
Overview
Design

Evaluation

Finding a Needle in a Haystack: Facebook’s
Photo Storage

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Leader Election 1/23

Overview
Design

Evaluation

Outline

1 Overview

2 Design

3 Evaluation

Smruti R. Sarangi Leader Election 2/23

Overview
Design

Evaluation

Facebook Photo Storage

In 2010, Facebook had 260 billion images
Users upload one billion photos (60 TB) in one week
Haystack (new and improved approach)

Better than the traditional approach that used NFS
Reduces disk accesses
Minimizes per-photo metadata

Serves one million images per second (peak)
Haystack is a photo-object store

Smruti R. Sarangi Leader Election 3/23

Overview
Design

Evaluation

Overview

Facebook saves each photo in four formats
Large, Medium, Small, Thumbnail

Pattern: Written once, never modified, rarely deleted
Disadvantages of POSIX file systems

Directories, per-file metadata
Do not require permissions
Problems with traditional NFS

Several accesses are required to read the file
Filename ⇒ inode number ⇒ read the data

Smruti R. Sarangi Leader Election 4/23

Overview
Design

Evaluation

Requirements

High throughput and low latency
Requests that exceed processing capacity

Either ignored
Handed to a CDN (very slow)

Haystack: High throughput with low latency
Requires only one disk operation per read
Caches all meta-data in main memory

Fault tolerance→ replication across data centers
Throughput : 4X more throughput than NFS (cost per ter-
abyte 28% less)

Smruti R. Sarangi Leader Election 5/23

Overview
Design

Evaluation

Structure

Web
server

1 2

Content distribution
network

3

6

Photo storage

4 5

Source [1]

Smruti R. Sarangi Leader Election 6/23

Overview
Design

Evaluation

NFS Based Approach

Using CDNs is not an effective solution
Requests have a long tail
CDN’s cache only the most popular photos
Most requests are sent to the backing photo store

NFS saves each photo as a file on commercial NAS appli-
ances.
URL⇒ volume, and path of file⇒ Data
Saved hundreds of files per directory

Requires 3 disk accesses: Read directory the directory meta-
data, load the inode, read the file contents

Optimization: Cache file handles
Not suitable for heavy tailed requests

Smruti R. Sarangi Leader Election 7/23

Overview
Design

Evaluation

Ideal Appliance for Photo Stores

MySQL, GFS, BigTable, NAS were all found unsuitable for
implementing photo stores
Need the right RAM to disk ratio

The RAM should contain all the meta-data
The disk should contain all the file data

We cannot outsource the problem to CDNs (heavy-tailed
traffic)

Smruti R. Sarangi Leader Election 8/23

Overview
Design

Evaluation

Architecture

Architecture has 3 core components:
Haystack Store
Haystack Directory
Haystack Cache

Haystack Store
Grouped into logical volumes
Each logical volume has multiple physical volumes (repli-
cas)

Haystack Directory
Logical to physical mapping
Photo to logical volume mapping

Cache: Internal CDN

Smruti R. Sarangi Leader Election 9/23

Overview
Design

Evaluation

Flow of Actions

Web
server

1 4

Content distribution
network

5

10

Haystack store

7 8

Haystack Directory

2 3

6 9

Haystack
cache

Source [1]
Smruti R. Sarangi Leader Election 10/23

Overview
Design

Evaluation

Search and Upload Process

The web servers uses the directory to create a URL for each
photo
Form: http://< CDN >/< Cache >/< Machine_Id>/< Logicalvolume, photo >

Upload Process
User contacts the web server
The web server contacts the directory
The directory assigns a writeable logical volume
The web server sends a request to the store
The store writes to all the physical volumes

Smruti R. Sarangi Leader Election 11/23

Overview
Design

Evaluation

Haystack Directory

Provides a mapping from logical volumes to physical vol-
umes
Load balances writes across logical volumes, and reads
across physical volumes
Determines whether a request should be handled by the
cache or CDN
Marks volumes as read-only once they have reached their
capacity. We need to start more machines, when we run
out of writeable volumes.

Smruti R. Sarangi Leader Election 12/23

Overview
Design

Evaluation

Haystack Cache

It is organized as a DHT . The key is the photo’s id, and the
value is the photo’s data.
If an item is not there, it is fetched from the store .
Caches a photo only when

Request comes from a user (not a CDN)
Photo is fetched from a write-enabled store machine

Smruti R. Sarangi Leader Election 13/23

Overview
Design

Evaluation

Haystack Store

Each store machine manages multiple physical volumes.
A physical volume is a very large file containing millions of
photos.
For accessing a photo in a machine, we need (metadata):

Logical volume id
File offset
Size of the photo

The store machine keeps an in-memory mapping of photo
ids to metadata

Smruti R. Sarangi Leader Election 14/23

Overview
Design

Evaluation

File Structure

One physical volume is a large file, with a superblock , and
a sequence of needles
Each needle contains the following fields

Header, Cookie, Key (64 bits), Alternate key (32 bits), Flags,
Size, Data , Checksum

The mapping between photo id and the needle’s fields (off-
set, size) is kept in memory
We additionally use a cookie with each photo id, such that
it is hard to guess the URL of a photo

Smruti R. Sarangi Leader Election 15/23

Overview
Design

Evaluation

Photo Write and Delete

Photo write:
We provide the logical volume id, key, alternate key, cookie
and data
Each machine updates its in-memory meta data, creates a
needle, and writes the data.
A photo is never modified. If we remove red eyes, or rotate
the image, a new image is created and is saved with the
same key and alternate key. We now point to the new
offset.

Photo Delete:
We set a bit in the volume file, and in-memory data structure

Smruti R. Sarangi Leader Election 16/23

Overview
Design

Evaluation

The Index File

Index files can be used to create the in-memory data struc-
ture while rebooting
It is a checkpoint of the in-memory data structure
Contains a superblock, and a sequence of needles
This file is updated asynchronously. May not be in sync
with the volume file
After rebooting the store machine runs a job to bring the
index file in sync

Smruti R. Sarangi Leader Election 17/23

Overview
Design

Evaluation

Filesystem

Store machines should use a file system that allows them
to perform quick random seeks in a large file.
Each store machine uses XFS.

The block maps are very small (can be cached in main mem-
ory)
Efficient file pre-allocation, low fragmentation

Smruti R. Sarangi Leader Election 18/23

Overview
Design

Evaluation

Recovery from Failures

Background task: PitchFork
Periodically checks the health of each store machine
Attempts to read data from the store machine
If it finds a problem, it maps the machine as read-only
If we cannot fix the problem, and the machine is otherwise
fine, we start a bulk sync operation

Smruti R. Sarangi Leader Election 19/23

Overview
Design

Evaluation

Optimizations

Compaction: reclaim space of deleted and duplicate nee-
dles
Dynamically move unique(valid) entries to a new volume file
Over a year, 25% of photos get deleted
Space saving: set the offset to 0 for deleted photos
Haystack uses an average of 10 bytes of main memory per
photo
Sequentialized writes by grouping photos into albums

Smruti R. Sarangi Leader Election 20/23

Overview
Design

Evaluation

Photos’ Age

Plot the cumulative percentage of accesses (y axis) with the
age of the photo (x axis)
Shape of the curve (A(1− e−Bx)
90% of cumulative accesses are less than 600 days old.

Source [1]

Smruti R. Sarangi Leader Election 21/23

Overview
Design

Evaluation

Traffic

Some statistics (date of publication of the paper, 2010)
120 million photos uploaded per day, 1.44 billion Haystack
photos written
80-100 billion photos viewed
View stats: ≈ 85% are small, and 10% are thumbnails.
Large photos account for only 5% of the views

Smruti R. Sarangi Leader Election 22/23

Overview
Design

Evaluation

Read and Write Operations

Majority of the operations are reads: 5000 ops per minute
Writes are limited to 500-1000 ops per minute
Almost no deletes
Reads are much slower than writes.

Average read latency: 10 ms
Average write latency: 1.5 ms

Smruti R. Sarangi Leader Election 23/23

Overview
Design

Evaluation

Beaver, Doug, et al. "Finding a Needle in Haystack: Face-
book’s Photo Storage." OSDI. Vol. 10. 2010.

Smruti R. Sarangi Leader Election 23/23

	Overview
	Design
	Evaluation

