Finding a Needle in a Haystack: Facebook’s
Photo Storage

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology
New Delhi, India

Smruti R. Sarangi Leader Election

Outline

0 Overview

e Design

Q Evaluation

Smruti R. Sarangi Leader Election

Overview

Facebook Photo Storage

@ In 2010, Facebook had 260 billion images
@ Users upload one billion photos (60 TB) in one week

@ Haystack (new and improved approach)

e Better than the traditional approach that used NFS
e Reduces disk accesses
e Minimizes per-photo metadata

@ Serves one million images per second (peak)
@ Haystack is a photo-object store

Smruti R. Sarangi Leader Election

Overview

Overview

@ Facebook saves each photo in four formats
e Large, Medium, Small, Thumbnail

@ Pattern: Written once, never modified, rarely deleted
@ Disadvantages of POSIX file systems

e Directories, per-file metadata

e Do not require permissions

e Problems with traditional NFS
@ Several accesses are required to read the file
@ Filename = inode number =- read the data

Smruti R. Sarangi Leader Election

Overview

Requirements

@ High throughput and low latency
@ Requests that exceed processing capacity

e Either ignored
e Handed to a CDN (very slow)

@ Haystack: High throughput with low latency
e Requires only one disk operation per read
e Caches all meta-data in main memory
@ Fault tolerance — replication across data centers

@ Throughput : 4X more throughput than NFS (cost per ter-
abyte 28% less)

Smruti R. Sarangi Leader Election

Overview

Structure

Photo storage

Content distribution

network

Source [1]

Smruti R. Sarangi

Leader Election

Overview

NFS Based Approach

@ Using CDNs is not an effective solution

e Requests have a long tail
o CDN's cache only the most popular photos
e Most requests are sent to the backing photo store

@ NFS saves each photo as a file on commercial NAS appli-
ances.

@ URL = volume, and path of file = Data

@ Saved hundreds of files per directory

e Requires 3 disk accesses: Read directory the directory meta-
data, load the inode, read the file contents

@ Optimization: Cache file handles
Not suitable for heavy tailed requests

Smruti R. Sarangi Leader Election

Overview

Ideal Appliance for Photo Stores

@ MySQL, GFS, BigTable, NAS were all found unsuitable for
implementing photo stores
@ Need the right RAM to disk ratio
@ The RAM should contain all the meta-data
e The disk should contain all the file data
@ We cannot outsource the problem to CDNs (heavy-tailed
traffic)

Smruti R. Sarangi Leader Election

Design

Architecture

@ Architecture has 3 core components:

e Haystack Store
e Haystack Directory
e Haystack Cache

@ Haystack Store

e Grouped into logical volumes
e Each logical volume has multiple physical volumes (repli-
cas)

@ Haystack Directory

e Logical to physical mapping

e Photo to logical volume mapping
@ Cache: Internal CDN

Smruti R. Sarangi Leader Election

Design

Flow of Actions

Haystack store
Haystack Directory >s 2

Haystack
cache

Content distribution
network

10

Source [1]

ti R. Sarangi Leader Election

Design

Search and Upload Process

@ The web servers uses the directory to create a URL for each
photo

@ Form: http://< CDN >/< Cache >/< Machine_ld>/< Logicalvolume, photo >

@ Upload Process

User contacts the web server

The web server contacts the directory

The directory assigns a writeable logical volume

The web server sends a request to the store

The store writes to all the physical volumes

Smruti R. Sarangi Leader Election

Design

Haystack Directory

@ Provides a mapping from logical volumes to physical vol-
umes

@ Load balances writes across logical volumes, and reads
across physical volumes

@ Determines whether a request should be handled by the
cache or CDN

@ Marks volumes as read-only once they have reached their

capacity. We need to start more machines, when we run
out of writeable volumes.

Smruti R. Sarangi Leader Election

Design

Haystack Cache

@ ltis organized as a DHT . The key is the photo’s id, and the
value is the photo’s data.

@ If an item is not there, it is fetched from the store .

@ Caches a photo only when

o Request comes from a user (nota CDN)
e Photo is fetched from a write-enabled store machine

Smruti R. Sarangi Leader Election

Design

Haystack Store

@ Each store machine manages multiple physical volumes.

@ A physical volume is a very large file containing millions of
photos.

@ For accessing a photo in a machine, we need (metadata):

e Logical volume id
o File offset
e Size of the photo
@ The store machine keeps an in-memory mapping of photo
ids to metadata

Smruti R. Sarangi Leader Election

Design

File Structure

@ One physical volume is a large file, with a superblock , and
a sequence of needles

@ Each needle contains the following fields

e Header, Cookie, Key (64 bits), Alternate key (32 bits), Flags,
Size, Data , Checksum

@ The mapping between photo id and the needle’s fields (off-
set, size) is kept in memory

@ We additionally use a cookie with each photo id, such that
it is hard to guess the URL of a photo

Smruti R. Sarangi Leader Election

Design

Photo Write and Delete

@ Photo write:

e We provide the logical volume id, key, alternate key, cookie
and data

e Each machine updates its in-memory meta data, creates a
needle, and writes the data.

e A photo is never modified. If we remove red eyes, or rotate
the image, a new image is created and is saved with the
same key and alternate key. We now point to the new
offset.

@ Photo Delete:
o We set a bit in the volume file, and in-memory data structure

Smruti R. Sarangi Leader Election

Design

The Index File

@ Index files can be used to create the in-memory data struc-
ture while rebooting

@ ltis a checkpoint of the in-memory data structure

@ Contains a superblock, and a sequence of needles

@ This file is updated asynchronously. May not be in sync
with the volume file

@ After rebooting the store machine runs a job to bring the
index file in sync

Smruti R. Sarangi Leader Election

Design

Filesystem

@ Store machines should use a file system that allows them
to perform quick random seeks in a large file.
@ Each store machine uses XFS.
e The block maps are very small (can be cached in main mem-

ory)
o Efficient file pre-allocation, low fragmentation

Smruti R. Sarangi Leader Election

Design

Recovery from Failures

@ Background task: PitchFork

e Periodically checks the health of each store machine

o Attempts to read data from the store machine

e If it finds a problem, it maps the machine as read-only

e If we cannot fix the problem, and the machine is otherwise
fine, we start a bulk sync operation

Smruti R. Sarangi Leader Election

Design

Optimizations

@ Compaction: reclaim space of deleted and duplicate nee-
dles

@ Dynamically move unique(valid) entries to a new volume file
@ Over a year, 25% of photos get deleted
@ Space saving: set the offset to 0 for deleted photos

@ Haystack uses an average of 10 bytes of main memory per
photo

@ Sequentialized writes by grouping photos into albums

Smruti R. Sarangi Leader Election

Evaluation

Photos’ Age

@ Plot the cumulative percentage of accesses (y axis) with the
age of the photo (x axis)

@ Shape of the curve (A(1 — e~ 5¥)
@ 90% of cumulative accesses are less than 600 days old.
Source [1]

Smruti R. Sarangi Leader Election

Evaluation

Traffic

@ Some statistics (date of publication of the paper, 2010)

@ 120 million photos uploaded per day, 1.44 billion Haystack
photos written

@ 80-100 billion photos viewed
@ View stats: ~ 85% are small, and 10% are thumbnails.
@ Large photos account for only 5% of the views

Smruti R. Sarangi Leader Election

Evaluation

Read and Write Operations

@ Majority of the operations are reads: 5000 ops per minute
@ Writes are limited to 500-1000 ops per minute
@ Almost no deletes

@ Reads are much slower than writes.

e Average read latency: 10 ms
o Average write latency: 1.5 ms

Smruti R. Sarangi Leader Election

Evaluation

[§ Beaver, Doug, et al. "Finding a Needle in Haystack: Face-
book’s Photo Storage." OSDI. Vol. 10. 2010.

Smruti R. Sarangi Leader Election

	Overview
	Design
	Evaluation

