
Tokenless Algorithms
Token Based Algorithms

Mutual Exclusion
Tokenless and Token Based Algorithms

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Pastry 1/25

Tokenless Algorithms
Token Based Algorithms

Outline

1 Tokenless Algorithms
Ricart-Agarwala Algorithm
Maekawa’s Algorithm

2 Token Based Algorithms
Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Smruti R. Sarangi Pastry 2/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Outline

1 Tokenless Algorithms
Ricart-Agarwala Algorithm
Maekawa’s Algorithm

2 Token Based Algorithms
Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Smruti R. Sarangi Pastry 3/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Motivation

Lamport’s algorithm required 3(N-1) messages.
Insight:

Question
Do we really have to send a timestamped reply message?

Solution
Lamport’s algorithm sent an acknowledgement immediately.
Let us hold on to the acknowledgement and piggy back it
with a release message.
We can reduce the number of messages per critical section
to 2(N-1).

Smruti R. Sarangi Pastry 4/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Motivation

Lamport’s algorithm required 3(N-1) messages.
Insight:

Question
Do we really have to send a timestamped reply message?

Solution
Lamport’s algorithm sent an acknowledgement immediately.
Let us hold on to the acknowledgement and piggy back it
with a release message.
We can reduce the number of messages per critical section
to 2(N-1).

Smruti R. Sarangi Pastry 4/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Algorithm

Requesting the Lock
Pi sends a timestamped request message to all other
nodes.
When Pj receives a request, it sends a reply if:

Pj is neither holding the lock, not is it interested in acquiring
it. OR
Pi ’s request timestamp is smaller than Pj ’s request times-
tamp, and Pj is not holding the lock. (means that Pi made
an earlier request)

Smruti R. Sarangi Pastry 5/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring and Releasing the Lock

Acquiring the Lock
A process acquires the lock when it has received N−1 replies .

Releasing the Lock

A process replies to all pending requests after it releases the
lock.

Smruti R. Sarangi Pastry 6/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Proof

Pi Pj

Proof
Assume Pi and Pj both have a lock at the same time.
Assume that Pi has a lower request timestamp.
This means that Pi must have gotten Pj ’s request after its
request.
According to the algorithm, Pi cannot send a reply to Pj .
Hence, Pj does not have the lock.

Smruti R. Sarangi Pastry 7/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Outline

1 Tokenless Algorithms
Ricart-Agarwala Algorithm
Maekawa’s Algorithm

2 Token Based Algorithms
Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Smruti R. Sarangi Pastry 8/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Can we do better?

The main reason for a linear number of messages is:
1 We send a message to all the sites.
2 We also expect replies from all of them.

Can we send a message to a subset of sites?
Let a set of processes associated with a process be called
its request set (Ri).
For any two processes, Pi and Pj , we have: Ri ∩ Rj 6= 0.
The minimum value of | Ri | is

√
N.

It is possible to construct this using results from field theory.

Smruti R. Sarangi Pastry 9/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Can we do better?

The main reason for a linear number of messages is:
1 We send a message to all the sites.
2 We also expect replies from all of them.

Can we send a message to a subset of sites?
Let a set of processes associated with a process be called
its request set (Ri).
For any two processes, Pi and Pj , we have: Ri ∩ Rj 6= 0.
The minimum value of | Ri | is

√
N.

It is possible to construct this using results from field theory.

Smruti R. Sarangi Pastry 9/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Simpler construction Ri = 2
√

N

Ri

Rj

Smruti R. Sarangi Pastry 10/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock

Pi sends a timestamped request message to every node
in Ri including itself.
Upon receiving a request message a node Pj ∈ Ri marks
itself as locked , if it is not already locked. It returns a
locked reply to Pi .

If Pj is already locked by a request from Pk .
1 Pj places the request in a wait queue.
2 If the locking request or any other request in the queue pre-

cedes the current request, then send a failed message.
3 Otherwise, send an inquire message to Pk .

Smruti R. Sarangi Pastry 11/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock

Pi sends a timestamped request message to every node
in Ri including itself.
Upon receiving a request message a node Pj ∈ Ri marks
itself as locked , if it is not already locked. It returns a
locked reply to Pi .
If Pj is already locked by a request from Pk .

1 Pj places the request in a wait queue.
2 If the locking request or any other request in the queue pre-

cedes the current request, then send a failed message.
3 Otherwise, send an inquire message to Pk .

Smruti R. Sarangi Pastry 11/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock - II

When Pk receives an inquire message:
1 If Pk has received a failed message, and knows that it can-

not succeed, it sends a relinguish message.
2 Otherwise, it defers the reply.

When Pj receives the relinquish message:
1 It locks itself for the earliest message from P ′

i in its wait
queue (might be Pi).

2 It sends a locked message to P ′
i .

3 It adds the request from Pk to its wait queue.

A process acquires the lock when it has received locked
messages from its entire request set.

Smruti R. Sarangi Pastry 12/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock - II

When Pk receives an inquire message:
1 If Pk has received a failed message, and knows that it can-

not succeed, it sends a relinguish message.
2 Otherwise, it defers the reply.

When Pj receives the relinquish message:
1 It locks itself for the earliest message from P ′

i in its wait
queue (might be Pi).

2 It sends a locked message to P ′
i .

3 It adds the request from Pk to its wait queue.

A process acquires the lock when it has received locked
messages from its entire request set.

Smruti R. Sarangi Pastry 12/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Acquiring a Lock - II

When Pk receives an inquire message:
1 If Pk has received a failed message, and knows that it can-

not succeed, it sends a relinguish message.
2 Otherwise, it defers the reply.

When Pj receives the relinquish message:
1 It locks itself for the earliest message from P ′

i in its wait
queue (might be Pi).

2 It sends a locked message to P ′
i .

3 It adds the request from Pk to its wait queue.

A process acquires the lock when it has received locked
messages from its entire request set.

Smruti R. Sarangi Pastry 12/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Releasing the Lock

A process sends released messages to all the processes
in its request set.
A process in the request set, locks itself for the earliest re-
quest in the wait queue. It sends it a locked message.
If there is no such request, then it marks its status as un-
locked .

Smruti R. Sarangi Pastry 13/25

Tokenless Algorithms
Token Based Algorithms

Ricart-Agarwala Algorithm
Maekawa’s Algorithm

Proof

Mutual Exclusion
Assume two processes Pi and Pj have the lock simultaneously.

There must be a node Pk that must have given locked mes-
sages to both the processes.
This is not possible .

Deadlock
Not possible because because we order the requests by their
timestamp.

Starvation
Ultimately, a request will become the earliest message in the
system.

Smruti R. Sarangi Pastry 14/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Outline

1 Tokenless Algorithms
Ricart-Agarwala Algorithm
Maekawa’s Algorithm

2 Token Based Algorithms
Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Smruti R. Sarangi Pastry 15/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Main Idea

A site can access the lock(critical section) if it has a token.
Every process maintains a sequence number (request id)

A request is of the form (i ,m) . This means that Pi wants its
mth access to the lock.
Pi keeps an array seqi [1 . . .N].
seqi [j] is the largest sequence number received from j .
When Pi receives (j ,m) , it sets

seqi [j] = max(seqi [j],m)

Token
1 A queue(Q) of requesting sites.
2 An array of sequence numbers C.
3 C[i] is the sequence number of the latest request that Pi

executed.

Smruti R. Sarangi Pastry 16/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Requesting the Lock

Requesting the Lock

Pi : seqi [i] + +, val ← seqi [i]
Sends (i , val) to all sites
When Pj receives (i , val)

seqj [i]← max(seqj [i], val)
If the token is idle and with Pj then it sends it to Pi if seqj [i]←
C[i] + 1.

Pi enters the critical section when it has the token.

Smruti R. Sarangi Pastry 17/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Releasing the Lock

Releasing the Lock

Pi releases the lock as follows:

C[i]← seqi [i]
∀j , adds Pj to Q if seqi [j] = C[j] + 1.
Dequeues Pk from Q , and sends the token to Pk

Message Overhead: 0 or N

Smruti R. Sarangi Pastry 18/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Releasing the Lock

Releasing the Lock

Pi releases the lock as follows:

C[i]← seqi [i]
∀j , adds Pj to Q if seqi [j] = C[j] + 1.
Dequeues Pk from Q , and sends the token to Pk

Message Overhead: 0 or N

Smruti R. Sarangi Pastry 18/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Proof

A requesting process gets the lock in finite time.
The request will reach all the processes in finite time.
By induction, one of these processes will have the token in
finite time.
Thus the current request will get added to Q .
There can at most be N − 1 messages before it.

Smruti R. Sarangi Pastry 19/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Outline

1 Tokenless Algorithms
Ricart-Agarwala Algorithm
Maekawa’s Algorithm

2 Token Based Algorithms
Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Smruti R. Sarangi Pastry 20/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Main Idea

request queue

request

Nodes are arranged as a tree. Every node has a parent
pointer.
Each node has a FIFO queue of requests.
There is one token with the root and the owner of the token
can enter the critical section.
Message Complexity: approximately O(log(N)) for trees
with high fan-out

Smruti R. Sarangi Pastry 21/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Dynamic Nature of the Tree

request queue

request

request queue
request

As the token moves across nodes, the parent pointers change.
They always point towards the holder of the token.
It is thus possible to reach the token by following parent
pointers.

Smruti R. Sarangi Pastry 22/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Requesting for the Token

Requesting a Token

The node adds “self” in its request queue.
Forwards the request to the parent.
The parents adds the request to its request queue.
If the parent does not hold the token and it has not sent any
requests to get the token, it sends a request to its parent
for the request.
This process continues till we reach the root (holder of the
token).

Smruti R. Sarangi Pastry 23/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Releasing a Token

Releasing a Token
Ultimately a request will reach the token holder.
The token holder will wait till it is done with the critical sec-
tion.
It will forward the token to the node at the head of its request
queue.

It removes the entry.
It updates its parent pointer.

Any subsequent node will do the following:
Dequeue the head of the queue.
If “self” was at the head of its request queue, then it will enter
the critical section.
Otherwise, it forwards the token to the dequeued entry.

After forwarding the entry, a process needs to make a fresh
request for the token , if it has outstanding entries in its
request queue.

Smruti R. Sarangi Pastry 24/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

Correctness

Mutual Exclusion
1 No two nodes can have a token at the same time, and thus

cannot be in the CS at one time.

Deadlock
1 Circular wait cannot occur because all the nodes wait on the

node that holds the token .
2 Messages cannot get lost because all the time our parent

pointers ensure that we have a rooted tree.

Starvation
1 Ultimately a starved process’s request will come to the front of

all the request queues.
2 At this point it will have the highest priority, and the token will

have to flow back to the starved process.

Smruti R. Sarangi Pastry 25/25

Tokenless Algorithms
Token Based Algorithms

Suzuki-Kasami Algorithm
Raymond’s Tree Algorithm

A
√

N Algorithm for Mutual Exclusion in Decentralized Sys-
tems by Mamoru Maekawa, ACM Transactions on Computer
Systems, 1985

Smruti R. Sarangi Pastry 25/25

	Tokenless Algorithms
	Ricart-Agarwala Algorithm
	Maekawa's Algorithm

	Token Based Algorithms
	Suzuki-Kasami Algorithm
	Raymond's Tree Algorithm

