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Introduction to Computer Architecture

Welcome to the exciting world of computer architecture. Computer architecture is the study
of computers. We shall study the basic design principles of computers in this book including
the basic technologies, algorithms, design methodologies and future trends.

The field of computer architecture is a very fast moving field, and every couple of years
there are a plethora of new inventions. Fifty years ago, the existence of computers was almost
unknown to the common man. Computers were visible only in large financial institutions or in
top universities. However, today billions of people all over the world have access to some form
of computing device. They use it actively, and have found a place for it in their daily activities.
Such kind of an epic transformation in the use, and ubiquity of computers has made the field
of computer architecture extremely interesting.

In this chapter, we shall present an overview of computer architecture from an academic
standpoint, and explain the major principles behind today’s computers. We shall observe that
there are two perspectives in computer architecture. We can look at computer architecture
from the point of view of software applications. This point of view is sometimes referred to as
architecture in literature. It is very important for students of computer architecture to study
computer architecture from the viewpoint of a software designer because they need to know
about the expectations of software writers from hardware. Secondly, it is also important for
software writers to know about computer architecture because they can tailor their software
appropriately to make it more efficient. In the case of system software such as operating systems
and device drivers, it is absolutely essential to know the details of the architecture because the
design of such kind of software is very strongly interlinked with low level hardware details.

The other perspective is the point of view of hardware designers. Given the software inter-
face, they need to design hardware that is compatible with it and also implement algorithms
that make the system efficient in terms of performance and power. This perspective is also
referred to as organisation in literature.
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Definition 1

Architecture The view of a computer presented to software designers.

Organisation The actual implementation of a computer in hardware.

Computer architecture is a beautiful amalgam of software concepts and hardware concepts.
We design hardware to make software run efficiently. Concomitantly, we also design software
keeping in mind the interface and constraints presented by hardware. Both the perspectives
run hand in hand. Let us start out by looking at the generic definition of a computer.

1.1 What is a Computer?

Let us now answer the following questions.

Question 1
What is a computer?
What it can do, and what it cannot do?
How do we make it do intelligent things?

Let us start out with some basic definitions. The first question that we need to answer is –
What is a computer? Well to answer this question, we just need to look all around us. We are
surrounded by computers. Nowadays, computers are embedded in almost any kind of device
such as mobile phones, tablets, mp3 players, televisions, dvd players, and obviously desktops
and laptops. What is common between all of these devices? Well, each one of them has a
computer that performs a specific task. For example, the computer in a mp3 player can play a
song, and the computer in a dvd player can play a movie. It is absolutely not necessary that the
mp3 player and dvd player contain different types of computers. In fact, the odds are high that
both the devices contain the same type of computer. However, each computer is programmed
differently, and processes different kinds of information. An mp3 player processes music files,
and a dvd player processes video files. One can play a song, while the other can play a video.

Using these insights, let us formally define a computer in Definition 2.

Definition 2
A computer is a general purpose device that can be programmed to process information, and
yield meaningful results.
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Figure 1.1: A basic computer

Note that there are three important parts to the definition as shown in Figure 1.1 – the
computer, information store, and the program. The computer takes as an input a program,
and in response performs a set of operations on the information store. At the end it yields
meaningful results. A typical program contains a set of instructions that tell the computer
regarding the operations that need to be performed on the information store. The information
store typically contains numbers and pieces of text that the program can use. Let us consider
an example.

Example 1
Here is a snippet of a simple C program.

1: a = 4;

2: b = 6;

3: c = a + b;

4: print c

A computer will produce the output - 10. This C program contains four statements.
Here, each statement can conceptually be treated as an instruction. Each statement instructs
the computer to do something. Statements 1 and 2 instruct the computer to assign the
variables a and b, the values 4 and 6 respectively. Statement 3 instructs the computer to
add a and b, and assign the result to variable c. Finally, statement 4 instructs the computer
to print the value of c (output of the program).

Given the fact that we have defined a computer as a sophisticated device that follows the
instructions in a program to produce an output, let us see how it can be built. Modern day
computers are made of silicon based transistors and copper wires to connect them. How-
ever, it is absolutely not necessary that computers need to be built out of silicon and copper.
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Figure 1.2:

Researchers are now looking at building computers with electrons (quantum computers), pho-
tons(optical computers), and even DNA. If we think about it, our own brains are extremely
powerful computers themselves. They are always in the process of converting thoughts(program)
into action(output).

1.2 Structure of a Typical Desktop Computer

Let us now open the lid of a desktop computer, and see what is inside (shown in Figure 1.2).
There are three main parts of a typical desktop computer – CPU (Central Processing Unit),
Main Memory, and Hard Disk. The CPU is also referred to as the processor or simply machine
in common parlance. We will use the terms interchangeably in this book. The CPU is the
main part of the computer that takes a program as input, and executes it. It is the brain of
the computer. The main memory is used to store data that a program might need during its
execution (information store). For example, let us say that we want to recognise all the faces in
an image. Then the image will be stored in main memory. There is some limited storage on the
processor itself. However, we shall discuss this aspect later. When we turn off the power, the
processor and main memory lose all their data. However, the hard disk represents permanent
storage. We do not expect to lose our data when we shut down the system. This is because all
our programs, data, photos, videos, and documents are safely backed up in the hard disk.

Figure 1.3 shows a simplistic block diagram of the three components. Along with these main
components, there are a host of peripheral components that are connected to the computer. For
example, the keyboard and mouse are connected to a computer. They take inputs from the user
and communicate them to programs running on the processor. Similarly, to show the output
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Figure 1.3: Block diagram of a simple computer

of a program, the processor typically sends the output data to a monitor that can graphically
display the result. It is also possible to print the result using a printer. Lastly the computer
can be connected to other computers through the network. A revised block diagram with all
the peripherals is shown in Figure 1.4.
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Figure 1.4: Block diagram of a simple computer with peripherals

In this book, we will mainly study the processor. The processor has the central responsibility
of executing programs, communicating with the main memory, hard disk, and peripherals. It is
the only active unit in our entire system. The others are passive and only respond to requests.
They do not have any computational capability of their own.

1.3 Computers are Dumb Machines

Irrespective of the underlying technology, a fundamental concept that we need to understand
is that a computer is fundamentally a dumb machine. Unlike our brains, it is not endowed with
abstract thought, reason, and conscience. At least at the moment, computers cannot take very
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sophisticated decisions on their own. All they can do is execute a program. Nonetheless, the
reason computers are so powerful is because they are extremely good at executing programs.
They can execute billions of basic instructions per second. This makes them dumb yet very
fast. A comparison of the computer with the human brain is shown in Table 1.1.

Feature Computer Our Brilliant Brain

Intelligence Dumb Intelligent

Speed of basic calculations Ultra-fast Slow

Can get tired Never After some time

Can get bored Never Almost always

Table 1.1: Computer vs the brain

If we combine the processing power of computers, with intelligent programs written by
the human brain, we have the exquisite variety of software available today. Everything from
operating systems to word processors to computer games is written this way.

The basic question that we need to answer is :

Question 2
How, do we make a dumb machine do intelligent things?

Computers are these tireless machines that can keep on doing calculations very quickly
without ever complaining about the monotonicity of the work. As compared to computers, our
brains are creative, tire easily, and do not like to do the same thing over and over again. To
combine the best of both worlds, our brains need to produce computer programs that specify
the set of tasks that need to be performed in great detail. A computer can then process the
program, and produce the desired output by following each instruction in the program.

Hence, we can conclude that we should use the creative genius of our brains to write pro-
grams. Each program needs to contain a set of basic instructions that a computer can process.
Henceforth, a computer can produce the desired output. An instruction is defined as a basic
command that can be given to a computer.

1.4 The Language of Instructions

We observe that to communicate with a computer, we need to speak its language. This language
consists of a set of basic instructions that the computer can understand. The computer is not
smart enough to process instructions such as, “calculate the distance between New Delhi and
the North Pole”. However, it can do simple things like adding two numbers. This holds for
people as well. For example, if a person understands only Spanish, then there is no point
speaking to her in Russian. It is the responsibility of the person who desires to communicate to
arrange for a translator. Likewise, it is necessary to convert high level thoughts and concepts
to basic instructions that are machine understandable.
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Programmers typically write programs in a high level language such as C or JavaTM. These
languages contain complex constructs such as structures, unions, switch-case statements, classes
and inheritance. These concepts are too complicated for a computer to handle. Hence, it is
necessary to pass a C or C++ program through a dedicated program called a compiler that
can convert it into a sequence of basic instructions. A compiler effectively removes the burden
of creating machine (computer) readable code from the programmer. The programmer can
concentrate only on the high level logic. Figure 1.5 shows the flow of actions. The first step
is to write a program in a high level language (C or C++). Subsequently, the second step
involves compiling it. The compiler takes the high level program as input, and produces a
program containing machine instructions. This program is typically called an executable or
binary. Note, that the compiler itself is a program consisting of basic machine instructions.

Program Executable Output
compile execute

Figure 1.5: Write-compile-execute

Let us now come to the semantics of instructions themselves. The same way that any
language has a finite number of words, the number of basic instructions/rudimentary commands
that a processor can support have to be finite. This set of instructions is typically called the
instruction set. Some examples of basic instructions are: add, subtract, multiply, logical or,
and logical not. Note that each instruction needs to work on a set of variables and constants,
and finally save the result in a variable. These variables are not programmer defined variables;
they are internal locations within the computer. We define the term instruction set architecture
as:

Definition 3
The semantics of all the instructions supported by a processor is known as the instruction
set architecture (ISA). This includes the semantics of the instructions themselves, along
with their operands, and interfaces with peripheral devices.

The instruction set architecture is the way that software perceives hardware. We can think
of it as the list of basic functions that the hardware exports to the external world. It is the,
“language of the computer”. For example, Intel and AMD CPUs use the x86 instruction set,
IBM processors use the PowerPC R© instruction set, HP processors use the PA-RISC instruction
set, and the ARM processors use the ARM R© instruction set (or variants of it such as Thumb-1
and Thumb-2). It is thus not possible to run a binary compiled for an Intel system on an ARM
based system. The instruction sets are not compatible. However, in most cases it is possible
to reuse the C program. To run a C program on a certain architecture, we need to procure a
compiler for that specific architecture, and then appropriately compile the C program.
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1.5 Instruction Set Design

Let us now begin the difficult process of designing an instruction set for a processor. We can
think of an instruction set as a legal contract between software and hardware. Both sides
need to implement their side of the contract. The software part needs to ensure that all the
programs that users write can be successfully and efficiently translated to basic instructions.
Likewise, hardware needs to ensure that all the instructions in the instruction set are efficiently
implementable. On both sides we need to make reasonable assumptions. An ISA needs to have
some necessary properties and some desirable properties for efficiency. Let us first look at a
property, which is absolutely necessary.

1.5.1 Complete - The ISA should be able to Implement all User Programs

This is an absolutely necessary requirement. We want an ISA to be able to represent all
programs that users are going to write for it. For example, if we have an ISA with just an ADD
instruction, then we will not be able to subtract two numbers. To implement loops, the ISA
should have some method to re-execute the same piece of code over and over again. Without
this support for and while loops in C programs will not work. Note that for general purpose
processors, we are looking at all possible programs. However, a lot of processors for embedded
devices have limited functionality. For example, a simple processor that does string processing
does not require support for floating point numbers (numbers with a decimal point). We need
to note that different processors are designed to do different things, and hence their ISAs can
be different. However, the bottom line is that any ISA should be complete in the sense that it
should be able to express all the programs in machine code that a user intends to write for it.

Let us now explore the desirable properties of an instruction set.

1.5.2 Concise – Limited Size of the Instruction Set

We should ideally not have a lot of instructions. We shall see in Chapter 8 that it takes a fairly
non-trivial amount of hardware to implement an instruction. Implementing a lot of instructions
will unnecessarily increase the number of transistors in the processor and increase its complexity.
Consequently, most instruction sets have somewhere between 64 to 1000 instructions. For
example, the MIPS instruction set contains 64 instructions, whereas the Intel x86 instruction
set has roughly a 1000 instructions as of 2012. Note that 1000 is considered a fairly large
number for the number of instructions in an ISA.

1.5.3 Generic – Instructions should Capture the Common Case

Most of the common instructions in programs are simple arithmetic instructions such as add,
subtract, multiply, divide. The most common logical instructions are logical and, or, exclusive-
or, and not. Hence, it makes sense to dedicate an instruction to each of these common opera-
tions.

It is not a good idea to have instructions that implement a very rarely used computation.
For example, it might not make sense to implement an instruction that computes sin−1(x). It
is possible to provide dedicated library functions that compute sin−1(x) using existing mathe-
matical techniques such as Taylor series expansion. Since this function is rarely used by most
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programs, they will not be adversely affected if this function takes a relatively long time to
execute.

1.5.4 Simple – Instructions should be Simple

Let us assume that we have a lot of programs that add a sequence of numbers. To design a
processor especially tailored towards such programs, we have several options with regards to
the add instruction. We can implement an instruction that adds two numbers, or we can also
implement an instruction that can take a list of operands, and produce the sum of the list.
There is clearly a difference in complexity here, and we cannot say which implementation is
faster. The former approach requires the compiler to generate more instructions; however, each
add operation executes quickly. The latter approach generates a fewer number of instructions;
but, each instruction takes longer to execute. The former type of ISA is called a Reduced
Instruction Set, and the latter ISA type is called a Complex Instruction Set. Let us give two
important definitions here.

Definition 4
A reduced instruction set computer (RISC) implements simple instructions that have a
simple and regular structure. The number of instructions is typically a small number (64
to 128). Examples: ARM, IBM PowerPC, HP PA-RISC

Definition 5
A complex instruction set computer (CISC) implements complex instructions that are highly
irregular, take multiple operands, and implement complex functionalities. Secondly, the
number of instructions is large (typically 500+). Examples: Intel x86, VAX

The RISC vs CISC debate used to be a very contentious issue till the late nineties. However,
since then designers, programmers, and processor vendors have been tilting towards the RISC
design style. The consensus seems to be go for a small number of relatively simple instructions
that have a regular structure and format. It is important to note that this point is still debat-
able as CISC instructions are sometimes preferable for certain types of applications. Modern
processors typically use a hybrid approach where they have simple, as well as some complicated
instructions. However, under the hood CISC instructions are translated into RISC instructions.
Hence, we believe that the scale tilts slightly more towards RISC instructions. We shall thus
consider it a desirable property to have simple instructions.

Important Point 1
An ISA needs to be complete, concise, generic, and simple. It is necessary to be complete,
whereas the rest of the properties are desirable (and sometimes debatable).
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Way Point 1
We have currently considered the following concepts.

• Computers are dumb yet ultra-fast machines.

• Instructions are basic rudimentary commands used to communicate with the processor.
A computer can execute billions of instructions per second.

• The compiler transforms a user program written in a high level language such as C to
a program consisting of basic machine instructions.

• The instruction set architecture(ISA) refers to the semantics of all the instructions
supported by a processor.

• The instruction set needs to be complete. It is desirable if it is also concise, generic,
and simple.

Let us subsequently look at the conditions that ensure the completeness of an ISA. We will
then try to create a concise, simple, and generic ISA in Chapter 3.

1.6 How to Ensure that an ISA is Complete?

This is a very interesting, difficult, and theoretically profound question. The problem of finding
if a given ISA is complete for a given set of programs, is a fairly difficult problem, and is beyond
the scope of the book. The general case is far more interesting. We need to answer the question:

Question 3
Given an ISA, can it represent all possible programs?

We will need to take recourse to theoretical computer science to answer this question. Casual
readers can skip Sections 1.6.1 to 1.6.6 without any loss in continuity. They can directly proceed
to Section 1.6.7, where we summarise the main results.

1.6.1 Towards a Universal ISA*

Let us try to answer Question 3. Assume that we are given an ISA that contains the basic
instructions add, and multiply. Can we use this ISA to run all possible programs? The answer
is no, because we cannot subtract two numbers using the basic instructions that we have. If we
add the subtract instruction to our repertoire of instructions, can we compute the square root
of a number? Even if we can, is it guaranteed that we can do all types of computations? To
answer such vexing questions we need to first define a universal machine.
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Definition 6
A machine that can execute any program is known as a universal machine.

It is a machine that can execute all programs. We can treat each basic action of this machine
as an instruction. Thus the set of actions of a universal machine is its ISA, and this ISA is
complete. Consequently, when we say that an ISA is complete, it is the same as saying that
we can build a universal machine exclusively based on the given ISA. Hence, we can solve the
problem of completeness of an ISA by solving the problem of designing universal machines.
They are dual problems. It is easier to reason in terms of universal machines. Hence, let us
delve into this problem.

Computer scientists started pondering at the design of universal machines at the beginning
of the 20th century. They wanted to know what is computable, and what is not, and the power
of different classes of machines. Secondly, what is the form of a theoretical machine that can
compute the results of all possible programs? These fundamental results in computer science
form the basis of today’s modern computer architectures.

Alan Turing was the first to propose a universal machine that was extremely simple and
powerful. This machine is aptly named after him, and is known as the Turing machine. This is
merely a theoretical entity, and is typically used as a mathematical reasoning tool. It is possible
to create a hardware implementation of a Turing machine. However, this would be extremely
inefficient, and require a disproportionate amount of resources. Nonetheless, Turing machines
form the basis of today’s computers and modern ISAs are derived from the basic actions of a
Turing machine. Hence, it is very essential for us to study its design. Note that we provide
a very cursory treatment in this book. Interested readers are requested to take a look at the
seminal text on the theory of computation by Hopcroft, Motwani and Ulmann [Hopcroft et al.,
2006].

1.6.2 Turing Machine*

The general structure of a Turing machine is shown in Figure 1.6. A Turing machine contains
an infinite tape that is an array of cells. Each cell can contain a symbol from a finite alphabet.
There is a special symbol $ that works as a special marker. A dedicated tape head points to
a cell in the infinite tape. There is a small piece of storage to save the current state among a
finite set of states. This storage element is called a state register.

The operation of the Turing machine is very simple. In each step, the tape head reads the
symbol in the current cell, its current state from the state register, and looks up a table that
contains the set of actions for each combination of symbol and state. This dedicated table is
called a transition function table or action table. Each entry in this table specifies three things –
whether to move the tape head one step to the left or right, the next state, and the symbol that
should be written in the current cell. Thus, in each step, the tape head can overwrite the value
of the cell, change its state in the state register and move to a new cell. The only constraint
is that the new cell needs to be to the immediate left or right of the current cell. Formally, its
format is (state, symbol) → ({L,R}, new state, new symbol). L stands for left, and R stands
for right.
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State register Tape head

L R

Action table

Figure 1.6: A Turing machine

This seemingly abstract and obscure computing device is actually very powerful. Let us
explain with examples. See Examples 2, 3, and 4. In all the cases, we assume that the input is
demarcated by the special marker symbol $.

Example 2
Design a Turing machine to increment a number by 1.

Tape head

$3  4  6  9$ 7

Answer: Each cell contains a single digit. The number is demarcated at both ends by the
special marker $. Lastly, the tape head points to the unit’s digit.

We first define four states (S0, S1): pre-exit and exit. The computation is over when
the Turing machine reaches the exit state. The states S0 and S1 represent the value of the
carry, 0 or 1, respectively. The state register is initialised to S1 since we are incrementing
the number by 1. In other words, we can assume that the starting value of the carry digit
is equal to 1.

At each step, the tape head reads the current digit, d, and the value of the carry, c, from
the state register. For each combination of d, and c, the action table contains the next state
(new value of carry), and the result digit. The tape head always moves to the left. For
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example, if (d, c) = (9, 1), then we are effectively adding (9 + 1). The next state is equal to
S1 (output carry), the Turing machine writes 0 in the current cell, and the tape head moves
to the cell on the left.

The only special case arises when the computation is ending. When the tape head en-
counters the $ symbol, then it looks at the value of the carry. If it is equal to 0, then it
leaves the value untouched and moves to the exit state. If it is equal to 1, then it moves to
the pre-exit state, writes 1 to the cell, and moves to the left. Subsequently, it writes $ to
the cell under the tape head, and then moves to the exit state.

Example 3
Design a Turing machine to find out if a string is of the form aaa . . . abb . . . bb.

Answer: Let us define two states (Sa, Sb), and two special states – exit and error. If the
state becomes equal to exit or error, then the computation stops. The Turing machine can
start scanning the input from right to left as Example 2. It starts in state Sb. The action
table is as follows:

(Sb, b) → (L, Sb, b)

(Sb, a) → (L, Sa, a)

(Sb, $) → (L, error, $)

(Sa, b) → (L, error, b)

(Sa, a) → (L, Sa, a)

(Sa, $) → (L, exit, $)

Example 4
Design a Turing machine to find out if a string of characters is a palindrome. A palindrome
is a word that reads the same forward and backwards. Example: civic, rotator, rotor.
Furthermore, assume that each character is either ‘a’ or ‘b’.

Answer: Let us assume that the Turing machine starts at the rightmost character in the
begin state. Let us consider the case when the symbol under the tape head is a in the begin
state. The machine enters the state La(move left, starting symbol is a) and replaces a with
$. Now it needs to see if the leftmost character is a. Hence, the tape head moves towards
the left until it encounters $. It then enters the Rchecka state. It moves one cell to the
right and checks if the symbol is equal to a. If it is a, then the string might be a palindrome.
Otherwise, it is definitely not a palindrome and the procedure can terminate by entering the
error state. The tape head again rewinds by moving all the way to the right and starts at
the cell, which is to the immediate left of the starting cell in the previous round. The same
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algorithm is performed iteratively till either an error is encountered or all the symbols are
replaced with $.

If the starting symbol was b, the procedure would have been exactly the same albeit with
a different set of states – Lb and Rcheckb. The action table is shown below.

(begin, $) → (L, exit, $)

(begin, a) → (L,La, $)

(La, a) → (L,La, a)

(La, b) → (L,La, b)

(La, $) → (R,Rchecka, $)

(Rchecka, a) → (R,Rmove, $)

(Rchecka, b) → (R, error, $)

(Rmove, a) → (R,Rmove, a)

(Rmove, b) → (R,Rmove, b)

(Rmove, $) → (L, begin, $)

(begin, b) → (L,Lb, $)

(Lb, a) → (L,Lb, a)

(Lb, b) → (L,Lb, b)

(Lb, $) → (R,Rcheckb, $)

(Rcheckb, a) → (R, error, $)

(Rcheckb, b) → (R,Rmove, $)

In these examples we have considered three simple problems and designed Turing machines
from them. We can immediately conclude that designing Turing machines for even simple
problems is difficult, and cryptic. The action table can contain a lot of states, and quickly blow
out of size. However, the baseline is that it is possible to solve complex problems with this
simple device. It is in fact possible to solve all kinds of problems such as weather modelling,
financial calculations, and solving differential equations with this machine!

Definition 7
Church-Turing thesis: Any real-world computation can be translated into an equivalent com-
putation involving a Turing machine. (source: Wolfram Mathworld)

This observation is captured by the Church-Turing thesis, which basically says that all
functions that are computable by any physical computing device are computable by a Turing
machine. In lay man’s terms, any program that can be computed by deterministic algorithms
on any computer known to man, is also computable by a Turing machine.

This thesis has held its ground for the last half century. Researchers have up till now not
been able to find a machine that is more powerful than a Turing machine. This means that
there is no program that can be computed by another machine, and not by a Turing machine.
There are some programs that might take forever to compute on a Turing machine. However,
they would also take infinite time on all other computing machines. We can extend the Turing
machine in all possible ways. We can consider multiple tapes, multiple tape heads, or multiple
tracks in each tape. It can be shown that each of these machines is as powerful as a simple
Turing machine.
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1.6.3 Universal Turing Machine*

The Turing machine described in the Section 1.6.2 is not a universal machine. This is because
it contains an action table, which is specific to the function being computed by the machine.
A true universal machine will have the same action table, symbols, and also the same set of
states for every function. We can make a universal Turing machine, if we can design a Turing
machine that can simulate another Turing machine. This Turing machine will be generic and
will not be specific to the function that is being computed.

Let the Turing machine that is being simulated be called M, and the universal Turing
machine be called U . Let us first create a generic format for the action table of M, and save
it in a designated location on the tape of U . This simulated action table contains a list of
actions, and each action requires the five parameters – old state, old symbol, direction(left or
right), new state, new symbol. We can use a common set of basic symbols that can be the 10
decimal digits (0-9). If a function requires more symbols then we can consider one symbol to be
contained in a set of contiguous cells demarcated by special delimiters. Let such a symbol be
called a simulated symbol. Likewise, the state in the simulated action table can also be encoded
as a decimal number. For the direction, we can use 0 for left, and 1 for right. Thus a single
action table entry might look something like (@1334@34@0@1335@10@). Here the ‘@’ symbol
is the delimiter. This entry is saying that we are moving from state 1334 to 1335 if symbol
34 is encountered. We move left (0), and write a value of 10. Thus, we have found a way of
encoding the action table, set of symbols, and states of a Turing machine designed to compute
a certain function.

Similarly, we can designate an area of the tape to contain the state register of M. We call
this the simulated state register. Let the tape of M be given a dedicated space in the tape of
U , and let us call this space the work area.

The organisation is shown in Figure 1.7.

Generic state register Tape head

L R

Generic action table

Simulated action table
Simulated state register

Work area

Figure 1.7: Layout of a universal Turing machine

The tape is thus divided into three parts. The first part contains the simulated action table,
the second part contains the simulated state register, and the last part contains the work area
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that contains a set of simulated symbols.
The universal Turing machine(U) has a very simple action table and set of states. The idea

is to find the right entry in the simulated action table that matches the value in the simulated
state register and simulated symbol under the tape head. Then the universal Turing machine
needs to carry out the corresponding action by moving to a new simulated state, and overwriting
the simulated symbol in the work area if required.

The devil is in the details. For doing every basic action, U needs to do tens of tape head
movements. The details are given in Hopcroft, Motwani, and Ulmann [Hopcroft et al., 2006].
However, the conclusion is that we can construct a universal Turing machine.

Important Point 2
It is possible to construct a universal Turing machine that can simulate any other Turing
machine.

Turing Completeness

Since the 1950s, researchers have devised many more types of hypothetical machines with their
own sets of states and rules. Each of these machines have been proven to be at most as powerful
as the Turing machine. There is a generic name for all machines and computing systems that are
as expressive and powerful as a Turing machine. Such systems are said to be Turing complete.
Any universal machine and ISA is thus Turing complete.

Definition 8
Any computing system that is equivalent to a Turing machine is said to be Turing complete.

We thus need to prove that an ISA is complete or universal if it is Turing complete.

1.6.4 A Modified Universal Turing Machine*

Let us now consider a variant of a universal Turing machine (see Figure 1.8) that is more
amenable to practical implementations. Let it have the following features. Note that such a
machine has been proven to be Turing complete.

1. The tape is semi-infinite (extends to infinity in only one direction).

2. The simulated state is a pointer to an entry in the simulated action table.

3. There is one unique entry in the simulated action table for each state. While looking up
the simulated action table, we do not care about the symbol under the tape head.

4. An action directs the tape head to visit a set of locations in the work area, and based
on their values computes a new value using a simple arithmetical function. It writes this
new value into a new location in the work area.
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Figure 1.8: A modified universal Turing machine

5. The default next state is the succeeding state in the action table.

6. An action can also arbitrarily change the state if a symbol at a certain location on the
tape is less than a certain value. Changing the state means that the simulated tape head
will start fetching actions from a new area in the simulated action table.

This Turing machine suggests a machine organisation of the following form. There is a large
array of instructions (action table). This array of instructions is commonly referred to as the
program. There is a state register that maintains a pointer to the current instruction in the
array. We can refer to this register as the program counter. It is possible to change the program
counter to point to a new instruction. There is a large work area, where symbols can be stored,
retrieved and modified. This work area is also known as the data area. The instruction table
(program) and the work area (data) were saved on the tape in our modified Turing machine.
In a practical machine, we call this infinite tape as the memory. The memory is a large array
of memory cells, where a memory cell contains a basic symbol. A part of the memory contains
the program, and another part of it contains data.

Definition 9
The memory in our conceptual machine is a semi-infinite array of symbols. A part of it
contains the program consisting of basic instructions, and the rest of it contains data. Data
refers to variables and constants that are used by the program.

Furthermore, each instruction can read a set of locations in the memory, compute a small
arithmetic function on them, and write the results back to the memory. It can also jump to any
other instruction depending on values in the memory. There is a dedicated unit to compute
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these arithmetic functions, write to memory, and jump to other instructions. This is called the
CPU(Central Processing Unit). Figure 1.9 shows a conceptual organisation of this machine.

CPU

   Program
counter (PC)

Program Data

Memory

Control
unit

Arithmetic
unit

Instruction

Figure 1.9: A basic instruction processing machine

Interested readers might want to prove the fact that this machine is equivalent to a Turing
machine. It is not very difficult to do so. We need to note that we have captured all aspects
of a Turing machine: state transition, movement of the tape head, overwriting symbols, and
decisions based on the symbol under the tape head. We shall see in Section 1.7.2 that such a
machine is very similar to the Von Neumann machine. Von Neumann machines form the basis
of today’s computers. Readers can also refer to books on computational complexity.

Important Point 3
Figure 1.9 represents a universal machine that can be practically designed.

1.6.5 Single Instruction ISA*

Let us now try to design an ISA for our modified Turing machine. We shall see that it is
possible to have a complete ISA that contains just a single instruction. Let us consider an
instruction that is compatible with the modified Turing machine and has been proven to be
Turing complete.

sbn a, b, c

sbn stands for subtract and branch if negative. Here, a, and b are memory locations. This
instruction subtracts b from a, saves the results in a, and if a < 0, it jumps to the instruction
at location c in the instruction table. Otherwise, the control transfers to the next instruction.
For example, we can use this instruction to add two numbers saved in locations a and b. Note
that exit is a special location at the end of the program.
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1: sbn temp, b, 2

2: sbn a, temp, exit

Here, we assume that the memory location temp already contains the value 0. The first
instruction saves −b in temp. Irrespective of the value of the result it jumps to the next
instruction. Note that the identifier (number :) is a sequence number for the instruction. In
the second instruction we compute a = a + b = a − (−b). Thus, we have successfully added
two numbers. We can now use this basic piece of code to add the numbers from 1 to 10. We
assume that the variable counter is initialised to 9, index is initialised to 10, one is initialised
to 1, and sum is initialised to 0.

1: sbn temp, temp, 2 // temp = 0

2: sbn temp, index, 3 // temp = -1 * index

3: sbn sum, temp, 4 // sum += index

4: sbn index, one, 5 // index -= 1

5: sbn counter, one, exit // loop is finished, exit

6: sbn temp, temp, 7 // temp = 0

7: sbn temp, one, 1 // (0 - 1 < 0), hence goto 1

We observe that this small sequence of operations runs a for loop. The exit condition is in
line 5, and the loop back happens in line 7. In each iteration it computes – sum+ = index.

There are many more similar single instruction ISAs that have been proven to be complete
such as subtract and branch if less than equal to, reverse subtract and skip if borrow, and a
computer that has generic memory move operations. The interested reader can refer to the
book by Gilreath and Laplante [Gilreath and Laplante, 2003].

1.6.6 Multiple Instruction ISA*

Writing a program with just a single instruction is very difficult, and programs tend to be very
long. There is no reason to be stingy with the number of instructions. We can make our life
significantly easier by considering a multitude of instructions. Let us try to break up the basic
sbn instructions into several instructions.

Arithmetic Instructions We can have a set of arithmetic instructions such as add, subtract,
multiply and divide.

Move Instructions We can have move instructions that move values across different memory
locations. They should allow us to also load constant values into memory locations.

Branch Instructions We require branch instructions that change the program counter to
point to new instructions based on the results of computations or values stored in memory.

Keeping these basic tenets in mind, we can design many different types of complete ISAs.
The point to note is that we definitely need three types of instructions – arithmetic (data
processing), move (data transfer), and branch (control).
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Important Point 4
In any instruction set, we need at least three types of instructions:

1. We need arithmetic instructions to perform operations such as add, subtract, multiply,
and divide. Most instruction sets also have specialised instructions in this category to
perform logical operations such as logical OR and NOT.

2. We need data transfer instructions that can transfer values between memory locations
and can load constants into memory locations.

3. We need branch instructions that can start executing instructions at different points
in the program based on the values of instruction operands.

1.6.7 Summary of Theoretical Results

Let us summarise the main results that we have obtained from our short discussion on theoretical
computer science.

1. The problem of designing a complete ISA is the same as that of designing a universal
machine. A universal machine can run any program. We can map each instruction in
the ISA to an action in this universal machine. A universal machine is the most powerful
computing machine known to man. If a universal machine cannot compute the result of
a program because it never terminates (infinite loop), then all other computing machines
are also guaranteed to fail for this program.

2. Universal machines have been studied extensively in theoretical computer science. One
such machine is the Turing machine named after the father of computer science – Alan
Turing.

3. The Turing machine is a very abstract computing device, and is not amenable to practical
implementations. A practical implementation will be very slow and consume a lot of
resources. However, machines equivalent to it can be much faster. Any such machine,
ISA, and computing system that is equivalent to a Turing machine is said to be Turing
complete.

4. We defined a modified Turing machine that is Turing complete in Section 1.6.4. It has
the structure shown in Figure 1.10. Its main parts and salient features are as follows.

(a) It contains a dedicated instruction table that contains a list of instructions.

(b) It has a program counter that keeps track of the current instruction that is being
executed. The program counter contains a pointer to an entry in the instruction
table.

(c) It has a semi-infinite array of storage locations that can save symbols belonging to
a finite set. This array is known as the memory.
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Figure 1.10: A basic processing machine

(d) The memory contains the instruction table (also referred to as the program), and
contains a data area. The data area saves all the variables and constants that are
required by the program.

(e) Each instruction can compute the result of a simple arithmetic function using values
stored at different memory locations. It can then save the result in another memory
location.

(f) The machine starts with the first instruction in the program, and then by default,
after executing an instruction, the machine fetches the next instruction in the in-
struction table.

(g) It is possible for an instruction to direct the machine to fetch a new instruction from
an arbitrary location in the instruction table based on the value stored in a memory
location.

5. A simple one instruction ISA that is compatible with our modified Turing machine, con-
tains the single instruction sbn (subtract the values of two memory locations, and branch
to a new instruction if the result is negative).

6. We can have many Turing complete ISAs that contain a host of different instructions.
Such ISAs will need to have the following types of instructions.

Arithmetic Instructions Add, subtract, multiply and divide. These instructions can
be used to simulate logical instructions such as OR and AND.

Move Instructions Move values across memory locations, or load constants into mem-
ory.

Branch Instructions Fetch the next instruction from a new location in the instruction
table, if a certain condition on the value of a memory location holds.
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1.7 Design of Practical Machines

A broad picture of a practical machine has emerged from our discussion in Section 1.6.7. We
have summarised the basic structure of such a machine in Figure 1.10. Let us call this machine
as the concept machine. Ideas similar to our concept machine were beginning to circulate in
the computer science community after Alan Turing published his research paper proposing the
Turing machine in 1936. Several scientists got inspired by his ideas, and started pursuing efforts
to design practical machines.

1.7.1 Harvard Architecture

One of the earliest efforts in this direction was the Harvard Mark-I. The Harvard architecture
is very similar to our concept machine shown in Figure 1.10. Its block diagram is shown in
Figure 1.11. There are separate structures for maintaining the instruction table and the memory.
The former is also known as instruction memory because we can think of it as a specialised
memory tailored to hold only instructions. The latter holds data values that programs need.
Hence, it is known as the data memory. The engine for processing instructions is divided
into two parts – control and ALU. The job of the control unit is to fetch instructions, process
them, and co-ordinate their execution. ALU stands for arithmetic-logic-unit. It has specialised
circuits that can compute arithmetic expressions or logical expressions (AND/OR/NOT etc.).

CPU

Control

ALU

Instruction
  memory

  Data
memory

I/O devices

Figure 1.11: The Harvard architecture

Note that every computer needs to take inputs from the user/programmer and needs to
finally communicate results back to the programmer. This can be done through a multitude of
methods. Today we use a keyboard and monitor. Early computers used a set of switches and
the final result was printed out on a piece of paper.

1.7.2 Von Neumann Architecture

John von Neumann proposed the Von Neumann architecture for general purpose Turing com-
plete computers. Note that there were several other scientists such as John Mauchly and J.
Presper Eckert who independently developed similar ideas. Eckert and Mauchly designed the
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first general purpose Turing complete computer(with one minor limitation) called ENIAC (Elec-
tronic Numerical Integrator and Calculator) based on this architecture in 1946. It was used to
compute artillery firing tables for the US army’s ballistic research laboratory. This computer
was later succeeded by the EDVAC computer in 1949, which was also used by the US army’s
ballistics research laboratory.

The basic Von Neumann architecture, which is the basis of ENIAC and EDVAC is shown
in Figure 1.12. This is pretty much the same as our concept machine. The instruction table is
saved in memory. The processing engine that is akin to our modified Turing machine is called
the CPU (central processing unit). It contains the program counter. Its job is to fetch new
instructions, and execute them. It has dedicated functional units to calculate the results of
arithmetic functions, load and store values in memory locations, and compute the results of
branch instructions. Lastly, like the Harvard architecture, the CPU is connected to the I/O
subsystem.

CPU

Control

ALU

  Memory I/O devices

Figure 1.12: Von Neumann architecture

The path breaking innovation in this machine was that the instruction table was stored in
memory. It was possible to do so by encoding every instruction with the same set of symbols
that are normally stored in memory. For example, if the memory stores decimal values, then
each instruction needs to be encoded into a string of decimal digits. A Von Neumann CPU
needs to decode every instruction. The crux of this idea is that instructions are treated as
regular data(memory values). We shall see in later chapters that this simple idea is actually a
very powerful tool in designing elegant computing systems. This idea is known as the stored
program concept.

Definition 10
Stored-program concept: A program is stored in memory and instructions are treated as
regular memory values.

The stored program concept tremendously simplifies the design of a computer. Since mem-
ory data and instructions are conceptually treated the same way, we can have one unified
processing system and memory system that treats instructions and data the same way. From
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the point of view of the CPU, the program counter points to a generic memory location whose
contents will be interpreted as that of an encoded instruction. It is easy to store, modify,
and transmit programs. Programs can also dynamically change their behavior during runtime
by modifying themselves and even other programs. This forms the basis of today’s complex
compilers that convert high level C programs into machine instructions. Furthermore, a lot
of modern systems such as the Java virtual machine dynamically modify their instructions to
achieve efficiency.

Lastly, astute readers would notice that a Von Neumann machine or a Harvard machine do
not have an infinite amount of memory like a Turing machine. Hence, strictly speaking they
are not exactly equivalent to a Turing machine. This is true for all practical machines. They
need to have finite resources. Nevertheless, the scientific community has learnt to live with this
approximation.

1.7.3 Towards a Modern Machine with Registers and Stacks

Many extensions to the basic Von-Neumann machine have been proposed in literature. In fact
this has been a hot field of study for the last half century. We discuss three important variants
of Von Neumann machines that augment the basic model with registers, hardware stacks, and
accumulators. The register based design is by far the most commonly used today. However,
some aspects of stack based machines and accumulators have crept into modern register based
processors also. It would be worthwhile to take a brief look at them before we move on.

Von-Neumann Machine with Registers

The term “register machine” refers to a class of machines that in the most general sense contain
an unbounded number of named storage locations called registers. These registers can be
accessed randomly, and all instructions use register names as their operands. The CPU accesses
the registers, fetches the operands, and then processes them. However, in this section, we look
at a hybrid class of machines that augment a standard Von Neumann machine with registers.
A register is a storage location that can hold a symbol. These are the same set of symbols that
are stored in memory. For example, they can be integers.

Let us now try to motivate the use of registers. The memory is typically a very large
structure. In modern processors, the entire memory can contain billions of storage locations.
Any practical implementation of a memory of this size is fairly slow in practice. There is a
general rule of thumb in hardware, “large is slow, and small is fast.” Consequently, to enable
fast operation, every processor has a small set of registers that can be quickly accessed. The
number of registers is typically between 8 and 64. Most of the operands in arithmetic and branch
operations are present in these registers. Since programs tend to use a small set of variables
repeatedly at any point of time, using registers saves many memory accesses. However, it
sometimes becomes necessary to bring in memory locations into registers or writeback values
in registers to memory locations. In those cases, we use dedicated load and store instructions
that transfer values between memory and registers. Most programs have a majority of pure
register instructions. The number of load and store instructions are typically about a third of
the total number of executed instructions.

Let us give an example. Assume that we want to add the cubes of the numbers in the
memory locations b and c, and we want to save the result in the memory location a. A machine



37 c© Smruti R. Sarangi

with registers would need the following instructions. Assume that r1, r2, and r3 are the names
of registers. Here, we are not using any specific ISA (the explanation is generic and conceptual).

1: r1 = mem[b] // load b

2: r2 = mem[c] // load c

3: r3 = r1 * r1 // compute b^2

4: r4 = r1 * r3 // compute b^3

5: r5 = r2 * r2 // compute c^2

6: r6 = r2 * r5 // compute c^3

7: r7 = r4 + r6 // compute b^3 + c^3

4: mem[a] = r7 // save the result

Here, mem is an array representing memory. We need to first load the values into registers,
then perform arithmetic computations, and then save the result back in memory. We can
see in this example that we are saving on memory accesses by using registers. If we increase
the complexity of the computations, we will save on even more memory accesses. Thus, our
execution with registers will get even faster. The resulting processor organisation is shown in
Figure 1.13.

CPU

Control

ALU

  Memory I/O devices

Registers

Figure 1.13: Von Neumann machine with registers

Von-Neumann Machine with a Hardware Stack

A stack is a standard data structure that obeys the semantics – last in, first out. Readers are
requested to lookup a book on data structures such as [Lafore, 2002] for more information. A
stack based machine has a stack implemented in hardware.

First, it is necessary to insert values from the memory into the stack. After that arithmetic
functions operate on the top k elements of the stack. These values get replaced by the result
of the computation. For example, if the stack contains the values 1 and 2 at the top. They get
removed and replaced by 3. Note that here arithmetic operations do not require any operands.
If an add operation takes two operands, then they do not need to be explicitly specified. The
operands are implicitly specified as the top two elements in the stack. Likewise, the location
of the result also does not need to be specified. It needs to be inserted at the top of the stack.
Even though, generating instructions for such a machine is difficult and flexibility is an issue,
the instructions can be very compact. Most instructions other than load and store do not
require any operands. We can thus produce very dense machine code. Systems in which the
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size of the program is an issue can use a stack based organisation. They are also easy to verify
since they are relatively simpler systems.

A stack supports two operations – push and pop. Push pushes an element to the top of
the stack. Pop removes an element from the top of the stack. Let us now try to compute
w = x+ y/z − u ∗ v using a stack based Von Neumann machine, we have:

1: push u // load u

2: push v // load v

3: multiply // u*v

4: push z // load y

5: push y // load z

6: divide // y/z

7: subtract // y/z - u*v

8: push x // load x

9: add // x + y/z - u*v

10: pop w // store result in w

It is clearly visible that scheduling a computation to work on a stack is difficult. There will
be many redundant loads and stores. Nonetheless, for machines that are meant to evaluate
long mathematical expressions, and machines for which program size is an issue, typically opt
for stacks. There are few practical implementations of stack based machines such as Burroughs
Large Systems, UCSD Pascal, and HP 3000 (classic). The Java language assumes a hypothetical
stack based machine during the process of compilation. Since a stack based machine is simple,
Java programs can virtually run on any hardware platform. When we run a compiled Java
program, then the Java Virtual Machine(JVM) dynamically converts the Java program into
another program that can run on a machine with registers.

Accumulator based Machines

Accumulator based machines use a single register called an accumulator. Each instruction takes
a single memory location as an input operand. For example, an add operation adds the value
in the accumulator to the value in the memory address and then stores the result back in the
accumulator. Early machines in the fifties that could not accommodate a register file used to
have accumulators. Accumulators were able to reduce the number of memory accesses and
speed up the program.

Some aspects of accumulators have crept into the Intel x86 set of processors that are the
most commonly used processors for desktops and laptops as of 2012. For multiplication and
division of large numbers, these processors use the register eax as an accumulator. For other
generic instructions, any register can be specified as an accumulator.

1.8 The Road Ahead

We have outlined the structure of a modern machine in Section 1.7.3, which broadly follows
a Von Neumann architecture, and is augmented with registers. Now, we need to proceed to
build it. As mentioned at the outset, computer architecture is a beautiful amalgam of software
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and hardware. Software engineers tell us what to build? Hardware designers tell us how to
build?
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Figure 1.14: Roadmap of chapters

Let us thus first take care of the requirements of software engineers. Refer to the roadmap
of chapters in Figure 1.14. The first part of the book will introduce computer architecture from
the point of view of system software designers and application developers. Subsequently, we
shall move on to designing processors, and lastly, we shall look at building a full systems of
processors, memory elements, and I/O cum storage devices.

1.8.1 Representing Information

In modern computers, it is not possible to store numbers or pieces of text directly. Today’s
computers are made of transistors. A transistor can be visualised as a basic switch that has two
states – on and off. If the switch is on, then it represents 1, otherwise it represents 0. Every
single entity inclusive of numbers, text, instructions, programs, and complex software needs to
be represented using a sequence of 0s and 1s. We have only two basic symbols that we can use
namely 0 and 1. A variable/value that can either be 0 or 1, is known as a bit. Most computers
typically store and process a set of 8 bits together. A set of 8 bits is known as a byte. Typically,
a sequence of 4 bytes is known as a word.

Definition 11

bit A value that can either be 0 or 1.

byte A sequence of 8 bits.

word A sequence of 4 bytes.
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Figure 1.15: Memory – a large array of switches

We can thus visualise all the internal storage structures of a computer such as the memory
or the set of registers as a large array of switches as shown in Figure 1.15. In Chapter 2, we
shall study the language of bits. We shall see that using bits it is possible to express logical
concepts, arithmetic concepts (integer and real numbers), and pieces of text.

This chapter is a prerequisite for the next chapter on assembly language. Assembly
language is a textual representation of an ISA. It is specific to the ISA. Since an instruction
is a sequence of 0s and 1s, it is very difficult to study it in its bare form. Assembly language
gives us a good handle to study the semantics of instructions in an ISA. Chapter 3 introduces
the general concepts of assembly language and serves as a common introduction to the next
two chapters that delve into the details of two very popular real world ISAs – ARM and x86.
We introduce a simple ISA called SimpleRisc in Chapter 3. Subsequently, in Chapter 4 we
introduce the ARM ISA, and in Chapter 5 we briefly cover the x86 ISA. Note that it is not
necessary to read both these chapters. After reading the introductory chapter on assembly
language and obtaining an understanding of the SimpleRisc assembly language, the interested
reader can read just one chapter to deepen her knowledge about a real world ISA. At this point,
the reader should have a good knowledge of what needs to be built.

1.8.2 Processing Information

In this part, we shall actually build a basic computer. Chapter 6 will start out with the
basic building blocks of a processor – logic gates, registers, and memories. Readers who have
already taken a digital design course can skip this chapter. Chapter 7 deals with computer
arithmetic. It introduces detailed algorithms for addition, subtraction, multiplication, and
division for both integers as well as real numbers. Most computers today perform very heavy
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numerical computations. Hence, it is necessary to obtain a firm understanding of how numerical
operations are actually implemented, and get an idea of the tradeoffs of different designs.

After these two chapters, we would be ready to actually design a simple processor in Chap-
ter 8. We shall assemble a simple processor part by part, and then look at two broad design
styles – hardwired, and micro-programmed. Modern processors are able to process many in-
structions simultaneously, and have complex logic for taking the dependences across instructions
into account. The most popular technique in this area is known as pipelining. We shall discuss
pipelining in detail in Chapter 9.

1.8.3 Processing More Information

By this point, we would have gotten a fair understanding of how simple processors are designed.
We shall proceed to optimise the design, add extra components, and make a full system that can
support all the programs that users typically want to run. We shall describe three subsystems
–

Memory System We shall see in Chapter 10 that it is necessary to build a fast and efficient
memory system, because it is a prime driver of performance. To build a fast memory
system, we need to introduce many new structures and algorithms.

Multiprocessors Nowadays, vendors are incorporating multiple processors on a single chip.
The future belongs to multiprocessors. The field of multiprocessors is very extensive and
typically forms the core of an advanced architecture course. In this book, we shall provide
a short overview of multiprocessors in Chapter 11.

I/O and Storage In Chapter 12, we shall look at methods to interface with different I/O
devices, especially storage devices such as the hard disk. The hard disk saves all our
programs and data when the computer is powered off, and it also plays a crucial role in
supplying data to our programs during their operations. Hence, it is necessary to study
the structure of the hard disk, and optimise it for performance and reliability.

1.9 Summary and Further Reading

1.9.1 Summary

Summary 1

1. A computer is a dumb device as compared to the human brain. However, it can
perform routine, simple and monotonic tasks, very quickly.

2. A computer is defined as a device that can be programmed to process information.

3. A program consists of basic instructions that need to be executed by a computer.
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4. The semantics of all the instructions supported by a computer is known as the in-
struction set architecture (ISA).

5. Ideally, an ISA should be complete, concise, simple, and generic.

6. An ISA is complete, if it is equivalent to an universal Turing machine.

7. A practical implementation of any complete ISA requires:

(a) A memory to hold instructions and data.

(b) A CPU to process instructions and perform arithmetic and logical operations.

(c) A set of I/O devices for communicating with the programmer.

8. Harvard and Von Neumann architectures are practical implementations of complete
ISAs, and are also the basis of modern computers.

9. Modern processors typically have a set of registers, which are a set of named storage
locations. They allow the processor to access data quickly by avoiding time consuming
memory accesses.

10. Some early processors also had a stack to evaluate arithmetic expressions, and had
accumulators to store operands and results.

1.9.2 Further Reading

The field of computer architecture is a very exciting and fast moving field. The reader can
refer to the books by Jan Bergstra [Bergstra and Middelburg, 2012] and Gilreath [Gilreath and
Laplante, 2003] to learn more about the theory of instruction set completeness and classes of
instructions. The book on formal languages by by Hopcroft, Motwani, and Ulmann [Hopcroft
et al., 2006] provides a good introduction to Turing machines and theoretical computer science
in general. To get a historical perspective, readers can refer to the original reports written by
Alan Turing [Carpenter and Doran, 1986] and John von Neumann [von Neumann, 1945].

Exercises

Processor and Instruction Set

Ex. 1 — Find out the model and make of at least 5 processors in devices around you. The
devices can include desktops, laptops, cell phones, and tablet PCs.

Ex. 2 — Make a list of peripheral I/O devices for computers. Keyboards are mice are common
devices. Search for uncommon devices. (HINT: joysticks, game controllers, fax machines)
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Ex. 3 — What are the four properties of an instruction set?

Ex. 4 — Design an instruction set for a simple processor that needs to perform the following
operations:

1.Add two registers

2.Subtract two registers

Ex. 5 — Design an instruction set for a simple processor that needs to perform the following
operations:

1.Add two registers

2.Save a register to memory

3.Load a register from memory

4.Divide a value in a register by two

Ex. 6 — Design an instruction set to perform the basic arithmetic operations – add, subtract,
multiply, and divide. Assume that all the instructions can have just one operand.

* Ex. 7 — Consider the sbn instruction that subtracts the second operand from the first
operand, and branches to the instruction specified by the label (third operand), if the result is
negative. Write a small program using only the sbn instruction to compute the factorial of a
positive number.

* Ex. 8 — Write a small program using only the sbn instruction to test if a number is prime.

Theoretical Aspects of an ISA*

Ex. 9 — Explain the design of a modified Turing machine.

Ex. 10 — Prove that the sbn instruction is Turing complete.

Ex. 11 — Prove that a machine with memory load, store, branch, and subtract instructions
is Turing complete.

** Ex. 12 — Find out other models of universal machines from the internet and compare
them with Turing Machines.

Practical Machine Models

Ex. 13 — What is the difference between the Harvard architecture and Von Neumann archi-
tecture?

Ex. 14 — What is a register machine?

Ex. 15 — What is a stack machine?

Ex. 16 — Write a program to compute a + b + c− d on a stack machine.
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Ex. 17 — Write a program to compute a + b + (c− d) ∗ 3 on a stack machine.

Ex. 18 — Write a program to compute (a + b/c) ∗ (c− d) + e on a stack machine.

** Ex. 19 — Try to search the internet, and find answers to the following questions.

1.When is having a separate instruction memory more beneficial?

2.When is having a combined instruction and data memory more beneficial?


