Precise Predictive Analysis for Discovering
Communication Deadlocks in MPI Programs

Vojtéch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma

Department of Computer Science, University of Oxford, UK

Abstract. The Message Passing Interface (MPI) is the standard API
for high-performance and scientific computing. Communication dead-
locks are a frequent problem in MPI programs, and this paper addresses
the problem of discovering such deadlocks. We begin by showing that
if an MPI program is single-path, the problem of discovering communi-
cation deadlocks is NP-complete. We then present a novel propositional
encoding scheme which captures the existence of communication dead-
locks. The encoding is based on modelling executions with partial orders,
and implemented in a tool called MOPPER. The tool executes an MPI
program, collects the trace, builds a formula from the trace using the
propositional encoding scheme, and checks its satisfiability. Finally, we
present experimental results that quantify the benefit of the approach
in comparison to a dynamic analyser and demonstrate that it offers a
scalable solution.

1 Introduction

The Message Passing Interface (MPI) [17] is the lingua franca of high-perfor-
mance computing (HPC) and remains one of the most widely used APIs for
building distributed message-passing applications. Given MPI’s wide adoption
in large-scale studies in science and engineering, it is important to have means
to establish some formal guarantees, like deadlock-freedom, on the behaviour of
MPI programs.

In this work, we present an automated method to discover communication
deadlocks in MPI programs that use blocking and nonblocking (asynchronous)
point-to-point communication calls (such as send and receive calls) and global
synchronization primitives (such as barriers). A communication deadlock (re-
ferred to simply as “deadlock” in this paper), as described in [19], is “a situation
in which each member process of the group is waiting for some member process
to communicate with it, but no member is attempting to communicate with it”.

Establishing deadlock-freedom in MPI programs is hard. This is primarily
due to the presence of nondeterminism that is induced by various MPI primitives
and the buffering/arbitration effects in the MPI nodes and the network. For
instance, a popular choice in MPI programs to achieve better performance (as
noted in [25]) is the use of receive calls with MPT_ANY_SOURCE argument; such calls
are called “wildcard receives”. A wildcard receive in a process can be matched
with any sender targeting the process, thus the matching between senders and

receivers is susceptible to network delivery nondeterminism. MPI calls such as
probe and wait are sources of nondeterminism as well. This prevalence—and
indeed, preference—for nondeterminism renders MPI programs susceptible to
the schedule-space explosion problem.

Additional complexity in analysing MPI programs is introduced when control-
flow decisions are based on random data, or when the data communicated to
wildcard receives is used to determine the subsequent control-flow of the pro-
gram. We call the programs that do not bear this complexity single-path MPI
programs. As many MPI programs are implemented as single-path programs,
we focus on verifying deadlock-freedom in programs where nondeterminism is
caused only by wildcard receives and where any control flow that could affect
inter-process communication is deterministic.

The rationale for focussing on single-path programs is also found in numerous
other domains. For instance, the single-path property is the basis of recent work
on verifying GPU kernels [15].

Popular MPI debuggers and program verifiers such as [16, 11, 14, 10] only offer
limited assistance in discovering deadlocks in programs with wildcard receives.
The debuggers concern themselves exclusively with the send-receive matches
that took place in the execution under observation: alternate matches that could
potentially happen in the same execution are not explored, nor reasoned about.

On the more formal side, tools such as model checkers can detect bugs
related to nondeterministic communication by exploring all relevant match-
ings/interleavings. However, such tools suffer from several known shortcomings.
In some cases, the model has to be constructed manually [21], while some tools
have to re-execute the entire program until the problematic matching is discov-
ered [24, 26]. These limitations prevent such tools from analysing MPI programs
that are complex, make heavy use of nondeterminism, or take long to run.

In contrast to established tools, we analyse MPI programs under two different
buffering modes: (i) the zero-buffering model, wherein the nodes do not provide
buffering and messages are delivered synchronously, and (ii) the infinite-buffering
model, under which asynchronously sent messages are buffered without limit.
These two models differ in their interpretation of the MPI Wait event. Under the
zero-buffering model, each wait call associated with a nonblocking send blocks
until the message is sent and copied into the address space of the destination
process. Under the infinite-buffering model, each wait call for a nonblocking send
returns immediately (see Section 2).

Contribution This paper presents two new results for single-path MPI pro-
grams. First, we demonstrate that even for this restricted class of programs, the
problem of deadlock detection is NP-complete (Section 3).

Second, we present a novel MPI analyser that combines a dynamic verifier
with a SAT-based analysis that leverages recent results on propositional encod-
ings of constraints over partial orders [1].

Our tool operates as follows: the dynamic verifier records an execution trace
in the form of a sequence of MPI calls. Then, we extract the per-process matches-

before partial order on those calls (defined in Section 2), specifying restrictions
on the order in which the communication calls may match on an alternative
trace. We then construct a sufficiently small over-approximate set of potential
matches [20] for each send and receive call in the collected trace. Subsequently,
we construct a propositional formula that allows us to determine whether there
exists a valid MPI run that respects the matches-before order and yields a dead-
lock. In our implementation of the propositional encoding, the potentially match-
ing calls are modelled by equality constraints over bit vectors, which facilitates
Boolean constraint propagation (BCP) in the SAT solver, resulting in good solv-
ing times.

Our approach is sound and complete for the class of single-path MPI pro-
grams we consider (modulo the buffering models which we implement): that is,
our tool reports neither false alarms nor misses any deadlock. Our experiments
indicate significant speedup compared to the analysis time observed when using
ISP [25] (In-situ Partial Order), which is a dynamic analyser that enumerates
matches explicitly.

For programs that are not single-path, our approach can still be used as a
per-path-oracle in a dynamic verifier or model checker that explores the relevant
control-flow paths. Finally, we believe that the presented encoding for MPI pro-
grams has a wider applicability to other popular programming languages that
provide message passing support, such as Erlang or Scala.

The paper is organized as follows: We begin by outlining the related work
and then introduce the necessary definitions in Section 2. In Sections 3 and 4
we present the complexity results for the studied problem and present our SAT
encoding. Then in Section 5 we present the evaluation of our work.

Related Work Deadlock detection is a central problem in the CCS community.
As an instance, DELFIN* [8] is a model checker for CCS that uses the A* algo-
rithm as a heuristic to detect errors early in the search. Process algebra systems,
like CCS and CSP, appear to be a natural fit to analyse MPI programs. How-
ever, to the best of our knowledge, no research exists that addresses the problem
of automatically building CSP/CCS models from MPI programs and analysing
them using CSP/CCS tools. Tools such as Pilot [2] support the implementation
of CSP models using MPI.

Petri nets are another popular formalism for modelling and analysing dis-
tributed systems. McMillan presented a technique to discover deadlocks in a
class of Petri nets called 1-safe Petri nets (featuring finite trace prefixes) and
proved the problem to be NP-complete. Nevertheless, we are not aware of any
polynomial-time reduction between this problem and the problem we study.

The work in [3,27] presents a predictive trace analysis methodology for mul-
tithreaded C/Java programs. The authors of [27] construct a propositional en-
coding of constraints over partial orders and pass it to a SAT solver. They utilize
the source code and an execution trace to discover a causal model of the system
that is more relaxed than the causal order computed in some of the prior work
in that area. This allows them to reason about a wider set of thread interleav-

ings and detect races and assertion violations which other work may miss. The
symbolic causal order together with a bound on the number of context switches
is used to improve the scalability of the algorithm. In our work, the concept of
context switch is irrelevant. The per-process matches-before relation suffices to
capture all match possibilities precisely, and consequently, there are neither false
positives nor false negatives. The tool presented in [1] addresses shared-variable
concurrent programs, and is implemented on top of the CBMC Bounded Model
Checker [4].

MCAPI (Multicore Communications API) [12] is a lightweight message pass-
ing library for heterogeneous multicore platforms. It provides support for a sub-
set of the calls found in MPI. For instance, MCAPI does not have deterministic
receives or collective operations. Thus, the class of deadlocks found in MCAPI
is a subset of the class of deadlocks in MPI. Deniz et al. provide a trace analysis
algorithm that detects potential deadlocks and violations of temporal assertions
in MCAPI [5]. The discovery of potential deadlocks is based on the construction
of AND Wait-for graphs and is imprecise. The work in [13, 7] discovers assertion
violations in MCAPI programs. While both present an order-based encoding,
the work in [7] does not exploit the potential matches relation, and thus yields
a much slower encoding [13].

Huang et al. [13] present an order-based SMT encoding using the potential
matches relation. The encoding is designed to reason about violations of asser-
tions on data, and does not allow to express the existence of deadlocks. The
paper furthermore shows that the problem of discovering assertion violations on
a trace is NP-complete. Due to the inherent difference of the problems studied,
our proof of NP-completeness is significantly more involved than the one of [13].
In particular, for a 3-CNF formula with n clauses, their work uses n assertions,
where each assertion itself is a disjunction of propositions (corresponding to the
literals in a clause of the 3-CNF formula). In our case, the satisfiability of all
clauses needs to be expressed by a possibility to form a single match.

TASS [23] is a bounded model checker that uses symbolic execution to verify
safety properties in MPI programs that are implemented using a strict subset
of C. It is predominantly useful in establishing the equivalence of sequential and
parallel versions of a numerically-insensitive scientific computing program. TASS
may report false alarms and the authors indicate that the potential deadlock
detection strategy does not scale when nondeterministic wildcard receives are
used [23].

2 Preliminaries

In this section we introduce the necessary definitions and formulate the problem
we study in this paper. For brevity, we refer to single-path MPI programs as
MPI programs.

MPI Programs An MPI program is given as a collection of N processes,
denoted by P, ..., Pn. We denote the events in process ¢ by a; ;, where j denotes

the index (i.e. the position within the process) at which the event a occurs. We
use the terms “event” and “MPI call” interchangeably. We define the per-process
order =,, on events as follows: a; ; =, by ¢ if and only if events a; ; and by ¢ are
from the same process (that is, ¢ = k), and the index of a is lower or equal to
the index of b (that is, j < ¢).

The list of MPI calls/events that we permit to occur in an MPI program
is as follows. A nonblocking (resp. blocking) send from P; to P; indexed at
program location k < |P;| is denoted by nS;x(j) (resp. S k(j)). Similarly,
a nonblocking (resp. blocking) receive call, nR; ;(j) (resp. bR; x(j)), indicates
that P; receives a message from P;. A wildcard receive is denoted by writing *
in place of j. We write just S and R when the distinction between a blocking
or nonblocking call is not important. The nonblocking calls return immediately.
A blocking wait call, which returns on successful completion of the associated
nonblocking call, is denoted by W; x(h; j), where h; ; indicates the index of the
associated nonblocking call from P;. A wait call to a nonblocking receive will
return only if a matching send call is present and the message is successfully
received in the destination address. By contrast, a wait call to a nonblocking
send will return depending on the underlying buffering model. According to the
standard [17] a nonblocking send is completed as soon as the message is copied
out of the sender’s address space. Thus, under the zero-buffering model the wait
call will return only after the sent message is successfully received by the receiver
since there is no underlying communication subsystem to buffer the message. In
contrast, under the infinite-buffering model the sent message is guaranteed to be
buffered by the underlying subsystem. We assume, without any loss of generality,
that message buffering happens immediately after the return of the nonblocking
send in which case the associated wait call will return immediately.

Let B, ; be a barrier call at process . Since barrier calls (in a process) syn-
chronise uniquely with a per-process barrier call from each process in the system,
all barrier matches are totally ordered. Thus, we use B; ;(d) to denote the barrier
call issued by the process ¢ that will be part of the d-th system-wide barrier call.
The process ¢ issuing the barrier blocks until all the other processes also issue
the barrier d. When the program location is not relevant, we replace it by “—".

Let C be the set of all MPI calls in the program, and C; the set of MPI calls
in P;, i.e., the set of MPI calls that P; may execute. A match is a subset of C
containing those calls that together form a valid communication. A set containing
matched send and receive operations, or a set of matched barrier operations, or
a singleton set containing a wait operation are all matches.

Furthermore, we define a matches-before partial order <,,,, which captures a
partial order among communication operations in C;. We refer the reader to [25]
for complete details on the matches-before order. This order is different for the
zero-buffering and infinite-buffering model. For the zero-buffering model, it is
defined to be the smallest order satisfying that for any a,b € C, a <m, b if
a <po b and one of the following conditions is satisfied:

— a is blocking;
— a, b are nonblocking send calls to the same destination;

— a is a nonblocking wildcard receive call and b is a receive call sourcing from
Py, (for some k), or a wildcard receive;
— a is a nonblocking call and b is the associated wait call.

When a is a nonblocking receive call sourcing from P}, and b is a nonblocking
wildcard receive call and the MPI program is at a state where both the calls
are issued but not matched yet, then a <., b is conditionally dependent on
the availability of a matching send for a (as noted in [25]). Due to its schedule-
dependent nature, we ignore this case in the construction of our encoding. In
our experience, we have not come across a benchmark that issues a conditional
matches-before edge.

In the case of the infinite-buffering model, the only change is that the last
rule does not apply when a is the non-blocking send; this corresponds to the
fact that all nonblocking sends are immediately buffered, and so all the waits for
such sends return immediately.

Since the only difference between the finite- and infinite-buffering model is
the way the order <,,, is defined, most of the constructions we present apply
for both models. When it is necessary to make a distinction, we will point this
out to the reader.

Semantics of MPI Programs We now define the behaviour of MPI programs.
The current state g = (I, M) of the system is described by the set of calls I that
have been issued, and a set of calls M C I that were issued and subsequently
matched. To formally define a transition system for an MPI program, we need
to reason about the calls that can be issued or matched in q. The first is denoted
by the set Issuable(q), which is defined as

Issuable((I,M)) = {x | Yy <poz:y € INVy <pox:if y € B, then y € M}

where B is the set of all blocking calls from C, i.e., it contains all waits, barriers
and blocking sends and receives. We call a set m C I\ M of calls ready in
q = (I, M) if for every a € m and every s <, a we have s € M. We then define

Matchable(q) = {{a,b} ready in ¢ | Fi,j a=S; _(j),b=R; _(i/*)} U
{{a} ready inq|3i: a=W,; _(h;_)} U
{{a1, -+ ,an} ready in ¢ | 3dVi € [1,N] : a; = B; _(d)}

The semantics of an MPI program P is given by a finite state machine S(P) =
(9, qo, A, &) where

— Q C 2¢ x 2€ is the set of states where each state ¢ is a tuple (I, M) satisfying
M C I, with I being the set of calls that were so far issued by the processes
in the program, and M being the set of calls that were already matched.

qo = {0,) is the starting state.

— A C 2€ is the set of actions.

0 C Q@ x A— Q is the transition function which is the union of two sets of
transitions (i) issue transitions, denoted by —;, and (ii) match transitions,
denoted by —,,.

o (I,M) % (IUa, M), if a C Issuable((I, M)) and |a| = 1.
o (I,M) %, (I, MUQ), if a« C Matchable({I, M)).
We then use ¢ = ¢’ to denote that (¢, a,¢’) € 8.

The set of potential matches M is defined by M = |, 5, Matchable(q), where
Y C Q is the set of states that can be reached on some trace starting in gq.
A trace is a sequence of states and transitions, gy —= ¢1 —> ... gnoty qn
beginning with ¢¢ such that g; N @i+ for every 0 < i < n.

The Deadlock Detection Problem A state (I, M) is deadlocking if M # C
and it is not possible to make any (issue or match) transition from (I, M). A trace
is deadlocking if it ends in a deadlocking state. In this paper, we are interested
in finding deadlocking traces and the problem we study is formally defined as
follows.

Definition 1. Given an MPI program P, the deadlock detection problem asks
whether there is a deadlocking trace in S(P).

3 Complexity of the Problem

In this section we prove the following theorem.

Theorem 1. The deadlock detection problem is NP-complete, for both the finite-
and infinite-buffering model.

The membership in NP follows easily. All traces are of polynomial size, be-
cause after every transition, new elements are added to the set of issued or
matched calls, and maximal size of these sets is |C|. Hence, we can guess a
sequence of states and actions, and check that they determine a deadlocking
trace. This check can be performed in polynomial time, because the partial or-
der =,,, can be computed in polynomial time, as well as the sets Issuable(q)
and Matchable(q), for any given state q.

Proving the lower bound of Theorem 1 is more demanding. We provide a
reduction from 3-SAT; the reduction applies to both finite- and infinite-buffering
semantics, because it only uses the calls whose semantics is the same under
both models. Let ¥ be a 3-CNF formula over propositional variables x1,...,x,
with clauses c1,...,c,. We create processes Ppos;, Pneg, and Pdec; for each
1 <i < n. As the names suggest, communication in process Ppos; (or Pneg;)
will correspond to positive (or negative) values of x;. The process Pdec; will
ensure that at most one of Ppos; and Pneg; can communicate before a certain
event, making sure that a value of x; is simulated correctly.

Further, for each 1 < j < m we create a process Pc;, and we also create three
distinguished processes, Pv, Pr and Ps. Hence, the total number of processes
is3-n+m+3.

The communication of the processes is defined in Figure 1. In the figure, the
expression Ve, 3w, : S pos,— (¢k) is a shorthand for several consecutive sends, one

Ppos, ‘ Pneg, ‘ Pdec; H Pc; H Pv ‘ Pr ‘ Ps

bSpos;,1(deci) | bSneg;,1(deci) bR aec; 1 (*)|[0Re; 1 (*)|| 0Sva1(r) |bRra1(x)| bRs1(c1)

Ve : Vegd—x; - bS dec;,2(v) bSe; 2 $)|| BRu2(x) [bR,2(s) :
bSpos;.— (k)| bSneg;.— (ck)|DRacc, 3(%)|[bRe; 3 (%) : bRy (Cm)
bRc; a(*)||bRo,m+1(*) bSs,m+1(r)

Fig. 1. The MPI program P(¥). Here i ranges from 1 to n, and j ranges from 1 to m.

to each Pci such that x; € cx. The order in which the calls are made is not
essential for the reduction.
To establish the lower bound for Theorem 1, we need to prove the following.

Lemma 1. A 3-CNF formula ¥ is satisfiable if and only if the answer to the
deadlock detection problem for P(¥) is yes.

The crucial observation for the proof of the lemma is that for a deadlock to
occur, the call S p41(r) must be matched with bR, ;(*): in such a case, the
calls bR, 2(s) and bS, 1(r) cannot find any match. In any other circumstance a
deadlock cannot occur, in particular note that any Sposi,,(ck), and Snegm,(ck)
can find a matching receive, because there are exactly 3 sends sent to every Pcy.

For bS5 m41(r) and bR, 1(*) to form a match together, calls bR, j(c;), 1 <
j < m, must find a match before Pv starts to communicate. To achieve this,
having a satisfying valuation v for ¥, for every 1 < i < n we match bSp,s..1(dec;)
or bSpeq, 1(dec;) with bRgec,1(x), depending on whether z; is true or false un-
der v. We then match the remaining calls of Ppos; or Pneg;, and because v is
satisfying, we know that eventually the call bS.; 2(s) can be issued and matched
with bR ;(c;), for all j.

On the other hand, if there is no satisfying valuation for ¥, then unless for
some 4 both the calls bS 05,1 (dec;) and bS e, (dec;) find a match, some bS., 2(s)
(and hence also bR, ;(c;)) remains unmatched. However, for both bS s, 1(dec;)
and bSneq, (dec;) to match, bSgec,2(v) must match some receive in Pv, which
violates the necessary condition for the deadlock to happen, i.e. that Pv does
not enter into any communication.

4 Propositional Encoding

In this section we introduce a propositional encoding for solving the deadlock
detection problem. Intuitively, a satisfying valuation for the variables in the
encoding provides a set of calls matched on a trace, a set of unmatched calls
that can form a match, and a set of matches together with a partial order on
them, which contains enough dependencies to ensure that the per-process partial
order is satisfied.

We will restrict the presentation to the problem without barriers, since barri-
ers can be removed by preprocessing, where for barrier calls B; _(d) and B; _(d)
and for any two calls @ and b such that a <., B; —(d) and B; _(d) <mo b we
assume a <,,, b. The barrier calls can then be removed without introducing
spurious models.

Our encoding contains variables m, and r, for every call a. Their intuitive
meaning is that a is matched or ready to be matched whenever m, or r, is
true, respectively. Supposing we correctly identify the set of matched and issued
calls on a trace, we can determine whether a deadlock has occurred. For this to
happen, there must be some unmatched call, and no potential match can take
place (i.e. for any potential match, some call was either used in another match,
or was not issued yet). Thus, we must ensure that we determine the matched
and issued calls correctly. We impose a preorder on the calls, where a occurs
before b in the preorder if a finds a match before b. To capture the preorder, we
use the variables t,; to denote that a matches before b, and s,; which stipulate
that a call a matches a receive b and hence they must happen at the same time;
note that this applies in the infinite buffering case as well.

Finally, we must ensure that ¢,, and s, correctly impose a preorder. We
use a bit vector clk, of size [log, |C|] for every call a, denoting the “time” at
which the call a happens, and stipulate that clk, < clky (resp. clk, = clky) if
tap (resp. Sqp) is true.

As part of the input, our encoding requires a set M+t D M containing sets
of calls which are type-compatible (i.e. all o that can be contained in some
Matchable(q) if we disregard the requirement for « to be ready). The reason for
not starting directly with M is that the problem of deciding whether a given
set a is a potential match, i.e. whether o € M, is NP-complete. This result can
be obtained as a simple corollary of our construction for Lemma 1. Hence, in
any practical implementation we must start with M*, since computing the set
M is as hard as the deadlock detecting problem itself. We will give a reasonable
candidate for M™ in the next section.

The formal definition of the encoding is presented in Figure 2. In the figure, S
and R are the sets containing all send and receive calls, respectively, Imm(a) =
{Z|x <mo a,V2 : T Zpno 2 Xmo @ = z € {x,a}} stands for the set of immediate
predecessors of a, and MT(a) = J{b | Ja € MT : a,b € a} \ {a} is the set of
all calls with which a can form a match. Further, clk, = clky, (resp. clk, < clky)
are shorthands for the formulae that are true if and only if the bit vector for a
encodes the value equal to (resp. lower than) the value of the bit vector for b.
The formula constructed contains O(|C|?) variables, and its size is in O(|C|?).

Correctness of the Encoding The correctness of the encoding is formally
established by Lemmas 2 and 4.

Lemma 2. For every deadlocking trace there is a satisfying assignment to the
variables in the encoding.

Proof. Given a deadlocking trace, we construct the satisfying assignment as fol-
lows. We set m, to true if and only if a is matched on the trace, and 7, true if

Partial order /\ /\ tab (1)

beC acImm(b)

Unique match for send /\ /\ (Sab = Sac) (2)
(a,b)eM* ceMT (a),c#b
Unique match for receive /\ /\ (Sab — —5cp) (3)

(a,b)eMt ceMT (b),c#a

Match correct /\ (ma — \/ Sba) A\ /\ (ma — \/ Sab) (4)

a€ER bEMT (a) acsS bEMT (a)
Matched only /\ (Sa — /\ ma) (5)
aeMt acx
No match possible /\ (\/ (ma V ﬁTa)) (6)
aeMtT a€a
All ancestors matched /\ (ry < /\ Ma) (7)
beC a€Imm(b)
Not all matched \/ Mg (8)
acC
Match only issued /\ (Ma — 7a) 9)
a€eC
Clock equality /\ (sab — (clka = clky) (10)
(a,b)EMTN(SXR)
Clock difference /\ (tab = (clka < clkp)) (1)
a,beC

Fig. 2. The SAT encoding for the deadlock detection. Here, empty conjunctions are
true and empty disjunctions are false.

and only if it is matched or if for every b <,,, a, my is true. This makes sure the
conditions (6)—(9) are satisfied.

We assign su to true if and only if {a,b} occurs as a match on the trace.
This ensures satisfaction of conditions of (2)—(5). Further, let oy ... be the
sequence of actions under which match transitions are taken on the trace. We
stipulate t,p if a € o; and b € o for ¢ < j. We also set clk, = i for every a € o
and every 4. This ensures satisfaction of the remaining conditions. ad

The following lemma follows easily from conditions (2) and (3).

Lemma 3. In every satisfying assignment to the variables in the encoding we
have that for every a, if s, and sq are true, then b =V, and also if sp, and
Spra are true, then b =1,

Lemma 4. For every satisfying assignment to the variables in the encoding
there is a deadlocking trace.

Proof. Given a satisfying assignment, we construct the trace as follows. Let A
be the set of all sends and waits such that a € A if and only if m,, is true, and let
a1 ...axg be an ordered sequence of elements in A such that for any a; and a;,
if clkq, < clkq,, then i < j. We further define a sequence § = a; ... ax, where
every «; contains a;, and if a; is a send, then «; also contains the unique receive b;
such that s,,p, is true. Such b; always exists, and is unique by Lemma 3. By (10)
the sequence 0 satisfies that whenever a € o; and b € a; and clk, < clky, then
1 < j. Moreover, for any ¢ we have that the proposition m, is true if and only if
¢ occurs in some «y; this follows by the construction of A and by (4) and (5).
We define a trace from the sequence 6 by stipulating that it visits the states

¢ = (L, M) = ({y | Fwrmpoy:oe (Ja}, |Ja)

1<e<i 1<e<i
for 0 <14 < K, where the part of the trace from ¢; to ¢;41 is defined to be

~ {bia}

¢ —— (L;U{bi1}, M;) {0r2) i e {in}

i (LU, - bis by M) S50 i

for (b1 bim} = {0 | 30 mp v i 2 € P\ {y | 30 2yt @ € Uycpey),
and where if b; j <po b; ¢, then j < £.

We now argue that the sequence above is indeed a valid trace in S(P). Firstly,
qo = {0, 0). Let i be largest number such that the sequence from go up to g; is a
valid trace. Let j be largest number such that the extension of this trace from g;
up to (I, M) = (I; U{bi1,...b; ;}, M;) is a valid trace. We analyse the possible
values of j, showing that each leads to a contradiction.

— Suppose 0 < j < n;. First, note that b; j41 & I U M, because b; j;1 does
not occur in {y | 3z =po ¥ : € Jy<p<; ar}. We need to show that b; j 11 €
Issuable((I, M)). T
If a <po bi j41, then by the definition of the sequence b; 1, ... b; »,, the element
a has been issued already. Further, if @ <0 b; j+1, then by (1) we have that
tab, ;4 18 true, and so clk, < clky, ;. ,. By the conditions (7) and (9) we have
that m, is true, and so @ must occur in some ay. We have argued that if
clkq < clky, .., then a € ay for £ <4, and so a € M.

Hence by definition b; j+1 € Issuable({I, M)).

— Suppose j = n;. We have argued above that for every element b € ;41 and
every a <mo b we have a € M. Also, b € I\ M, and so a1 is ready in (I, M).
Finally, we defined a; 11 to be either a singleton set containing a wait, or a set
containing compatible send and receive, hence, a; 11 € Matchable({I, M)).

Finally, we argue that the trace is deadlocking. By (8) and the construction
of the sequence 6 we have that Mg C C. We show that from qx = (I, M) it is
not possible to make a match transition, even after possibly making a number of

issue transitions. This proves that there is a deadlocking trace. Suppose that it

b . {b
is possible to make a match transition, and let us fix a suffix qx {vl—}+z Q1 {vri}%

ga ... ﬂn Gn 5 @. Note that because ¢, = (Ix U {b1,...,b,}, Mg), for

the transition under « to exist it must be the case that for any b € a and any
a <mo b we have a € M. But then by (7) all b € « satisfy that 7, is true. Then
by (6) we get that there is b € « for which my, is true, and so b € Mg, which
contradicts that the match transition under o can be taken in §,. a

5 Implementation and Experimental Results

The MOPPER, deadlock detection tool takes as input an MPI program and
outputs the result of the deadlock analysis. MOPPER first compiles and exe-
cutes the input program using ISP (In-Situ Partial order) [24]. The ISP tool
outputs a canonical trace of the input program, along with the matches-before
partial order <,,,. MOPPER then computes the M overapproximation as fol-
lows. The intial M is obtained by taking the union of all sets whose elements
are type-compatible (i.e., singleton sets containing a wait call, sets of barrier
calls containing individual calls from each process, and sets containing S; _(j)
together with R; _(i/%)), and then refining the set by removing the sets which
violate some basic rules implied by =,,,. Formally, the M+ we use is the largest
set satisfying

M* ={{a,b} |a=Si _(j),b= R; _(i/*),
Va' <mo a 3V Fmo b {a',b'} € MT,
VY <o b 30 Fmoa:{d b} e Mt}
U {{a} | a=Wiu(h;)}
U {{a1,---,an} | Vie[l,n],a; = B; _}.

The partial order <,,, and the over-approximation of M (matchsetapp) are
then used by MOPPER to construct the prepositional formula as explained in
the previous section. This prepositional formula is then passed to the SAT solver,
and when the computation finishes, the result is presented to the user, possibly
with a deadlocking trace.

Our experiments were performed on a 64-bit, quad-core, 3 GHz Xeon ma-
chine with 16 GB of memory, running Linux version 3.5. MOPPER uses ISP
version 0.2.0 [24] to generate the trace and MiniSat version 2.2.0 [6] to solve
the propositional formula. All our benchmarks are C MPI programs and the
sources of the benchmarks and the MOPPER tool can be found at http:
//www.cprover.org/mpi.

We compare the performance of MOPPER with the dynamic verifier that
is integrated in ISP. We instruct ISP to explore the matches exhaustively with
a time-out of two hours. We use a time-out of 30 minutes for MOPPER. We
also compare the bounded model checker TASS [23] with MOPPER; TASS is
configured to time-out after 30 minutes.

The results of the experiments are tabulated in Table 1. The table presents
the results under different buffering assumptions only for those benchmarks
where buffering had an impact. Note that the MOPPER running time does not

include the time it takes to generate the trace with ISP; the MOPPER numbers
do include the constraint generation and SAT solving time. Comparison of the
execution time of both tools is meaningful only when the benchmarks are single-
path. For the benchmarks where this is not the case MOPPER only explores a
subset of the scenarios that ISP explores.

To estimate the degree of match nondeterminism in the collected program
trace, we introduce a new metric p = |[M™|/mcount, where mcount is the number
of send and receive matches in the trace. Benchmarks with a high value of p have
a large set of potential matches. Since the metric relies on potential matches, p
could be greater than 1 even for a completely deterministic benchmark.

Benchmarks The benchmarks Diffusion2d and Integrate_mw are a part of the
FEVS benchmark suite [22]; these benchmarks exhibit high degree of nondeter-
minism, as indicated by their value of p. The Diffusion2d benchmark solves the
two-dimensional diffusion equation. In Diffusion2d, each node communicates its
local computation results with its neighbouring nodes which are laid out in a
grid fashion. The Integrate_.mw benchmark estimates the integral of a sine or
a cosine function in a given range. The integration tasks are dynamically al-
lotted to worker nodes by a master node. Due to this dynamic load balancing
by the master node, Integrate_mw is not a single-path MPI program. In order
to make Integrate_mw a single path benchmark, we modified the source to im-
plement static load balancing. In this single-path variant of the Integrate_mw
benchmark, the schedule space grows as n!/n where n is the number of processes.

The benchmarks Floyd and Gauss Elimination are from [28] and both are
single-path MPI programs. Floyd implements the all-pairs shortest path algo-
rithm and employs a pipelined communication pattern where each process com-
municates with the process immediately next in a ranking.

Monte is a benchmark from [9] that implements the Monte Carlo method
to compute the value of pi. It is implemented in a classic master-worker com-
munication pattern with dynamic load balancing. We have run this benchmark
without modification and thus cannot claim the results to be complete.

We have a set of 10 synthetic benchmarks with various deadlocking patterns
that are not discovered by the MPI runtime even after repeated runs. Among
them, we include only the DTG (dependence transition group [24]) benchmark.
The benchmark has seemingly unrelated pair of matches at the start state that do
not commute. Thus, selecting one match-pair over the other leads to a deadlock.
A run of ISP with optimization fails to discover the deadlock, however, when
the optimization is turned off, ISP discovers the deadlock after 3 runs.

A pattern similar to DTG exists in the Heat-errors benchmark [18]. This
benchmark implements the solution of the heat conduction equation. ISP dis-
covers the deadlock (when this benchmark is run on eight processes) in just over
two hours after exploring 5021 interleavings. The same deadlock is detected in
under a second by MOPPER.

For comparison of MOPPER with TASS we used the 64-bit Linux binary of
TASS version 1.1. Since TASS accepts only a limited subset of C, our exper-

Table 1. Experimental Results

MOPPER ISP

B'mark |#Calls|Procs| p |B|DI1?|#Vars|#Clauses| time ||#Runs| time
s 0|v 266 739 0.01 3 0.08
DTG 16] 5 11.33 0 483 1389 0.01 3 0.08
92| 8 [1.86]/0 2.7K 8.4K| 0.01 1 0.27
*Gauss Elim 188 16 [1.93|0 6.3K 19.9K| 0.02 1 0.36
380| 32 [1.97]0 14.3K 45.2K| 0.04 1 0.58
152 8 1.8/0| v 8.9K 27.2K| 0.03|| >2.5K TO
“Heat 312| 16 [1.84/0| v 20K 60.9K| 0.06| >2.5K TO
632| 32 [1.86|0| v | 44.9K| 136.9K| 0.18| >2.5K TO
120 8 7|co 14K 51K 1.4|| >20K TO
s 0 35.09K 128K| 16.37|| >20K TO
Floyd 256 16 17533 346K| 127.2K| 32.5| >20K| TO
508 32 | 78 0 79.34K 292K |161.26|| >20K TO
o] 78.28K| 288.5K|(122.39|| >20K TO
“Diffusion2d 52| 4 |2.82|c0 2.9K 9.6K| 0.01 90 29.1
108 8 5.7|c0 13.6K 49.9K TO|[>10.5K TO
*Pingping 23701 4 2.0|® 336K 1.16M| 1.15 >1k TO
28| 4 3.0|® 1.9K 6K| 0.01 6 0.04
mIntegrate 36| 8 | 4.0|® 1.8K 6.2K| 0.05 5040 216.72
46| 10 | 5.0|® 3.2K 11.6K| 20.4|| >13K TO
76| 16 | 7.0|® 10.7K 40.5K| TO|| >13K TO
35| 4 (2.42|cc 1K 3K| 0.00 6 0.76
Monte 75| 8 | 4.6|c0 3.6K 12.3K| 0.43 5040(1928.28
155 16 | 8.7|o0 15.6K 58K| TO|| >5.4K TO

2 Deadlock present T ISP misses the deadlock under optimized run
Ssingle-path ~ ® Buffering model irrelevant ™ Modified to single-path

imentation with TASS is restricted to only few benchmarks, namely Integrate
and the synthetic benchmarks. With these few benchmarks, the scalability of
TASS cannot be evaluated in an objective manner. We observed, however, that
the potential deadlock detection of TASS on our benchmarks was particularly
slow: the analysis of Integrate with TASS timed out when run for ten processes.
On the synthetic benchmarks, TASS was one order of magnitude slower than
MOPPER.

Discussion Our results show that the search for deadlocks using SAT and our
partial-order encoding is highly efficient compared to an existing, state-of-the-art
dynamic verifier. However, there is room for improvement in several directions.
Our encoding times out on three benchmarks. To address the time-out problem,
we can restrict our analysis to calls that match within a window enclosed by
barriers. Additionally, we can further refine Mt by discovering additional con-
straints under which matches really take place. Furthermore, our benchmarks
(and MPI programs in general) contain a high degree of communication symme-

try (groups of processes that follow the same control flow). We conjecture that
by exploiting this symmetry we can successfully perform a sound reduction of
the trace (i.e., without missing deadlocks). We also aim to support a larger class
of MPI programs by (i) extending the encoding for nondeterministic calls such
as waitsome and waitany, and (ii) covering data-dependent MPI programs.

6 Conclusion

We have investigated the problem of deadlock detection for a class of MPI pro-
grams with no control-flow nondeterminism. We have shown that finding a dead-
lock in such programs is NP-complete. We have further devised a SAT-based
encoding that can be successfully used to find deadlocks in real-world programs.
We have implemented the encoding as part of a new tool, called MOPPER, and
have provided an evaluation on benchmarks of various sizes. Our experiments
show that the tool outperforms the state-of-the-art model checker in the area.

There are several directions in which our tool can be improved, such as
handling larger subset of the MPI language, or reducing the size of the traces.
We plan to investigate these in our future work.

Acknowledgements The authors would like to thank Martin Brain, Alex Horn
and Saurabh Joshi for helpful discussions on the topic.

The authors were in part supported by EPSRC H017585/1 and J012564/1,
the EU FP7 STREP PINCETTE and ERC 280053. G. Narayanaswamy is a
Commonwealth Scholar, funded by the UK government. V. Forejt is also affili-
ated with Masaryk University, Czech Republic.

References

1. J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient bounded
model checking of concurrent software. In CAV, volume 8044 of LNCS, pages
141-157. Springer, 2013.

2. J. D. Carter, W. B. Gardner, and G. Grewal. The Pilot library for novice MPI
programmers. In PPoPP, pages 351-352. ACM, 2010.

3. F. Chen, T. F. Serbanuta, and G. Rosu. jPredictor: A predictive runtime analysis
tool for Java. In ICSE, pages 221-230. ACM, 2008.

4. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 2988 of LNCS, pages 168-176. Springer, 2004.

5. E. Deniz, A. Sen, and J. Holt. Verification and coverage of message passing mul-
ticore applications. ACM Trans. Design Autom. Electr. Syst., 17(3):23, 2012.

6. N. Eén and N. Soérensson. An extensible SAT-solver. In SAT, volume 2919 of
LNCS, pages 502-518. Springer, 2003.

7. M. Elwakil and Z. Yang. Debugging support tool for MCAPI applications. In
PDATAD, pages 20-25. ACM, 2010.

8. S. Gradara, A. Santone, and M. L. Villani. DELFIN™: An efficient deadlock de-
tection tool for CCS processes. J. Comput. Syst. Sci., 72(8):1397-1412, Dec. 2006.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI. MIT Press, 1999.

. W. Haque. Concurrent deadlock detection in parallel programs. Int. J. Comput.

Appl., 28(1):19-25, Jan. 2006.

T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and M. S. Miiller. MPI runtime
error detection with MUST: advances in deadlock detection. In SC, page 30, 2012.
J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and F. Schirrmeister.
Software standards for the multicore era. IEEE Micro, 29(3):40-51, May 2009.
Y. Huang, E. Mercer, and J. McCarthy. Proving MCAPI executions are correct
using SMT. In ASE, pages 26-36. IEEE, 2013.

B. Krammer, K. Bidmon, M. S. Miiller, and M. M. Resch. MARMOT: An MPI
analysis and checking tool. In PARCO, volume 13 of Advances in Parallel Com-
puting, pages 493-500. Elsevier, 2003.

A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and S. Lerner. Verifying
GPU kernels by test amplification. In PLDI, pages 383-394. ACM, 2012.

G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva. Deadlock detec-
tion in MPI programs. Concurrency and Computation: Practice and Experience,
14(11):911-932, 2002.

Message Passing Interface. http://www.mpi-forum.org/docs/mpi-2.2.

M. S. Mueller, G. Gopalakrishnan, B. R. de Supinski, D. Lecomber, and T. Hilbrich.
Dealing with MPI bugs at scale: Best practices, automatic detection, debugging,
and formal verification. http://scll.supercomputing.org/schedule/event_
detail.php?evid=tuti131.

N. Natarajan. A distributed algorithm for detecting communication deadlocks. In
FSTTCS, volume 181 of LNCS, pages 119-135. Springer, 1984.

S. Sharma, G. Gopalakrishnan, E. Mercer, and J. Holt. MCC: A runtime verifica-
tion tool for MCAPI user applications. In FMCAD, pages 41-44, 2009.

S. F. Siegel. Model checking nonblocking MPI programs. In Verification, Model
Checking, and Abstract Interpretation (VMCAI), volume 4349 of LNCS, pages 44—
58. Springer, 2007.

S. F. Siegel and T. K. Zirkel. FEVS: A functional equivalence verification suite
for high-performance scientific computing. Mathematics in Computer Science,
5(4):427-435, 2011.

S. F. Siegel and T. K. Zirkel. The Toolkit for Accurate Scientific Software. Tech-
nical Report UDEL-CIS-2011/01, Department of Computer and Information Sci-
ences, University of Delaware, 2011.

S. Vakkalanka. Efficient dynamic verification algorithms for MPI applications.
PhD thesis, University of Utah, Salt Lake City, UT, USA, 2010. AAI3413092.

S. S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby. Dynamic verification of
MPI programs with reductions in presence of split operations and relaxed orderings.
In CAV, LNCS, pages 66—79. Springer, 2008.

A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. de Supinski, M. Schulz,
and G. Bronevetsky. A scalable and distributed dynamic formal verifier for MPI
programs. In SC, pages 1-10. IEEE, 2010.

C. Wang, S. Kundu, M. K. Ganai, and A. Gupta. Symbolic predictive analysis
for concurrent programs. In FM, volume 5850 of LNCS, pages 256—272. Springer,
20009.

R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang, and G. Voelker.
MPIWiz: subgroup reproducible replay of MPI applications. In PPoPP, pages
251-260. ACM, 20009.

