Mutual Exclusion
Tokenless and Token Based Algorithms

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology
New Delhi, India

Smruti R. Sarangi Pastry

0 Tokenless Algorithms
@ Ricart-Agarwala Algorithm
@ Maekawa’s Algorithm

9 Token Based Algorithms
@ Suzuki-Kasami Algorithm
@ Raymond’s Tree Algorithm

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Outline

0 Tokenless Algorithms
@ Ricart-Agarwala Algorithm

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Motivation

@ Lamport’s algorithm required 3(N-1) messages.
@ Insight:

Do we really have to send a timestamped reply message?

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Motivation

@ Lamport’s algorithm required 3(N-1) messages.
@ Insight:

Do we really have to send a timestamped reply message?

@ Solution
e Lamport’s algorithm sent an acknowledgement immediately.
o Let us hold on to the acknowledgement and piggy back it
with a release message.
e We can reduce the number of messages per critical section
to 2(N-1).

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Algorithm

Requesting the Lock

@ P; sends a timestamped request message to all other
nodes.
@ When P receives a request, it sends a reply if:
e P;is neither holding the lock, not is it interested in acquiring
it. OR
e P;’s request timestamp is smaller than P;’s request times-
tamp, and P; is not holding the lock. (means that /; made
an earlier request)

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring and Releasing the Lock

Acquiring the Lock
A process acquires the lock when it has received N —1 replies .

Releasing the Lock

A process replies to all pending requests after it releases the
lock.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Proof
@ Assume P; and P; both have a lock at the same time.
@ Assume that P; has a lower request timestamp.

@ This means that P; must have gotten P;’s request after its
request.

@ According to the algorithm, P; cannot send a reply to P;.

@ Hence, P; does not have the lock.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Outline

0 Tokenless Algorithms

@ Maekawa’s Algorithm

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Can we do better?

@ The main reason for a linear number of messages is:

@ We send a message to all the sites.
@ We also expect replies from all of them.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Can we do better?

@ The main reason for a linear number of messages is:
@ We send a message to all the sites.
@ We also expect replies from all of them.
@ Can we send a message to a subset of sites?
o Let a set of processes associated with a process be called
its request set (R)).
e For any two processes, P; and P;, we have: R; N R; # 0.
o The minimum value of | R; | is V/N.
e It is possible to construct this using results from field theory.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Simpler construction R; = 2v/N

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock

@ P; sends a timestamped request message to every node
in A; including itself.

@ Upon receiving a request message a node P; € R; marks
itself as locked , if it is not already locked. It returns a
locked reply to P;.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock

@ P; sends a timestamped request message to every node
in A; including itself.

@ Upon receiving a request message a node P; € R; marks
itself as locked , if it is not already locked. It returns a
locked reply to P;.

@ If P is already locked by a request from Px.

@ P, places the request in a wait queue.
@ If the locking request or any other request in the queue pre-

cedes the current request, then send a failed message.
© Otherwise, send an inquire message to Px.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock - Il

@ When P, receives an inquire message:
@ If P, has received a failed message, and knows that it can-
not succeed, it sends a relinguish message.
@ Otherwise, it defers the reply.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock - Il

@ When P, receives an inquire message:
@ If P, has received a failed message, and knows that it can-
not succeed, it sends a relinguish message.
@ Otherwise, it defers the reply.
@ When P, receives the relinquish message:
@ It locks itself for the earliest message from P! in its wait
queue (might be P)).
@ ltsends a locked message to P;.
@ It adds the request from Py to its wait queue.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock - Il

@ When P, receives an inquire message:

@ If P, has received a failed message, and knows that it can-
not succeed, it sends a relinguish message.
@ Otherwise, it defers the reply.

@ When P; receives the relinquish message:
@ It locks itself for the earliest message from P! in its wait
queue (might be P)).
@ ltsends a locked message to P;.
@ It adds the request from Py to its wait queue.
@ A process acquires the lock when it has received locked
messages from its entire request set.

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Releasing the Lock

@ A process sends released messages to all the processes
in its request set.

@ A process in the request set, locks itself for the earliest re-
quest in the wait queue. It sends it a locked message.

@ If there is no such request, then it marks its status as un-
locked .

Smruti R. Sarangi Pastry

Tokenless Algorithms Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Mutual Exclusion

Assume two processes P; and P; have the lock simultaneously.

@ There must be a node P, that must have given locked mes-
sages to both the processes.

@ This is not possible .

Deadlock

Not possible because because we order the requests by their
timestamp.

Ultimately, a request will become the earliest message in the
system.

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Outline

9 Token Based Algorithms
@ Suzuki-Kasami Algorithm

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Main Idea

@ A site can access the lock(critical section) if it has a token.
@ Every process maintains a sequence number (request id)
e Arequestis of the form (i, m) . This means that P; wants its
m'" access to the lock.
e P; keeps an array seqi[1...N].
e seqj[j] is the largest sequence number received from j.
e When P; receives (j,m) , it sets

seqilj] = max(seqi[j], m)

@ Token
@ A queue(Q) of requesting sites.
@ An array of sequence numbers C.
© CJi] is the sequence number of the latest request that P;
executed.

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Requesting the Lock

@ Pi: seq;[i] + +, val « seq;li]
@ Sends (i, val) to all sites
@ When P, receives (i, val)
o seqj[i] < max(seqjli], val)
e Ifthe token is idle and with P; then it sends it to P; if seq;[i] «
Clil +1.

@ P; enters the critical section when it has the token.

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Releasing the Lock

Releasing the Lock
P; releases the lock as follows:

@ CJi] «+ seqili]
@ Vj,adds P;to Q if seqi[j] = C[j] +1.
@ Dequeues P, from Q, and sends the token to Py

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Releasing the Lock

Releasing the Lock
P; releases the lock as follows:

@ CJi] «+ seqili]
@ Vj,adds P;to Q if seqi[j] = C[j] +1.
@ Dequeues P, from Q, and sends the token to Py

Message Overhead: 0 or N

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

A requesting process gets the lock in finite time.
@ The request will reach all the processes in finite time.

@ By induction, one of these processes will have the token in
finite time.

@ Thus the current request will get added to Q.
@ There can at most be N — 1 messages before it.

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Outline

9 Token Based Algorithms

@ Raymond’s Tree Algorithm

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Main Idea

request queue

@ Nodes are arranged as a tree. Every node has a parent
pointer.

@ Each node has a FIFO queue of requests.

@ There is one token with the root and the owner of the token
can enter the critical section.

@ Message Complexity: approximately O(log(N)) for trees
with high fan-out

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Dynamic Nature of the Tree

request queue

\ L
~

09(’0
““f\

request queue

@ As the token moves across nodes, the parent pointers change.
@ They always point towards the holder of the token.

@ |t is thus possible to reach the token by following parent
pointers.

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Requesting for the Token

Requesting a Token

@ The node adds “self” in its request queue.
@ Forwards the request to the parent.
@ The parents adds the request to its request queue.

@ Ifthe parent does not hold the token and it has not sent any
requests to get the token, it sends a request to its
for the request.

@ This process continues till we reach the root (holder of the
token).

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Releasing a Token

Releasing a Token

@ Ultimately a request will reach the token holder.
@ The token holder will wait till it is done with the critical sec-

tion.
@ It will forward the token to the node at the head of its request
queue.

o It removes the entry.
o It updates its pointer.

@ Any subsequent node will do the following:
o Dequeue the head of the queue.
o If “self” was at the head of its request queue, then it will enter
the critical section.
o Otherwise, it forwards the token to the dequeued entry.
@ After forwarding the entry, a process needs to make a fresh
request for the token , if it has outstanding entries in its
request queue.

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm
Token Based Algorithms Raymond’s Tree Algorithm

Correctness

Mutual Exclusion

@ No two nodes can have a token at the same time, and thus
cannot be in the CS at one time.

Deadlock

@ Circular wait cannot occur because all the nodes wait on the
node that holds the token .

© Messages cannot get lost because all the time our
pointers ensure that we have a rooted tree.

@ Ultimately a starved process’s request will come to the front of
all the request queues.

© At this point it will have the highest priority, and the token will
have to flow back to the starved process.

Smruti R. Sarangi Pastry

Suzuki-Kasami Algorithm

Token Based Algorithms Raymond’s Tree Algorithm

[§ A /N Algorithm for Mutual Exclusion in Decentralized Sys-
tems by Mamoru Maekawa, ACM Transactions on Computer
Systems, 1985

Smruti R. Sarangi Pastry

	Tokenless Algorithms
	Ricart-Agarwala Algorithm
	Maekawa's Algorithm

	Token Based Algorithms
	Suzuki-Kasami Algorithm
	Raymond's Tree Algorithm

