Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology
New Delhi, India

Smruti R. Sarangi Leader Election

Outline

0 Motivation
e System Architecture

Q Evaluation

Smruti R. Sarangi Leader Election

Motivation

Motivation

@ Reliability is one of the biggest challenges for Amazon.

@ Amazon aims at 99.999% reliability (5 9s) (Less than 5 mins
per year)

@ Lack of reliability can translate into significant financial losses

@ The infrastructure consists of thousands of servers

e Servers and network components keep failing.
e Customers need an always-on experience.

Smruti R. Sarangi Leader Election

Motivation

@ Highly available key-value store.
@ Serves a diverse set of applications

@ Services — Best seller’s list, shopping carts, customer pref-
erences, sales rank, product catalog

@ Served 3 million shopping checkouts in a single day

@ Manages session state for thousands of concurrently active
sessions

@ Provides a simple key-value interface over the network

Smruti R. Sarangi Leader Election

Motivation

Assumptions and Requirements

@ Query Model — Simple key-value access

@ ACID properties — Providesonly A, |,and D

@ Latency requirements — 99.9% of all accesses satisfy the
SLA

@ SLA = Service Level Agreement

e Maximum Latency
e Maximum client request rate

Smruti R. Sarangi Leader Election

Motivation

System Diagram

YRR

(‘server) (‘Server) (Server) (Server)

— Request Routing —

—— Request Routing —

v \ Storage

Dynamo Dynamo Other

Smruti R. Sarangi Leader Election

Motivation

Key Principles of the Design

Incremental Scalability : Should be able to scale one node
at a time.

Symmetry : Every node should have the same responsibil-
ity.

Decentralization : Peer to peer system

Heterogeneity : Needs to be able to exploit heterogeneous
capabilities of servers.

Eventual Consistency:

@ A get operation returns a set of versions (need not contain
latest value).
@ A write ultimately succeeds.

Smruti R. Sarangi Leader Election

System Architecture

Basic Operations

@ get(key) Returns all the versions of an item (context).

@ put(key,object, context) Add the object corresponding to the
key in the database.

Smruti R. Sarangi Leader Election

System Architecture

Partitioning

@ Uses consistent hashing (similar to Chord) to distribute keys
in a circular space.

@ Each item is assigned to its successor.
@ Uses the notion of virtual nodes for load balancing.
@ A physical node is responsible for multiple virtual nodes.

@ For fault tolerance, the key is assigned to N successors (
preference list).

@ One of these N successors, is the co-ordinator node.

Smruti R. Sarangi Leader Election

System Architecture

Data Versioning

A put call might return before the update has propagated
to all replicas.

If there is a failure then some replicas might get the update
after a very long time.

Some applications such as “add to shopping cart” (write),
need to always complete. (Prioritize Writes)

Each new version of data is treated as a new and immutable
version of data (recall Percolator).

If there are failures and concurrent updates, then version
branching may occur.

Reconciliation needs to be performed among multiple up-
dates

e Can be done at the server side (generic logic)

e Can be done at the client side (semantic merging)

Smruti R. Sarangi Leader Election

System Architecture

Vector Clocks for Versioning

@ A vector clock, contains an entry for each server in the pref-

erence list.
@ When a server updates an object, it increments its vector
clock.

@ If there are concurrent modifications, then a get operation
returns all versions.

@ The put operation indicates the version.
@ The put is considered a merge operation.
o Example =

Smruti R. Sarangi Leader Election

System Architecture

Vector Clock Example

write handled
by A

FEiAT

write handled
by A

v2 [A2

write handled write handled
by B by C

|v3 [A,2, B,1]| |v4 [A,2, C,1]|
rites reconciled
by A
[v5[A,3,B,1, C1]|

Smruti R. Sarangi Leader Election

System Architecture

Execution of get() and put()

@ Send the request to any node that will forward it to the co-
ordinator (like Pastry).

@ Or, directly find the successor.

@ The nodes ideally access the preference list (or top N healthy
nodes)

@ There is a read quorum of R nodes, and write quorum of W
nodes

e R+ W>N

@ For a put request, the co-ordinator merges the versions, and
broadcasts it to the quorum

@ For a get request, the co-ordinator sends all the concurrent
versions to the client

Smruti R. Sarangi Leader Election

System Architecture

Sloppy Quorum

@ Uses the first N healthy nodes (typically the preference list)

@ If a node cannot deliver an update to node A, then it will
send it to node D with a hint

@ Once Arecovers, D will transfer the object
@ For added reliability the quorum spans across data centers

Smruti R. Sarangi Leader Election

System Architecture

Synchronization across Replicas

@ Nodes maintain Merkle trees = The parent is the hash of
the children.

@ A Merkel tree contains the set of keys mapped to each vir-
tual node per physical node.

@ Nodes regularly exchange Merkle trees, through an anti-
entropy based algorithm.

@ Trees need to be often recalculated.

Smruti R. Sarangi Leader Election

System Architecture

Maintaining Membership

@ Dynamo maintains membership information through explicit
join and leave requests.

@ Ring membership changes are infrequent.

@ Additionally a gossip based protocols propagates ring mem-
bership information across randomly chosen nodes.

@ For 1-Hop routing nodes maintain large routing tables.
@ All routing, membership, and placement propagates through
an anti-entropy based gossip protocols.

@ To prevent logical partitions, some nodes act as seeds ,
and synchronize information across peers.

Smruti R. Sarangi Leader Election

System Architecture

Load Balancing and Failure Detection

@ Failure detection is also done with gossip style protocols.

@ Allocation and De-allocation happens in the same manner
as Chord.

Smruti R. Sarangi Leader Election

Evaluation

@ Three different types of storage engines

e In memory buffer with persistent backing store.
o Berkely DB
e MySQL DB

@ Request co-ordination
e Communication through Java NIO channels

Smruti R. Sarangi Leader Election

Evaluation

Result: Read-Write Response Time

@ In the peak season of December 2006.

@ The average read time varied periodically (time period: 2
hours) between 12 to 18 ms.

@ The average write time varied periodically (2 hours) be-
tween 21 to 30 ms.

@ The 99 percentile values were roughly 10 times more.

Smruti R. Sarangi Leader Election

Evaluation

Result: BDB vs Buffered Writes

@ The 99.9" percentile response time for buffered writes was
between 40 and 60 ms.

@ For direct BDB writes the fluctuations were much more (be-
tween 40 and 180 ms).

Smruti R. Sarangi Leader Election

Evaluation

Discussion

@ Reconciliation Methods
@ Business Logic Based Reconciliation : Shopping cart
e Time stamp based Reconciliation (last write wins): Cus-
tomer session management

Smruti R. Sarangi Leader Election

Evaluation

[Dynamo: Amazon’s Highly Available Key-Value Store, De-
candia et. al.

Smruti R. Sarangi Leader Election

	Motivation
	System Architecture
	Evaluation

