a ( 3

2k, k − 1)-spanner of size O(n1+1/k + kn) for any integer k > 1.

Using a couple of new ideas on top of our algorithm, Baswana et al. [16] designed an expected
O(km) time algorithm that computes a (k, k−1)-spanner of size O(kn1+1/k) for any unweighted graph.
Earlier, Elkin and Peleg [25] had shown that, with higher running time of O(m

√
n), it is possible to

compute a (k − 1, 2k)-spanner of size O(kn1+1/k) for any unweighted graph.

5 Efficient implementation of the algorithm in other computational envi-
ronments

The unique aspect of our algorithm is its extremely local approach. At any step, processing of a vertex
merely involves processing of the edges incident on it, that is, in the immediate neighborhood of the
vertex. The reader may note that the earlier algorithms of Awerbuch et al. [10] and Cohen [22] involve
processing of edges up to level at least k from a vertex, and thus are not local in the true sense. Exploiting
the local approach, we design near optimal versions of our algorithm in distributed, external memory,
and parallel computational environments.

Recall that since the graph is undirected, an edge between a vertex u and a vertex v appears twice in
the adjacency list representation : once in the adjacency list of u, and once in the adjacency lists of v. In
each algorithm of this section, we shall treat the two instances of the edge u− v, like two different edges
: as edge (u, v) while processing the vertex u, and as edge (v, u) while processing the vertex v.

5.1 Implementation in Distributed model

We consider the well known synchronous distributed model of computation. We briefly describe this
model as follows. The model consists of a network of nodes and links with some underlying graph
G = (V,E) as follows. Each node corresponds to a unique vertex in V (and vice versa), and any two
nodes in the network are connected by a link if their corresponding vertices have an edge between them
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in the set E. Each node has its own local memory and a processor. In this model, the computation takes
place in synchronous rounds, where each round involves passing of messages (some data) along links
followed by local computation at each node. There are three measures of complexity of any algorithm
in this distributed model : number of rounds (time), total number of messages passed along edges
(communication complexity), and maximum length of any message passed during the algorithm. Note
that the computation performed locally at a node in each round is for free, and not considered as a
measure of complexity.

The problem of computing a (2k − 1)-spanner in synchronous distributed model can be described as
follows :

Each link in the distributed network has some positive length (weight) associated with it. The aim is
to select O(kn1+1/k) edges (links) ensuring a stretch of (2k − 1) for any missing link.

We shall now show that our sequential algorithm in RAM model can be adapted in the distributed
environment to compute a (2k − 1)-spanner in O(k2) rounds and O(km) communication complexity.
The expected size of the spanner computed will be O(kn1+1/k). Below we present a distributed version
of the ith iteration of phase 1 of our sequential algorithm, and show that it will be executed in O(i)

rounds with O(m) messages passed.
As a local information each node stores the weight of each of its links. In addition, each node also

maintains information about the respective clusters to which it and each of its neighbors belong as the
algorithm proceeds. This information is updated through message passing along the links after each
iteration.

Distributed algorithm :
The ith iteration begins with the clustering Ci−1. The four basic tasks of the ith iteration for computing
(2k − 1)-spanner can be performed in the distributed network as follows.

1. Forming a sample of clusters : Center of each cluster c ∈ Ci−1 declares c to be sampled inde-
pendently with probability n−1/k. The center passes this information to those of its neighbors that
belong to cluster c. On receiving such message, these neighbors in turn pass the message to their
neighbors belonging to cluster c. Since the cluster radius is at most (i − 1), it will take (i − 1)

rounds till each vertex determines whether or not it belongs to a sampled cluster. Also note that
the total number of messages passed is O(m).

2. Finding nearest neighboring sampled clusters for vertices : Each vertex of a sampled cluster now
declares to each of its neighbors that it is now a member of a sampled cluster. Following this, each
vertex computes its nearest neighboring sampled cluster.

3. Adding edges to the spanner : With the information about its neighbors obtained in step 2 and the
local information already present, each vertex selects the edges to be added to the spanner, joins
appropriate cluster in the clustering Ci if needed, and discards unnecessary edges in a way similar
to the sequential RAM algorithm.

4. Removing intra-cluster edges : Every two neighboring nodes exchange the information about their
new cluster in Ci, and discard the link if they belong to same cluster.

It follows that ith iteration gets executed in O(i) rounds and total messages passed in these rounds is
O(m). Hence the total number of rounds for the algorithm is O(k2) and total number of messages
communicated is O(km). Also note that each message is of size O(log n). The spanner computed will
have expected O(kn1+1/k) edges.
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Theorem 5.1 For any weighted undirected graph, a (2k − 1)-spanner of expected size O(kn1+1/k)

can be computed in synchronous distributed environment in O(k2) rounds and O(km) communication
complexity. Moreover, the length of each message communicated is O(log n).

5.2 Implementation in external memory

We shall use the external memory model defined by Aggarwal and Vitter [1]. An algorithm for a problem
is typically designed with the assumption that the entire data of the problem would reside in the internal
memory (RAM). The external memory model is motivated by those applications whose data is too large
to be stored completely in the internal memory. In such applications, most of the data resides on the
external memory (disk), and only a small portion of it is kept in the internal memory at a time. External
memory is slower than internal memory by a factor of 106 or even more. Whenever data to be processed is
not present in the internal memory, it has to be fetched from the external memory. The data is transferred
in units of blocks, where a single block can store B words, for some B > 1. Let internal memory has a
capacity of storing µ > 1 blocks. Block size B, and memory size µ are two parameters of an external
memory model. One input/output operation (or simply an I/O) would transfer B contiguous words
between external memory and internal memory. Executing an algorithm on a huge size application would
require a large number of I/O operations. Since each I/O operation is a very time costly operation so
that the total time spent in these I/O turns out to be the main bottleneck in the running time of the
algorithm. Therefore, the measure of complexity of an algorithm in external memory is the number of
I/Os it performs instead of the amount of computation performed in the internal memory. The objective
of an efficient external memory algorithm is to minimize the total number of I/O operations during the
computation of the solution of some problem. We refer the reader to [28] for an excellent tutorial on
external memory algorithms.

Let us consider the task of computing a (2k − 1)-spanner in external memory. Let a block can store
O(B) vertices or edges. If we naively implement our sequential RAM algorithm in external memory, a
single iteration would perform θ(|E|) I/O operations (one I/O for each edge processed). We shall now
show that with the set of edges E ′ arranged in some suitable order in the external memory, an iteration
of our algorithm would cost O(|E ′|/B) I/O operations.

Given two clustering C, C ′ on a set of vertices V ′, we define an order �(C,C′) on the set of vertices V ′

and associated edges E ′ as follows.

• a vertex u would precede vertex v in the order �(C,C′) if
fC(u) < fC(v) or fC(u) = fC(v) and fC′(u) < fC′(v)

• an edge (u, v) would precede another edge (x, y) in the order �(C,C′) if
fC(u) < fC(x) or fC(u) = fC(x) and fC′(v) < fC′(y)

If fC(u) = fC(v) and fC′(u) = fC′(v), it won’t matter which of u and v would appear before another
in the order �(C,C′). Similarly, if fC(u) = fC(x) and fC′(v) = fC′(y), then it won’t matter which of the
two edges (u, v) and (x, y) would appear first in the order �(C,C′). We now state the following Lemma
which would highlight the importance of arranging edges according to some order �(C,C′).

Lemma 5.1 If the list of edges E ′ is arranged according to the order �(C,C′), then for any two clusters
c ∈ C, c′ ∈ C′,
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(i) the set of edges {(u, v)|u ∈ c}, i.e. the edges emanating from the cluster c appear as a sublist, say
Lc.
(ii) the set of edges E ′(c, c′) appear as a sublist within the sublist Lc.

Data structure :

• The vertices V ′ are kept in a list. For each vertex u ∈ V ′, we store the following additional
variables.
fC(u) : the center of the cluster in clustering C containing u.
sampled(u) : a boolean variable which is true during an iteration if u belongs to sampled cluster.

• The data structure for each edge (u, v) has two additional variables : l-center storing fC(u) and
r-center storing fC(v).

External memory algorithm :
The four basic tasks of the ith iteration for computing (2k − 1)-spanner can be performed in external
memory as follows.

1. Forming a sample of clusters :

We arrange V ′ and E′ according to the order �(Ci−1,C0). Consequently, the vertices belonging to
same cluster in Ci−1 appear together in V ′. Scanning the two lists V ′ and E′ simultaneously, we do
the following. We pick each cluster for the sample independently with probability n−1/k, setting
the variable sampled for the vertices accordingly, and compute the list E ′

R of edges incident on
vertices of unsampled clusters from sampled clusters.

2. Finding nearest neighboring sampled clusters for vertices :

We arrange E ′
R according to the order �(C0,C0). As a result, the edges incident on a vertex from all

neighboring sampled clusters appear contiguous. We perform a linear scan on this list and among
all edges incident on a vertex, we keep only the least weight edge and eliminate all the remaining
edges from E ′

R.

3. Adding edges to the spanner :

• Add E′
R to the spanner.

• We arrange the edges E ′ according to the order �(C0,Ci−1) so that all the edges incident on
a vertex from same cluster in the clustering Ci−1 appear contiguous. Selecting the span-
ner edges (and their deletion from set E ′), merely requires a simultaneous scan of the lists
V ′, E′

R, E′.

Now, to define the clustering Ci, we perform a simultaneous scan on V ′ and E′
R after arranging

them according to �(C0,C0). We keep only those vertices u ∈ V ′ which have either sampled(u) =

true or some edge, say (u, v) ∈ E ′
R. So each vertex which is neither a member of some sampled

cluster nor adjacent to any sampled cluster gets deleted from V ′. For an edge (u, v) ∈ E ′
R, we

need to set fC(u) = fC(v) so as to indicate that u is assigned to the cluster containing v in Ci. This
can be done by another simultaneous scan of E ′

R and V ′. The vertices in the final list V′ along
with their variable fC constitute the clustering Ci for the (i + 1)th iteration.

For each edge (u, v) left in the set E ′, we also need to set its variables l-center and r-center to
fCi(u) and fCi(v) respectively. A simultaneous scan of V ′ and E′ arranged according to �C0,C0
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will suffice to set the variable l-center of each edge. Now rearranging E′ so that the two instances
of an edge (for example (u, v) and (v, u)) appear together, we can set the variable r-center of each
edge by another scan of list E ′.

4. Removing intra-cluster edges :

We scan the list of edges E ′ and delete every edge if its l-center is same as its r-center.

Remark. While processing a vertex, say u, if we delete an edge (u, v) from the graph, then for
consistency we need to delete the edge (v, u) also from the adjacency list of v. In case of RAM model, we
could perform this task in constant time by using augmented adjacency list where the nodes associated
with the edges (u, v) and (v, u) had pointers to each others. But this would be a costly operation in
external memory since a pointer could lead to a block not present in internal memory. This problem can
be overcome as follows. While processing the adjacency list of vertex, say u, if we decide to delete an
edge say (u, v), we do not delete the edge right away. Instead we mark each such edge that has to be
deleted. After 3rd and 4th steps in the iteration, we arrange (sort) the list E ′ so that the edges with same
endpoints appear together in the list. Now, we perform a scan on this list and delete each pair of edges
(u, v) and (v, u) if any of them is marked for deletion.

Lemma 5.2 Each iteration of the algorithm for computing (2k−1)-spanner can be executed in external
memory in O( |E|

B logµ
|E|
B ) I/O-operations.

Proof: It follows from the description of the algorithm given above that the ith iteration arranges V ′

and E′ according to the orders �(C0,Ci−1) , �(C0,C0) , �(Ci−1,C0) followed by a scan that is performed in
I/O-optimal way. Now it is easy to observe that arranging E ′ or V ′ according to any of these orders
requires integer sort (in fact radix sort) on the labels of the endpoints (and/or l-center and r-center) of
the edges, thus has a running time of O(|E ′|) in RAM model. However in external memory, integer
sorting has same lower-bound and upper-bound for the running time as that of generic sorting problem,
which is O( |E

′|
B logµ

|E′|
B ). Thus we conclude that each iteration of our algorithm can be performed in

O( |E
′|

B logµ
|E′|
B ) I/O-operations. 2

Hence we can state the following theorem.

Theorem 5.2 Given a weighted graph G = (V,E), and an integer k > 1, there exists an exter-
nal memory algorithm for computing a (2k − 1)-spanner of size O(kn1+1/k) that requires expected
O(k |E|

B logµ
|E|
B ) I/O-operations.

5.3 Implementation in parallel environment

The model of computation used by our parallel algorithm is arbitrary CRCW PRAM. This model sup-
ports concurrent read as well as concurrent write operations into any memory location by multiple pro-
cessors. In case of simultaneous write operations by two or more processors into a memory location, any
of them will succeed. The reader may refer to [33] for a tutorial on parallel algorithms.

We first outline three simple problems whose parallel algorithms will be used in our parallel algo-
rithm for computing spanners.

• Hashing : A perfect hash function for a (multi)set X of m integers is an injective function
h : X → {1, . . . , s}, where s = O(m), that can be stored in O(m) space and evaluated in
constant time by a single processor.
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Lemma 5.3 (Bast and Hagerup [12]) There is a constant ε > 0 such that for all m, τ ∈ N with
τ ≥ log∗ m, simple hashing (or multiset hashing) problem of size m can be solved in CRCW
PRAM model using O(τ) time, dm/τe processors, and O(m) time with probability at least 1 −
2−(log m)τ/ log∗ m − 2−mε

(Las Vegas).

• Semisorting : Given m integers x1, . . . , xm in the range 1..m, arrange them in an array of size
O(m) such that for each i ∈ {1, . . . ,m}, all elements of the set {j : 1 ≤ j ≤ m and xj = i}
appear together, separated only by empty cells.

Lemma 5.4 (Bast and Hagerup [13]) There is a constant ε > 0 such that for all given m, τ ∈ N
with τ ≥ log∗ m, a semisorting problem of size m can be solved in O(τ) time using dm/τe
processors and O(m) space with probability at least 1 − 2−mε

(Las Vegas).

• Generalized find min : Given sets S1, S2, . . . , Sk of real numbers such that
∑k

i+1 |Si| = m,
compute the minimum element of Si for all i.

Employing various results from [13], we present a work optimal parallel algorithm that solves
generalized find-min problem in O(log∗ m) time with high probability. More precisely,

Theorem 5.3 There is a constant ε′ > 0 such that for all given τ,m ∈ N with τ ≥ log∗ m, the
generalized find-min problem of size m can be solved on a CRCW PRAM using O(τ) time, dm/τe
processors, and O(m) space with probability at least 1 − 2−mε′

(Las Vegas).

See Appendix for the proof of Theorem 5.3 and the associated algorithm.

Resources (space and processors) : Let τ be any given positive integer with τ ≥ log∗ m. We have
m/τ processors. Let A be an array storing all the edges. Just like the earlier algorithms in this paper, we
shall treat the two instances of an edge (u, v) as two different edges.

Parallel algorithm :
We essentially have to design a parallel algorithm for executing the ith iteration of the first phase

of our sequential algorithm (since the execution of the second phase would be identical). The ith it-
eration executes four tasks. The first task that requires sampling of clusters and the fourth task which
requires removing intra-cluster edges can be accomplished deterministically in just constant time with
m processors, and in O(τ) time using dm/τe processors. It is mainly the third task of ith iteration that
is nontrivial, and we now give a sketch of its efficient implementation in CRCW PRAM. We rearrange
the edges E ′ within array A in such a way that all the sets E ′(v, c), v ∈ V ′, c ∈ Ci−1 appear as non-
overlapping subarrays within A. Recall that similar rearrangement was also carried out in the external
memory algorithm (subsection 5.2). To achieve such a rearrangement of edges efficiently in parallel,
we proceed as follows. Each edge (u, v) ∈ E ′ is assigned a label (u, fCi−1

(v)) in the beginning of ith
iteration. The desired rearrangement can be achieved by semisorting the edges E ′ according to these
labels. However, the range of these labels could be 1..θ(n2), which could be much larger than the range
1..O(|E|) necessary for carrying out semisorting (see Lemma 5.4). We overcome this problem through
multiset hashing. We compute a hash function (using Lemma 5.3) that maps the labels of the edges
E′ to integers in the range 1..O(|E ′|), and then we semisort the edges with these new labels. With the
edges E′ rearranged as mentioned above, the computation of min(E ′(v, c)) for all v ∈ V, c ∈ Ci−1 is
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an instance of the generalized find-min problem which can be solved in O(τ) time with high probability
(see Theorem 5.3). The rearrangement of edges also ensures that the other subtasks like computing the
next level clustering Ci, selecting edges to spanner, and discarding dispensable edges from E ′ can be
done in a straightforward way in just O(τ) time using dm/τe processors. Hence the third task can also
be accomplished in O(τ) time using dm/τe processors with high probability. The second task requir-
ing computation of nearest sampled neighbor for each vertex can also be accomplished by employing
algorithms of semisorting and generalized find-min like in the case of the third task.

Theorem 5.4 There is a constant ε > 0 such that given a weighted graph on n vertices and m edges,
an integer k, and τ ≥ (log∗ n), a (2k − 1)-spanner of expected O(kn1+1/k) size can be computed in
CRCW PRAM model using O(kτ) time, O(m) space, and O(m/τ) processors with probability at least
1 − 2−mε

(Las Vegas).

6 Conclusion

We described an expected O(km) time algorithm for computing a (2k − 1)-spanner of size O(kn1+1/k)

for any undirected weighted graph. The size is optimal up to a factor of k given the validity of Erdős’s
girth conjecture. Recently Roditty et al. [34] derandomized our algorithm while preserving O(km)

running time.
The running time of our algorithm as well as the size of the spanner computed are away from their

respective worst case lower bounds by a factor of k. For any constant value of k, both these parameters
are optimal. However, in the worst case, that is for k = log n, there is deviation by a factor of log n. Is
it possible to get rid of this multiplicative factor of k from the running time of the algorithm and/or the
size of the spanner computed ? It seems that a more careful analysis coupled with advanced probabilistic
tools might be useful in this direction.

For unweighted graphs, we showed that our (2k − 1)-spanner is indeed a ( 3
2k, k − 1)-spanner, i.e.,

a spanner with reduced multiplicative stretch below (2k − 1) at the expense of introducing an additive
stretch of k−1. Baswana et al. [16] extended this approach to design an expected O(km) time algorithm
that computes a (k, k − 1)-spanner of size O(kn1+1/k) for any unweighted graph.

The crucial feature of our algorithm is its truly local approach. As a result, our algorithm can be
adapted easily in external memory, distributed and parallel computation environment with almost optimal
running times. It appears that the local approach might be useful in efficient maintenance of spanners in
dynamic graphs as well. Recently Ausiello et al. [7] presented a deterministic dynamic algorithm for
maintaining spanners with stretch 3 and 5. They essentially dynamize our static algorithm and achieve
O(n) update time per edge insertion and deletion. There might be a scope of better update time if the
local approach is exploited carefully in conjunction with the randomization.
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Appendix

Proof of Theorem 5.3 :
First we state definitions and lemmas for a few problems which we shall use in our algorithm for gener-
alized find-min problem.

• Find-min

For the standard find-min problem, i.e, computing the minimum of a set of real numbers, the
following two lemmas are folklore.

Lemma 6.1 ([4, 33]) There is a constant ε > 0 such that for all given m, τ ∈ N, the minimum
of m real numbers can be computed on CRCW PRAM in O(τ) time using dm/τe processors with
probability at least 1 − 2−mε

(Las Vegas).

Let c0 be the constant such that the algorithm from Lemma 6.1, if run for c0τ steps would halt with
probability 1 − 2−(mε). Let find min-1 be such an algorithm that would run for at most c0τ steps,
and if it has not computed the minimum element by that time, it halts and reports the failure.

Lemma 6.2 For any constant δ > 0, the minimum of m real numbers can be computed determin-
istically on a CRCW PRAM in O(1) time using m1+δ processors.

Let find min-2 denote the deterministic algorithm from Lemma 6.2.

• Segmented broadcasting

Given m 0-1 numbers x1, . . . , xm, compute integers y1, . . . , ym such that yi = max({j : 1 ≤ j <

i ∧ xj = 1} ∪ {0}).
Berkman and Vishkin [17] and Ragade [32] showed that segmented broadcasting problem of size
m can be solved in O(τ) time using m/τ processors.
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• Fine-profiling

Let m,h ∈ N and let x1, . . . , xm be m integers in the range 0..h. For i = 1, ..., h, take bi = |{j :

1 ≤ j ≤ m and xj = i}|. An h-color fine-profile for x1, . . . , xm is a sequence b̂1, . . . , b̂h of h

nonnegative integers such that bi ≤ b̂i ≤ cbi, for i = 1, . . . , h and some constant c > 1. The
h-color fine profiling problem of size m is, given m and h, to compute an h-color fine-profile of
m given integers in the range 0..h.

Lemma 6.3 (Corollary 10.5 from Bast and Hagerup [13]) There is a constant ε > 0 such that
for given m, τ ∈ N with τ ≥ log∗ m, m-color fine profiling problems of size m can be solved
on CRCW PRAM using O(τ) time, dm/τe processors and O(m) space with probability at least
1 − 2−mε

(Las Vegas).

• Processor allocation

Definition 6.1 Given a set of consecutively numbered m processors, and let x1, ..., xj be the sizes
of requests for processors by j tasks, with

∑j
i=1 xi = m, processor allocation problem of size m

is to allocate m processors to the tasks (xi processors to ith task) on a CRCW PRAM.

Lemma 6.4 (Bast and Hagerup [13]) There is a constant ε > 0 such that for all given m, τ ∈ N
with τ ≥ log∗ m, processor allocation problem of size m can be solved on a CRCW PRAM using
O(τ) time, dm/τe processors and O(m) space with probability at least 1 − 2−mε

(Las Vegas).

• Computing sum

Lemma 6.5 (Corollary 2.5 from Bast and Hagerup [13]) For every fixed δ > 0 and for all given
integers m, τ ≥ 2, the sum of (log(m))O(1) integers, each of absolute size polynomial in m, can
be computed on a CRCW PRAM using O(τ) time, dmδ/τe processors and O(mδ) space.

We now use Lemmas 6.3 and 6.5 to solve the following subproblem.

Definition 6.2 Estimating the sum of squares of small numbers : For any m,h ∈ N with h =

(log m)O(1), let x1, . . . , xm be a given sequence of nonnegative integers in the range 0..h, compute
a number R such that

m
∑

i=1

x2
i ≤ R ≤ c

m
∑

i=1

x2
i

for some constant c > 1.

Let bi, 1 ≤ i ≤ h be the number of occurrences of number i in the sequence. In order to solve
the above problem, we first compute the estimates b̂i with bi ≤ b̂i ≤ cbi, which, being an instance of
fine-profiling problem mentioned above, would be solved in O(τ) time using dm/τe processors with
high probability (see Lemma 6.3). We then compute the sequence {b̂i i2}, followed by the sum R =
∑h

i=1 b̂i i2 in O(τ) time using Lemma 6.5. Hence we can state the following Lemma.

Lemma 6.6 There is a constant ε > 0 such that for all given m,h, τ ∈ N, with τ ≥ log∗ m,h =

(log m)O(1), the problem of “estimating sum of squares of small numbers” for a sequence of m integers
in the range 0..h can be solved on CRCW PRAM using O(τ) time, dm/τe processors and O(m) space
with probability at least 1 − 2−mε

(Las Vegas).
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For showing high probability bound on the running time of our algorithm, we shall use the following
Lemma which is implied by Azuma’s inequality [5].

Lemma 6.7 Let m ∈ N, let Z1, . . . , Zk be independent random variables with finite ranges, and let S

be an arbitrary real function of Z1, . . . , Zk with E(S) ≥ 0. If S changes by at most ∆ in response to an
arbitrary change in a single Zi, then

For every z ≥ 2E[S] , Pr[S ≥ z] ≤ e−z2/(8∆2k)

Before we present our algorithm, we would like to address a small implementation issue. We assume
that the sets Si are presented as non-overlapping subarrays in an array A of size O(m). Our algorithm
will need to execute some algorithm (find min-1 and find min-2) concurrently on each set. This would
require allocation of processors to the sets suitably. To achieve this, we partition A into equal sized
subarrays and associate ith subarray to ith processor. In case a set spans over many subarrays, each of
the its processors has to know the boundaries of the set in A. For this, we first compute the boundaries
between different sets in the array A, and then solve an instance of “segmented broadcasting” problem in
order to let each processor know the boundaries of the set it will work upon. The entire task will require
O(τ) time using dm/τe processors for any τ ≥ 1.

Algorithm for generalized find-min problem :
We shall use the following notation and terminology. A set Si, 1 ≤ i ≤ k is an active set until we

have computed its minimum element, after which it becomes inactive. In this terminology, all the sets
are active initially. Let |Si| = mi.

We first present the main idea underlying the algorithm. A naive approach to solve generalized
find-min problem would be to employ find min-1 algorithm for each set concurrently. The objection
against this approach is the following. Probability that find min-1 fails for a set could be θ(1) if the
set is of small size. So if there are many small sets, and we keep on repeating find min-1 for each
active set concurrently, it would require θ(log m) repetitions till all sets become inactive, which is much
larger than our aim of O(log∗ m) running time. We also can’t use directly the find min-2 algorithm
for generalized find-min since the number of processors required would be much larger than n if there
are large size sets. To achieve O(log∗ m) time for generalized find-min problem, our algorithm runs in
two phases and employs both find min-1 and find min-2. In the first phase, we execute the algorithm
find min-1 for each set concurrently for a certain number of rounds. This would make most of the sets
(of large size especially) inactive, and hence the processors initially allocated to these sets can be used
by other active sets for executing find min-2 algorithm. The second phase executes find min-2 algorithm
for each remaining active set. Note that an active set Si would demand θ(m2

i ) processors so as to employ
find min-2 algorithm. So we keep on repeating the rounds of find min-1 algorithm in phase 1 until the
total processor demand (for second phase) of all active sets reduces to O(m), and then execute the second
phase.

We now describe the algorithm formally as follows. (In the algorithm, c is the constant from Defini-
tion 6.2, τ ≥ log∗ m, and a and c′ are constants to be fixed later on).

1. (a) Run the algorithm find min-1 for each set Si concurrently until every set, whose size is at
least (log m)a/ε, becomes inactive.

(b) Let I be the set of indices of active sets. Using the algorithm from Lemma 6.6, compute an
estimate R such that

∑

i∈I m2
i ≤ R ≤ c

∑

i∈I m2
i .
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While R > c′m do
Execute the algorithm find min-1 for each active set.
Recompute R.

2. Allocate m/τ processors such that each active set Si receives θ(m2
i /τ) processors. Now run the

algorithm find min-2 for each set separately to compute its minimum element in deterministic
O(τ) time (Lemma 6.2).

Analysis : We shall first show that after a single concurrent execution of find min-1 on each active
set, the total processor demand

∑

i∈I m2
i of the remaining active sets is O(m) with high probability.

(Throughout the analysis, for sake of conciseness, we would say that an event happens with high proba-
bility if it happens with probability at least 1 − 2−mε

, for some ε > 0).
Given sets S1, ..., Sk,

∑

i mi = m, suppose we execute find min-1 algorithm once for each of these
sets concurrently. Let Xi be a random variable which is one if set Si remains active after the execution
of find min-1 on Si, and zero otherwise. Note that each of Xi’s are independent (this fact will be used
later on). The expected processor demand of remaining active sets can be bounded as follows.

E

[

∑

i∈I

m2
i

]

= E

[

k
∑

i=1

Xi.m
2
i

]

=
k

∑

i=1

Pr[Xi = 1] · m2
i

=
k

∑

i=1

2−mε
i m2

i {using definition of find min-1 after Lemma 6.1 }

≤
k

∑

i=1

c′′ { for some constant c′′ depending upon ε }

≤ c′′k ≤ c′′m

So the expected processor demand of the active sets after a single concurrent run of find min-1 would be
O(m). Choosing c′ = 2cc′′ in the second step of the algorithm, it follows using Markov’s inequality that
the expected number of iterations of ‘While’ loop performed in step 1(b) is O(1). We shall now show,
using the method of bounded difference (Lemma 6.7), that the number of iterations is at most 1 with very
high probability as follows (the crucial points used are the small sizes of active sets in step 1(b) and the
independence of the random variables Xi, 1 ≤ i ≤ k).

Note that each active set in step 1(b) is of size at most (log m)a/ε. As mentioned above, the total
processor demand of the active sets left after a round of find min-1 is a function of independent random
variables Xi, and a change in Xi would change the demand by ∆ = ∆(m, ε) = m2

i ≤ (log m)2a/ε.
It also follows from the discussion above that the expected processor demand of the existing active sets
after each iteration of ‘While’ loop in step 1(b) is bounded by c′′m. Hence applying Lemma 6.7, it
follows that the processor demand of the remaining active sets is more than 2c ′′m after an iteration of
the ‘While’ loop with probability at most

e−θ(m2)/(8∆2k) = e−θ(m)

Thus the step 1(b) of the algorithm will execute at most one iteration of the ‘While’ loop with high
probability.

We can now bound the running time of the entire algorithm quite easily. Choosing an appropriately
large value of the constant a, it follows from definition of find min-1 (following Lemma 6.1) that step
1(a) would run in O(τ) time using dm/τe processors with high probability. Let us now analyze the step
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1(b). In addition to a concurrent run of find min-1 which takes O(τ) time, each iteration of ‘While’ loop
involves computation of R, which would take O(τ) time using Lemma 6.6 with high probability. From
the discussion above, the number of iterations of the ‘While’ loop is constant with high probability. So
the step 1(b) would be executed in O(τ) time with high probability. The second step involves processor
allocation task which can be executed in O(τ) time with high probability using Lemma 6.4. Another
task in the second step is the concurrent execution of algorithm find min-2 on each active set which will
take deterministic O(τ) time using m/τ processors (see Lemma 6.2). Hence the second step would also
run in O(τ) time with high probability. We can thus conclude that the algorithm for generalized find-min
would run in O(τ) time using dm/τe processors with high probability, that is, with probability at least

1 − 2−mε′

for some ε′ > 0. This concludes the proof of Theorem 5.3.
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