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Abstract. We present a model that enables us to analyze the running time of an algorithm on a
computer with a memory hierarchy with limited associativity, in terms of various cache parameters.
Our cache model, an extension of Aggarwal and Vitter’s I/O model, enables us to establish useful
relationships between the cache complexity and the I/O complexity of computations. As a corollary,
we obtain cache-efficient algorithms in the single-level cache model for fundamental problems like
sorting, FFT, and an important subclass of permutations. We also analyze the average-case cache
behavior of mergesort, show that ignoring associativity concerns could lead to inferior performance,
and present supporting experimental evidence.

We further extend our model to multiple levels of cache with limited associativity and present
optimal algorithms for matrix transpose and sorting. Our techniques may be used for systematic
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exploitation of the memory hierarchy starting from the algorithm design stage, and for dealing with
the hitherto unresolved problem of limited associativity.

Categories and Subject Descriptors: F1.1 [Computation by Abstract Devices]: Models of Compu-
tation; F.2 [Analysis of Algorithms and Problem Complexity]

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Hierarchical memory, I/O complexity, lower bound

1. Introduction

Models of computation are essential for abstracting the complexity of real machines
and enabling the design and analysis of algorithms. The widely used RAM model
owes its longevity and usefulness to its simplicity and robustness. Although it is far
removed from the complexities of any physical computing device, it successfully
predicts the relative performance of algorithms based on an abstract notion of
operation counts.

The RAM model assumes a flat memory address space with unit-cost access
to any memory location. With the increasing use of caches in modern machines,
this assumption grows less justifiable. On modern computers, the running time of
a program is often as much a function of operation count as of its cache reference
pattern. A result of this growing divergence between model and reality is that op-
eration count alone is not always a true predictor of the running time of a program,
and manifests itself in anomalies such as a matrix multiplication algorithm demon-
stratingO(n5) running time instead of the expectedO(n3) behavior [Alpern et al.
1994]. Such shortcomings of the RAM model motivate us to seek an alternative
model that more realistically models the presence of a memory hierarchy. In this
article, we address the issue of better and systematic utilization of caches starting
from the algorithm design stage.

A challenge in coming up with a good model is achieving a balance between ab-
straction and fidelity, so as not to make the model unwieldy for theoretical analysis
or simplistic to the point of lack of predictiveness. The memory hierarchy models
used by computer architects to design caches have numerous parameters and suffer
from the first shortcoming [Agarwal et al. 1989; Przybylski 1990]. The early the-
oretical work in this area focused on a two-level memory model [Hong and Kung
1981]—a very large capacity memory with slow access time (external memory)
and a limited size faster memory (internal memory)—in which all computation is
performed on elements in the internal memory and where there is no restriction on
placement of elements in the internal memory (a fully associative mapping and a
user-defined replacement policy).

The focus of this article is on the interaction between main memory andcache,
which is the first level of memory hierarchy that is searched for data once the
address is provided by the CPU. A single level of cache memory is characterized
by three structural parameters—Associativity,Block size, andCapacity1—and one
functional parameter: the cachereplacement policy. Capacity and block size are in
units of the minimum memory access size (usually one byte). A cache can hold a
maximum ofC bytes. However, due to physical constraints, the cache is divided

1 This characterization is referred to as the ABC model of caches in the computer architecture
community.
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into cache framesof sizeB that containB contiguous bytes of memory—called a
memory block. The associativityAspecifies the number of different frames in which
a memory block can reside. If a block can reside in any frame (i.e.,A=C/B), the
cache is said to befully associative; if A = 1, the cache is said to bedirect-mapped;
otherwise, the cache isA-way set associative.

For an access to a given memory addressm, the hardware inspects the cache
to determine if the data at memory addressm is resident in the cache. This
is accomplished by using an indexing function to locate the appropriate set of
cache frames that may contain the memory block enclosing addressm. If the
memory block is not resident, acache missis said to occur. From an architectural
standpoint, misses in a target cache can be partitioned into one of three classes [Hill
and Smith 1989].

—A compulsory miss(also called acold miss) is one that is caused by referencing
a previously unreferenced memory block.

—A reference that is not a compulsory miss but misses both in the target cache
and in a fully associative cache of equal capacity and with LRU replacement is
classified as acapacity miss. Capacity misses are caused by referencing more
memory blocks than can fit in the cache.

—A reference that is not a compulsory miss and hits in a fully associative cache
of equal capacity and with LRU replacement but misses in the target cache is
classified as aconflict miss. Such a miss occurs because of the restriction in the
address mapping and not because of lack of space in the cache.

Conflict misses pose an additional challenge in designing efficient algorithms
for cache. This class of misses is not present in the I/O model developed for the
memory-disk interface [Aggarwal and Vitter 1988], where the mapping between
internal and external memory is fully associative and the replacement policy is
not fixed and predetermined.

Existing memory hierarchy models [Aggarwal and Vitter 1988; Aggarwal et al.
1987a, 1987b; Alpern et al. 1994] do not model certain salient features of caches,
notably the lack of full associativity in address mapping and the lack of explicit
control over data movement and replacement. Unfortunately, these small differences
are malign in the effect.2 They introduceconflict missesthat make analysis of
algorithms much more difficult [Fricker et al. 1995]. Carter and Gatlin [1998]
conclude a recent paper saying

What is needed next is a study of “messy details” not modeled by UMH (particularly
cache associativity) that are important to the performance of the remaining steps of
the FFT algorithm.

In this article, we develop a two-level memory hierarchy model to capture the
interaction between cache and main memory. Our model is a simple extension of
the two-level I/O model that Aggarwal and Vitter [1988] proposed for analyzing
external memory algorithms. However, it captures several additional constraints of
caches, namely, lower miss penalties, lack of full associativity, and lack of explicit
program control over data movement and cache replacement. The work in this

2 See the discussion in Carter and Gatlin [1998] on a simple matrix transpose program.
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article shows that the constraint imposed by limited associativity can be tackled
quite elegantly, allowing us to extend the results of the I/O model to the cache model
very efficiently.

Most modern architectures have a memory hierarchy consisting of multiple cache
levels. In the second half of this article, we extend the two-level cache model to a
multilevel cache model.

The remainder of this article is organized as follows. Section 2 surveys related
work. Section 3 defines our cache model and establishes an efficient emulation
scheme between the I/O model and our cache model. As direct corollaries of the
emulation scheme, we obtain cache-optimal algorithms for several fundamental
problems such as sorting, FFT, and an important class of permutations. Section 4
illustrates the importance of the emulation scheme by demonstrating that a direct
(i.e., bypassing the emulation) implementation of an I/O-optimal sorting algorithm
(multiway mergesort) is both provably and empirically inferior, even in the average
case, in the cache model. Section 5 describes a natural extension of our model
to multiple levels of caches. We present an algorithm for transposing a matrix
in the multilevel cache model that attains optimal performance in the presence
of any number of levels of cache memory. Our algorithm is not cache-oblivious,
that is, we do make explicit use of the sizes of the cache at various levels. Next,
we show that with some simple modifications, the funnel-sort algorithm of Frigo
et al. [1999] attains optimal performance in a single level (direct-mapped) cache in
an oblivious sense, that is, no knowledge of memory parameters is required. Finally,
Section 6 presents conclusions, possible refinements to the model, and directions for
future work.

2. Related Work

The I/O model (discussed in greater detail in Section 3) assumes that most of the
data resides on disk and has to be transferred to main memory to do any processing.
Because of the tremendous difference in speeds, it ignores the cost of internal
processing and counts only the number of I/O operations. Floyd [1972] originally
defined a formal model and proved tight bounds on the number of I/O operations
required to transpose a matrix using two pages of internal memory. Hong and
Kung [1981] extended this model and studied the I/O complexity of FFT when the
internal memory size is bounded byM . Aggarwal and Vitter [1988] further refined
the model by incorporating an additional parameterB, the number of (contiguous)
elements transferred in a single I/O operation. They gave upper and lower bounds on
the number of I/Os for several fundamental problems including sorting, selection,
matrix transposition, and FFT. Following their work, researchers have designed
I/O-optimal algorithms for fundamental problems in graph theory [Chiang et al.
1995] and computational geometry [Goodrich et al. 1993].

Researchers have also modeled multiple levels of memory hierarchy. Aggarwal
et al. [1987a] defined theHierarchical Memory Model(HMM) that assigns a func-
tion f (x) to accessing locationx in the memory, wheref is a monotonically
increasing function. This can be regarded as a continuous analog of the multi-
level hierarchy. Aggarwal et al. [1987b] added the capability of block transfer to
the HMM, which enabled them to obtain faster algorithms. Alpern et al. [1994]
described theUniform Memory Hierarchy(UMH) model, where the access costs
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differ in discrete steps. Very recently, Frigo et al. [1999] presented an alternate
strategy of algorithm design on these models, which has the added advantage that
explicit values of parameters related to different levels of the memory hierarchy
are not required. Bilardi and Peserico [2001] investigate further the complexity
of designing algorithms without the knowledge of architectural parameters. How-
ever, these models do not address the problem of limited associativity in cache.
Other attempts were directed towards extracting better performance by parallel
memory hierarchies [Aggarwal and Vitter 1988; Vitter and Nodine 1993; Vitter
and Shriver 1994; Cormen et al. 1999], where several blocks could be transferred
simultaneously.

Ladner et al. [1999] describe a stochastic model for performance analysis in
cache. Our work is different in nature, as we follow a more traditional worst-case
analysis. Our analysis of sorting in Section 4 provides a better theoretical basis for
some of the experimental work of LaMarca and Ladner [1997].

To the best of our knowledge, the only other paper that addresses the problem
of limited associativity in cache is recent work of Mehlhorn and Sanders [2000].
They show that for a class of algorithms based on merging multiple sequences,
the I/O algorithms can be made nearly optimal by use of a simple randomized
shift technique. Our Theorems 3.1 and 3.3 not only provide a deterministic solu-
tion for the same class of algorithms, but also work for more general situations.
The results in [Sanders 1999] are nevertheless interesting from the perspective of
implementation.

3. The Cache Model

The (two-level) I/O model of Aggarwal and Vitter [1988] captures the interaction
between a slow (secondary) memory of infinite capacity and a fast (primary) mem-
ory of limited capacity. It is characterized by two parameters:M , the capacity of
the fast memory; andB, the size of data transfers between slow and fast memories.
Such data movement operations are calledI/O operationsor block transfers. As is
traditional in classical algorithm analysis, the input problem size is denoted byN.
The use of the model is meaningful whenNÀM .

The I/O model contains the following further assumptions.

(1) A datum can be used in a computation if and only if it is present in fast memory.
All initial data and final results reside in slow memory. I/O operations transfer
data between slow and fast memory (in either direction).

(2) Since the latency for accessing slow memory is very high, the average cost of
transfer per element can be reduced by transferring a block ofB elements at
little additional cost. This may not be as useful as it may seem at first sight, since
theseB elements are not arbitrary, but are contiguous in memory. The onus is on
the programmer to use all the elements, as traditional RAM algorithms are not
necessarily designed for such restricted memory access patterns. We denote the
map from a memory address to its block address byB.3 The internal memory
can hold at least three blocks, that is,M >3 · B.

3 The notion ofblock addresscorresponds to the notion oftrack in the I/O model [Aggarwal and
Vitter 1988, Definition 3.2]. The different nomenclature reflects the terminology in common use in
the underlying hardware technologies, namely, cache memory and disk.
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(3) The computation cost is ignored in comparison to the cost of an I/O operation.
This is justified by the high access latency of slow memory. However, clas-
sical algorithm analysis can be used to provide a measure of computational
complexity.

(4) A block of data from slow memory can be placed in any block of fast memory
(i.e., the user controls replacement policy).

(5) I/O operations are explicit in the algorithm.

The goal of algorithm design in this model is to minimizeT , the number of I/O
operations.

We adopt much of the framework of the I/O model in developing a cache model
to capture the interactions between cache and main memory. In our case, the cache
assumes the role of the fast memory, while main memory assumes the role of the
slow memory. Assumptions (1) and (2) of the I/O model continue to hold in our
cache model. However, assumptions (3)–(5) are no longer valid and need to be
replaced as follows.

—Lower Cache Latency. The difference between the access times of slow and
fast memory is considerably smaller than in the I/O model, namely a factor of
5–100 rather than factor of 10000.We use an additional parameter L to denote
the normalized cache latency.This cost function assigns a cost of 1 for accessing
an element in cache and a cost ofL for accessing an element in main memory.
In this way, we also account for computation cost in the cache model. We can
consider the I/O model as the limiting case of the cache model asL →∞.

—Limited Cache Associativity. Main memory blocks are mapped into cache sets
using afixedand predetermined mapping function that is implemented in hard-
ware. Typically, this is a modulo mapping based on the low-order address bits.
(The results of this section hold for a larger class of address mapping functions
that distribute the memory blocks evenly to the cache frames, although we do not
attempt to characterize these functions here.) We denote this mapping from main
memory blocks to cache sets byS. We occasionally slightly abuse this notation
and applyS directly to a memory addressx rather than toB(x). We use an addi-
tional parameter A in the model to represent this limited cache associativity, as
discussed in Section 1.

—Cache Replacement Policy. The replacement policy of cache sets is fixed and
predetermined.We assume an LRU replacement policy when necessary.

—Lack of Explicit Program Control over Cache Operation. The cache is not
directly visible to the programmer.4 When a program accesses a memory location
x, an image(copy) of the main memory blockb = B(x) that contains location
x is brought into the cache setS(b) if it is not already present there. The block
b continues to reside in cache until it is evicted by some other blockb′ that
is mapped to the same cache set (i.e.,S(b) = S(b′)). In other words,a cache

4 Some modern processors, such as the IBM PowerPC, include cache-control instructions in their
instruction set, allowing a program to prefetch blocks into cache, flush blocks from cache, and specify
the replacement victim for the next access to a cache set. We leave such operations out of the scope
of our cache model for two reasons: first, they are often privileged-mode instructions that user-level
code cannot use; and second, they are oftenhintsto the memory system that may be abandoned under
certain conditions, such as a TLB miss.
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set contains the most recently referenced A distinct memory blocks that map
to it.

We use the notationC(M, B, L , A) to denote our four-parameter cache model.
The goal of algorithm design in this model is to minimizerunning time, defined as
the number of cache accesses plusL times the number of main memory accesses.
We usen andm to denoteN/B andM/B, respectively.

The usual performance metric in the I/O model isT , the number of accesses
to slow memory, while the performance metric in the cache model is aI + L · T ,
whereI is the number of accesses to fast memory. Since our intention is to relate
the two models, we use one notational device to unify the two performance metrics.
We redefine the performance metric in the I/O model to also beI + L ·T . Note that
this is equivalent to the Aggarwal–Vitter I/O model [Aggarwal and Vitter 1988]
under the conditionL → ∞. It is clear that an optimal algorithm in the original
metric of the I/O model remains optimal under the modified metric. In summary,
we shall use the notationI(M, B, L) to denote the I/O model with parametersM ,
B, andL.

The assumptions of our cache model parallel those of the I/O model, except as
noted above.5 The differences between the two models listed above would appear to
frustrate any efforts to naively map an I/O algorithm to the cache model, given that
we neither have the control nor the flexibility of the I/O model. Indeed, executing
an algorithmA designed forI(M, B, L) unmodified inC(M, B, L , A) does not
guarantee preservation of the original I/O complexity, even whenA=M/B (a
fully associative cache), because of the fixed LRU replacement policy of the cache
model. Going the other way, however, is straightforward:

Remark1. Any algorithm in C(M, B, L , A) can be run unmodified in
I(M, B, L) without loss of efficiency.

In going from the I/O model to the cache model, we emulate the behavior of
the I/O algorithm by maintaining a memory buffer that is the size of the cache.
All computation is done out of this buffer, and I/O operations move data in and
out of this buffer. However, since the copying implicit in an I/O operation goes
through the cache, we need to ensure that an emulated I/O operation does not result
in cache thrashing. To guarantee this property, we may need to copy data through
an intermediate block. We now establish a bound on the cost of a block copy in the
cache model.

LEMMA 3.1. One memory block can be copied to another memory block in no
more than3L + 2B steps inC(M, B, L , A).

PROOF. Let a andb denote the two memory blocks. IfS(a) 6= S(b), then a
copy of a to b costs no more than 2L + B steps:L steps to bring blocka into
cache,L steps to bring blockb into cache, andB steps to copy data between the
two cache-resident blocks. IfS(a)= S(b) and A> 1, then again the copy costs no
more than 2L + B steps. IfS(a)= S(b) and A= 1, this naive method of copying
will lead to thrashingand will result in a copy cost of 2BL steps. However, we can

5 Frigo et al. [1999] independently arrive at a very similar parameterization of their model, except that
their default model assumes full associativity.
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avoid this situation by using a third memory blockc such thatS(a) 6= S(c). A copy
from a to b is accomplished by a copy froma to c followed by a copy fromc to b,
with cost at most 2L + B for the first copy andL + B for the second. Thus, in all
cases, 3L + 2B steps suffice to copy memory blocka into memory blockb.

Remark2. We henceforth use the termbounded copyto refer the block copying
technique described in the proof of Lemma 3.1.

Remark3. As a matter of practical interest, a possible alternative to using
intermediate memory-resident buffers to avoid thrashing is to use machine registers,
since register access is much faster. In particular, if we haveB registers, then we
can bring down the cost of bounded-copying to 2L + 2B in the problematic case
of Lemma 3.1.

The idea of bounded copy presented above leads to a simple and generic emu-
lation scheme that establishes a connection between the I/O model and the cache
model. We first present the emulation scheme for direct-mapped caches (A = 1) in
Section 3.1, and then extend it to the general set-associative case in Section 3.2.

3.1 EMULATING I/O ALGORITHMS: THE DIRECT-MAPPEDCASE

THEOREM3.1 (EMULATION THEOREM). An algorithmA in I(M, B, L) using
T block transfers and I processing steps can be converted to an equivalent algorithm
Ac in C(M, B, L , 1) that runs in O(I + (L+B) ·T) steps. The memory requirement
ofAc is an additional m+ 2 blocks beyond that ofA.

PROOF. As indicated above, the cache algorithmAc will emulate the behavior
of the I/O algorithmA using an additional main memory bufferBufof size M
that serves as a “proxy” for main memory in the I/O model. More precisely,Buf
must consist ofm blocks that map to distinct cache sets. This property can always
be satisfied under the assumptions of the model. In the common case whereS is a
modulo mapping, it suffices to haveBuf consist ofM contiguous memory locations
starting at a memory address that is a multiple ofM . Without loss of generality, we
assume this scenario in the proof, as it simplifies notation considerably. The proof
consists of two parts: the definition of the emulation scheme, and the accounting
of costs in the cache model to establish the desired complexity bounds.

In the cache model, letMem[i ] (with 06 i < n) denote theB-element block
consisting of memory addressx such thatB(x) = i , and letBuf[ j ] (with 06 j <m)
denote theB-element block consisting of memory addressesy such thatS(y) = j .6

Partition the I/O algorithmA into T rounds, where roundi is defined to consist
of thei th block transfer and any computation performed between block transfersi
andi + 1 (define program termination to be the (T + 1)st block transfer). Then the
cache algorithmAc will consist ofT stages, defined as follows:

—If round i of A transfers disk blockbi to/from main memory blockai , then stage
i of Ac will bounded-copythe B elements ofMem[bi ] to/from Buf[ai ].

—If the computation in roundi of A accesses a main memory blockci , then stage
i of Ac will accessBuf[ci ] and perform the same computation.

6 AlthoughBuf is a memory-resident data structure, that is,∀ j : ∃k : Buf[ j ] = Mem[k], we use the
different indexing schemes to emphasize the special role thatBuf plays in the emulation scheme.
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Assuming thatAc is actually a valid algorithm in the cache model, it is clear that
its final outcome is the same as that ofA. In order forAc to be a valid algorithm in
the cache model, it is sufficient to maintain the invariant thatBuf is cache-resident
when the computations are performed. Only thebounded-copyoperations can alter
the cache residency ofBuf. A single bounded copy can evict at most two blocks of
Buf from the cache (the block mapping to the same set as the main memory block
being copied, and the block mapping to the same set as the intermediate block used
in the bounded copy), allowing the restoration of the desired invariant at cost 2L.

Lemma 3.1 bounds the cost of the bounded copy at stagei ofAc to 3L+2B steps.
The internal processing costIi of stagei of Ac is identical to that of roundi of A.
Thus, the total cost ofAc is at most

∑T
i=1(Ii +3L+2B+2L) = I +5L ·T+2B ·T .

Having two intermediate buffers mapping to distinct cache sets suffices for all
cases of bounded copy. The additional memory requirement ofAc is thereforeBuf
and these two blocks, establishing the space bound.

The basic idea of copying data into contiguous memory locations to reduce
interference misses has been exploited before in some specific contexts like matrix
multiplication [Lam et al. 1991] and bit-reversal permutation [Carter and Gatlin
1998]. theorem 3.1 unifies these previous results within a common framework.

The termO(B · T) is subsumed byO(I ) if computation is done on at least a
constant fraction of the elements in the block transferred by the I/O algorithm.
This is usually the case for efficient I/O algorithms. We call such I/O algorithms
block-efficient.

COROLLARY 3.2. A block-efficient I/O algorithm forI(M, B, L) that uses T
block transfers and I processing steps can be emulated inC(M, B, L , 1) in O(I +
L · T) steps.

Remark4. The algorithms for sorting, FFT, matrix transposition, and matrix
multiplication described in Aggarwal and Vitter [1988] are block-efficient.

3.2. EXTENSION TOSET-ASSOCIATIVECACHE. The emulation technique of the
previous section would extend to the set-associative scenario easily if we had explicit
control over replacement policy. This not being the case, we shall tackle it indirectly
by making use of an useful property of LRU that Frigo et al. [1988] exploited in
the context of designing cache-oblivious algorithms for a fully associative cache.

LEMMA 3.2 ([SLEATOR AND TARJAN 1985]). For any sequence s, FLRU, the
number of misses incurred by LRU with cache size nLRU is no more than
( nLRU

nLRU− nOPT+ 1 ·FOPT), where FOPT is the minimimum number of misses by an optimal
replacement strategy with cache size nOPT.

We use this lemma in the following way. We run the emulation technique for
only half the cache size, that is, we choose the buffer to be of total sizem/2, such
that for theA cache frames in a set, we have onlyA/2 buffer blocks. We can think
of the buffer to be a set ofA/2 arrays each having size equal to the number of
cache sets.

We follow the same strategy as before—namely, we copy the blocks into the
buffer corresponding to the block accesses of the I/O algorithm and perform com-
putations on elements within the buffer. However, we cannot guarantee that the
contents of a given cache set are in 1-1 correspondence with the corresponding
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buffer blocks because of the (LRU) replacement policy in the cache. That is, some
frame may be evicted from the cache that we do not intend to replace in the buffer.
Since it is difficult to keep track of the contents of any given cache set explicitly,
we analyze the above scenario in the following manner. Let the sequence of block
accesses to theA/2 buffer blocks (to a given cache set) beσ = {σ1, σ2, . . . , σt}.
Between these accesses there are computation steps involving blocks present in
the buffer (but not necessarily in the cache set). In other words, there is a memory
reference sequenceσ ′ such thatσ ⊂ σ ′ is the set ofmissesfrom the A/2 buffer
blocks withexplicit replacement. We want to bound the number of misses from the
correspondingA cache frames for the same sequenceσ ′ under LRU replacement.

From Lemma 3.2, we know that the number of misses in each each cache set
is no more than twice the optimal, which is in turn bounded by the number of
misses incurred by the I/O algorithm, namely|σ |. Since any memory reference
while copying to the buffer may cause an unwanted eviction from some cache set,
we restore it by an extra read operation (as in the case of the proof of Theorem 3.1).

THEOREM3.3 (GENERALIZED EMULATION THEOREM). Any given algorithm
A in I(M/2, B, L) using T block transfers and I processing steps can be converted
to an equivalent algorithmAc in C(M, B, L , A) that runs in O(I + (L + B) · T)
steps. The memory requirement ofAc is an additional m/2+ 2 blocks beyond that
ofA.

3.3. THE CACHE COMPLEXITY OF SORTING AND OTHER PROBLEMS. We use
the following lower bound for sorting and FFT in the I/O model.

LEMMA 3.3 ([AGGARWAL AND VITTER 1988]). The average-case and worst-
case number of I/Os required for sorting N records and for computing the N-input
FFT digraph is

2

(
N

B

log(1+ N/B)

log(1+ M/B)

)
.7

THEOREM 3.4. The lower bound for sorting inC(M, B, L , 1) is

Ä

(
N log N + L · N

B
· log(1+ N/B)

log(1+ M/B)

)
.

PROOF. The Aggarwal–Vitter lower bound is information-theoretic and is
therefore independent of the replacement policy in the I/O model. The lower
bound on the number of block transfers inI(M, B, L) therefore carries over to
C(M, B, L , 1). The lower bound in the cache model is the greater of theÄ(N log N)
lower bound on number of comparisons andL times the bound in Lemma 3.3, lead-
ing to the indicated complexity using the identity max{a, b}> (a+ b)/2.

THEOREM 3.5. N numbers can be sorted in O(N log N + L · N
B · log(1+N/B)

log(1+M/B) )
steps inC(M, B, L , 1), and this is optimal.

7 We are settingP = 1 in the original statement of the theorem.
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PROOF. TheM/B-way mergesort algorithm described in Aggarwal and Vitter
[1988] has an I/O complexity ofO( N

B
log(1+N/B)
log(1+M/B) ).

8 The processing time involves
maintaining a heap of sizeM/B and isO(log M/B) per output element. ForN ele-
ments, the number of phases islog N

log M/B , so the total processing time isO(N log N).
From Corollary 3.2, and Remark 4, the cost of this algorithm in the cache model is
O(N log N + L · N

B · log(1+N/B)
log(1+M/B) ). Optimality follows from Theorem 3.4.

We can prove a similar result for FFT computations.

THEOREM 3.6. The FFT of N numbers can be computed in O(N log N + L ·
N log(1+N/B)
B log(1+M/B) ) steps inC(M, B, L , 1).

Remark5. The FFTW algorithm [Frigo and Johnson 1998] is optimal only for
B = 1. Barve (R. Barve, private communication) has independently obtained a
similar result.

The class of Bit Matrix Multiply Complement (BMMC) permutations include
many important permutations like matrix transposition and bit reversal. A BMMC
permutation is defined asy = Ax X-OR c wherey andx are binary representions
of the source and destination addresses,c is a binary vector, and the computations
are performed overGF(2). Combining the work of Cormen et al. [1999] with our
emulation scheme, we obtain the following result.

THEOREM 3.7. The class of BMMC permutations for N elements can be
achieved in2(N + L · N

B
logr

log(M/B) ) steps inC(M, B, L , 1). Here r is the rank of
submatrix Alog B·· log N−1,0·· log B, that is, r6 log B.

Remark6. Many known geometric algorithms [Chiang et al. 1995] and graph
algorithms [Goodrich et al. 1993] in the I/O model, such as convex hull and graph
connectivity, can be transformed optimally into the cache model.

4. The Utility of the Emulation Theorem

Although the proof of Theorem 3.1 supplies a simple emulation scheme that is
both universal and bounds-preserving, one can question its utility. In other words,
one can ask the question: “How large a performance degradation might one expect
if one were to run an I/O-optimal algorithm unmodified in the cache model?” In
this section, we analyze the performance of the I/O-optimalk-way mergesort in
the cache model and show that the result of bypassing of the emulation scheme is
a cache algorithm that is asymptotically worse than the algorithm resulting from
Theorem 3.1. Since it is easy to construct a worst-case input permutation where
every access to an input element will result in a miss in the cache model (a cyclic
distribution suffices), we use average-case analysis and demonstrate the result even
for this measure of algorithmic complexity. Section 4.1 derives this result, while
Section 4.2 provides experimental evidence on the validity of these results for a
real machine.

8 The M/B-way distribution sort (multiway quicksort) also has the same upper bound.
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3.1. AVERAGE-CASE PERFORMANCE OFMULTIWAY MERGESORT IN THECACHE
MODEL. Of the three classes of misses described in Section 1, we note that com-
pulsory misses are unavoidable and that capacity misses are minimized while de-
signing algorithms for the I/O model. We are therefore interested in bounding the
number of conflict misses for a straightforward implementation of the I/O-optimal
k-way mergesort algorithm.

We assume thats cache sets are available for the leading blocks of thek runs
S1, . . . , Sk. In other words, we ignore the misses caused by heap operations (or
equivalently ensure that the heap area in the cache does not overlap with the runs).

We create a random instance of the input as follows: Consider the sequence
{1, . . . , N}, and distribute the elements of this sequence to runs by traversing the
sequence in increasing order and assigning elementi to runSj with probability 1/k.
From the nature of our construction, each runSi is sorted. We denotej th element
of Si asSi, j . The expected number of elements in any runSi is N/k.

During thek-way merge, the leading blocks are critical in the sense that the
heap is built on theleading elementof every sequenceSi . The leading element
of a sequence is the smallest element that has not been added to the merged (out-
put) sequence. Theleading blockis the cache line containing the leading element.
Let bi denote the leading block of runSi . Conflict can occur when the leading
blocks of different sequences are mapped to the same cache set. In particular, a
conflict missoccurs for elementSi, j+1 when there is at least one elementx ∈ bk,
for somek 6= i , such thatSi, j < x < Si, j+1 andS(bi ) = S(bk). (We do not
count conflict misses for the first element in the leading block, that is,Si, j and
Si, j+1 must belong to the same block, but we will not be very strict about this in
our calculations.)

Let pi denote the probability of conflict for elementi ∈ [1, N]. Using indicator
random variablesXi to count the conflict miss for elementi , the total number of
conflict missesX =∑i Xi . It follows that the expected number of conflict misses
E[X] =∑i E[Xi ] =

∑
i pi . In the remaining section, we try to estimate a lower

bound onpi for i large enough to validate the following assumption.

A1. The cache sets of the leading blocks,S(bi ), are randomly distributed in cache
sets 1, . . . , s independent of the other sorted runs. Moreover, the exact position of the
leading element within the leading block is also uniformly distributed in positions
{1, . . . , sB}.
Remark7. A recent variation of the mergesort algorithm (see Barve et al.

[1997]) actually satisfies assumption A1 by its very nature. So, the present analysis
is directly applicable to its average-case performance in cache. A similar observa-
tion was made independently by Sanders [1999] who obtained upper-bounds for
mergesort for a set associative cache.

From our previous discussion and the definition of a conflict miss, we would like
to compute the probability of the following event.

E1. For somei, j , for all elementsx, such thatSi, j < x < Si, j+1, S(x) 6= S(Si, j ).

In other words, none of the leading blocks of the sorted sequencesSj , j 6= i ,
conflicts withbi . The probability of the complement of this event (i.e., Pr[E1]) is
the probability that we want to estimate. We compute an upper bound on Pr[E1],
under Assumption A1, thus deriving a lower bound on Pr[E1].
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LEMMA 4.1. For k/s> ε, Pr[E1] < 1−δ, whereε andδ are positive constants
(dependent only on s and k but not on n or B).

PROOF. See Appendix A.

Thus, we can state the main result of this section as follows:

THEOREM 4.1. The expected number of conflict misses in a random input for
doing a k-way merge in an s-set direct-mapped cache, where k isÄ(s), isÄ(N),
where N is the total number of elements in all the k sequences. Therefore, the
(ordinary I/O-optimal) M/B-way mergesort in an M/B-set cache will exhibit
O(N log N/B

log M/B ) cache misses, which is asymptotically larger than the optimal value

of O( N
B

log N/B
log M/B ).

PROOF. The probability of conflict misses isÄ(1) whenk isÄ(s). Therefore,
the expected total number of conflict misses isÄ(N) for N elements. The I/O-
optimal mergesort usesM/B-way merging at each of thelog N/B

log M/B levels, hence the
second part of the theorem follows.

Remark8. Intuitively, by choosingk ¿ s, we can minimize the probability
of conflict misses at the cost of an increased number of merge phases (and hence
reduce running time). This underlines the critical role of conflict missesvis-a-vis
capacity misses that forces us to use only a small fraction of the available cache.
Recently, Sanders [1999] has shown that by choosingk to beO( M

B1+1/a ) in ana-way
set associative cache with a modified version of mergesort of Barve et al. [1997],
the expected number of conflict misses per phase can be bounded byO(N/B).

In comparison, the use of the emulation theorem guarantees minimal worst-case
conflict misses while making good use of cache.

3.2. EXPERIMENTAL RESULTS. The experiment described in this section per-
tains to the average-case behavior of the Aggarwal–Vitterk-way mergesort for a
large problem of fixed size ask is varied, to present experimental evidence support-
ing Theorem 4.1. We present both the trend in conflict misses (as calculated by a
cache simulator) and the trend in execution time (as measured on a real machine).

The experiment was performed on a single processor of an unloaded dual-
processor Sun workstation, with 300 MHz UltraSPARC-II CPUs and a direct-
mapped L1 data cache with 16 KB capacity and a block size of 32 bytes. The
code for thek-way mergesort was written in C, and was compiled with the SUN-
Wspro optimizing compiler with the-fast optimization flag. The problem size is
4.75× 107 integer elements, and the input array is populated with a random per-
mutation. The mergesort initially merges sorted runs of four elements, which are
created using bubblesort. The merge degree is varied from 2 to 3446. Thecprof
cache simulator [Lebeck and Wood 1994] was used for cache simulation.

For the above values of problem parameters, the number of merge phases de-
creases as the merge degreek crosses certain thresholds, as shown in Table I. The
threshold values should be kept in mind in interpreting the remaining data.

Figure 1 shows the number of conflict misses in the mergesort as a function of
merge degree around the threshold points of Table I. It is seen that the number of
conflict misses increases dramatically as the merge degree is increased. Figure 2
shows the actual execution times of the mergesort as a function of merge degree.
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TABLE I. NUMBER OFMERGEPHASES AS AFUNCTION OF

MERGEDEGREEk, FOR4.75× 107 ELEMENTS AND

FOUR-ELEMENT INITIAL SORTEDRUNS

Number of merge phases Values ofk
6 16–25
5 26–58
4 59–228
3 229–3446
2 3447–11874999

FIG. 1. Conflict misses as function of merge degree, for 4.75×107 elements and four-element initial
sorted runs. Misses are shown at those values of merge degree where the number of merge phases
change. Note how conflict misses increase even as the number of merge phases decrease.

It demonstrates that execution time does increase significantly as merge degree
is increased, and that the best execution time occurs at a relatively small value
of k.

5. The Multi-Level Model

Most modern architectures have a memory hierarchy consisting of multiple cache
levels. Consider two cache levelsL1 andL2 preceding main memory, withL1 being
faster and smaller. The operation of the memory hierarchy in this case is as follows:
The memory location being referenced is first looked up inL1. If it is not present in
L1, then it is searched for inL2 (these can be overlapped with appropriate hardware
support). If the item is not present inL1 but it is inL2, then it is brought intoL1.
In case that it is not inL2, then a cache line is brought intoL2 and intoL1. The
size of cache line brought intoL2 (denoted byB2) is usually larger than the one
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FIG. 2. Execution time as function of merge degree, for 4.75×107 elements and four-element initial
sorted runs.

brought intoL1 (denoted byB1). The expectation is that the more frequently used
items will remain in the faster cache.

The multilevel cache model is an extension to multiple cache levels of the pre-
viously introduced cache model. LetLi denote thei th level of cache memory. The
parameters involved here are the problem sizeN, the size ofLi which is denoted by
Mi , the frame size (unit of data transfer) ofLi denoted byBi , and the latency factor
l i . If a data item is present in theLi , then it is present inL j for all j > i (sometimes
referred to as theinclusion property). If it is not present inLi , then the cost for a
miss isl i plus the cost of fetching it fromLi+1 (if it is present inLi+1, then this
cost is zero). For convenience, the latency factorl i is the ratio of time taken on a
miss from thei th level to the amount of time taken for a unit operation. Unless
mentioned otherwise, we assume that all levels are direct-mapped.

The trivial lower bound for matrix transposition of anN × N matrix in the
multilevel cache hierarchy is clearly the time to scanN2 elements, namely,

Ä

(∑
i

N2

Bi
l i

)
,

where

Bi is the number of elements in one cache line inLi cache
Li is the number of cache lines inLi cache, which isMi /Bi
l i is the latency factor forLi cache.

This is the time to scanN2 data items. Figure 3 shows the memory mapping
for a two-level cache architecture. The shaded part of main memory is of sizeB1
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FIG. 3. Memory mapping in a two-level cache hierarchy.

and therefore it occupies only a part of a line of theL2 cache which is of size
B2. There is a natural generalization of the memory mapping to multiple levels
of cache.

We make the following assumptions in this section that are consistent with
the existing architectures. We useLi to denote the number of cache frames in
Li (= Mi /Bi ).

(A1) For all i , Bi , Li are powers of 2
(A2) 2Bi 6 Bi+1 and the number of cache linesLi ≤ Li+1.
(A3) Bk ≤ L1 and 4Bk ≤ B1L1 (i.e., B1>4) whereLk is the largest and slowest

cache. This implies that

Li · Bi > Bk · Bi . (1)

This will be useful for the analysis of the algorithms and are sometimes termed
astall cachein reference to the aspect ratio.

5.1. MATRIX TRANSPOSE. In this section, we provide an approach for trans-
posing a matrix in a multilevel cache model. Our algorithm uses a more general
form of the emulation theorem to get the submatrices to fit into cache in a regular
fashion. The work in this section shows that it is possible to handle the constraints
imposed by limited associativity even in a multilevel cache model.
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We subdivide the matrix intoBk×Bk submatrices. Thus, we getdn/Bke×dn/Bke
submatrices from ann× n submatrix.

A =



a1 a2 . . . . . . an

an+1 an+2 . . . . . . a2n

...
...

...
...

...
...

...
...

...
...

an2−n+1 . . . . . . . . . an2


=

 A1 A2 . . . An/B

...
...

...
...

An2−nB/B . . . . . . An2/B2

 .

Note that the submatrices in the last row and column need not be square as one
side may have≤Bk rows or columns.

Let m= dn/Bke; then

AT =



AT
1 AT

m+1 . . . . . . AT
m2−m+1

AT
2 AT

m+2 . . . . . . AT
2m

...
...

...
...

...

...
...

...
...

...

AT
m . . . . . . . . . AT

m2


.

For simplicity, we describe the algorithm as transposing a square matrixA in
another matrixB, that is,B = AT . The main procedure isRec Trans(A, B, s),
where A is transposed intoB by dividing A (B) into s2 submatrices and then
recursively transposing the submatrices. LetAi, j (Bi, j ) denote the submatrices for
16 i, j 6 s. ThenB = AT can be computed asRec Trans(Ai, j , Bj,i , s′) for all i, j
and some appropriates′, which depends onBk andBk−1. In general, iftk, tk−1 · · · t1
denote the values ofs′ at the 1, 2 · · · level of recursion, thenti = Bi+1/Bi . If the
submatrices areB1 × B1 (base case), then perform the transpose exchange of the
symmetric submatrices directly. We perform matrix transpose as follows, which is
similar to the familiar recursive transpose algorithm:

(1) Subdivide the matrix as shown intoBk × Bk submatrices.
(2) Move the symmetric submatrices to contiguous memory locations.
(3) Rec Trans(Ai, j , Bj,i , Bk/Bk−1).
(4) Write back theBk × Bk submatrices to original locations.

In the following sections, we analyze the data movement of this algorithm to
bound the number of cache misses at various levels.

5.2. MOVING A SUBMATRIX TO CONTIGUOUSLOCATIONS. To move a subma-
trix, we move it cache line by cache line. By choice of size of submatrices (Bk× Bk),
each row will be an array of sizeBk, but the rows themselves may be far apart.

LEMMA 5.1. If two cache lines x, y of size Bk are aligned inLk cache map to
the same cache lines inLi cache for some1≤ i ≤ k, then x and y map to the same
lines in eachL j cache for all1≤ j ≤ i .
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PROOF. If x andy map to the same cache lines inLi cache then theiri th level
memory block numbers (to be denoted bybi (x) andbi (y)) differ by a multiple ofLi .
Letbi (x)−bi (y) = αLi . SinceL j |Li (both are powers of two),bi (x)−bi (y) = βL j
whereβ = α · Li /L j . Let x′, y′ be thecorrespondingsubblocks ofx andy at the
j th level. Then their block numbersbj (x′), bj (y′) differ by Bi /Bj · β · L j , that is,
a multiple ofL j as Bj |Bi . Note that blocks are aligned across different levels of
cache. Therefore,x andy also collide inL j .

COROLLARY 5.1. If two blocks of size Bk that are aligned inLk Cache do not
conflict in level i, they do not conflict in any level j for all i≤ j ≤ k.

THEOREM 5.2. There is an algorithm that moves a set of blocks of size Bk
(where there are k levels of cache with block size Bi for each1 ≤ i ≤ k) into a
contiguous area in main memory in

O

(∑ N

Bi
l i

)
,

where N is the total data moved and li is the cost of a cache miss for the i th level
of cache.

PROOF. Let the set of blocks of sizeBk be I (we are assuming that the blocks
are aligned). Let the target block in the contiguous area for each blocki ∈ I be in
the corresponding setJ where each blockj ∈ J is also aligned with a cache line
in Lk cache.

Let blocka map toRb,a, b = {1, 2, . . . , k} whereRb,a denote the set of cache
lines in theLb cache. (Sincea is of sizeBk, it will occupy several blocks in lower
levels of cache).

Let the i th block map to lineRk,i of theLk cache. Let the target blockj map
to line Rk, j . In the worst case,Rk, j is equal toRk,i . Thus, in this case, the line
Rk,i has to be moved to a temporary block sayx (mapped toRk,x) and then moved
back toRk, j . We choosex such thatR1,x and R1,i do not conflict and alsoR1,x
and R1, j do not conflict. Such a choice ofx is always possible because our tem-
porary storage areaX of size 4Bk has at least four lines ofLk cache (i and j
will take up two blocks ofLk cache thus leaving at least one block free to be
used as temporary storage). Recall that we had assumed that 4Bk ≤ B1L1. That
is, by dividing theL1 cache intoB1L1/Bk zones, there is always a zone free
for x.

For convenience of analysis, we maintain theinvariant that X is always inLk
cache. By application of the previous corollary on our choice ofx (such thatR1,i 6=
R1,x 6= R1, j ) we also haveRa,i 6= Ra,x 6= Ra, j for all 1 ≤ a ≤ k. Thus, we
can movei to x and x to j without any conflict misses. The number of cache
misses involved is three for each level: one for gettingi th block, one for writing
the j th block, and one for maintaining the invariant since we have to touch the line
displaced byi . Thus, we get a factor of 3.

Thus, the cost of this process is

3

(∑ N

Bi
l i

)
,

whereN is the amount of data moved.
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For blocksI that are not aligned inLk cache, the constant would increase to 4
since we would need to bring up to two cache lines for eachi ∈ I . The rest of the
proof would remain the same.

COROLLARY 5.3. A Bk×Bk submatrix can be moved into contiguous locations
in the memory in O(

∑i=k
i=1

Bk
2

Bi
l i ) time in a computer that has k levels of (direct-

mapped) cache.

This follows from the preceding discussion. We allocate memoryC of size
Bk × Bk for placing the submatrix and memory,X of size 4Bk for temporary
storage and keep both these areas distinct.

Remark9

(1) If we have set associativity (≥2) in all levels of cache, then we do not need an
intermediate bufferx as linei and j can both reside in cache simultaneously
and movement from one to the other will not cause thrashing. Thus, the constant
will come down to two. Since, at any point in time, we will only be dealing with
two cache lines and will not need the linesi or j once we have read or written
to them the replacement policy of the cache does not affect our algorithm.

(2) If the number of registers is greater than the size of the cache line (Bk) of the
outermost cache level (Lk) then we can move data without worrying about
collision by copying from linei to registers and then from registers to linej .
Thus, even in this, the constant will come down to two.

Once we have the submatrices in contiguous locations, we perform the transpose
as follows:

For each of the submatrices, we divide theBr × Br submatrix (sayS) in levelLr
(for 2≤ r ≤ k) further intoBr−1× Br−1 size submatrices as before. EachBr−1×
Br−1 size subsubmatrix fits intoLr−1 cache completely (sinceBr−1 · Br−16Br−1 ·
Bk6 Br−1 · Lr−1 from Eq. (1)). LetBr /Br−1 = kr .

Thus, we have the sub matrices as S1,1 S1,2 . . . S1,kr

...
...

...
...

Skr ,1 . . . . . . Skr ,kr

 .
So we perform matrix transpose of eachSi, j in place without incurring any misses

as it resides completely inside the cache. Once we have transposed eachSi, j , we
exchangeSi, j with Sj,i . We show thatSi, j andSj,i cannot conflict inLr−1 cache
for i 6= j .

The rows ofSi, j andSj,i correspond to (iBr−1+a1) kr + j and (jBr−1+a2) kr + i
Br−1 sized blocks wherea1,a2 ∈ {1, 2. . . . Br−1} and

Br

Br−1
= kr .

If these conflict inLr−1, then

(iBr−1+ a1) kr + j ≡ ( jBr−1+ a2) kr + i (modLr−1).
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FIG. 4. Positions of symmetric submatrices in Cache.

SinceBr−1 = 2u andBr = 2v andLr−1 = 2w (all powers of two),

kr = 2v−u.

Therefore,kr dividesLr−1 (becausekr = Br /Br−1 < Br ≤ Lr−1). Hence,

j ≡ i (modkr ).

.
Sincei, j ≤ kr , the above implies

i = j .

Note thatSi,i ’s do not have to be exchanged. Thus, we have shown that aBr × Br
matrix can be divided intoBr−1 × Br−1, which completely fits intoLr−1 cache.
Moreover, the symmetric submatrices do not interfere with each other. The same
argument can be extended to anyBj × Bj submatrix for j < r . Applying this
recursively, we end up dividing theBk × Bk size matrix inLk cache toB1 × B1
sized submatrices inL1 cache that can then be transposed and exchanged easily.
From the preceding discussion, the corresponding submatrices do not interfere in
any level of the cache (see Figure 4).

Note. Even though we keep subdividing the matrix at every cache level recursively and claim
that we then have the submatrices in cache and can take the transpose and exchange them, the actual
movement, that is, transpose and exchange happens only at theL1 cache level where the submatrices
are of sizeB1 × B1.

The time taken by this operation is∑ N2

Bi
l i .

This is because eachSi, j andSj,i pair (such thati 6= j ) has to be brought into
Lr−1 cache only once for transposing and exchanging ofB1 × B1 submatrices.
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Similarly, at any level of cache, a block from the matrix is brought in only once.
The sequence of the recursive calls ensures that cache-line is used completely as
we move from submatrix to submatrix.

Lastly, we move the transposed symmetric sub matrices of sizeBk × Bk to their
location in memory, that is, reverse the process of bringing in blocks of sizeBk
from random locations to a contiguous block. This procedure is exactly the same
as in Theorem 5.2 in the previous section that has the constant 3.

Remark10

(1) The above constant of 3 for writing back the matrix to an appropriate location
depends on the assumption that we can keep the two symmetric submatrices
of sizeBk × Bk in contiguous locations at the same time. This would allow us
to exchange the matrices during the write back stage. If we are restricted to a
contiguous temporary space of sizeBk × Bk only, then we will have to move
the data twice, incurring the cost twice.

(2) Even though, in the above analysis, we have always assumed a square matrix of
sizeN×N the algorithm works correctly without any change for transposing a
matrix of sizeM × N if we are transposing a matrixA and storing it inB. This
is because the same analysis of subdividing into submatrices of sizeBk × Bk
and transposing still holds. However, if we want to transpose aM × N matrix
in place, then the algorithm fails because the location to write back to would
not be obvious and the approach used here would fail.

THEOREM 5.4. The algorithm for matrix transpose runs in

O

(
i=k∑
i=1

N2

Bi
l i

)
+ O(N2)

steps in a computer that has k levels of direct-mapped cache memory.

If we have temporary storage space of size 2Bk × Bk + 4Bk and assume block
alignment of all submatrices, then the constant is 7. This includes 3 for initial
movement to contiguous location, 1 for transposing the symmetric submatrices of
sizeBk×Bk and 3 for writing back the transposed submatrix to its original location.
Note that the constant is independent of the number of levels of cache.

Even if we have set associativity (≥2) in any level of cache the analysis goes
through as before (though the constants will come down for data copying to con-
tiguous locations). For the transposing and exchange of symmetric submatrices, the
set associativity will not come into play because we need a line only once in the
cache and are using only two lines at a given time. So either LRU or even FIFO
replacement policy would only evict a line that we have already finished using.

5.3. SORTING IN MULTIPLE LEVELS. We first consider a restriction of the model
described above where data cannot be transferred simultaneously across noncon-
secutive cache levels. We useCi to denote

∑ j=i
j=1 M j .

THEOREM 5.5. The lower bound for sorting in the restricted multilevel cache
model isÄ(N log N +∑k

i=1 `i · N
Bi

log N/Bi

logCi /Bi
).

PROOF. The proof of Aggarwal and Vitter [1988] can be modified to disregard
block transfers that merely rearrange data in the external memory. Then it can be
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applied separately to each cache level, noting that the data transfer in the higher
levels do not contribute for any given level.

These lower bounds are in the same spirit as those of Vitter and Nodine [1993]
(for the S-UMH model) and Savage [1995], that is, the lower bounds do not capture
the simultaneous interaction of the different levels.

If we remove this restriction, then the following can be proved along similar lines
as Theorem 3.4.

LEMMA 5.2. The lower bound for sorting in the multilevel cache model is

Ä

(
k

max
i=1

{
N log N, `i · N · log N/Bi

Bi logCi /Bi

})
.

This bound appears weak ifk is large. To rectify this, we observe the following:
Across each cache boundary, the minimum number of I/Os follow from Aggarwal
and Vitter’s arguments. The difficulty arises in the multilevel model as a block
transfer in leveli propagates in all levelsj < i although the block sizes are different.
The minimum number of I/Os from (the highest) levelk remains unaffected, namely,
N
Bk

log N/Bk

logCk/Bk
. For level k − 1, we subtract this number from the lower bound of

N
Bk−1

log N/Bk−1

logCk−1/Bk−1
. Continuing in this fashion, we obtain the following lower bound.

THEOREM 5.6. The lower bound for sorting in the multilevel cache model is

Ä

(
N log N +

k∑
i=1

`i ·
(

N · log N/Bi

Bi logCi /Bi
−
(

k∑
j=i+1

N · log N/Bj

Bj logCj /Bj

)))
.

If we further assume thatCi
Ci−1
> Bi

Bi−1
>3, we obtain a relatively simple expression

that resembles Theorem 5.5. Note that the consecutive terms in the expression in
the second summation of the previous lemma decrease by a factor of 3.

COROLLARY 5.7. The lower bound for sorting in the multilevel cache model
with geometrically decreasing cache sizes and cache lines isÄ(N log N +
1
2

∑k
i=1 `i · N·log N/Bi

Bi logCi /Bi
).

THEOREM 5.8. In a multilevel cache, where the Bi blocks are composed of Bi−1

blocks, we can sort in expected time O(N log N + ( log N/B1

log M1/B1
) ·∑k

i=1 `i · N
Bi

).

PROOF. We perform aM1/B1-way mergesort using the variation proposed by
Barve et al. [1997] in the context of parallel disk I/Os. The main idea is to shift
each sorted stream cyclically by a random amountRi for the i th stream. IfRi ∈
[0,Mk−1], then the leading element is in any of the cache sets with equal likelihood.
Like Barve et al. [1997], we divide the merging into phases where a phase outputs
m elements, wherem is the merge degree. In the previous section, we counted the
number of conflict misses for the input streams, since we could exploit symmetry
based on the random input. It is difficult to extend the previous arguments to a worst
case input. However, it can be shown easily that ifm

s <
1

m3 (wheres is the number
of cache sets), the expected number of conflict misses isO(1) in each phase. So
the total expected number of cache misses isO(N/Bi ) in the leveli cache for all
16 i 6 k.
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The cost of writing a block of sizeB1 from levelk is spread across several levels.
The cost of transferringBk/B1 blocks of sizeB1 from levelk is `k + `k−1

Bk
Bk−1
+

`k−2
Bk

Bk−1

Bk−1

Bk−2
+ · · · + `1

Bk
B1

. Amortizing this cost overBk/B1 transfers gives us
the required result. Recall thatO(N/B1(

log N/B1

log M1/B1
)) B1 block transfers suffice for

(M1/B1)1/3-way mergesort.

Remark11. This bound is reasonably close to Corollary 5.7 if we ignore con-
stant factors. Extending this to the more general emulation scheme of Theorem 3.1
is not immediate as we require the block transfers across various cache bound-
aries to have a nice pattern, namely thesubblockproperty. This is satisfied by the
mergesort and quicksort and a number of other algorithms but cannot be assumed
in general.

5.4. CACHE-OBLIVIOUS SORTING. In this section, we focus on two-level Cache
model that has limited associativity. One of thecache-Obliviousalgorithms pre-
sented by Frigo et al. [1999] is the Funnel Sort algorithm. They showed that the
algorithm is optimal in the I/O Model (which is fully associative). However, it is
not clear whether the optimality holds in the Cache Model. In this section, we
show that with some simple modification the Funnel Sort is optimal even in the
direct-mapped Cache Model.

The funnel sort algorithm can be described as follows:

—Split the input inton1/3 contiguous arrays of sizen2/3 and sort these arrays
recursively.

—Merge then1/3 sorted sequences using an1/3-merger, where ak-merger works
as follows.

A k-merger operates by recursively merging sorted sequences. Unlike mergesort a
k-merger stops working on a merging subproblem when the merged output sequence
becomes “long enough” and it resumes working on another merging subproblem
(see Figure (5)).

Invariant. The invocation of ak-merger outputs the firstk3 elements of the
sorted sequence obtained by merging thek input sequences.

Base Case. k= 2 producingk3 = 8 elements whenever invoked.

Note. The intermediate buffers are twice in size than the output obtained by ak1/2 merger.

To outputk3 elements, ak1/2-merger is invokedk3/2 times. Before each invoca-
tion thek1/2-merger fills each buffer that is less than half full so that every buffer
has at leastk3/2 elements—the number of elements to be merged in that invocation.

Frigo et al. [1999] have shown that the above algorithm (that does not make
explicit use of the various memory-size parameters) is optimal in the I/O Model.
However, the I/O Model does not account for conflict misses since it assumes
full associativity. This could be a degrading influence in the presence of limited-
associativity (in particular direct-mapping).

5.4.1. Structure of k-Merger. It is sufficient to get a bound on cache misses in
the Cache Model since the bounds for capacity misses in the Cache Model are the
same as the bounds shown in the I/O Model.

Let us get an idea of what the structure of ak-merger looks like by looking at a
16-merger (see Figure 6). Ak-merger, unrolled consists of 2-mergers arranged in
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FIG. 5. Recursive definition of a k-merger in terms ofk1/2-mergers.

FIG. 6. Expansion of a 16-merger into 2-mergers.

a tree like fashion. Since the number of 2-mergers gets halved at each level and the
initial input sequences arek in number there are logk levels.

LEMMA 5.3. If the buffers are randomly placed and the starting position is also
randomly chosen (since the buffers are cyclic this is easy to do) the probability of
conflict misses is maximized if the buffers are less than one cache line long.
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FIG. 7. A k-merger expanded out into 2-mergers.

The worst case for conflict misses occurs when the buffers are less than one cache
line in size. This is because, if the buffers collide, then all data that goes through
them will thrash. If, however, the size of the buffers were greater than one cache line,
then even if some two elements collide the probability of future collisions would
depend upon the data input or the relative movement of data in the two buffers. The
probability of conflict miss is maximized when the buffers are less than one cache
line. Then probability of conflict is 1/m, wherem is equal to the Cache SizeM
divided by the Cache Line SizeB, that is, the number of Cache Lines.

5.4.2. Bounding Conflict Misses.The analysis for compulsory and capac-
ity misses goes through without change from the I/O Model to the Cache
Model. Thus, Funnel Sort is Cache Model Optimal if the conflict misses can be
bounded by

N

B
× log N/B

log M/B
.

LEMMA 5.4. If the cache is3-way or more set associative, there will be no
conflict misses for a2-way merger.

PROOF. The two input buffers and the output buffer, even if they map to the
same cache set can reside simultaneously in the cache. Since, at any stage only one
2-merger is active, there will be no conflict misses at all and the cache misses will
only be in the form of capacity or compulsory misses.

5.4.3. Direct-Mapped Case. For an input of sizeN, a N1/3-merger is created.
The number of levels in such a merger is logN1/3 ( i.e., the number of levels of the
tree in the unrolled merger). Every element that travels through theN1/3-merger
sees logN1/3 2-mergers (see Figure 7). For an element passing through a 2-merger,
there are three buffers that could collide. Wechargean element for a conflict miss
if it is swapped out of the cache before it passes to the output buffer or collides
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with the output buffer when it is being output. So the expected number of collisions
is 3C2 times the probability of collision between any two buffers (two input and
one output). Thus, the expected number of collisions for a single element passing
through a 2-merger is3C2× 1/m≤ 3/m wherem= M/B.

If xi, j is the probability of a cache miss for elementi in level j , then, summing
over all elements and all levels, we get

E

 N∑
i=1

log N1/3∑
j=1

xi, j

 = N∑
i=1

log N1/3∑
j=1

E(xi, j )

≤
N∑

i=1

log N1/3∑
j=1

3

m
= 3N

m
× log N1/3

= O

(
N

m
× log N

)
.

LEMMA 5.5. The expected performance of Funnel Sort is optimal in the direct-
mapped Cache Model iflog M/B ≤ M/(B2 log B). It is also optimal for a3-way
associative cache.

PROOF. If M andB are such that

log
M

B
≤ M

B2 log B
,

we have the total number of conflict misses
N log N

m
= N log N

B log B
M

B2 log B

≤ N

B
× log N/B

log M/B
.

Note that the condition is satisfied forM > B2+ε for any fixedε > 0, which is
similar to thetall-cacheassumption made by Frigo et al. [1999].

The set associative case is proved by Lemma 5.4.

The same analysis is applicable between successive levelsLi andLi+1 of a
multilevel Cache model since the algorithm does not use the parameter values
explicitly.

6. Conclusions

We have presented a cache model for designing and analyzing algorithms. Our
model, while closely related to the I/O model of Aggarwal and Vitter, incorporates
four additional salient features of cache: lower miss penalty, limited associativity,
fixed replacement policy, and lack of direct program control over data movement.
We have established an emulation scheme that allows us to systematically convert
an I/O-efficient algorithm into a cache-efficient algorithm. This emulation provides
a generic starting point for cache-conscious algorithm design; it may be possible
to further improve cache performance by problem-specific techniques to control
conflict misses. We have also established the relevance of the emulation scheme by
demonstrating that a direct mapping of an I/O-efficient algorithm does not guarantee
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a cache-efficient algorithm. Finally, we have extended our basic cache model to
multiple cache levels.

Our single-level cache model is based on a blocking cache that does not dis-
tinguish between reads and writes. Modeling a nonblocking cache or distinguish-
ing between reads and writes would appear to require queuing-theoretic exten-
sions and does not appear to be appropriate at the algorithm design stage. The
translation lookaside buffer(TLB) is another important cache in real systems that
caches virtual-to-physical address translations. Its peculiar aspect ratio and high
miss penalty raise different concerns for algorithm design. Our preliminary ex-
periments with certain permutation problems suggests that TLBs are important to
model and can contribute significantly to program running times. It also appears
that the presence of prefetching in the memory hierarchy can have a profound effect
on algorithm design and analysis.

We have begun to implement some of these algorithms to validate the theory
on real machines, and also using cache simulation tools likefast-cache, ATOM, or
cprof. Preliminary observations indicate that our predictions are more accurate with
respect to miss ratios than actual running times (see Chatterjee and Sen [2000]).
We have traced a number of possible reasons for this. First, because the cache miss
latencies are not astronomical, it is important to keep track of the constant factors.
An algorithmic variation that guarantees lack of conflict misses at the expense of
doubling the number of memory references may turn out to be slower than the
original algorithm. Second, our preliminary experiments with certain permutation
problems suggests that TLBs are important to model and can contribute significantly
to program running times. Third, several low-level details hidden by the compiler
related to instruction scheduling, array address computations, and alignment of data
structures in memory can significantly influence running times. As argued earlier,
these factors are more appropriate to tackle at the level of implementation than
algorithm design.

Several of the cache problems we observe can be traced to the simple array
layout schemes used in current programming languages. It has shown elsewhere
[Chatterjee et al. 1999a, 1999b; Thottethodi et al. 1998] that nonlinear array layout
schemes based on quadrant-based decomposition are better suited for hierarchical
memory systems. Further study of such array layouts is a promising direction for
future research.

Appendix

A. Approximating Probability of Conflict

Letµ be the number of elements betweenSi, j andSi, j+1, that is, one less than the
difference in ranks ofSi, j and Si, j+1. (µ may be 0, which guarantees event E1.)
Let Em denote the event thatµ = m. Then Pr[E1] = ∑

m Pr[E1 ∩ Em], since
Em’s are disjoint. For eachm, Pr[E1∩ Em] = Pr[E1|Em] ·Pr[Em]. The eventsEm
correspond to a geometric distribution, that is,

Pr[Em] = Pr[µ = m] = 1

k

(
1− 1

k

)m

. (2)

To compute Pr[E1|Em], we further subdivide the event into cases about how the
m numbers are distributed into the setsSj , j 6= i . Without loss of generality, let
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i = 1 to keep notations simple. Letm2, . . . ,mk denote the case thatmj numbers
belong to sequenceSj (

∑
j mj = m). We need to estimate the probability that

for sequenceSj , bj does not conflict withS(b1) (recall that we have fixedi = 1)
during the course thatmj elements arrive inSj . This can happen only ifS(bj )
(the cache set position of the leading block ofSj right after elementS1,t ) does not
lie roughly dmi /Be blocks fromS(b1). From Assumption A1 and some careful
counting, this is 1− (mj − 1+ B)/sB for mj >1. Formj = 0, this probability is
1 since no elements go intoSj and hence there is no conflict.9 These events are
independent from our Assumption A1 and hence these can be multiplied. The
probability for a fixed partitionm2, . . . ,mk is the multinomialm!/(m2! · · ·mk!) ·
(1/(k− 1))m (m is partitioned intok−1 parts). Therefore, we can write the following
expression for Pr[E1|Em].

Pr[E1|Em] =
∑

m2+···+mk=m

m!

m2! · · ·mk!
·
(

1

k− 1

)m ∏
mi 6=0

(
1− mj − 1+ B

sB

)
. (3)

In the remainder of this section, we obtain an upper bound on the right hand side
of Eq (3). Letnz(m2, . . . ,mk) denote the number ofj s for whichmj 6= 0 (nonzero
partitions). Then, Eq. (3) can be rewritten as the following inequality:

Pr[E1|Em]6
∑

m2+···+mk=m

m!

m2! · · ·mk!
·
(

1

k− 1

)m(
1− 1

s

)nz(m2...mk)

, (4)

since (1− (mj − 1+ B)/sB)6 (1− (1/s)) for mj >1. In other words, the right
side is the expected value of (1− (1/s))NZ(m,k−1), whereNZ(m, k − 1) denotes
the number of nonempty bins whenm balls are thrown intok − 1 bins. Using
Eq. (2) and the preceding discussion, we can write down an upper bound for the
(unconditional) probability ofE1 as

∞∑
m=0

1

k

(
1− 1

k

)m

· E
[(

1− 1

s

)NZ(m,k−1)
]
. (5)

We use known sharp concentration bounds for the occupancy problem to obtain
the following approximation for the expression (5) in terms ofs andk.

THEOREMA.1 ([KAMATH ET AL . 1994]). Let r = m/n, and Y be the number
of empty bins when m balls are thrown randomly into n bins. Then

E[Y] = n

(
1− 1

m

)m

∼ n exp(−r )

and forλ > 0

Pr[|Y − E[Y]|> λ]62 exp

(
−λ

2(n− 1)/2

n2− µ2

)
.

9 The reader will soon realize that this case leads to some nontrivial calculations.
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COROLLARY A.2. Let NZ be the number of nonempty bins when m balls are
thrown into k bins. Then

E[NZ] = k(1− exp

(
−m

k

)
and

Pr[|NZ− E[NZ]|>α
√

2k logk]6 1

kα
.

So in Eq. (5),E[(1− (1/s))NZ(m,k−1)] can be bounded by(
1

kα

)(
1− 1

s

)
+
(

1− 1

s

)k(1−exp(−m/k)−α√2k logk/k)

(6)

for anyα andm>1.

PROOF(OF LEMMA 4.1). We will split up the summation of (5) into two parts,
namely,m6e/2 · k andm > e/2 · k. One can obtain better approximations by
refining the partitions, but our objective here is to demonstrate the existence ofε
andδ and not necessarily obtain the best values.

∞∑
m=0

1

k

(
1− 1

k

)m

· E
[(

1− 1

s

)NZ(m,k−1)
]

=
ek/2∑
m=0

1

k

(
1− 1

k

)m

· E
[(

1− 1

s

)NZ(m,k−1)
]

+
∞∑

m=ek/2+1

1

k

(
1− 1

k

)m

· E
[(

1− 1

s

)NZ(m,k−1)
]

(7)

The first term can be upper bounded by

ek/2∑
m=0

1

k

(
1− 1

k

)m

which is∼1− 1
exp(e/2) ∼ 0.74.

The second term can be bounded using Eq. (6) usingα>2.

∞∑
1+ek/2

1

k

(
1− 1

k

)m

· E
[(

1− 1

s

)NZ(m,k−1)
]

6
∞∑

1+ek/2

1

k

(
1− 1

k

)m

· 1

k2

(
1− 1

s

)

+
∞∑

1+ek/2

1

k

(
1− 1

k

)m

·
(

1− 1

s

)k(1−exp(−m/k)−α√2k logk/k)

(8)
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The first term of the previous equation is less than 1/k and the second term can
be bounded by

∞∑
1+ek/2

1

k

(
1− 1

k

)m

·
(

1− 1

s

)0.25k

for sufficiently large k (k> 80 suffices). This can be bounded by
∼0.25 exp(−0.25k/s), so Eq. (8) can be bounded by 1/k + 0.25 exp(0.25k/s).
Adding this to the first term of Eq. (7), we obtain an upper bound of
0.75 + 0.25 exp(−0.25k/s) for k > 100. Subtracting this from 1 gives us
(1− exp(−0.25k/s))/4, that is,δ> (1− exp(−0.25k/s))/4.
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