
15-410, S’131

NFS & AFS
Apr. 1, 2013

Dave EckhardtDave Eckhardt

Garth GIbsonGarth GIbson

L28_NFSAFS

15-410

15-410, S’132

Synchronization

Crash box?Crash box?
 Debugging your whole kernel onto hardware at once is

harder than debugging a smaller partial kernel

TodayToday
 NFS, AFS

 Partially covered by textbook: 11.9, 17.6

 Chapter 17 is short, why not just read it?

15-410, S’133

Outline

Why remote file systems?Why remote file systems?

VFS interceptionVFS interception

NFSv2/v3 vs. AFSNFSv2/v3 vs. AFS
 Ping-pong mode: 5 topics discussed twice

NFSv4NFSv4
 Partial description of evolution

Why talk about NFSv2?Why talk about NFSv2?
 Still in use in some situations

 Better shows how design influences results

15-410, S’134

Why?

Why remote file systems?Why remote file systems?

Lots of “access data everywhere” technologiesLots of “access data everywhere” technologies
 Laptops

 iPods

 Multi-gigabyte flash-memory keychain USB devices

Are remote file systems dinosaurs?Are remote file systems dinosaurs?

15-410, S’135

Remote File System Benefits
ReliabilityReliability

 Not many people carry multiple copies of data

 Multiple copies with you aren't much protection

 Backups are nice

 Machine rooms are nice

» Temperature-controlled, humidity-controlled

» Fire-suppressed

 Time travel is nice too

SharingSharing
 Allows multiple users to access data

 May provide authentication mechanism

15-410, S’136

Remote File System Benefits

ScalabilityScalability
 Large disks are cheaper

Locality of referenceLocality of reference
 You don't use every file every day...

 Why carry everything in expensive portable storage?

AuditabilityAuditability
 Easier to know who said what when with central storage...

15-410, S’137

VFS interception

VFS provides “pluggable” file systemsVFS provides “pluggable” file systems

Standard flow of remote accessStandard flow of remote access
 User process calls read()

 Kernel dispatches to VOP_READ() in some VFS

 nfs_read()

 check local cache

 send RPC to remote NFS server

 block process

15-410, S’138

VFS interception

Standard flow of remote access (continued)Standard flow of remote access (continued)
 client kernel process manages call to server

 retransmit if necessary

 convert RPC response to file system buffer

 store in local cache

 unblock user process

 back to nfs_read()

 copy bytes to user memory

Same story for AFSSame story for AFS

15-410, S’139

Comparisons

Compared todayCompared today
 Sun Microsystems NFS (mostly we discuss v2/v3)

 CMU/IBM/Transarc/IBM/OpenAFS.org AFS

Architectural assumptions & goalsArchitectural assumptions & goals
 Architectural assumptions & goals

 Namespace

 Authentication, access control

 I/O flow

 Rough edges

Wrap-up: NFS v4 evolutionWrap-up: NFS v4 evolution

15-410, S’1310

NFSv2 Assumptions, goals

Workgroup file systemWorkgroup file system
 Small number of clients

 Very small number of servers

Single administrative domainSingle administrative domain
 All machines agree on “set of users”

 ...which users are in which groups

 Client machines run mostly-trusted OS

 “User #37 says read(...)”

15-410, S’1311

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

15-410, S’1312

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)Some inherently “stateful” operations (locking!!)

15-410, S’1313

NFSv2 Assumptions, goals

““Stateless” file serverStateless” file server
 Of course files are “state”, but...

 Server exports files without creating extra state

 No list of “who has this file open”

 No “pending transactions” across crash

 Result: crash recovery “fast”, protocol “simple”

Some inherently “stateful” operations (locking!!)Some inherently “stateful” operations (locking!!)
 Handled by “separate service” “outside of NFS”

 Slick trick, eh?

15-410, S’1314

AFS Assumptions, goals

Global distributed file systemGlobal distributed file system
 Uncountable clients, servers

 “One AFS”, like “one Internet”

 Why would you want more than one?

Multiple administrative domainsMultiple administrative domains
 username@cellname

 de0u@andrew.cmu.edu

 davide@cs.cmu.edu

15-410, S’1315

AFS Assumptions, goals

Client machines are un-trustedClient machines are un-trusted
 Must prove they act for a specific user

 Secure RPC layer

 Anonymous “system:anyuser”

Client machines have disks (!!)Client machines have disks (!!)
 Can cache whole files over long periods

Write/write and write/read sharing are rareWrite/write and write/read sharing are rare
 Most files updated by one user

 Most users on one machine at a time

15-410, S’1316

AFS Assumptions, goals

Support Support manymany clients clients
 1000 machines could cache a single file

 Some local, some (very) remote

15-410, S’1317

NFS Namespace

Constructed by client-side file system mountsConstructed by client-side file system mounts
 mount server1:/usr/local /usr/local

 mount server2:/usr/spool/mail /usr/spool/mail

Group of clients Group of clients can achievecan achieve common namespace common namespace
 Every machine can execute same mount sequence at boot

 If system administrators are diligent

15-410, S’1318

NFS Namespace

““Auto-mount” process mounts based on “maps”Auto-mount” process mounts based on “maps”
 /home/dae means server1:/home/dae

 /home/owens means server2:/home/owens

Referring to something in /home may trigger an Referring to something in /home may trigger an
automatic mountautomatic mount

 “After a while” the remote file system may be
automatically unmounted

15-410, S’1319

NFS Security

Client machine presents credentialsClient machine presents credentials
 user #, list of group #s – from Unix process

Server accepts or rejects credentialsServer accepts or rejects credentials
 “root squashing”

 map uid 0 to uid -1 unless client on “special machine” list

Kernel process on server “adopts” credentialsKernel process on server “adopts” credentials
 Sets user #, group vector based on RPC

 Makes system call (e.g., read()) with those credentials

15-410, S’1320

AFS Namespace

Assumed-global list of AFS cellsAssumed-global list of AFS cells

Everybody sees same files in each cellEverybody sees same files in each cell
 Multiple servers inside cell invisible to user

Group of clients Group of clients can achievecan achieve private namespace private namespace
 Use custom cell database

15-410, S’1321

AFS Security

Client machine presents Kerberos ticketClient machine presents Kerberos ticket
 Allows arbitrary binding of (machine,user) to

(realm,principal)

 davide on a cs.cmu.edu machine can be
de0u@andrew.cmu.edu

 iff the password is known!

Server checks against Server checks against access control listaccess control list

15-410, S’1322

AFS ACLs

Apply to directory, not to individual filesApply to directory, not to individual files

ACL formatACL format
 de0u rlidwka

 davide@cs.cmu.edu rl

 de0u:friends rl

Negative rightsNegative rights
 Disallow “joe rl” even though joe is in de0u:friends

15-410, S’1323

AFS ACLs

AFS ACL semantics are not Unix semanticsAFS ACL semantics are not Unix semantics
 Some parts obeyed in a vague way

 Cache manager checks for files being executable, writable

 Many differences

 Inherent/good: can name people in different administrative
domains

 “Just different”

» ACLs are per-directory, not per-file

» Different privileges: create, remove, lock

15-410, S’1324

NFS protocol architecture

root@client executes “mount filesystem” RPCroot@client executes “mount filesystem” RPC
 returns “file handle” for root of remote file system

client RPC for each pathname componentclient RPC for each pathname component
 /usr/local/lib/emacs/foo.el in /usr/local file system

 h = lookup(root-handle, “lib”)

 h = lookup(h, “emacs”)

 h = lookup(h, “foo.el”)

 Allows disagreement over pathname syntax

 Look, Ma, no “/”!

15-410, S’1325

NFS protocol architecture

I/O RPCs are I/O RPCs are idempotentidempotent
 multiple repetitions have same effect as one

 lookup(h, “emacs”) generally returns same result

 read(file-handle, offset, length) same bytes⇒

 write(file-handle, offset, buffer, bytes) “ok”⇒

RPCs do not create server-memory stateRPCs do not create server-memory state
 no RPC calls for open()/close()

 write() succeeds (to disk), or fails, before RPC completes

15-410, S’1326

NFS file handles

GoalsGoals
 Reasonable size

 Quickly map to file on server

 “Capability”

 Hard to forge, so possession serves as “proof”

Implementation (inode #, inode generation #)Implementation (inode #, inode generation #)
 inode # - small, fast for server to map onto data

 “inode generation #” - must match value stored in inode

 “unguessably random” number chosen in create()

15-410, S’1327

NFS Directory Operations

Primary goalPrimary goal
 Insulate clients from server directory format

ApproachApproach
 readdir(dir-handle, cookie, nbytes) returns list

 name, inode # (for display by ls -l), cookie

15-410, S’1328

AFS protocol architecture

VolumeVolume = miniature file system = miniature file system
 One user's files, project source tree, ...

 Unit of disk quota administration, backup

 Mount points are pointers to other volumes

Client machine has Cell-Server DatabaseClient machine has Cell-Server Database
 /afs/andrew.cmu.edu is a cell

 protection server handles authentication

 volume location server maps volumes to file servers

15-410, S’1329

AFS protocol architecture

Volume location is Volume location is dynamicdynamic
 Moved between servers transparently to user

Volumes may have multiple Volumes may have multiple replicasreplicas
 Increase throughput, reliability

 Restricted to “read-only” volumes

 /usr/local/bin

 /afs/andrew.cmu.edu/usr

15-410, S’1330

AFS Callbacks
ObservationsObservations

 Client disks can cache files indefinitely

 Even across reboots

 Many files nearly read-only

 Contacting server on each open() is wasteful

Server issues Server issues callback promisecallback promise
 “If this file changes in 15 minutes, I will tell you”

 Via callback break message

 15 minutes of free open(), read() for that client

 More importantly, 15 minutes of peace for server

15-410, S’1331

AFS file identifiers

AFS “fid” has three partsAFS “fid” has three parts
 Volume number

 Each file lives in a volume

 Unlike NFS “server1's /usr0”

 File number

 inode # (as NFS)

 “Uniquifier”

 allows inodes to be re-used

 Similar to NFS file handle inode generation #s

15-410, S’1332

AFS Directory Operations

Primary goalPrimary goal
 Don't overload servers!

ApproachApproach
 Server stores directory as hash table on disk

 Client fetches entire directory as if a file

 Client parses hash table

 Directory maps name to fid

 Client caches directory (indefinitely, across reboots)

 Server load reduced

15-410, S’1333

AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)open(“/afs/cs.cmu.edu/service/systypes”)
 VFS layer hands off “/afs” to AFS client module

 Client maps cs.cmu.edu to pt & vldb servers

 Client authenticates to pt server

 Client volume-locates root.cell volume

 Client fetches “/” directory

 Client fetches “service” directory

 Client fetches “systypes” file

15-410, S’1334

AFS access pattern

open(“/afs/cs.cmu.edu/service/newCSDB”)open(“/afs/cs.cmu.edu/service/newCSDB”)
 VFS layer hands off “/afs” to AFS client module

 Client fetches “newCSDB” file

open(“/afs/cs.cmu.edu/service/systypes”)open(“/afs/cs.cmu.edu/service/systypes”)
 Assume

 File is in cache

 Server hasn't broken callback

 Callback hasn't expired

 Client can read file with no server interaction

15-410, S’1335

AFS access pattern

Data transfer is by Data transfer is by chunkschunks
 Minimally 64 KB

 May be whole-file

WriteWritebackback cache cache
 AFSv2 stored entire file back atomically

 AFSv3 stores “chunks” back to server

 When cache overflows

 On last user close()

15-410, S’1336

AFS access pattern

Is writeback crazy?Is writeback crazy?
 Write conflicts “assumed rare”

 Who needs to see a half-written file?

 Locking can be used (often isn't)

15-410, S’1337

NFS v2/v3 “rough edges”

LockingLocking
 Inherently stateful

 lock must persist across client calls

» lock(), read(), write(), unlock()

 “Separate service”

 Handled by same server

 Horrible things happen on server crash

 Horrible things happen on client crash

15-410, S’1338

NFS v2/v3 “rough edges”

Some operations not really idempotentSome operations not really idempotent
 unlink(file) returns “ok” once, then “no such file”

 server caches “a few” client requests

CachingCaching
 No real consistency guarantees

 Clients typically cache attributes, data “for a while”

 No way to know when they're wrong

15-410, S’1339

NFS v2/v3 “rough edges”

Large NFS installations are brittleLarge NFS installations are brittle
 Everybody must agree on many mount points

 Hard to load-balance files among servers

 No volumes

 No atomic moves

Cross-realm NFS access basically nonexistentCross-realm NFS access basically nonexistent
 No good way to map uid#47 from an unknown host

15-410, S’1340

AFS “rough edges”

LockingLocking
 Server refuses to keep a waiting-client list

 Client cache manager refuses to poll server

 Result

 Lock returns “locked” or “try again later”

 User program must invent polling strategy

Chunk-based I/OChunk-based I/O
 No real consistency guarantees

 close() failures are surprising to many programs

15-410, S’1341

AFS “rough edges”

ACLs apply to directoriesACLs apply to directories
 “Makes sense” if files in a directory logically should be

protected the same way

 Not always true

 Confuses users

New directories inherit ACL from parentNew directories inherit ACL from parent
 Easy to expose a whole tree accidentally

 What else to do?

 No good solution known

 (Though complex solutions exist...)

15-410, S’1342

AFS “rough edges”

Small AFS installations are punitiveSmall AFS installations are punitive
 Step 1: Install Kerberos

 2-3 servers

 Inside locked boxes!

 Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)

 Step 3: Explain Kerberos to your users

 Ticket expiration!

 Step 4: Explain ACLs to your users

15-410, S’1343

Summary - NFSv2

Workgroup network file serviceWorkgroup network file service

Any Unix machine can be a server (easily)Any Unix machine can be a server (easily)

Machines can be both client & serverMachines can be both client & server
 My files on my disk, your files on your disk

 Everybody in group can access all files

Serious trust, scaling problemsSerious trust, scaling problems

““Stateless file server” model only partial successStateless file server” model only partial success

15-410, S’1344

Summary – AFS

Worldwide file systemWorldwide file system

Good security, scalingGood security, scaling

Global namespaceGlobal namespace

““Professional” server infrastructure per cellProfessional” server infrastructure per cell
 Don't try this at home

 Only ~200 AFS cells

 9 are cmu.edu, ~15 are in Pittsburgh

 These numbers are basically static since 2002

““No write conflict” model only partial successNo write conflict” model only partial success

15-410, S’1345

NFSv4 Changes

Genuine authenticationGenuine authentication
 Each client RPC is authenticated via Kerberos

ACL'sACL's
 “Like NTFS”, “Like POSIX”

 Include allow/deny, plus audit/alarm

 “Create file” is a separate ability from “create directory'

 Can specify different access for “network user” and
“dialup user” (???)

 NFSv4 ACL's don't match any OS native ACL format

 Server can approximate or reject any ACL you try to set

15-410, S’1346

NFSv4 Changes

Compound RPCCompound RPC
 open()+lock()+read()+write()+unlock()+close() in one

packet

 Can look up multiple pathname components

 Greatly speeds up performance on long-latency wide-area
networks

““Delegations” of file data & metadata to clientsDelegations” of file data & metadata to clients
 More general than AFS callbacks

Better locking architectureBetter locking architecture
 Locks can persist across crashes

 Requires tricky “client identification” semantics

15-410, S’1347

NFSv4 Changes

Other additionsOther additions
 Replication of mostly-read-only trees

 “Redirect” support for file relocation

 Tricky pathname-rewrite step

NFSv4.2 in progressNFSv4.2 in progress
 Multi-realm operation

 Parallel NFS

15-410, S’1348

Conclusions

NFS v2NFS v2
 Goals limited to near-term achievability

AFSAFS
 Available-now large cells and cross-realm operation

NFS v4NFS v4
 Evolution may be a better strategy than revolution!

15-410, S’1349

Further Reading

NFSNFS
 RFC 1094 for v2 (3/1989)

 RFC 1813 for v3 (6/1995)

 RFC 3530 for v4 (4/2003, not yet universally available)

15-410, S’1350

Further Reading

AFSAFS
 “The ITC Distributed File System: Principles and Design”,

Proceedings of the 10th ACM Symposium on Operating
System Principles, Dec. 1985, pp. 35-50.

 “Scale and Performance in a Distributed File System”,
ACM Transactions on Computer Systems, Vol. 6, No. 1,
Feb. 1988, pp. 51-81.

 IBM AFS User Guide, version 36

 http://www.cs.cmu.edu/~help/afs/index.html

	Title
	Synchronization
	Outline
	Slide 4
	Remote File System Benefits
	Slide 6
	VFS interception
	Slide 8
	Comparison
	NFSv2 Assumptions, goals
	Slide 11
	Slide 12
	Slide 13
	AFS Assumptions, goals
	Slide 15
	Slide 16
	NFS Namespace
	Slide 18
	NFS Security
	AFS Namespace
	AFS Security
	AFS ACLs
	Slide 23
	NFS protocol architecture
	Slide 25
	NFS file handles
	NFS Directory Operations
	AFS protocol architecture
	Slide 29
	AFS Callbacks
	AFS file identifiers
	AFS Directory Operations
	AFS access pattern
	Slide 34
	Slide 35
	Slide 36
	NFS “rough edges”
	Slide 38
	Slide 39
	AFS “rough edges”
	Slide 41
	Slide 42
	Summary - NFS
	Summary – AFS
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Further Reading
	Slide 50

