(©Smruti R. Sarangi, 2020

Interaction between the Computer Architecture
and the Operating System

Smruti R. Sarangi

October 15, 2020

Up till now we have seen how to build processors that essentially execute a
stream of instructions. Furthermore, we have proposed a variety of optimiza-
tions for improving performance, such as forwarding, renaming, branch predic-
tion, etc. However, these are inadequate for running modern computer systems.
A modern computer system has a host of software that include text editors, web
browsers, video players, and windowing systems — all running at the same time.
It is possible that when we are playing a video, the web browser is fetching the
contents of a web page. it is not possible to do all of these things. on a bare
processor unless it is augmented with additional functionalities. Furthermore,
we have a host of I/O devices such as the keyboard, mouse, and the printer.
These devices. also need to be controlled and moreover need to be accessed in
a secure manner. If I am entering my credit card number on one web page, I
do not want another web page to somehow see the number and steal it.

To solve all of these problems, it is necessary to have one master program
that has more privileges. That can regulate the access to the entire system.
This is known as an operating system. It is a regular program, albeit with some
special privileges. We can think of it as a class monitor, who is a regular student,
but has some additional privileges responsibilities which other students do not
have.

An operating system specifically plays the role of managing the following
entities.

1. It is a process manager, where a process is defined as the running instance
of a program. If you type Ctrl+Alt+Del on Windows or ps on Linux, you
get to see a list of processes that are currently running on your system.
They are all alive and running concurrently.

2. It is a memory manager: it ensures that one process cannot inadvertently
or maliciously access memory locations used by another process.

3. It is a device manager. It regulates accesses to external devices such as
mice, keyboards, speakers, and the hard disk. It is often necessary to
issue dedicated I/O instructions to control the behavior of these devices
and to read or write data. Another way is to share a part of the physical



(©Smruti R. Sarangi, 2020 1 TIMER INTERRUPTS

memory space With the I/O device and communicate with it via writ-
ing to dedicated memory locations. This is known as memory-mapped at
I/0. Regardless of the method, it is not a wise idea to encumber regular
programs with so much of additional code for performing a simple oper-
ation, such as writing to the terminal or printing a page on the printer.
A dedicated piece of code within the operating system called the device
driver provides these services. Furthermore, it ensures that the I/O device
is operated correctly and there are no security loopholes. One important
example in this space of the hard disk. The hard disk presents itself as
a very large 1-dimensional array of bytes to the processor. However, we
typically do not access the hard disk in this fashion. Instead, we assume
that there is a file system on the hard disk or an USB drive and the pro-
cess only accesses particular files that are organized in tree-structured file
system. The operating system implements the file system.

To summarize, the basic processor-memory-storage system is too raw and
unless there are layers of software over it for regulating accesses, enforcing se-
curity, and above all, providing a very easy and seamless method to perform a
wide variety of operations, it will be very hard to use such a system in practice.
This is why an operating system is used to provide all of these services. As far as
we are concerned, an operating system can be thought of as a collection of pro-
grams such as a process scheduler, memory manager, file system implementer,
and device manager.

Now, from the point of view of computer architecture, let us discuss some of
the most important artifacts that determine the interaction between the archi-
tecture and the operating system. These are some basic hardware mechanisms
that need to be there for any operating system to successfully function.

1 Timer Interrupts

At one point of time, several processes execute. How is this possible? Let us
for the sake of simplicity assume that we have a single core (single pipeline +
instruction cache + data cache). If we have a single pipeline, then we can only
execute a single process at a time. We cannot execute two processes at a time.
This means that to provide the illusion that multiple processors are executing
concurrently, it is necessary for the processor to quickly switch between the
processes hundreds of times a second such that human beings will never be able
to perceive that we actually have a single core and secondly such fast-switching
is actually happening. To type a key on a keyboard, or even move the mouse
pointer, we need the intervention of the operating system. This means that the
program that we are currently working on needs to pause, the operating system
needs to compute the new coordinate of the mouse pointer, erase the image of
the mouse pointer at the previous coordinates and draw the image of the mouse
pointer at the new coordinates. Given that human response times are of the
order of hundreds of milliseconds, we never perceive the fact that so much of



(©Smruti R. Sarangi, 2020 3 SYSTEM CALLS

pausing and resuming is actually going on. We instead perceive an extremely
seamless experience while using a computing system.

When we move an USB mouse, the hardware attached with the USB port
generates an interrupt and sends it to the processor. Along with the interrupt,
it sends an interrupt vector, which indicates the type of the interrupt, and also
sends some data. In this case, it would be the displacement of the mouse.
Subsequently, the processor will pause the current process, invoke the interrupt
service routine that is a part of the operating system, set the state of the paused
process in a data structure called the process control block, and then move on
to service the interrupt. This would involve erasing the image of the mouse
pointer at the previous position and redrawing the image of the mouse pointer
at the new position. Subsequently, the interrupt service routine will hand over
control to the scheduler process. The scheduler process will find a ready process
to execute based on predetermined priorities. This is a simple mechanism and
has been dealt with in the class.

The more important question is when there is no external interrupt, what
happens to a process? It will continue to run because there is nobody to stop it
or interrupt it. This means that if it needs to run for 10 hours, it will continue to
run for 10 hours. Many a time, students wrongly suggest that the scheduler will
schedule some other process. However, this is not correct because the scheduler
is not running. Hence, we need an external mechanism to send an interrupt to
the processor. This is precisely what is achieved by an external timer chip that
sends an interrupt to the processor typically once every millisecond (also known
as a jiffy). The timer interrupt is processed in the same manner as a regular
interrupt. Once the processor receives an interrupt, it looks up the interrupt
table, which is populated when the operating system is booted for the first time.
This interrupt table has two columns: type of the interrupt and program counter
of the interrupt service routine. The interrupt service routine in this case will
invoke the scheduler process. This process might end up scheduling the original
process that was interrupted by the timer interrupt or it can schedule some
other process. It has the discretion to schedule any process it wants, depending
upon its priorities.

2 Memory Manager

The key mechanism that allows the operating system to act as a memory man-
ager is known as virtual memory. This will be covered later when we discuss
Chapter 7.

3 System Calls

Let us now focus on the fact that the operating system is a service provider. It
essentially abstracts complex. I/O devices and provides a simple interface that
programmers can use. For example, the programmer may not be aware of the



(©Smruti R. Sarangi, 2020 3 SYSTEM CALLS

complexities of the printer and what exact commands and instructions need to
be sent to print a page correctly. The device driver within an operating system
implements all of these functionalities and simply exports a simple function to
the programmer. All that the programmer needs to do is provide the data that
needs to be printed. Now, the key question here is how does the programmer
invoke the services provided by the operating system?

Ideally, it would have been the best if the operating system would have ex-
ported a function and the programmer could have simply called the function the
same way that regular functions are called. However, note that an operating
system is a different process and the regular function call mechanism will not
work in this case. It can also be argued that maybe the program can write some-
thing in a shared place, such as a temporary file, then the operating system can
pick the function call arguments from there. This is an inefficient process when
it comes to performance and furthermore this is not a very secure mechanism;
lastly, we need to wait for the operating system to run.

Note that the key element of security within the processor is the current
privilege level (CPL) bit and associated logic. If it is set to 0, it means that the
operating system is running and a host of privileged instructions can be issued.
It also means that the current process can control the I/O devices. However,
when the processor runs regular processes (user processes), the CPL bit is set
to 1. In this mode, a lot of instructions cannot be issued and a lot of registers
cannot be accessed. The user process sees a very reduced view of the entire
system, primarily because its privileges are limited.

Now coming back to the main issue, we need to devise a mechanism for
invoking the attention of the operating system and for providing some data
to it. The only way of attracting the attention of the operating system is to
somehow raise an interrupt. This is a known, tried, and tested mechanism when
it comes to hardware devices. We can implement something very similar, at least
conceptually, at the software level as well. Almost all instruction sets provide
an interrupt instruction, known as INT (0x80 in x86), which allows the software
program to simply interrupt itself. The software program loads a predefined
set of registers with inputs, and then issues the INT instruction. The rest of
the processing is the same as an hardware interrupt. The processor pauses the
current process, looks up the interrupt table, and depending upon the type of
the interrupt, loads the appropriate interrupt handler. The interrupt handler
subsequently saves the state of the current process, and begins to process the
interrupt. This mechanism is known as a system call, which is rather heavy in
terms of performance, but is the only method to attract the attention of the
operating system. After receiving such a system call, the corresponding module
of the operating system takes control, completes the requested action if the
request is valid, and then invokes the scheduler process. It is important to note
that whenever the operating system takes control and is done with its work, it
always invokes the scheduler process. The scheduler process has the freedom to
execute any process that it wishes to. This can be the process that invoked the
system call or some other process that has a higher priority.



(©Smruti R. Sarangi, 2020 4 THE CHIPSET

4 The Chipset

Figure 1: Image of a motherboard, source: Photo by Alexandre Debieve on
Unsplash

Look at the image of a motherboard in Figure 1. The large chip at the
center is the processor. However, kindly turn your attention to all the smaller
chips that surround it. They serve a very important function. Most of them are
I/0O processing chips that interface with the I/O devices and act as an interface
between them and the CPU. For example, some of them might be processing
inputs and outputs from USB devices and some might be connected to the
speakers. All of them comprise the chip set.

Some of these chips are DMA controllers. DMA stands for direct memory ac-
cess. These chips can directly transfer data between the main memory (located
off-chip) and I/O devices in both directions. The CPU basically outsources the
job of transferring data between I/O devices and memory to the DMA con-
trollers and continues to execute other processes while the data keeps getting
transferred in the background.



