
9
Multicore Systems: Coherence, Consistency, and

Transactional Memory

In the preceding chapters on the design of caches, and the design of the on-chip network, we have been
introduced to the incredibly complex and intricate nature of cache design. The chip is a sea of cores, cache
banks, and network elements. Moreover, a cache is no more a simple matrix of memory cells. It is rather a
complex structure that can be distributed all over the chip. It does not have a homogeneous access latency.
Instead, the access latency is dominated by the latency of the routers’ pipelines and wire delays. We need
to have an elaborate on-chip network to route messages to the desired cache bank, which can be at the
opposite end of the chip. Additionally, blocks migrate between different cache banks in NUCA caches such
that we can increase the proximity between the cache block and the requesting core. To make matters more
complicated, we have at least three levels of caches in a modern server processor (L1, L2, and L3) and we
also have MSHRs (miss status handling registers) at each level. Just the task of locating a block can be
fairly difficult in modern memory systems, because we need to search through many memory structures and
send a lot of messages to different units on the chip. Instead of a simple matrix of cells, an on-chip memory
system looks like a busy city with a maze of roads, where we can draw an analogy between the hundreds of
cars, and memory request messages.

Writing a parallel program in such an environment with multiple cores is difficult. Recall that a core
is defined as a full OOO pipeline that can run a program on its own. It is often accompanied with its
own L1 cache and write buffers. In a multicore system, a simplistic view of the memory space ceases to
hold. The view of the memory space or rather the virtual memory space that we are used to is that the
memory space is a linear array of bytes. We can read or write to any location that a program is allowed
to access. This abstraction holds very well for a sequential program. However, the moment we consider a
parallel program, this abstraction begins to break. This is because as we have argued, the memory system is
a complex microcosm of links, buffers, routers, and caches. Memory operations have variable latencies, and
it is possible that the same memory operation might be visible to different cores at different points in time
depending on where they are placed on the chip. For example, in modern memory systems, it is possible
that if core 1 writes to a given memory address, core 2 might see the write earlier than core 3 because of
the relative proximity to core 1. As we shall see in this chapter, this can lead to extremely non-intuitive
behaviour. There is thus a need to understand all such issues that can arise in a multicore system, and
create a set of standards and specifications that both software and hardware must adhere to.
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Definition 62
A core is defined as a full OOO pipeline that has the capability to independently fetch instructions and
run a program. A chip with multiple cores is known as a multicore chip or a multicore processor.

The organisation of this chapter is as follows. We shall first understand the different ways to write parallel
programs in Section 9.1. In specific, we shall look at the two most common paradigms: shared memory and
message passing. Once we have understood how parallel programs are written, we will appreciate the fact
that even defining what it means for a program to execute correctly on a multicore system is very tough. The
same program can produce multiple results or outcomes across runs – some of these may be non-intuitive
(described in Section 9.2).

It is thus necessary to create a theoretical foundation of parallel computing and explain the notion of
memory models. A memory model specifies the rules for determining the valid outcomes of a parallel program
on a given machine. This will be described in Section 9.3. We shall further split our discussion into two
parts: the rules for specifying the valid outcomes while considering accesses to only a single variable, and
similar rules for multi-variable code sequences. The former is called coherence and the latter is called memory
consistency.

To create a high-performing multicore system, it is necessary to associate a small, private L1 cache and
possibly an L2 cache with each core. However, this design choice will break the notion of a unified memory
system, unless we make it behave in that manner. We shall observe that if an ensemble of small caches
obeys the axioms of coherence, it will behave as a large, unified cache (described in Section 9.4). This will
allow us to improve the latency and bandwidth of the memory system significantly without compromising
on correctness. On similar lines, we shall describe different types of memory models in Section 9.5. There is
a trade-off between the types of behaviours a memory model allows and performance. We shall appreciate
such issues in this section.

We shall subsequently look at the phenomenon of data races in Section 9.6: a data race is a potential
bug in parallel programs that typically is avoided with the programmers’ assistance. Along with discussing
advancements in hardware, we shall discuss concomitant advances in programming languages for writing
such programs. We shall look at one such novel paradigm called transactional memory in Section 9.7 and
look at two approaches: one purely in software and one that requires some hardware support.

9.1 Parallel Programming

Let us now explain the methods of programming multiprocessors. For ease of explanation, let us draw an
analogy here. Consider a group of workers in a factory. They cooperatively perform a task by communicating
with each other orally. A supervisor often issues commands to the group of workers, and then they perform
their work. If there is a problem, a worker indicates it by raising an alarm. Immediately, other workers rush
to his assistance. In this small and simple setting, all the workers can hear each other, and see each other’s
actions. This proximity enables them to accomplish complex tasks.

We can alternatively consider another model, where workers cannot necessarily see or hear each other. In
this case, they need to communicate with each other through a system of messages. Messages can be passed
through letters, phone calls, or e-mails. In this setting, if a worker discovers a problem, he needs to send
a message to the supervisor such that she can come and rectify the problem. Workers need to be typically
aware of each other’s identities, and explicitly send messages to all or a subset of them. It is not possible
any more to shout loudly and communicate with everybody at the same time. However, there are some
advantages of this system. We can support many more workers because they do not have to be co-located.
Secondly, since there are no constraints on the location of workers, they can be located at different parts of
the world and be doing very different things. This system is thus far more flexible and scalable.
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Inspired by these real life scenarios, computer architects have designed a set of protocols for multipro-
cessors following different paradigms. The first paradigm is known as shared memory, where all the individual
programs see the same view of the memory system. If program A sets the value of the shared variable x
to 5, then program B immediately sees the change. The second setting is known as message passing. Here
multiple programs communicate among each other by passing messages. The shared memory paradigm
is more suitable for strongly coupled multiprocessors, and the message passing paradigm is more suitable
for loosely coupled multiprocessors. A strongly coupled multiprocessor refers to a typical multicore system
where the different programs running on different cores can share their memory space with each other, which
includes their code and data. In comparison, a loosely coupled multiprocessor refers to a set of machines
that are connected over the network, and do not share their code or data between each other. Note that it
is possible to implement message passing on a strongly coupled multiprocessor. Likewise, it is also possible
to implement an abstraction of a shared memory on an otherwise loosely coupled multiprocessor. This is
known as distributed shared memory [Keleher et al., 1994]. However, this is typically not the norm.

9.1.1 Shared Memory

Let us try to add n numbers in parallel using a multiprocessor. The code for it is shown in Example 9. We
have written the code in C++ using the OpenMP language extension.

Example 9
Write a shared memory program to add a set of numbers in parallel.

Answer: Let us assume that all the numbers are already stored in an array called numbers. It has
SIZE entries. Assume that the number of parallel sub-programs that can be launched is equal to N .

/* variable declaration */

int partialSums[N];

int numbers[SIZE];

int result = 0;

/* initialise arrays */

...

/* parallel section */

#pragma omp parallel {

/* get my processor id */

int myId = omp_get_thread_num ();

/* add my portion of numbers */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

for(int jdx = startIdx; jdx < endIdx; jdx ++)

partialSums[myId] += numbers[jdx];

}

/* sequential section */

for(int idx =0; idx < N; idx ++)

result += partialSums[idx];

It is easy to mistake the code for a regular sequential program, except for the directive #pragma omp
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parallel. This is the only extra semantic difference that we have added in our parallel program. It launches
each iteration of this loop as a separate sub-program. Each such sub-program is known as a thread. A thread
is defined as a sub-program that shares its address space (the heap and global variables) with other threads.
It communicates with them by modifying the values of memory locations in the shared memory space. Each
thread has its own set of local variables that are not accessible to other threads.

The number of iterations or the number of parallel threads that get launched is a system parameter that
is set in advance. It is typically equal to the number of processors. In this case, it is equal to N. Thus,
N copies of the parallel part of the code are launched in parallel. Each copy runs on a separate processor.
Note that each of these copies of the program can access all the variables that have been declared before
the invocation of the parallel section. For example, they can access partialSums and the numbers arrays.
Each processor invokes the function omp get thread num, which returns the id of the executing thread in
the range [0 . . . (N − 1)]. Each thread uses the thread id to find the range of the array that it needs to add.
It adds all the entries in the relevant portion of the array, and saves the result in its corresponding entry in
the partialSums array. Once all the threads have completed their job, the sequential section begins. This
piece of sequential code can run on any processor. This decision is made dynamically at runtime by the
operating system or the parallel programming framework. To obtain the final result, it is necessary to add
all the partial sums in the sequential section.

Definition 63
A thread is a sub-program that shares its address space with other threads. It has a dedicated program
counter and a local stack that it can use to define its local variables.

A graphical representation of the computation is shown in Figure 9.1. A parent thread spawns a set of
child threads. They do their own work and finally join when they are done. The parent thread takes over
and aggregates the partial results.

There are several salient points to note here. The first is that each thread has its separate stack. A
thread can use its stack to declare its local variables. Once it finishes, all the local variables in its stack
are destroyed. To communicate data between the parent thread and the child threads, it is necessary to
use variables that are accessible to both the threads. These variables need to be globally accessible by all
the threads. The child threads can freely modify these variables and even use them to communicate with
each other as well. They are additionally free to invoke the operating system, and write to external files
and network devices. Once, all the threads have finished executing, they perform a join operation and free
their state. The parent thread takes over and finishes the role of aggregating the results. Here, join is an
example of a synchronisation operation between threads. There can be many other types of synchronisation
operations between threads. The reader is referred to [Culler et al., 1998] for a detailed discussion on thread
synchronisation. All that the reader needs to understand is that there are a set of complicated constructs
that threads can use to perform very complex tasks cooperatively. Adding a set of numbers is a very simple
example. Multithreaded programs can be used to perform other complicated tasks such as matrix algebra,
and even solve differential equations in parallel.

9.1.2 Message Passing

Let us now briefly look at message passing. Note that message passing based loosely coupled systems are not
the main focus area of this book. Hence, we shall just give the reader a flavor of message passing programs.
Note that in this case, each running program is a separate entity and does not share code or data with
other running programs. It is an OS process, where a process is defined as a running instance of a program.
Typically, a process does not share its address space with any other process.
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Figure 9.1: Graphical representation of the program to add numbers in parallel

Definition 64
A process represents the running instance of a program. Typically, it does not share its address space
with any other process.

Let us now quickly define our message passing semantics. We shall primarily use two functions send
and receive as shown in Table 9.1. The send(pid, val) function is used to send an integer (val) to the
process whose id is equal to pid. The receive(pid) is used to receive an integer sent by a process whose id is
equal to pid. If pid is equal to ANYSOURCE, then the receive function can return with the value sent by
any process. Our semantics is on the lines of the popular parallel programming framework MPI (Message
Passing Interface) [Gropp et al., 1999]. MPI calls have many more arguments and their syntax is much more
complicated than our simplistic framework. Let us now consider the same example of adding n numbers in
parallel (refer to Example 10).
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Function Semantics
send (pid, val) Send the integer val to the process with an id equal

to pid.
receive (pid) (1) Receive an integer from process pid.

(2) The function blocks till it gets the value.
(3) If the pid is equal to ANYSOURCE, then the
receive function returns with the value sent by any
process.

Table 9.1: send and receive calls

Example 10
Write a message passing based program to add a set of numbers in parallel. Make appropriate assump-
tions.

Answer: Let us assume that all the numbers are stored in the array numbers and this array is available
to all the N processors. Let the number of elements in the numbers array be SIZE. For the sake of
simplicity, let us assume that SIZE is divisible by N .

/* start all the parallel processes */

SpawnAllParallelProcesses ();

/* For each process execute the following code */

int myId = getMyProcessId ();

/* compute the partial sums */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

int partialSum = 0;

for(int jdx = startIdx; jdx < endIdx; jdx ++)

partialSum += numbers[jdx];

/* All the non -root nodes send their partial sums to the root (id 0) */

if(myId != 0) {

/* send the partial sum to the root */

send (0, partialSum);

} else {

/* for the root */

int sum = partialSum;

for (int pid = 1; pid < N; pid ++) {

sum += receive(ANYSOURCE);

}

/* shut down all the processes */

shutDownAllProcesses ();

/* return the sum */

return sum;

}
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9.1.3 Amdahl’s Law

We have now taken a look at examples for adding a set of n numbers in parallel using both the paradigms
namely shared memory and message passing. We divided our program into two parts: a sequential part
and a parallel part (refer to Figure 9.1). In the parallel part of the execution, each thread completed the
work assigned to it and created a partial result. In the sequential part, the root or master or parent thread
initialised all the variables and data structures and spawned all the child threads. After all the child threads
completed (or joined), the parent thread aggregated the results produced by all the child threads. This
process of aggregating results is also known as reduction. The process of initialising variables and reduction
are both sequential.

Let us now try to derive the speedup of a parallel program vis-a-vis its sequential counterpart. Let us
consider a program that takes Tseq units of time to execute. Let fseq be the fraction of time that it spends
in its sequential part and 1− fseq be the fraction of time that it spends in its parallel part. The sequential
part is unaffected by parallelism; however, the parallel part gets equally divided among the processors. If we
consider a system of P processors, then the parallel part is expected to be sped up by a factor of P . Thus,
the time (Tpar) that the parallel version of the program takes is equal to

Tpar = Tseq ×
(
fseq +

1− fseq
P

)
(9.1)

Alternatively, the speedup S is given by

S =
Tseq
Tpar

=
1

fseq +
1−fseq
P

(9.2)

Equation 9.2 is known as the Amdahl’s Law. It is a theoretical estimate (or rather the upper bound in
most cases) of the speedup that we expect with additional parallelism.
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Figure 9.2 plots the speedups as predicted by Amdahl’s Law for three values of fseq: 10%, 5%, and 2%.
We observe that with an increasing number of processors, the speedup gradually saturates and tends to the
limiting value, 1/fseq. We observe diminishing returns as we increase the number of processors beyond a
certain point. For example, for fseq = 5%, there is no appreciable difference in speedups between a system
with 35 processors and a system with 200 processors. We approach similar limits for all three values of fseq.
The important point to note here is that increasing speedups by adding additional processors has its limits.
We cannot expect to keep getting speedups indefinitely by adding more processors because we are limited
by the length of the sequential sections in programs.

To summarise, we can draw two inferences. The first is that to speedup a program it is necessary to
have as much parallelism as possible. Hence, we need to have a very efficient parallel programming library
and parallel hardware. However, parallelism has its limits and it is not possible to increase the speedup
appreciably beyond a certain limit. The speedup is limited by the length of the sequential section in the
program. To reduce the sequential section, we need to adopt approaches both at the algorithmic level and
at the system level. We need to design our algorithms in such a way that the sequential section is as short
as possible. For example, in Examples 9 and 10, we can also perform the initialisation in parallel (reduces
the length of the sequential section). Secondly, we need a fast processor that can minimise the time it takes
to execute the sequential section.

9.1.4 Gustafson-Barsis’s Law

While deriving the Amdahl’s law, we assumed that the size of the problem remains the same with an
increasing amount of computational power. However, this is not the case in practice. When we have more
resources, the problem size also increases. For example, if we are simulating an airplane wing, then we
consider finer and finer meshes as we increase the number of processors. This increases the overall accuracy
of the simulation.

Let the total workload be W . It has a sequential part Wfseq and a parallel part W (1 − fseq). It is the
parallel part that is going to be sped up with additional processors. The speedup of the parallel part is equal
to P , where P is the number of processors. We can thus do additional work in the same time. We can scale
the parallel portion of the workload by a factor of P ; the new workload Wnew is as follows.

Wnew = fseqW + (1− fseq)PW (9.3)

The execution time on a single processor is proportional to the workload. Let the constant of propor-
tionality be α. We thus derive the single processor execution time Tseq and the P -processor execution time
Tpar as follows. Note that the parallel part of the execution time gets divided by the number of processors.

Tseq = αWnew = α(fseqW + (1− fseq)PW )

Tpar = α(fseqW + (1− fseq)PW/P ) = αW
(9.4)

The speedup S is equal to Tseq/Tpar.

S =
Tseq
Tpar

=
fseqW + (1− fseq)PW

W
= fseq + (1− fseq)P

(9.5)

Let us understand the implications of this equation. As we increase the number of processors P , the
speedup increases. Ultimately (1−fseq)P will significantly exceed fseq. Thus the speedup for large P will be
(1− fseq)P . This means that the only role that fseq plays is in determining the slope of the curve for large
P . If fseq = 0, then the speedup is P times, which is expected when we do not have a sequential portion.
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For all other values of fseq where we are scaling the parallel part of the problem by a factor of P , the
slope of the line is given by (1− fseq). Even if we are scaling the problem, we need to still limit the size of
the sequential section because the absolute difference in execution times for different values of fseq will be
significant for large values of P .

9.1.5 Design Space of Multiprocessors

Michael J. Flynn proposed the famous Flynn’s classification of multiprocessors in 1966. He started out
by observing that an ensemble of different processors might either share code, data, or both. There are
four possible choices – SISD (single instruction single data), SIMD (single instruction multiple data), MISD
(multiple instruction single data), and MIMD (multiple instruction multiple data).

Let us describe each of these types of multiprocessors in some more detail.

SISD This is a standard uniprocessor with a single pipeline as described in Chapter 2. A SISD processor
can be thought of as a special case in the universe of multiprocessors.

SIMD A SIMD processor can process multiple streams of data using a single instruction. For example, a
SIMD instruction can add 4 sets of numbers with a single instruction. Modern processors incorporate
SIMD instructions in their instruction set and have special SIMD execution units also. Examples
include x86 processors that support the SSE and AVX instruction sets. Vector processors and, to a
lesser extent, GPUs are examples of highly successful SIMD processors.

MISD MISD systems are very rare in practice. They are mostly used in systems that have very high
reliability requirements. For example, large commercial aircraft typically have multiple processors
running different versions of the same program/algorithm. The final outcome is decided by voting.
For example, a plane might have a MIPS processor, an ARM processor, and an x86 processor, each
running different versions of the same program such as an autopilot system. Here, we have multiple
instruction streams, yet a single source of data. A dedicated voting circuit computes a majority vote
of the three outputs. For example, it is possible that because of a bug in the program or the processor,
one of the systems can erroneously take a decision to turn left. However, both of the other systems
might take the correct decision to turn right. In this case, the voting circuit will decide to turn right.
Since MISD systems are hardly ever used in practice, other than in such specialised situations, we shall
not discuss them any more in this book.

MIMD MIMD systems are by far the most prevalent multiprocessor systems today. Here, there are multiple
instruction streams and multiple data streams. Multicore processors, and large servers are all MIMD
systems. Examples 9 and 10 also showed the example of a program for a MIMD machine. We need to
carefully explain the meaning of multiple instruction streams. This means that instructions come from
multiple sources. Each source has its unique location and associated program counter. Two important
branches of MIMD paradigms have formed over the last few years.

The first is SPMD (single program multiple data) and the second is MPMD (multiple program multiple
data). Most parallel programs are written in the SPMD style (Examples 9 and 10). Here, multiple
copies of the same program run on different cores or separate processors. However, each individual
processing unit has a separate program counter and thus perceives a different instruction stream.
Sometimes SPMD programs are written in such a way that they perform different actions depending
on their thread ids. We saw a method in Example 9 on how to achieve this using OpenMP functions.
The advantage of SPMD is that we do not have to write multiple programs for different processors.
Parts of the same program can run on all the processors, though their behaviour might be different.

A contrasting paradigm is MPMD. Here, the programs that run on different processors or cores are
actually different. They are more useful for specialised processors that have heterogeneous processing
units. There is typically a single master program that assigns work to slave programs. The slave
programs complete the quanta of work assigned to them and then return the results to the master
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program. The nature of work of both the programs is actually very different, and it is often not
possible to seamlessly combine them into one single program.

From the aforementioned description, it is clear that the systems that we need to focus on are SIMD and
MIMD. MISD systems are very rarely used and thus will not be discussed any more. Let us first discuss
MIMD multiprocessing. Note that we shall only describe the SPMD variant of MIMD multiprocessing
because it is the most common approach.

9.1.6 Multithreading in Hardware

Up till now we have discussed multithreading in software, where a thread has been defined as a lightweight
process that shares its address space with other threads. A multithreaded program contains multiple threads
that run in parallel to complete a large task.

However, the concept of multithreading exists in hardware as well, albeit in a different form. We have
very wide issue processors nowadays. It is often not possible to completely saturate the issue width. As
a result, a lot of hardware resources get wasted. It is a better idea to run two parallel threads, which are
not threads in the software sense – they need not share the address space. These threads may be separate
processes.

High-performance processors typically run several hardware threads in parallel. If one thread is waiting
for a value to return from main memory and the pipeline is getting stalled, during that time the other
threads can execute. This increases the throughput of the entire system. We need to have a separate
program counter and rename table for each thread. Furthermore, the id of the thread needs to be a part
of the instruction packet to correctly enforce dependences. A simple idea called hyperthreading proposes
to partition the resources such as the physical registers, instruction window entries, issue slots, functional
units and the ROB equally among the threads. A more sophisticated approach referred to as simultaneous
multithreading (SMT) proposes to flexibly allocate the resources depending upon runtime conditions and
the priority of threads.

There are several kinds of multithreading. Let us discuss a few popular variants. We would like to
reiterate the fact that we are discussing “hardware threads” here.

Coarse-grained multithreading In this case, we time-multiplex the pipeline. For k cycles we run thread
1, and for the next k cycles we run thread 2, and so on. If a given thread gets stalled because of an
event that has a long latency such as an L2 miss or an I/O event, then we schedule another thread. In
this case, k is of the order of tens of cycles. Scheduling another thread after stopping the execution of
the current thread is known as ”switching the context”.

Fine-grained multithreading The idea is similar to coarse-grained multithreading; however, in this case,
k has a much lower value. This approach is typically used when we can change the context quickly and
we would like to run another thread as soon as we detect an operation such as an L1 miss, which will
take tens of cycles to execute. This approach is more responsive, yet it has more overheads in terms
of switching the context between the threads.

Simultaneous multithreading (SMT) This is the most flexible approach, which is also the most com-
plex. In this case, we fetch instructions from several threads in parallel. At runtime, the resources are
dynamically partitioned between the threads. This automatically allows other threads to use as many
resources as possible when one of the threads is stuck. As of 2020, a lot of server processors implement
SMT.

9.2 Overview of Issues in Parallel Hardware

Now that we have an understanding of parallel programs, let us look at the hardware support that is required
to run such parallel programs. Note that in the following discussion we need to reconcile two perspectives:
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the software perspective and the hardware perspective. The software perspective is from the point of view
of programs, which have an ideal view of resources. In comparison, the hardware perspective is from the
point of view of implementation. The overall aim is to ensure that software programs execute correctly
without sacrificing performance. Before proceeding, the reader should thoroughly recapitulate the concept
of a software thread, and the fact that different threads share parts of the virtual address space.

9.2.1 Shared and Distributed Caches

Let us consider two aspects of such a design – performance and correctness. Let us look at the L1 level. In a
single core or a dual core system, we can have a single L1 cache. However, as the number of cores increases,
having one large, shared L1 cache is not practical. If we have 16 cores, and we want to support two memory
requests per core per cycle, then we need a 32-port L1 cache, which is impossible to fabricate. We can create
a NUCA like organisation as we had studied in Section 8.5; however, given the multicycle wire delays and
increased chances of bank conflicts, this also is impractical. Hence, we cannot afford a large, shared L1 cache
for all the cores in a multicore system.

For similar reasons, it is often difficult to afford a large L2 cache in a server-class multicore system. Since
we cannot afford a shared cache because of performance issues, let us consider a design with distributed
caches. In such a design, each core has a private L1 cache. The ensemble of L1 caches acts like one large
shared L1 cache, albeit conceptually. We get the advantage of performance by having one small and fast L1
cache per core. It can be a very small and power efficient structure. It will allow us to take advantage of
temporal and spatial locality.

Let us compare the designs with a shared L1 cache and a distributed L1 cache in Figure 9.3. Figure 9.3(a)
shows a design with a shared L1 cache, and Figure 9.3(b) shows a design where each core has a private L1
cache. The L1 caches are connected using a shared bus.

Proc 1

Shared L1 cache

Proc 2 Proc n

Proc 1 Proc 2 Proc n

L1 L1 L1

Shared bus

(a) (b)

Acts like a
shared cache

Figure 9.3: (a) Shared cache, (b) A distributed cache that conceptually acts as a single shared cache

Let us now come to the second problem – correctness. In a distributed cache, we need to ensure that
the ensemble of L1 caches behaves as a single cache. Otherwise, the compiler needs to generate different
types of code for machines that use different kinds of caches. The compiler has to be aware of the fact that
the machine has a distributed L1 cache, and a write to a shared variable on one core may not be visible
to the other core. This is outright impractical. Hence, to an external observer such as the programmer
or the compiler, a shared and a distributed cache should look the same from the point of view of program
correctness, or the outcomes of a program’s execution. Ensuring the correctness of a distributed cache is
known as the cache coherence problem. Recall that we had used a similar line of reasoning when we designed
the OOO processor; we had argued that to an external observer, an OOO processor and an in-order processor
should appear to be the same (from the point of view of a program’s execution).

Let us elaborate on some of the issues that we shall encounter while designing a distributed cache.
Consider two cores, A and B, that are running two threads of the same application. If both the threads
decide to write to variable x, then we have a problem. The memory address associated with x will be the
same for both the threads. A will write to that address and keep the value in its private L1 cache. B will
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also do the same. If both the writes happen at more or less the same time, then we have a complex situation
in our hands. We will not be in a position to find out which write operation is newer. After some time, if
instructions on cores A and B start reading the value of x from memory, then they stand to read different
values, even though the read operations are happening at the same time without any intervening writes.
Such behaviours need to be handled properly. The reason that such problems can happen is because we
have two separate physical locations for the same memory address that contains the value of the variable x.
In comparison, a shared cache does not have this problem because the value of a variable (or its associated
memory address) is stored in only one physical location.

The correctness issues in a distributed cache such as the one we just described, arise from the fact that for
a single memory address, there are multiple locations across caches at the same level. The updates to these
locations need to be somehow synchronised, otherwise this will lead to non-intuitive program behaviours.
To ensure that all of these caches present a unified view of the physical address space, we need to design a
cache coherence protocol to solve such problems. Note that all cache coherence issues and definitions are in
the context of the behaviour of a multithreaded program with respect to accesses to any single memory
address. For example, in our current discussion, we only looked at all the accesses to the variable x. This
definition is crucial and will be used repeatedly in later sections.

Definition 65

• A shared cache is one large cache where we have only one physical location for a given memory
address.

• A distributed cache comprises a group of small caches located at different places on the die. This
ensemble of caches may have correctness problems because there are multiple physical locations for
a given memory address.

• The aim is to make a distributed cache indistinguishable from a shared cache to an external observer
in terms of correctness properties with regards to the outcome of memory operations. This is known
as the cache coherence problem.

• To solve the cache coherence problem, we need a cache coherence protocol.

Even though in most designs as of 2020, we have a shared L2 cache; however, this is not a strict necessity.
We can have a private L2 cache per core, or have one private L2 cache for a group of cores. Whenever we
have a distributed cache at any level, we need a cache coherence protocol.

9.2.2 Memory Consistency

Let us look at another aspect of multiprocessor memory systems that deals with accesses to multiple memory
addresses. Consider the simple piece of parallel code.

Thread 1 Thread 2
x = 1; t1 = y
y = 1; t2 = x

x and y are global variables in a multithreaded program; assume that all our variables are initialised to
zero. Here, Thread 1 is setting both x and y to 1. Thread 2 is reading y into local variable t1, and then is
reading x into local variable t2.

Let us look at what is happening at the level of the NoC and cache banks. When we are updating global
variables, we are essentially performing memory writes to their addresses in memory. A write to a memory
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address is a complex series of events. We need to create a write message and send it on the NoC to the
corresponding cache bank such that the value can be written to the correct physical location. It is like
sending a letter by post from New Delhi to Moscow. The writes to x and y get converted to such letters
that are sent through the NoC. The same is true for a read request to memory, where the basic operation is
to inject a read message into the NoC. It needs to be routed to the correct physical location, and then we
need to send the value that was read back to the requesting core or cache.

In this complex sequence of messages, it is very well possible that the message to update x might get
caught up in network congestion, and the message to update y might reach its destination earlier. This can
happen for a myriad of reasons. Maybe the message to update y takes a different route that is less congested,
or the cache bank that holds y is closer to the core that is issuing the write request. The net summary is
that the updates to x and y need not be seen to be happening one after the other, or even in the same order
by other cores. This can lead to pretty anomalous outcomes, which are clearly non-intuitive. Sadly, given
the complex nature of interactions inside multicore processors, such occurrences are perfectly normal, and
in fact many commercial processors allow many such behaviours.

For example, it is possible for a thread running on another core to read y = t1 = 1, and then read
x = t2 = 0. Recall that the assumption is that all global variables such as x and y are initialised to zero.
This observation would be very anomalous and non-intuitive indeed, because as per program order, we first
update x and then y. The core that performs these updates sees them in that order. However, because of the
non-deterministic nature of message delivery times in a realistic NoC such a situation is perfectly possible.

Even though the outcome (t1, t2) = (1, 0) (t1 = 1 and t2 = 0) for Thread 2 looks to be plausible, it
somehow manages to bother us and tell us that the outcome is not intuitive and hence undesirable. This
is simply not how we want programs to behave. It appears that different cores are seeing different views of
memory operations, and their perception of the relative order of memory operations is different. This was
not happening in a single-threaded system, and thus we are not used to such outcomes. Writing correct
parallel programs with such outcomes is going to be very difficult. Reasoning about their behaviour and
writing optimising compilers that can possibly reorder memory accesses becomes even more difficult.

We thus need a theoretical framework that will allow us to reason about the possible and valid outcomes
of multithreaded programs in large multicore processors with complex NoCs. We need to find ways to rein
in the complexity of the behaviours of multithreaded programs on multicore systems and enforce certain
policies. These policies are known as memory consistency models or simply memory models, which explicitly
specify the rules for generating the valid outcomes of parallel programs. They preserve our notion of intu-
itiveness, provide a formal correctness framework, and simultaneously allow the programmer, compiler, and
architecture to maximise performance.

Definition 66
Let us informally define a memory consistency model as a policy that specifies the behaviour of a parallel,
multithreaded program. In general, a multithreaded program can produce a large number of outcomes
depending on the relative order of scheduling of the threads, and the behaviour of memory operations. A
memory consistency model restricts the set of allowed outcomes for a given multithreaded program. It is
a set of rules that defines the interaction of memory instructions between each other.

We shall take a detailed look at memory consistency models in Section 9.5 including their implementation
aspects.

9.2.3 Difference between Coherence and Consistency

The difference between coherence and consistency is often not fully understood. There are conflicting
definitions in literature. Hence, there is a need for a clarification. Coherence refers to the behaviour of
the memory system with respect to accesses to a single variable or memory address: informally, it provides
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the illusion that there is a single physical location for every memory address. If coherence is defined in the
context of caches, we refer to it as cache coherence. Nevertheless, note that coherence is a general concept.

In comparison, consistency is literally defined as adherence to specifications. When we talk of memory
consistency, we refer to the behaviour of the memory system as a whole, and the fact that the outcome of
every parallel program, defined in terms of the set of the results of all memory read operations, is valid as per
the specifications. In other words, a memory consistency model or just a memory model, considers accesses
to multiple memory locations. Moreover, we can have different kinds of memory models depending upon the
underlying architecture. As of 2020, almost all popular memory models obey the rules of coherence.

Before an astute reader asks why coherence needs to be treated separately, and why cannot it simply be
considered as a subset of the memory model, let us answer this question. When we delve into the practical
aspects of coherence and consistency, we shall observe that enforcing coherence requires the maximum
amount of hardware as compared to other aspects of a memory model. Hence, this is a special subset. Also,
historically, these concepts have been developed somewhat independently.

Let us first provide a formal, mathematical framework to specify and analyse memory models before
discussing the practical aspects. This is presented next.

9.3 Theoretical Foundations of Memory Models

Let us summarise the knowledge that we have gained up till now (see Waypoint 11).

Way Point 11

• Creating one large shared cache for a parallel program is infeasible. It will be too large, too slow,
and too inefficient in terms of power.

• Hence, it is a much better idea to have an ensemble of small caches. This is known as a distributed
cache. The distributed cache however needs to appear to be a single, unified cache. If its behaviour
obeys the rules of coherence, this will be the case.

• Coherence is only one among several set of properties that modern architectures need to guarantee
when it comes to correctly executing parallel, multithreaded programs. In general, the behaviour of
parallel programs on a machine needs to be specified by a memory model.

• The memory model treats each thread as a sequence of instructions and typically only considers the
reads and writes. The outcome of a program is defined as the values read by all the read instructions
across the threads. The memory model specifies the set of valid outcomes for a program on a given
machine.

9.3.1 Sequential and Parallel Executions

A shared cache contains a set of blocks, where each block contains a set of bytes. We normally do not access
the memory at the level of bytes; instead, we divide the block into a set of memory words, where each word
is either 4 or 8 bytes. Let us assume that every variable requires a single memory word, and we only access
memory at the granularity of words. We can also say that a memory location corresponds to a single memory
word. We are primarily interested in the sequences of reads and writes to memory words issued by different
threads, and their associated correctness properties. Let us try to model such sequences formally. We shall
introduce a set of concepts that will help us in creating a mathematical model that can accurately explain
the concepts of coherence and consistency.
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Point of View

Consider a single shared cache. Let us place a hypothetical observer at a specific memory word that we are
interested to monitor. We will see a series of read and write accesses made by possibly different threads
(running on different cores). Since all of them are to the same location, we can order them sequentially. In
this sequence of reads and writes, the correctness criteria is that each read operation returns the value of
the latest write operation. The write might have been performed by the same thread, or a different thread
running on a different core. A memory operation can be broken down into a request and a response. The
request is typically issued by a core and the memory system issues the response. For a load, the response is
the value, and for a store the response is typically empty, indicating that the store has completed successfully.

Let us now explain a very important concept in the design of parallel systems. It is the point of view.
This basically captures what a hypothetical observer placed at a given location inside the memory system
observes. This is her point of view.

Queue

Cache

Observer

Timeline of memory requests seen by the observer: 

Time

R1 R2 R3

tstart

tcomp

tend tstart

tcomp

tend tstart

tcomp

tend

Figure 9.4: Observer at a memory location

The observer that sits on the memory location (let’s say on the SRAM cells) sees a very simple view of
the memory operations (see Figure 9.4). Every memory operation has three points of time associated with it:
a time at which it starts (tstart), a time at which it completes (tcomp), and a time at which it ends (tend). We
shall use the generic term memory operation in our subsequent discussion – its exact definition depends on
the observer. In this case, tstart refers to the time at which the request to start the operation arrives at the
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memory location, or alternatively, the time at which the operation to access the memory location starts. tend
refers to the point of time when all the actions with respect to the memory operation cease from the point
of view of the memory location. tcomp refers to the time when the memory operation completes its action.
This is a tricky concept, and needs to be explained in the context of reads and writes. A read operation
completes when we have read the final value, and the value will not change henceforth. A write operation
completes when we have written the value to the memory location. In this case, tstart < tcomp < tend.

Let us explain with an example. Assume we have a core and a shared cache. The core issues a read
request to read 4 bytes (a single memory word) from the memory location 20. The request is sent to the
shared cache that has a single first-in first-out queue of memory requests as shown in Figure 9.4. Once the
cache receives the request, it is enqueued in a dedicated queue. This time is tstart. Once the cache is free,
we dequeue the head of the queue and send the address to the decoder of the SRAM array. The array access
starts. Once we read the value of the SRAM cells at the sense amplifiers, we are sure that their values
are stable, and will not change in the lifetime of the current operation. This is the completion time tcomp.
Finally, when the response is written on the bus, this time can be treated as tend.

To summarise, from the point of view of this observer, operations arrive sequentially, they complete their
action (read or write), and then the responses are sent back. Operations never overlap. One operation
finishes, and the next operation starts. This pattern is an example of a sequential execution, which is a basic
concept in the concurrent systems literature. Let us summarise.

1. A point of view is defined as the set of events that a hypothetical observer sees at a particular point
in the memory system.

2. The observer sees a set of memory operations, where a memory operation can either be a read or a
write. Note that the exact definition of a memory operation depends on the observer.

3. Each operation has three times associated with it: tstart, tcomp, and tend. The start and end times
represent the times at which the observer sees the processing of the operation start and end respectively.

4. tcomp is the time at which the memory operation actually takes effect. For a read, it is the time, when
we finally read the value, and there are no chances of the value changing for the current operation.
For a write, it is the time when the value gets written, and it is potentially visible to all subsequent
operations. Regardless of the observer, this relation always holds: tcomp ≥ tstart. The relation between
tcomp and tend is slightly more tricky – it depends on the observer. Let us keep reading.

Sequential Executions

Let us recapitulate. In a shared cache, an observer sitting on a memory location sees a list of memory
operations: reads or writes. Let us formally argue about what constitutes correct behaviour in this case.
Even though it is obvious, let us still formalise it because we will use it as a foundation for later sections.

In formal terms, an execution is a set of memory operations. Each operation is a 6-tuple of the form
〈tid, tstart, tend, type, addr, value〉. tid is the id of the thread that has initiated the operation. tstart and tend
have been explained before. The type indicates if the operation is a read or a write, addr is the memory
address, and the value indicates the datum that is read or written to memory. We have not include the
completion time in the definition, because it is often not known. Now, we can either have an ordered
execution or a partially ordered execution.

We shall call an ordered execution a sequential execution where all the operations are ordered. This is
not the case in partially ordered executions – there is at least one pair of operations, where an ordering
between them is not specified.
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Timeline of memory requests seen by the observer: 

Time

R1 R2 R3

tstart

tcomp

tend tstart

tcomp

tend tstart

tcomp

tend

Figure 9.5: A sequential execution with three memory operations: R1, R2, and R3.

To understand sequential executions better, let us reproduce the relevant part of Figure 9.4 in Figure 9.5.
The operations in Figure 9.5 are seen by an observer at the memory location. The end time of one operation
is strictly less than the start time of the subsequent operation – they have no overlaps. This is a sequential
execution where the operations are ordered by their start times (and also the completion times).

It is not necessary for operations to be non-overlapping to be part of a sequential execution. For example,
we can have a pipelined cache, where before the previous operation has ended, a new operation may begin.
In this case, the operations do overlap, nevertheless, there is still a sequential ordering between them – they
are ordered in the ascending order of their start times.

Let us additionally define a property that establishes the correctness of a sequential execution. Since it
consists of only read and write operations, let us take a look at all the values that are read by read operations.
Each of these values needs to be correct, which means that a read operation needs to get the value of the
latest write to the same address in the sequence. Guaranteeing that read operations get the correct values
is enough because write operations do not return a value. It is only the read operations that read values
from the memory system and pass them to other instructions. Let us call such a sequence where all the
read operations read the correct values (latest writes) as a legal sequence. Also note that a legal sequence
guarantees the fact that the final value of a variable is equal to the value that was last written to it. This is
because if the system remains henceforth quiescent and then we decide to read a variable a long time later,
we expect to get the value of the last write.

In simple terms, a sequential execution is just an ordered sequence of memory operations. If the values
that are read are correct (from the latest writes), then the execution is legal.

Observer at a Core
It is now clear that an observer sitting on a memory location in a shared cache observes a sequential execution,
which is also legal. Let us now change the observer, and consider her point of view. Let the new observer
be seated on a core that executes a single-threaded program. In this case, a memory operation from the
point of view of the observer is actually a memory instruction: load or store. She can see the core executing
instructions. Let us consider her point of view. For it, the start time is when the memory instruction is
fetched, and the end time is when the instruction leaves the pipeline. The completion time is the time at
which the operation actually performs its operation in the physical memory location: read or write.

In the case of a load instruction, the relation tstart < tcomp < tend still holds. Now, in the case of a store,
the relation tcomp < tend does not necessarily hold because the value may reach the desired cache bank much
later; recall that we declare that the instruction has ended when it leaves the pipeline.

Let us explain this with a simple analogy. Assume that I want to send a letter. I leave my house at tstart,
then I drop the letter in the post box at tend. As far as I am concerned the operation ends when I drop
the letter in the post box. Note that at that point of time, the letter has not yet reached its destination.
The letter reaches the destination at the completion time tcomp, which happens much later. In this case, we
instead have the following relation: tstart < tend < tcomp. In fact, something similar has happened to your
author once. Once he dropped a cheque in a drop box, and then assumed that his account has been credited
a few days later when he was performing an online transaction. The transaction got declined because the
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cheque had not been picked up by the bank because of a snow storm – a real life example of tcomp being
greater than tend!

Nevertheless, in this case also the observer observes a legal sequential execution regardless of the degree of
sophistication of the core. Let us prove it. Note that the order of start times (fetch times) is the same as the
program order because we fetch instructions in program order. Now, we have already argued in Chapter 2
that to an external observer, the execution of an OOO processor, and an advanced in-order processor are
identical (in terms of correctness) to that of a simple single-cycle processor that picks an instruction in
program order, completely executes it, and then picks the next instruction. A single-cycle processor thus
generates an operation stream that is a legal sequential execution – a read always gets the value of the latest
write. Because the executions are identical, it means that regardless of the core, the outcome of every read
operation is the same (same as the outcome in a single-cycle processor). Hence, in this case as well, we have
a legal sequential execution, even though we have tcomp > tend for stores.

The implications are profound. It means that even if we speculate as much as we want, an external
observer will always observe a legal sequential execution, which is a simple linear order of operations where
every read gets the value written by the latest write.

Definition 67

• An execution is a set of memory operations. Each operation is a 6-tuple of the form
〈tid, tstart, tend, type, addr, value〉.

• In a sequential execution, operations are arranged in an ordered sequence. They need not be non-
overlapping.

• A sequential execution or in general a sequence of operations is legal, if every read operation returns
the value of the latest write operation to the same address before it in the sequence. In addition,
the final values of all the variables are equal to the their last-written values.

• In a single-threaded program, if we order all memory operations in program order, then we arrive
at a legal sequential execution.

Parallel Executions

Up till now, we have only considered executions that have a single observer. Let us now consider a system
with multiple observers. We define a parallel execution as follows. It extends a regular execution by also
including the order of operations recorded by each observer. The set of operations recorded by the observers is
mutually disjoint. Furthermore, each observers records a sequential execution. Unlike sequential executions,
there is no ordering between all pair of operations. Hence, we have a partial order here. Note that in a
parallel execution, unless we know the completion times at which the operations take effect, we do not know
how to verify the execution. We cannot create a legal sequence.

We show one such example in Figure 9.6, where we have 3 threads that access two memory locations
x and y. We have one observer per core or per thread that sees the entry and exit of instructions. The
start and end times are defined in the same way as was defined for the previous example that considered a
single-threaded system.

To understand this figure, let us define a standard terminology for read and write operations. Assume
we are accessing the memory location corresponding to variable x. Let Rxi mean that we are reading the
value i from location x. Similarly, let Wxi mean that we are writing the value i to the location x.

Let us start out by noting several interesting features of this execution. The first is that different threads
running on different cores issue memory operations: reads and writes. They operations take effect based on
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Figure 9.6: A parallel execution with 3 threads. The small vertical lines represent the completion times.

their completion times. These times are shown with small vertical lines in the figure. Other than for Wy2,
the rest of the completion times are between tstart and tend in this execution. For the time being, assume
that we somehow know the completion times of each operation. We shall reconsider this assumption later.
Given that all the operations are ordered by their completion times, we can verify the execution.

Assume that the variables x and y are initialised to 0. In fact, we shall make this assumption for all
examples henceforth – all variables stored in memory are assumed to be initialised to 0. The first instruction
to complete is instruction 1 (Rx0). This reads the default value of x, which is 0. Subsequently, instruction
2 completes, and writes 1 to x. Then instruction 3 completes and reads x = 1. Let us now take a look at
instructions 4 (Wy1) and 5 (Wy2). Even though they overlap, their times of completion are such that 4
completes before 5. Hence, instruction 4’s write gets overwritten by the write of instruction 5. Also, note
that instruction 5 is an example of an instruction where tcomp > tend. Instruction 6 is the last write to x
and instruction 7 reads the latest write to y (Wy2).

Here, each operation has a completion time, at which it appears to take effect instantaneously. This
property is known as atomicity, where each memory operation appears to take effect instantaneously at its
completion time. If we arrange the operations in an ascending order of their completion times, then the
operations appear to take effect in that order. We can thus order the operations (1-7) by their completion
times in a linear timeline as shown in the bottom of the figure, and verify the correctness of the execution.

Definition 68
A memory operation is said to be atomic if it appears to execute instantaneously at some time t. It
is pertinent to underscore the point that all the threads should perceive the fact that the operation has
executed instantaneously at t. We refer to this time t as the operation’s completion time.

Problems with Parallel Executions
Unfortunately, an observer sitting on the core will not be able to perceive the completion time. She will only
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observe the start and end of an operation. In Figure 9.6, we assumed that we somehow know the completion
time of each operation, which is impractical.

Let us ask a question to ourselves. What have we gotten by creating a parallel execution? Unlike a
sequential execution, it does not allow us to arrange all the memory operations in a sequence. A sequence
has some very nice properties; for example, it allows us to define a key correctness property called legality
– every read returns the value of the latest write. In a parallel execution, we cannot do this. Specifying
the order of operations issued by the same thread might help us visualise the execution better, but other
than that, a parallel execution seems to be useless. Unlike a sequential execution, we cannot prove that it is
legal or correct because the term “latest write” is not defined. The only solace is that it conveys what each
observer records.

Then, why did we describe all of this discrete math to just arrive at a concept called a parallel execution
that is mostly useless? The only way that we can do justice to our hard work is if we can somehow convert
or map a parallel execution to a sequential execution. We know that a sequential execution is a good thing:
it can be analysed very easily, and it has some good properties like legality that is essentially a correctness
property.

Equivalence between Serial and Parallel Executions

Let us introduce the notion of the equivalence of two executions. We will use this theoretical tool to create
an equivalent sequential execution from a parallel execution.

Consider two executions P and S. Let the notation P | T refer to all the operations in P that were issued
by thread T . We similarly define S | T . This basically means that we extract all the operations from S and
P that were issued by the same thread T and also preserve their order. P | T and S | T are thus ordered
sequences. Let us use the ≡ operator to denote equivalence. The task at hand is to define the conditions
when P |T ≡ S|T .
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Figure 9.7: Equivalence between a sequential and parallel execution

Consider Figure 9.7. It shows the parallel execution P (originally shown in Figure 9.6) and a sequential
execution S. They have the same number of operations; there is a one-to-one mapping between operation
i in P and operation i′ in S. Both the operations have the same type, address, thread id, and read/write



429 Smruti R. Sarangi

the same value. They only differ in their start and end times. The start and end times of the operations
belonging to S do not matter – only their relative order matters.

We say that for a given thread T , P | T ≡ S | T , if and only if the two ordered sequences have the same
number of operations and there is a one-to-one mapping between the operations for each position in the
sequences. For example, consider all the operations issued by thread 3 (T3). P |T3 = {3,4,7}. S|T3 = {3’, 4’,
7’}. Notice the one-to-one mapping between the two sequences P | T and S | T .

Two executions P and S are said to be equivalent, i.e., P ≡ S if for all T , P |T ≡ S|T . Let us quickly
convince ourselves that the two executions shown in Figure 9.7 are equivalent based on our definition of
equivalence.

Now note that P is a parallel execution and S is a sequential execution. The parallel execution is
equivalent to a sequential execution. The readers might not have realised it yet; we have actually stumbled
across one of the most effective tools in concurrency theory. We have established an equivalence between a
parallel execution and a sequential execution. Hence, even if we have a parallel execution, and we do not
know the completion times, there is nothing to worry. We just need to map it to an equivalent sequential
execution. If the sequential execution is legal, then we define the parallel execution to also be legal. This
aligns with our intuitive notion of correctness of parallel executions. The reader needs to convince herself of
this fact.

Can we always map a parallel execution to a legal sequential execution? Let us find out.

9.3.2 Sequential Consistency

Consider a parallel execution where the order of operations as recorded by each observer is the same as the
per-thread program order. As we saw earlier, this is the case with observers seated on cores or when the
observers are the threads themselves watching their instructions get executed. This is also the default case
when we are looking at the execution of a thread from the point of view of software. In such a parallel
execution, each thread observes its instructions getting executed in program order.

If we can map this parallel execution to an equivalent legal sequential execution, then it means that
we have a virtual ordering between all the instructions across all the threads. This is captured by the
sequential execution. We can execute the instructions from the parallel threads one at a time, and arrive at
the same outcomes. Even if we do not know the actual completion times, it does not matter, we can verify
the equivalent sequential execution, and see if each read returns the value of the latest write to the same
address.

Any such parallel execution that can be mapped to an equivalent legal sequential execution is said
to be sequentially consistent. Sequential consistency abbreviated as SC, is thus a property of a parallel
execution. We can however extend the definition to programs and machines. Any program that only produces
sequentially consistent parallel executions or just executions is said to be sequentially consistent. We also
say that the program is in SC. Similarly, if a machine only produces sequentially consistent executions, it is
said to be a sequentially consistent machine.

If we think about it, sequential consistency is intuitive. The human mind always thinks sequentially,
and it is thus difficult to visualise the execution of a parallel program, and consequently argue about its
correctness. However, with the notion of sequential consistency, we can do this very easily. For a parallel
execution, if we can show that it is equivalent to a legal sequential execution, then we can actually think of
the parallel program as a regular sequential program. We can then visualise it in our mind’s eye much better
and also reason about its correctness. Additionally, it is a boon to software writers particularly assembly
language programmers. If the underlying architecture allows non-SC executions, it will become very difficult
to write correct programs. Furthermore, programs written on one machine will not run on another. If the
underlying architecture somehow guarantees only SC executions, software writers can easily write correct
code that will execute seamlessly.
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Definition 69
Sequential consistency has several equivalent definitions. Let us list a few popular ones.

• If a parallel execution is equivalent to a legal sequential execution where the program order between
all the operations issued by the same thread is preserved, then we say that the parallel execution is
in SC.

• An execution is said to be sequentially consistent, or in SC, if the memory accesses of all threads
can be put in a sequential order. In this sequential order, the accesses of a single thread appear in
program order, and furthermore every read fetches the value of the latest write.

• If it is possible to interleave the memory operations of all the threads and generate a single sequence
of memory operations where the operations of each thread appear in program order and the sequence
is legal, then we say that the execution is sequentially consistent.

• Let us visualise a single-cycle processor that executes instructions from different threads by picking
an instruction in program order, executing it, and writing back the results to the architectural state
of the thread. We can use it to simulate the execution of parallel threads. If it is possible for it
produce the same set of outcomes as a parallel execution using this sequential method of execution,
then we say that the parallel execution is sequentially consistent.

Examples: Single-variable programs

To appreciate the implications of our definitions, let us consider a few examples. First, let us consider
executions that access only a single variable. These can arise out of executing multithreaded code snippets
that just access a single variable, or we can extract all the accesses to a single variable from the execution
of a multi-variable program.

T1 T2 T3

Wx1 Rx0 Rx1
Wx2 Rx2 Rx2

Figure 9.8: SC execution

T1 T2 T3

Wx1 Rx1 Rx2
Wx2 Rx2 Rx1

Figure 9.9: Execution that is not in
SC

Figure 9.8 shows an SC execution (variables initialised to 0). It is possible to order the memory accesses
sequentially. We can order them as follows: Rx0 → Wx1 → Rx1 → Wx2 → Rx2 (T2) → Rx2 (T3). Here,
the arrow (→) represents a happens-before relationship between operations A and B meaning that A needs
to happen before B such that B can see its result.

Now consider one more execution that is not in SC in Figure 9.9. The readers need to convince themselves
of this fact by trying all possible ways to create an equivalent legal sequential execution.

There is something that we fundamentally do not like in Figure 9.9. Wx2 comes after Wx1. All other
threads should respect this order. However, thread T3 does not respect it. It reads Rx2 before Rx1, which
means that it sees the writes in the reverse order. This is not intuitively acceptable to us. If there are no
more writes to x, threads T2 and T3 will have different final values of x, which breaks the notion of x being
a shared variable. Hence, let us rule out this behaviour – we do not like it.

One simple way to do this is to constrain the parallel execution that corresponds to all the
accesses to a single location to be sequentially consistent. This will automatically allow the execution
in Figure 9.8 and disallow the execution in Figure 9.9.
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We shall discuss such issues in detail later. However, we have already started to form an opinion on what
seems intuitive, and what does not. The execution in Figure 9.9 does not seem to be intuitively correct.
Why do we say so? This is because it violates per-location sequential consistency (abbreviated as PLSC),
which means that if we consider all the accesses to a single location (x in this case), the execution is not
sequentially consistent. For now, let us assume that PLSC is a desirable property. We shall continue to look
at PLSC in later sections, and keep commenting about its desirability.

Definition 70 Consider an execution E. For a given location x, let E | x be an execution that only
contains all the accesses to x in E. Note that we preserve the order of all memory operations. If for all
x, E | x is sequentially consistent, then we say that E is per-location sequentially consistent or E is in
PLSC.

Examples: Multi-variable programs

Now let us consider the general case: executions that access multiple memory locations.

T1 T2

Wx1 Wy1
Ry0 Rx0

Figure 9.10: An execution that is not in SC

For the execution shown in Figure 9.10, we cannot find a sequential schedule that ensures that we read
both x and y to be 0. Let us try different ways of arranging the operations:

Wx1→Wy1→ Ry0→ Rx0

Wx1→ Ry0→Wy1→ Rx0

Wy1→ Rx0→Wx1→ Ry0

All of these are illegal sequential executions because a read does not return the value of the latest write.
The original parallel execution is thus not in SC. We interpret PLSC in this case as follows. We create two
parallel executions: one for accesses to x and one for accesses to y. They are shown in Figures 9.11 and 9.12
respectively.

T1 T2

Wx1
Rx0

Figure 9.11: Accesses with respect to x

T1 T2

Wy1
Ry0

Figure 9.12: Accesses with respect to y

The reader can easily verify that both the executions are in SC. For example, the execution with respect
to x is equivalent to the sequential execution Rx0 → Wx1. Similarly, the execution with respect to y
is equivalent to the sequential execution Ry0 → Wy1. These executions thus satisfy PLSC. There is an
important learning for us here.

PLSC does not guarantee SC.
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We have already said that PLSC is a desirable property, because without it, executions become extremely
non-intuitive. What about SC? Should we demand sequential consistency from every execution? It is easy
to design a system that preserves SC and simultaneously guarantees high performance?

To answer this question, let us conduct a small experiment. Let us take a multicore processor such as a
regular Intel or AMD machine and write the following piece of code using two threads: T1 and T2.

T1 T2

x = 1 y = 1
t1 = y t2 = x

Here, x and y are global variables. Let us assume that all our global variables are initialised to 0. t1
and t2 are local variables stored in registers. The convention that we shall henceforth use is that all local
variables that are stored in registers are of the form ti, where i is an integer.

Is the outcome (t1, t2) = (0, 0) allowed? This behaviour is not intuitive. We are in a better position to
answer this question now. This is the same execution as that shown in Figure 9.10. This was proved to be
not in SC.

Let us now run this piece of code on a real Intel or AMD machine where the two threads are assigned
to two different cores. We shall observe that the outcome (0, 0) is indeed observed! This is because almost
no practical systems today are sequentially consistent. SC is a good theoretical concept and makes program
executions appear intuitive. However, to support it we need to discard most architectural optimisations. For
example, on Intel machines the write-to-read memory order (for dissimilar addresses) does not hold. This
means that in Thread 1, the core can send the instruction t1 = y to memory before sending x = 1. This will
indeed happen because loads are immediately sent to memory, once the address is resolved. However, stores
are sent at commit time and take effect later when they actually update the memory location.

Recall our discussion on start, end, and completion times. It is time to use these concepts now. In all
likelihood, in an OOO core, the address of the succeeding load instruction t1 = y will get resolved before
the preceding instruction (x = 1) commits. As soon as the address of the load to y is resolved, we will send
the load instruction to memory. Hence, the completion time of the load to y will most likely be before the
completion time of the store to x. This clearly violates program order but is a direct consequence of an
OOO design, where we send loads to the memory system as soon as their address is resolved. This improves
performance significantly because loads are often on the critical path. Unfortunately, this ensures that the
completion times of these two instructions – an earlier write and a later read to a different address – are not
in program order. This ensures that a parallel execution is not in SC, even though this does not create any
issues with single-threaded executions. In fact, almost all architectural optimisations starting from write
buffers to caches to complex NoCs reorder the execution of memory instructions in a program. For example,
a write buffer allows later loads to go directly to the cache, but stops earlier stores from being written to
the cache. Hence, in a multicore machine with OOO cores, SC often fails to hold. In general, whenever
we advance the completion time of instructions on the critical path such as load instructions to increase
performance, we are essentially violating SC. We celebrated such optimisations when we were considering a
single core running a single thread, sadly, they are singularly responsible for making executions non-SC in
multicore systems.

We thus see that SC is the enemy of performance – it precludes the use of advanced architectural
optimisations. Even though SC is a gold standard of intuition and correctness, it is difficult to enforce it in
modern architectures. We need to disrespect it if we wish to use all our architectural tricks. Now, if SC is
not respected, how do programs work? Why did we explain so much about SC, if SC is not meant to be
enforced?

We need to read the next few sections on consistency and data races to precisely answer this question.
Our basic philosophy is that even though SC is not respected at the architectural level, we somehow want to
trick the high level programmer into believing that SC is indeed respected as long as she follows some rules.

So, where are we now? We have appreciated that SC is a great theoretical tool that unfortunately cannot
be fully enforced in practice. However, it does give us a powerful method of reasoning about the correctness of
parallel executions. We also looked at PLSC that is somewhat less restrictive and holds for some executions
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that are not in SC. We have till now not commented about the practicality of PLSC. Let us analyse it further
before tackling the question of how to deal with architectures that do not enforce SC. Keep in mind that the
final goal is to somehow trick the programmer into thinking that the underlying architecture only produces
SC executions.

9.3.3 Exploring PLSC Further: Non-atomic Writes

Let us now complicate our situation even more. Consider a non-atomic write that does not appear to execute
instantaneously from the point of view of the programmer. It does not have a single completion time (again
from the point of view of the programmer). Rather it appears to execute at different points of time to
different threads. We clearly do not have the issue of non-atomic writes in single-threaded systems.

However, in multithreaded programs that run on multiple cores it is possible that a write to x might
be seen at different times by threads on other cores. One core might see it earlier than others. This will
particularly be a problem when we are considering a distributed cache. The location for x might actually
correspond to different physical locations on different caches within this large distributed cache. If we cannot
keep all of them synchronised and propagate updates instantaneously, then it is possible that different threads
running on different cores will perceive different completion times.

T1 T2 T3

Wx1 while(x != 1){} while (y != 1){}
Wy1 Rx0

Figure 9.13: Non-atomic writes

Let us consider one such execution in Figure 9.13. Assume that the while loop terminates in the first iter-
ation. The memory operations that the system observes are captured in the execution shown in Figure 9.14.

T1 T2 T3

Wx1 Rx1 Ry1
Wy1 Rx0

Figure 9.14: Non-atomic writes

Thread T1 writes to x (Wx1). Thread T2 observes this write (Rx1), and then writes to y (Wy1). Then,
T3 observes the write to y (Ry1), and finally reads the value of x. Assume that the while loop introduces a
happens-before relationship between the condition that it reads and the code after the loop. This should be
the case because we cannot terminate a loop unless its exit condition is true.

We have seen the following happens-before relationships till now: Wx1 → Rx1 → Wy1 → Ry1.
Let us now consider Rx0. This takes effect after Ry1 because of the while loop. We thus have Wx1 →

Rx1 → Wy1 → Ry1 → Rx0. If we remove the operations in the middle, we end up with Wx1→ Rx0. This
is not possible. The sequence of operations is not legal. Instead of Rx0, we should have had Rx1. However,
since this is not the case, we can conclude that this execution is not in SC. Furthermore, the write to x is
not atomic. It is visible to T2, yet is not visible to T3 at a later time – it is not associated with a single
completion time.

Now the important question that we need to answer is, “Do we allow such an execution?” Whenever,
we have non-atomic writes, we will be confronted with similar issues. There is no straight answer. However,
before taking a decision, we need to keep in mind that many commercial systems such as IBM PowerPC and
ARM v7 machines [Alglave, 2012] do not enforce write atomicity. In these architectures, writes to global
variables are non-atomic, which basically means in this context that the write to x reaches Thread 3 late.
In such systems, this execution will be correct. Even though this execution is not sequentially consistent,
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the architecture will allow this. Given that commercial systems exist that do not enforce write atomicity,
we have no choice but to accept this execution.

How can this happen? This can happen if the variable x is stored at multiple locations in a distributed
cache. Thread 2 receives the update to x (x = 1), yet Thread 3 does not receive it because the message to
deliver the update gets stuck in the NoC. Thread 3 thus ends up reading the older value of x.

Let us use the gold standard, PLSC, that we had developed in the case of atomic writes to analyse
this execution. It stated that if we consider the execution with respect to a single memory location, then it
should be sequentially consistent. Let us see if this property holds. Let us breakdown the execution shown in
Figure 9.14 into two sub-executions (see Figures 9.15 and 9.16), where the operations in each sub-execution
access just a single location.

T1 T2 T3

Wx1 Rx1 Rx0

Figure 9.15: Accesses with respect to x

T1 T2 T3

Wy1 Ry1

Figure 9.16: Accesses with respect to y

Even though the overall execution is not in SC, PLSC holds for each location. This is tempting us to
declare PLSC a necessary condition for intuitive behaviour in the case of non-atomic writes as well. Before
we do so, let us consider one more execution in Figure 9.17.

T1 T2 T3

Wx1 Rx1 Rx2
Wx2 Rx2 Rx1

Figure 9.17: Execution with non-atomic writes for a single location

Here, Threads 2 and 3 successively read from the same location, x. T2 reads 1 and then 2. T3 reads 2
first and then 1. This execution is clearly not in SC. Since writes are non-atomic, we can always argue that
this execution should be allowed, because we have after all accepted the non-SC execution in Figure 9.13
that had non-atomic writes. We can say that the write Wx1 propagated to T2 quickly, and then took a long
time to reach T3. We will have a reverse situation with Wx2. It arrived at T3 early and arrived at T2 late.

So, should this execution be allowed? In this case, the situation is slightly different. We have two
successive writes to x: Wx1 and Wx2. They are made by the same thread, and two other threads see them
in different orders. This means that x is perceived to have two different final states: 2 according to T2, and 1
according to T3. How can the same variable have two different final states? Let’s say that after a long time
T2 and T3 read the value of x, and if there are no intervening writes to x, they will still read different values.
This should not be allowed. This is breaking the notion of memory completely. x is no more associated with
a single logical location. It is as if the two threads saw two different variables. Hence, let us conclude that
this behaviour should not be allowed. This is indeed the case. No commercial processor allows this.

Now why is this behaviour different from the earlier example shown in Figure 9.13, where we decided to
allow non-atomic writes? Let us try to answer this question using the PLSC constraint. The reader needs
to convince herself that the execution shown in Figure 9.17 is not in SC and neither in PLSC. This means
that even if an execution is not in SC because of non-atomic writes, some architectures still allow it because
it satisfies PLSC. However, if the execution does not satisfy PLSC, it is not allowed.

What makes PLSC holier than SC? This has to do with the fact that ensuring SC is difficult at an
architectural level mainly because of the fact that it disallows many architectural optimisations. However,
to enforce PLSC, we just need to ensure that an observer observing all the accesses to a memory location
perceives a sequentially consistent order. This is simpler.

SC is like eating salad and doing exercise very day. This is ideal yet impractical! It is far better to
somehow trick the body into believing that the person is actually doing this. PLSC is like popping a pill
everyday to keep cholesterol levels in check – this is far easier and doable !!!

Let us look at the PLSC vs SC issue further.
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PLSC vs SC

What does sequential consistency entail? There are two aspects. We need to ensure that the operations
issued by each thread take effect in program order and secondly they appear to execute atomically or
instantaneously (appear to have a single completion time). Sequential consistency is essentially program
order + atomicity – this will allow us to arrange the operations of all the threads in a legal sequential order
where intra-thread program order is respected. Note that reads to single memory words are always atomic
because we can never have a partial read unlike a partial write, where some threads have received the updated
value and some haven’t. Hence, we normally say that SC = program order + write atomicity.

In OOO cores, ensuring program order for all memory accesses is difficult. However, it is far easier to
ensure PLSC. We simply need to ensure that accesses to the same address are not reordered by the pipeline
or the memory system. This is anyway the case as far as we have seen. We do not allow a load to go to
the memory system if there is a prior store that writes to the same address. Loads always check the LSQ
and write buffer to see if there are writes to the same address. Hence, our pipeline does not reorder memory
accesses to the same address – later memory accesses do not overtake earlier memory accesses. The NoC
may however do it. For example, two store operations to the same address issued by the same core may be
reordered by the NoC – this needs to be stopped.

Now, let us look at write atomicity, which can be viewed in a different way. Given a write operation
W and any other memory operation X, the order of completion times of W and X as perceived by all the
threads should be the same. This means that all the threads should agree that W either completed before X,
or after X, or the relative ordering does not matter – two threads should never make different conclusions.

Ensuring this for different memory locations is not easy because different parts of the memory system
manage the accesses to different memory locations. For example, the different locations might be in different
cache banks with their own controllers. However, ensuring this for a single location is much easier – in this
case, we only care about the point of view an observer that is looking at accesses to a single memory location
only. We can simply ensure that the accesses are serialised – appear to execute one after the other. This
will ensure atomicity.

An astute reader may argue that if writes are atomic from the point of view of a single location, they
should be atomic from all other points of view, even when we are considering accesses to multiple locations.
However, as we have seen in our examples, this need not be the case. As we saw in Figure 9.14, it is possible
that when we consider multiple locations, writes to a single location might appear to be non-atomic; however,
if we consider writes to any given location, they appear to be atomic. It is all about the point of view. For
a single memory location, the observer sits on the memory location, and for multiple locations, the observer
sits on the core. They see different things.

Let us now summarise. Given that PLSC is much easier to enforce than SC, PLSC has been accepted
as a correctness criterion that all shared memory architectures need to provide. SC, on the other hand,
is desirable but impractical. We nevertheless need to give the programmer an illusory assurance that the
architecture somehow ensures sequential consistency. We will take up this problem after we wrap up the
discussion on PLSC.

9.3.4 From PLSC to Coherence

It is time to wrap up the discussion on PLSC and provide a set of guidelines to hardware designers. PLSC
at this point appears more mathematical than architectural.

PLSC has two properties: program order and write atomicity (all the from the point of view of a single
memory location). The program order aspect is complicated by the fact that the NoC may reorder messages
sent by the same core (for the same address). However, most memory access protocols have easy fixes for
this issue. They serialise such accesses. The other property is write atomicity; this is from the point of view
of an observer who is only interested in accesses to the same memory address. We will discuss coherence
protocols in subsequent sections that ensure a global order of writes (the atomicity aspect of PLSC) to the
same address.
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However, before doing so, let us understand the implications of PLSC on the behavior and broad design
of hardware and software.

Software Implications of PLSC

For software writers, PLSC clearly specifies the executions that are allowed and the executions that are not.
PLSC tells the software writer that regardless of the underlying implementation, each memory location is
updated in program order, and if we do not consider other addresses, writes are atomic even on non-atomic
machines. We can then write programs accordingly.

Hardware Implications of PLSC

The implications on hardware design are more important. It is easily seen that PLSC is both a necessary
and sufficient correctness criterion for specifying the behavior of a cache or memory. Any external ob-
server perceives a single physical location associated with a given memory address, regardless of the internal
implementation.

PLSC thus provides a theoretical framework to create a distributed cache. If a given memory address
has multiple associated memory locations in a distributed cache, then as long as we can maintain PLSC at
the high level, the distributed cache will act as a unified cache. An observer on the memory location in a
unified cache will see a legal sequential execution. If it sees the same for accesses to the same address in a
distributed cache, then it will have no way of knowing whether the cache is unified or distributed. We can
thus realise the gains of a distributed cache without changing our notions of correctness.

What does it mean for cache design? A distributed cache should look like a black box to the upper and
lower levels. For example, if we hypothetically consider a design where the L1 cache is shared, the L2 cache
is distributed, and the L3 cache is shared, then there should be no way for the programmer, or even the L1
and L3 caches to know that the L2 cache has a distributed design. This is a rather bad design from the
point of view of performance, but it should still work correctly.

For this L2 cache, program order does not make a lot of sense; it does not perceive the existence of threads
on the cores. Each of its constituent caches (known as sister caches) has a FIFO (first-in-first-out) queue
that is used to accept memory requests. The requests in each FIFO queue are processed and completed in
FIFO order, which is the program order from the point of view of the L2 cache. Hence, its only job is to
maintain write atomicity when we consider accesses to a single location.

What exactly does this mean from the standpoint of hardware that can see all the accesses to all locations?
Let us go back to observers and points of view. Let us define a hypothetical external observer O that sees
the accesses for only a specific memory location (as we have defined before). By PLSC, O sees a legal
sequential execution. Next, let us attach an observer with each sister cache; with the ith sister cache, let us
attach observer Si. It creates a sequential execution for each address based on the times at which it receives
messages on the NoC; unlike O it does not have a global view; it conveys the perspective of real hardware.

Let us analyse four sub-cases where we discuss the ordering between read and write operations to the
same address that are issued by different sister caches.

Case I: Consider two read operations Ri and Rj to the same address that read the value produced by the
same write (as per O). Let us use the operator → to indicate the order of the accesses in a sequential
execution. Does the order between Ri and Rj matter across the sequential executions recorded by the
sister caches? The answer is NO. This is because they read the same value.

Case II: Consider two write operations Wi and Wj . If O records Wi →Wj , then all the sister caches need
to record the same order. Otherwise, read operations stand to get the wrong values, and the final value
of the memory location will also be undefined. Since this does not happen in PLSC, the order of writes
is the same across the sister caches.

Case III: Consider a read and a write operation: Ri and Wj . Assume that Ri returns the value written by
Wj . As per PLSC, O will observe the order Wj → Ri. If we have atomic writes, all the sister caches
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will also observe the same order. However, if we have non-atomic writes this need not be the case. It
is possible that some sister caches may see the write early and thus not record Wj → Ri. This means
that for them, the completion time of the read will be before the completion time of the write. A write
is said to complete when its value reaches all the sister caches and no subsequent read can read an
older value. Hence, all the sister caches may not agree on such a write-to-read ordering.

Case IV: Consider a read and a write operation, Ri and Wj , where Ri reads its value from Wi, and Wj

is ordered after Wi. As per PLSC, O will observe Ri → Wj . Will the rest of the sister caches also
record this order? Let us prove by contradiction. If a sister cache recorded Wj → Ri, it would have
been forced to return the value written by Wj or a newer value. This has not happened. Hence, all
the sister caches must have recorded Ri →Wj .

Let us summarise what we just learnt. We learnt that for a distributed cache that is built using FIFO
queues, the way that we described, all that it needs to additionally do is ensure that for accesses by different
threads to the same address, the read-to-write and write-to-write orders are global (all sister caches agree).
This is captured by cases II and IV. Alternatively, this means that all the constituent sister caches view
the same order of writes to the same address. The read-to-write ordering discussed in case IV is subsumed
within this definition.

Axioms of Cache Coherence

Let us go a step forward and define the axioms of cache coherence as follows.

Write Serialisation (WS) Axiom All the writes to the same address are seen in the same
order by all the threads. This is derived from cases II and IV. This is also known as the
Order Axiom.

Write Propagation (WP) Axiom A write is eventually seen by all the threads.

The write serialisation axiom (WS axiom) captures the relevant part of PLSC in the context of a distrib-
uted cache. Serialisation means a process where we observe a set of events, such as the writes to the same
address, as a sequence. The write propagation axiom is new; it has not been discussed before. It is rather
trivial in the sense that all it says is that a write never gets lost. It is ultimately visible to all the threads.
We shall make use of these axioms to create cache coherence protocols in Section 9.4.

9.3.5 SC using Synchronisation Instructions

Given that we have been able to manage the correctness of accesses to the same memory address with PLSC
and cache coherence, we need to revisit the issue of sequential consistency that we have kept pending. It
is sad that we have to make a choice between architectural optimisations that we worked so hard to design
and SC. If we had SC, we could have executed the piece of code shown in Figure 9.18 seamlessly. This is
one of the most common primitives in parallel programming: it allows a producer thread to communicate a
value to a consumer thread.

T1 T2

value = 3; while(status != 1){}
status = 1; temp = value;

Figure 9.18: Communicating a value between threads

This piece of code will work perfectly in a sequentially consistent system. temp will always be set equal
to value. Furthermore, thread T2 will wait for thread T1 to set status = 1. Unfortunately, if SC does not
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hold, specifically if program order does not hold, then we may exit the while loop prematurely. We are not
guaranteed to see temp = value. This is the primary mechanism that is used to communicate values between
threads. The while loop is known as a spin lock or a busy wait loop.

Let us outline a software solution to ensure that this piece of code works correctly.

Synchronisation Instructions

The most common synchronisation instruction is the fence instruction, which is a special instruction that
is present in almost all multiprocessor systems as of 2020. It artificially introduces an ordering between
instructions. The orderings enforced by a fence instruction are as follows.

read → fence
write → fence
fence → read
fence → write
fence → fence

This means that all read and write instructions before the fence instruction (in program order) need
to fully complete before the fence instruction completes. A read fully completes when it gets its value.
Similarly, a write fully completes, when it reaches all the cores and the value cannot change henceforth.
Handling reads is easy. We can consider it to be fully completed, when the value reaches the core. However,
for a write, the only way to ensure that it has fully completed is to wait for an acknowledgement from the
memory system. Secondly, later instructions (after the fence in program order) cannot start until the fence
instruction has completed. Once a core decodes a fence instruction, it stops sending later instructions to
memory. Once all the preceding instructions are deemed to have completed successfully, the core executes
the fence instruction. A vanilla1 fence instruction merely introduces an ordering. Once we commit a fence
instruction, we can then start executing later read, write, and synchronisation instructions. Note that if we
just consider the execution of fence instructions, it is in SC.

Along with the basic fence instruction, there are other kinds of synchronisation instructions that do
other things as well such as atomically reading, modifying, and writing to one or more memory addresses.
Nevertheless, almost all such variants still include the functionality of the fence operation that essentially
ensures that all the instructions before it in program order fully complete before any instruction after it in
program order completes – it enforces an ordering of completion times.

Use of Synchronisation Instructions

A trivial solution is to make every instruction additionally behave like a fence if we would like an execution
of a program to be in SC. ISAs such as x86 provide this facility by having a lock prefix, which makes some
instructions additionally behave as a fence. However, such fences make the program very slow. Tudor et
al. [David et al., 2013] estimate that executing a fence instruction takes 100-300 cycles, which is prohibitive.
Hence, our aim is to insert the minimum number of fences in a program such that the behaviour is predictable.
Note that problems arise only while accessing shared variables. If we are accessing thread-local variables,
then there is no need to add fences. We can use such insights to reduce the number of fences.

Let us explain with an example. Consider the piece of code that was originally shown in Figure 9.18.
Let us now add fences such that all executions are in SC irrespective of the underlying memory model. The
code is shown in Figure 9.19.

1ordinary or standard
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T1 T2

value = 3; while(status != 1){}
fence; fence;
status = 1; temp = value;

Figure 9.19: Communicating a value between threads. The code has fences
to make the code behave in a sequentially consistent fashion.

Irrespective of the underlying memory model, the execution will always be in SC. For example, if we do
not respect the write→ write order, it does not matter. Because of the fences, first the write to value will
complete, and then the write to status will complete. When we exit the while loop we will be sure that
value has been set correctly. We can happily set temp = value.

In general, figuring out the locations where we need to add fences, such that the number of fences is
minimised and each execution is in SC, is a computationally intractable problem. It is often easy to find a
sub-optimal solution, where we insert more fences than necessary.

Acquire and Release Synchronisation Operations

There are a few other kinds of restricted fence operations that provide a subset of the functionality of the
basic fence instruction.

Acquire instruction No instruction after the acquire instruction in program order can complete before it
has completed. Note that an acquire instruction allows instructions before it to complete after it has
completed.

Release instruction The release instruction can only complete if all the instructions before it have been
fully completed. Note that the release instruction allows instructions after it to complete before it has
completed.

Memory barriers Memory barriers are restricted fence operations, which disallow particular types of re-
orderings. For example, a write barrier such as stbar in the SPARC R© ISA prevents write → write
reordering. We have similar memory barriers for different kinds of instruction reorderings.

9.3.6 Theory of Memory Models

An important question that we need to ask ourselves is, “Should we give up on sequential consistency?” We
did try to force SC in Section 9.3.5 with fence instructions. Even though this solution can guarantee SC, the
overhead is prohibitive. A fence instruction takes 100-300 cycles and we cannot add many such instructions.

We thus need to adopt a more nuanced approach and look at other methods to reason about parallel
executions. So let us try to generalise the approach that we used to map a parallel execution to a legal
sequential execution. Let us introduce an intermediate step. We first convert a parallel execution into some
form of an intermediate representation, and then convert that to a sequential execution (not necessarily
legal). An intermediate representation, which we shall refer to as an execution witness, can map a parallel
execution to many sequential executions. We can use it to prove the correctness of a piece of parallel code,
and also write parallel code that runs on a non-SC machine. This conceptual view is shown in Figure 9.20.
An important point to note here is that the mapped sequential execution may or may not be legal. This is
dependent on whether writes are atomic or not. Notwithstanding this limitation, the method of execution
witnesses is a powerful technique that can be used to reason about memory models.

The rules for converting a parallel execution to an execution witness are dependent on the nature of
program orders that are preserved in executions and whether stores are atomic or not as we saw with SC
and PLSC. These rules pretty much govern the behaviour of the memory system with respect to accesses to
multiple memory locations. They comprise the memory consistency model, or in short, the memory model.
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Parallel 
execution

Execution
witness

Sequential
execution

Figure 9.20: Parallel execution ⇒ Intermediate representation ⇒ Sequential execution

Let us summarise. The goal is to reach a sequential execution by any means. This is because as human
beings, we find it far easier to reason about sequential executions. A sequential execution has the notion of
an earlier write and a later read. It essentially captures the view of an omniscient observer that is aware of
the completion times of all the operations. Of course, given a parallel execution we will never be able to guess
the completion times with certainty. Nevertheless, a mapped sequential execution represents one possible
order of completion times that is consistent with the parallel execution and the memory model. We might
have many such mapped sequential executions that all read and write the same values. The important point
is that it should be possible to find at least a single one such that we can argue that there is some order of
completion times that can explain the parallel execution. If we can map a parallel execution to a sequential
execution as per a memory model, the parallel execution is said to be feasible under that memory model.
Furthermore, if a piece of parallel code satisfies a certain property such as a given variable should always be
set to 1, then all the parallel executions will satisfy the same property, and all mapped sequential executions
will do the same too. It does help if the mapped sequential execution is legal – it makes the execution seem
more intuitive. Even if it is not, the sequential execution still provides important insights and can be used
to verify if a machine follows a given memory model or not.

Memory Consistency Models

Definition 71
The rules governing the behaviour of cores and the memory system while accessing multiple memory
locations is known as the memory consistency model or the memory model. It defines the set of valid
outcomes for any program: sequential or parallel.

Given the importance of the memory model in a computer architect’s life, it is essential that she understands
the basics of a memory model really well. There are two ways in which we can study memory models: from
a hardware designer’s point of view and from a programmer’s point of view. The earlier approach, which is
from the hardware designer’s point of view was far more common till 10 years ago (as of 2020). In this case,
researchers focused on the way that we implement different memory operations in the memory system, and
what exactly is allowed, and what is not. The problem with this line of approaches is that it does not convey
the big picture to students, and it does not arm them with theoretical tools that they can use to analyse
programs, executions, and hardware systems.

Hence, the other approach, which is to just look at program behaviour from the programmer’s point
of view is far more prevalent these days particularly with programming language researchers and members
of the verification community. We shall adopt this line in our book and present a theoretical framework
to understand different memory models. In specific, we shall use the framework proposed by Alglave et
al. [Alglave, 2012]. Her model covers all existing memory models as of 2020, and is fairly generic enough to
be extended for future models as well.



441 Smruti R. Sarangi

An Execution Witness

Let us introduce the basic terminology proposed by Alglave [Alglave, 2012]. Given a parallel program, let us
only consider the different types of memory operations: read, write, and synch (synchronisation) operations.

The rest of the operations need not be considered. Since the cores that execute the parallel threads do
not run in lockstep, they can get delayed for indefinite periods, and thus we cannot guarantee the relative
timing of the operations. As a result in different runs, we may have different outcomes. The space of all
possible outcomes is determined by the memory model. A single run is a parallel execution or just an
execution (formally defined in Section 9.3.1). For example, the code in Figure 9.21(a) can have two different
executions (on an SC machine): see Figures 9.21(b) and 9.21(c).

T1 T2

1: x = 1
2: t1 = y

3: y = 1
4: t2 = x

(a)

1: x = 1
2: t1 = y
3: y = 1
4: t2 = x

(b)

1: x = 1
3: y = 1
2: t1 = y
4: t2 = x

(c)

Execution 1 Execution 2

Figure 9.21: Two different SC executions of a parallel program

The space of all possible executions for a given program in a given system is known as the space of valid
executions. For each execution, we can create a graph called the execution witness. Recall from Section 2.3.2
(Definition 11) that a graph is a data structure with nodes and edges, where nodes or vertices are connected
with edges (similar to a network of roads where cities are the nodes and the roads are the edges).

In the case of an execution, the nodes are the memory accesses (read, write, or synch), and the edges are
the relationships between the nodes, which we shall define shortly. We can use this information to create
the execution witness for the execution, which can be further analysed to understand the features of the
execution, and its interaction with the memory model. An execution witness is a nice graphical tool that can
be used to understand if an execution is valid or not, and the limitations that a memory model imposes on
the architecture (and vice versa). We shall primarily use four kinds of edge labels in the execution witness:
rf , po, ws, and fr. Note that we can have multiple execution witnesses for an execution, in that case,
we only consider that witness (if there is one) that is allowed as per the memory model. In most of our
examples, we will only have a single execution witness for a given execution, and thus this problem will not
arise.

For defining these edges we will show examples of parallel code and their associated execution witnesses.
The conventions that we shall use are as follows.

1. All global variables start with alphabets (other than ‘t’), and are initialised to 0.

2. All thread-local variables that are restricted to a given thread, start with ‘t’. They are typically stored
in registers.

Nature of Edges: Global and Local

Before introducing the different kinds of edges, let us define a crucial property of the edges. We add an
edge between two nodes (memory accesses) in the execution witness if we believe that a memory access
(generalised as an event) happened before the other. When we want to say that event A happened before
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event B, we write A
hb→ B, and add an edge from event A to event B. Consider an example in Figure 9.22

for a sequentially consistent system, where we show a parallel program with two statements, an execution
that shows that operation Wx1 executed or completed before (happened before) operation Wy1, and then
an execution witness. The execution witness has two nodes, Wx1 and Wy1, and an edge between them that
indicates the happens-before relationship between them.

T1 T2

(a) x = 1
 

(b) y = 1
 

(a) x = 1
(b) y = 1
 

Execution 

Wx1 Wy1
hb

Execution
witness

(a) (b)

Figure 9.22: Example of an execution witness (assume a sequentially consistent system)

A happens-before relationship can be of two types: local or global. If a thread believes that event A

happened before event B, then we can write A
lhb→ B (A happened before B). From the point of view of that

thread (T1), this relationship holds. We can alternatively write, A
hb→ B ∈ lhbT1

. In this case it is possible

that another thread T2 might have a different view and might observe B
lhb→ A. This is the local view of T2.

To summarise, a local view does not necessarily hold across threads. There is no global consensus.

When we say that the relation A
hb→ B is global, it means that all the threads agree that A happened

before B. There is no disagreement between two threads. In this case, we can write A
ghb→ B or A

hb→ B ∈ ghb.
Further, note that the

hb→ relationship does not indicate if the relationship is local or global – this has to

be interpreted from the context. In this book, we shall use the symbol
hb→ if its scope (local or global) can

be interpreted from the context or if it does not matter.

Definition 72

• A is said to globally happen before B, if all the threads agree with the fact that A has happened
before B.

• Every thread has a view of the events. It is possible that a given thread T1 may feel that A
hb→ B,

and another thread T2 may feel that B
hb→ A. In this case, the relationship A

hb→ B is local to T1

and is not global. We thus write A
lhb→ B.

• If the happens-before relationship holds globally (across all threads), then we write A
ghb→ B.

All variants of the
hb→ relationship are transitive relationships, which means that A

hb→ B and B
hb→ C ⇒

A
hb→ C. A set of happens-before edges between events recorded by the same observer cannot have a cycle.

This means that we cannot have a set of relationships as follows: A
hb→ B, B

hb→ C, and C
hb→ A. This would

automatically imply that A
hb→ A, which is not possible (using the transitivity property). The fact that a

graph with happens-before edges cannot have a cycle will be used extensively to understand multiprocessor

systems. For similar reasons, any graph with just
ghb→ edges cannot have a cycle: it would imply that an

event happened before itself, which is not possible.
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Relations and Union/Intersection Operations

In Computer Science a relation is a set of tuples, which in this case is defined as a pair of events. Consider a
set of memory operations. Let us refer to each memory operation as an event. Let the events be A, B, C, D,
and E. Assume that there is a happens-before relationship between them, and this fact can be represented

as: A
hb→ B

hb→ C
hb→ D. We can say that the

hb→ operation defines a relation hb, which is simply a set of tuples

of events of the form 〈X,Y 〉, where X
hb→ Y . For this particular example, the relation

hb→ is defined as a set
of the following tuples (note the happens-before relationship in each pair).

〈A,B〉, 〈A,C〉, 〈A,D〉, 〈B,C〉, 〈B,D〉, 〈C,D〉

Specifying a relation such as
hb→ using a list of tuples of events is another way of defining the relationship.

This is however very cumbersome; nevertheless, it helps in understanding it from a theoretical perspective.
We can similarly define another relation xy with the following tuples: 〈B,C〉, and 〈B,E〉.

Now, we can define a union of relations, which is similar to a union of sets, where the result contains all
the tuples that are contained in at least one of the relations. The symbol for union is ∪.

hb ∪ xy = 〈A,B〉, 〈A,C〉, 〈A,D〉, 〈B,C〉, 〈B,D〉, 〈C,D〉, 〈B,E〉
We can similarly define intersection, where the intersection of two relations consists of only those tuples

that are present in both the relations. The symbol for intersection is ∩.

hb ∩ xy = 〈B,C〉
Let us now discuss the different kinds of edges we add in an execution witness. All of these are happens-

before edges.

Definition 73
A relation (R) between two sets A and B is defined as a set of pairs (2-tuples) of elements, where
the first element is from set A and the second element is from set B. A and B can also refer to the
same set. Consider an example. Let us have a relation IsTallerThan defined over the set of students
in a university. Each student is represented by her name (assume it is unique). Then if we write
IsTallerThan(Harry, Sofia), it means that Harry is taller than Sofia.

We can define all kinds of set operations between relations such as union and intersection. These
are similar to union and intersection operations on regular sets.

We can also say that a relation R1 is a subset of relation R2, if all the tuples that belong to R1, also
belong to R2, but not necessarily the other way. We write R1 ⊂ R2. If there is a possibility that R1 and
R2 might be the same, then we write R1 ⊆ R2.

Consider an example. Let us define a relation IsTallerBy2ft, which contains all pairs of people
where the first person is taller than the second person by at least 2 feet. It is clear that IsTallerBy2ft ⊆
IsTallerThan.

Program Order Edge: po

The program order (po) edge is a happens-before edge between memory operations issued by the same thread.
They need not have the same address. In an SC execution, where operations complete in program order, we
add po edges between consecutive operations issued by the same thread. In other memory models, we add
edges depending upon the kind of orderings that are allowed. There are six kinds of po edges.

1. poRW (read to write): This edge is between two memory operations, where the first operation is a load
and the second is a store.
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2. poWW (write to write): po edge between two store operations.

3. poWR (write to read): The first operation is a store, and the second operation is a load.

4. poRR (read to read): po edge between two load operations.

5. poIS (read/write to synch operation): Edge between memory operations and a subsequent synch
operation.

6. poSI (synch operation to read/write): Edge between a synch operation, and subsequent memory op-
erations.

We are reiterating the fact that these dependences can be between operations with different memory
addresses. The only thing that matters is their relative order within the thread. We shall see in subsequent
sections that different memory models give different degrees of importance to different types of program
order edges. For example, in the x86 memory model, poWW edges are global, whereas they are not global
in the PowerPC and ARM memory models. Depending upon the subset of po edges that are global, we can

afford different kinds of optimisations in the pipeline and the memory system. We shall use the symbol
po→

to refer to po edges in an execution.
However, if there are synch operations in the program, there is an edge between the synch operations

and other regular read/write operations. These edges are global in nature. This means that there needs to
be a consensus among all the threads that the synch operation completes only after all the operations before
it in program order, and furthermore, all the operations after the synch operation complete after the synch
operation completes.

Figure 9.23 shows an example of program order edges in an execution witness. We show the execution
of a single-threaded program on an SC machine, which preserves the ordering between the operations. The
rounded and shaded box with the text t1 = 1 shows the outcome of the execution, which is that t1’s value
is 1.

T1

(a) x = 1
(b) y = 1
(c) t1 = x
 

Wx1

Execution
witness

po

Wy1

Rx1

po

(a)

(b)

(c)
t1 = 1

Figure 9.23: Example of program order (po) edges (execution of a single-threaded program on an SC machine)

Read-from Edge: rf

The rf (read from) edge captures a data dependence for reads/writes to the same address either in the same
thread or across threads. If we have a read operation R, and a write operation W , where the read operation
reads the value written by the write operation, then we have a dependence between the read and the write.
It is a happens-before relationship because the write W needs to complete first, before the read operation



445 Smruti R. Sarangi

can read its value. Since the read operation has read its value, we can automatically infer W
hb→ R. This

is called a read-from relationship or an rf relationship and can be captured with a new type of edge in the

execution witness. Let us refer to this as the rf edge, and denote it by
rf→. We thus have W

rf→ R.

Figure 9.24 shows an example of a dependence where a write operation sends data to a read operation
in a different thread. It is not necessary that the read operation belong to a separate thread, it can also
belong to the same thread. In both cases, we shall have a read-after-write or an rf dependence, which is a
happens-before relationship.

T1 T2

(a) x = 1
 

(b) t1 = x
 

Wx1
rf

Execution
witness

t1 = 1

Rx1
(a) (b)

Figure 9.24: An execution witness with the rf edge

Let us divide the relation rf into two sub-relations: rfi and rfe. The rfi relation (read from internal)
is a write to read dependence in the same thread. In other words, the read and the write are operations
issued by the same thread. The rfe relation (read from external) also represents a write to read dependence;
however, in this case the read and write operations are issued by different threads. We have rf = rfe∪ rfi,
where ∪ stands for set union.

The two rf relations, rfi and rfe, need not be global. This depends on the memory model. For example,
if a write is non-atomic, it will be visible to some threads earlier than it is visible to other threads. This
would automatically mean that the rfe relationship does not hold globally because all the threads will not
agree on the order of operations. We shall explore the intricacies of such issues along with their architectural
implications in later sections. Finally, note that in many places we shall use the generic term rf which can
stand for either rfe or rfi or both. The nature of the usage will be clear from the context.

Write Serialisation Edge: ws

Let us now look at the edges that we need to add because of PLSC and cache coherence. As we had discussed
in Section 9.3.4, there is a global order of writes to the same address – all the threads agree with this order.

Let us thus add an edge between two write accesses to the same address and call it a write serialisa-
tion edge, or a ws edge, denoted as

ws→. It is a global happens-before relationship (follows from the write
serialisation axiom of coherence).

Figure 9.25 shows an example of the ws relationship, where we have two writes to the same variable x.
Even though the writes are performed by different threads, there is still an ordering between them to satisfy
PLSC, and thus we add a

ws→ edge between them.

From-read Edge: fr

Let us now discuss another kind of edge that arises as a natural consequence of PLSC and the axioms of
coherence (this was discussed in Section 9.3.4). We shall refer to it as the read → write or simply the fr
(from-read) edge.

Consider the piece of code shown in Figure 9.26 and its associated execution witness, where we have two
writes to a variable, and one read. In this case, we have a ws dependence between operations Wx1 and Wx2
because they write to the same variable x and the write operation Wx2 is the later write.
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T1 T2

(b) x = 2(a) x = 1 Wx1

Wx2

Execution witness

(a)

(b)

t1 = 1, t2 = 2 

rf
T3

(c) t1 = x
(d) fence
(e) t2 = x

Rx1

Rx2

(c)

(e)

fence

rf

(d)

ws po

po

Figure 9.25: An execution witness with the ws edge

T1 T2

(c) t1 = x(a) x = 1
(b) x = 2

Wx1 Rx1

Execution witness

(a) (c)

t1 = 1 
fr

Wx2(b)

ws

rf

Figure 9.26: An execution witness with the fr edge

However, in this case, we have an intervening read operation Rx1 that reads the value of the first write
operation Wx1. There is an rf edge between the operations Wx1 and Rx1. However, between Rx1 and
Wx2, we have a dependence. Wx2 needs to happen after Rx1, otherwise we would read the value of x to
be 2, which is not the case. Since there is an order between Wx1 and Wx2 due to PLSC, by implication,
we have an order between Rx1 and Wx2 as well. Let us create an edge to represent such a read-to-write

relationship, and name it the fr edge (represented as
fr→). Akin to the ws relationship, the fr relationship

is also global. Otherwise, PLSC will not hold (proved in Section 9.3.4).

Synchronisation Edge: so

We assume that all synchronisation operations are globally ordered with respect to each other. If we just
consider all the synch operations, the execution is sequentially consistent. Recall that along with fence
operations, we can have many more synch operations that additionally read or write to memory addresses
(synch variables). For synch operations, we assume that rf and po are global. Furthermore, because of
PLSC, ws and fr are also global.

Whenever we show an execution witness, we shall indicate the regular variables and the synchronisation
variables (exclusively accessed by synch operations). ws, rf , and fr edges between accesses to the synchron-
isation variables will always be added. In some cases, it will be necessary to highlight the fact that we are
adding an edge between accesses to a synchronisation variable. In this case, we will additionally annotate
the edge with the symbol, so (or

so→).
Figure 9.27 shows an example. Here, x is a regular variable and y is a synchronisation variable. We have

an rf edge from Wy1 to Ry1. We additionally annotate the edge with the so symbol.
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T1 T2

(c) t1 = y
(d) t2 = x

(a) x = 1
(b) y = 1

Wx1 Ry1

Execution witness

(a) (c)

t1 = 1, t2=1 

rf/
so

Wy1(b)

po

Rx1

po

rf (d)

Figure 9.27: An execution witness with the so edge

Conditions for Correctness

We have four types of relationships: po, ws, rf , and fr. ws and fr originate from PLSC; they are
global relationships. The po and rf relationships might have some global and some local components
(sub-relationships). Let gpo ⊆ po be the subset of po that is global and similarly let grf ⊆ rf be the subset
of rf that is global. A relation R1 is a subset of relation R2, if we can say with certainty that a tuple (pair
of events) that is a part of R1 is also a part of R2. The reverse may not be true (see Definition 73). For
example, it is possible that the poSI , poIS , and poWW relations are global, yet the poWR, poRW , and poRR
relations are local. In this case, gpo = poSI ∪ poIS ∪ poWW . Similarly, we may have a model where the rfe
relation is global, but the rfi relation is local. In this case, grf = rfe.

Let us now define a correctness condition for an execution witness. If we have an execution witness with
the edges from gpo, grf , fr, and ws, there should be no cycle. This is because we cannot have a cycle of

global happens-before edges. A cycle of the form A
ghb→ B

ghb→ C
ghb→ A implies that A

ghb→ A, which is not
possible.

Alternatively, the overall global happens-before relation ghb can be written as

ghb = (gpo ∪ grf ∪ fr ∪ ws) (9.6)

ghb needs to be acyclic for every valid execution witness: it precisely characterises the memory model.

Sequential Consistency
Sequential consistency is rather special when it comes to the four relations that we have defined. Since
program order needs to be respected, gpo = po. Similarly, we have atomic writes; hence, grf = rf . The
other two relations, fr and ws, need to hold anyway because they hold for all systems that respect PLSC.

Hence, we can write

SC = (po ∪ rf ∪ fr ∪ ws) (9.7)

Implications of an Acyclic Execution Witness

Let us recount our journey. We realised that we will not be able to create an equivalent legal sequential
execution for every parallel execution on a non-SC machine. Hence, from a parallel execution we created an
execution witness. Note that the execution witness need not be unique. However, the execution witnesses
that we create have to be acyclic. This is because we cannot have a cycle of happens-before edges. This is
a necessary property of a valid execution witness.

However, we have still not looked at the elephant in the room. If we are able to create an acyclic execution
witness, where do we go from there? What does it give us? This is where we need to use a very important
result from computer science: Theorem 9.3.6.1. We state the theorem without its proof.
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Theorem 9.3.6.1 In any acyclic graph, we can lay the nodes one after the other in a sequence such
that if there is a path from node A to node B in the graph, then A appears before B in the sequence.
The topological sort algorithm can be used to create such a sequence.

There we go! We can create a sequential execution out of an execution witness. It will respect all the
ordering relationships of the memory model and the execution witness. If there is a path of happens-before
edges from operation A to operation B, then A will appear before B in the sequence. Since this sequence
captures global orders, it may not be legal, particularly if the rf relation is not global. Nevertheless, it is
a sequential order of operations, which is what we wanted to create – a sequential order presents a possible
order of completion times of the instructions. It proves that an execution is feasible under a certain memory
model. In fact, one of the classic ways of showing that a given memory model will not lead to a certain
outcome of an execution is by showing that all execution witnesses will have a cycle – we will not be able to
construct a sequential execution from them.

What we can we use this sequential execution for? Given a piece of parallel code, we can find all the
sequential executions for a memory model, either manually or using an automated tool. We can then use
them to reason about the set of valid outcomes and check if a given property holds across all possible
executions.

Let us reconsider this equation again: SC = (po ∪ rf ∪ fr ∪ws). The po relation essentially means that
in the mapped sequential execution, all the instructions of a thread appear in program order. Furthermore,
rf ∪ fr ∪ws ensures that this sequential execution will be legal – there will be a global order of writes that
appear to be atomic, and every read will get the value of the latest write.

9.3.7 Safety Conditions for Accesses to a Single Location

Let us now create a similar theoretical framework for the PLSC criterion based on the concepts that we have
learnt.

Correctness Conditions for Single-Threaded Programs

We have till now discussed the execution of multithreaded programs. We need to ensure that single-threaded
programs still work properly when running on a multicore system. The execution of single-threaded programs
needs to be independent of the underlying system and its memory model. In fact, a programmer should not
be able to know if the program is running on a uniprocessor or multiprocessor system. To ensure that this
abstraction is met, we need to add some more edges and constraints to ensure that this genuinely happens.
Let us consider a single-threaded program as shown in Figure 9.28.

1 x = 1;

2 x = 2;

3 y = 3;

4 z = x + y;

5 x = 4;

Figure 9.28: Example program to show memory access constraints in uniprocessors

In this case, we are setting the value of z, after reading x and y (see Line 4). The variable x is initialised
to 1 and then set to 2. In a single-threaded execution, from the point of view of the programmer, our
requirements are as follows for computing z.
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1. In the statement z = x + y, we read the value of x to be 2.

2. In the statement z = x + y, we read the value of y to be 3.

We can say that in every statement, we need to read the latest value of each operand (as per program
order). As far as we are concerned there is no other requirement. As long as this condition holds for all
variable and array accesses, we are fine. After all, the only basic actions that we perform are memory
read, memory write, branches, and ALU operations. Branches and ALU operations are independent of the
memory model. As long as we read the latest value that was written, the execution is correct.

Let us look at the happens-before edges that we need to have to ensure that this happens. Consider the
variable x. We set it to 1, then to 2, we read its value to compute z, and then we finally set it to 4. These
statements need to execute in program order, at least from the point of view of the current thread. If the
order gets mixed up, then the final execution will be incorrect. Note that we can reorder the write to y
(Line 3) with respect to the writes to x as long as it is done before y is read in Line 4. The execution will
still be correct.

Let us now try to derive a pattern from this observation. For an execution to be correct on a uniprocessor,
every read has to get the correct value, which is the value of the latest write to the same address. This means
that we cannot reorder accesses to the same variable where at least one of them is a write. For the sake of
simplicity, let us constrain all the accesses to the same variable to appear to an external observer as if they
are happening in program order. Let us refer to this as the uniprocessor access constraint where accesses to
the same variable in a thread are not reordered and furthermore they take effect in program order. This is
the same as PLSC in the context of a single thread.

We can always reorder accesses to different variables such as reordering accesses to x and y in Figure 9.28.

Now, let us take this single-threaded program and run it on a multiprocessor. As long as the uniprocessor
access constraint holds, the program will yield the same output irrespective of the memory model. All the
reads will get the values of the latest write, and thus the execution will be the same. Let us thus create a new
edge called a up edge (uniprocessor edge) that we can add between two operations that belong to the same
thread and access the same address. We shall assume that the up edge is global when we are considering the
point of view of an observer sitting on the memory location. She only observes the accesses to that specific

memory location. We shall represent this edge with the symbol
up→.

Access Graphs

An access graph is in principle similar to an execution witness. It can be used to deduce the correctness
of programs running in multithreaded environments. Like the execution witness it also needs to be acyclic.
The key differences in an access graph are that it contains accesses for only a single location, and the edges
that we consider are up, ws, fr, and rf . The up edge enforces the uniprocessor access constraint for each
thread. The rest of the edges show the constraints governing the communication of values across threads or
the data flow. An observer sitting on a memory location will see all of these edges.

An example access graph is shown in Figure 9.29 for the code shown in Figure 9.28. Note the positions

of the
up→ edges that are added to ensure the uniprocessor access constraints.

PLSC

Consider the four types of edges in the access graph: the uniprocessor access constraint up, and the three
edges (ws, fr, and rf) that reflect the data flow between threads. They represent the behaviour of the
program from the point of view of a single memory location. Irrespective of the way these accesses interact
with accesses to other locations, we would like all these four orderings to hold from the point of view of the
single location. This is because they are required to ensure PLSC. In this case, the up relation represents
the program order in executions that access a single location, the same way the po relation represented the
program order in general programs. We have proven that SC = po∪ rf ∪ fr∪ws. We can define something
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T1

(a) x = 1
(b) x = 2
(c) y = 3
(d) z = x + y
(e) x = 4
 

Wx1

Access graph

(a)

Wx2(b)

up

Rx2(d)

up

Wx4(e)

up

Figure 9.29: An access graph for the code shown in Figure 9.28

similar for PLSC. The proof is on similar lines. For SC we considered multi-variable executions, for PLSC
we shall consider executions that access a single variable. After replacing po with up we get

PLSC = up ∪ rf ∪ fr ∪ ws (9.8)

Example 11
Consider the code in Figure 9.30(a). Here, the two threads see the two updates to x in different orders.
This is not allowed as per PLSC and coherence. To disallow an execution in our framework we need to
find a cycle in the access graph.

Consider the access graph in Figure 9.30(b). We have a cycle between the nodes (c), (e), and (f).
Since we cannot have a cycle with happens-before edges, this execution is not allowed. This execution is
not in PLSC.

T1 T2

(e) t3 = x
(f) t4 = x
 
 

(a) x = 1
(b) t1 = x
(c) x = 2
(d) t2 = x
 
 t1 = 1, t2 = 2 

Wx1

Access Graph

(a)

up

Rx1

up

Wx2

up

Rx2

(b)

(c)

(d)

Rx2

up

Rx1

rfe

rfe

fr

(e)

(f)

t3 = 2, t4 = 1 

(a) (b)

Figure 9.30: An access graph that shows an execution that does not satisfy PLSC
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9.3.8 Safety Conditions for Data and Control Dependences

Even in models that do not respect program order, there is some causal dependence. A causal dependence
is between a producer and a consumer (cause-effect relationship). It is not possible for a consumer to use
a value before it has been produced. Till now we have not captured such dependences. This can lead to
extremely non-intuitive behaviour.

T1 T2

(d) y = 1
(e) fence
(f) x = 1
 
 

(a) t1 = x
(b) if (t1 ==1) {
(c)     t2 = y }
 

t1 = 1, t2 = 0

 

 

Rx1

Execution Witness

(a)

 

if-stmt(b)

Wy1

po

fence

(d)

(e)

(a) (b)

Wx1

 pofr

rfe

(f)Ry0(c)

Figure 9.31: Non-intuitive execution when there is a data dependence

Consider the execution in Figure 9.31(a) and the execution witness in Figure 9.31(b). In this case, Rx1,
the if statement, and Ry0 are causally related: there is a cause-effect relationship. Rx1 is the producer of
t1, the if statement is the consumer, and its consumer is Ry0. We can think of the if statement creating the
permission for Ry0 to execute. Since our memory model does not respect read-after-read dependences, and
does not treat if statements in a special manner, we have not added edges between Rx1, the if statement, and
Ry0. However, in our memory model, we respect program orders between normal instructions and fences,
and the rfe relation is global. Hence, we have added the corresponding edges. This execution witness does
not have cycles and thus satisfies the memory model. However, it is not intuitively correct.

Instruction Rx1 produces the value of t1, which determines the direction of the if statement. Since in our
execution t1 = 1, Ry0 executes. Ry0 reads y = 0 and thus there is an fr edge between it and Wy1 (in thread
2). The three instructions in thread 2 have to be executed in program order because the second instruction
is a fence. After collating the dependences, we can conclude that Wx1 should complete after Rx1 because
of the causal dependences, fr edge, and the fence. However, this is not what is happening. Wx1 produces
the value for Rx1. Intuitively, we have a cycle even though we cannot see it in Figure 9.31(b). It appears
that we have read Rx1 much before we should have actually read it. This is known as a thin air read. This
can indeed happen in modern systems that use value prediction. If we would have predicted the value of x
to be 1, we would have later on found the prediction to be correct because of Wx1 and the execution would
have been deemed to be absolutely fine!

Definition 74
A thin air read is defined as a read, where we read a value without seeing its preceding write.

Let us thus introduce a new edge called a dependence edge (dep) (symbol:
dep→) that represents both data

and control dependences. We add this edge between a read and a subsequent instruction that uses its value
in the same thread or between a conditional statement and its body.
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(f) x = 1
 
 

(a) t1 = x
(b) if (t1 ==1) {
(c)     t2 = y }
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Rx1

Execution Witness

(a)

 

if-stmt(b)

Wy1

po
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(e)

(a) (b)
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(f)Ry0(c)

dep

dep

Figure 9.32: Example of an execution with the
dep→ edge

Let us thus create a new kind of graph to model causality. Let us call this a causal graph that only
contains edges to model producer-consumer relationships. We have three kinds of edges in such a graph: rf
edges, gpo edges and dep edges. gpo edges are program order edges that hold globally (gpo ⊆ po). Akin to
the execution witness and access graph, the causal graph should also be acyclic.

Now, if we add these edges to the execution in Figure 9.31, we have the execution shown in Figure 9.32.
We have added dep edges between Rx1, the if statement, and Ry0. Here, there is a cycle and thus the
execution is not valid.

Let us thus define a new condition that precludes thin air reads.

NoDepCycle = acyclic(rf ∪ gpo ∪ dep) (9.9)

9.3.9 Correctness of Executions

Now we are in a position to answer the question, “When is an execution correct?” This is in general a
tricky question because this depends on how exactly different systems, programming languages, and runtime
environments exactly define correctness. Let us however take the liberty of providing a definition that enjoys
a broad consensus in the technical community and is as per our discussion.

An execution is correct if all the following conditions in Table 9.2 hold.

Condition Test
Satisfies the memory model The execution witness is acyclic
PLSC holds for all locations The access graphs are acyclic
NoDepCycle holds The causal graph is acyclic

Table 9.2: Correctness conditions for an execution

9.4 Cache Coherence

Recall our discussion in Section 9.3.4 where we motivated the need for PLSC and showed how the axioms of
coherence arise as a natural corollary of PLSC. In this section, we need to design a practical cache coherence
protocol that ensures that the two cache coherence axioms hold: there is a global order of writes (write
serialisation), and a write is never lost (write propagation).
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9.4.1 Write-Update Protocol using a Bus

Let us consider a simple system. Consider Figure 9.33, where the set of caches are connected using a bus.
Recall that a bus is a set of copper wires that can support only one sender at any point of time; however,
we can have any number of receivers. Such buses naturally support broadcast based traffic. It is possible
for any cache to snoop on the bus – read all the writes that are made on the bus even if the writes are not
meant for it. Such kind of a bus is known as a snoopy bus. Cache coherence protocols that use snoopy buses
are known as snoopy protocols.

Cache 1 Cache 2 Cache 3 Cache 4

Bus

Figure 9.33: A broadcast bus

We shall discuss two kinds of snoopy protocols: write-update and write-invalidate. Let us describe the
simpler protocol write-update in this section. The key idea is that every write is broadcast on the bus such
that the rest of the caches can snoop it and take some action.

Each constituent sister cache, C1 . . . Cn, in the distributed cache is a complete cache in itself. It can
store any block. It can supply a copy of the block if it receives a request. However, to ensure that the set
of caches follow coherence, we need to observe some rules. Before framing the rules, let us understand the
constraints. Since C1 . . . Cn are mostly independent caches, they can have different copies of the same block.
In this case, ensuring write serialisation (WS) is difficult because we might update the copies in any order.
It is necessary to thus add restrictions to the process of writing such that the WS axiom is not violated. In
addition, it is possible that because there is a single bus, a cache might get continuously denied access to the
bus, and thus it might not get a chance to let other caches know about a write request that it has received.
This will violate the write propagation (WP) axiom. There is thus a need to ensure some fairness such that
the WP axiom is not violated – a write is ultimately visible.

Reads

Let us outline a simple protocol.
Whenever a cache receives a read request, if there is a read hit, we are sure it is the correct value, and

thus we quickly forward the value to the requester. However, if there is a read miss, then there is a need
to search for the value in other sister caches first. Recall that in a conventional system, we would have sent
the request to the lower level. In this case, we will not do that. We will first ask other sister caches. Only
if all of them indicate that they do not have the block, then only we send the request to the lower level. To
send a request to the rest of the sister caches, the cache that has a read miss needs to first get control of the
bus. Once it has exclusive access to the bus, it needs to broadcast a read miss request – denoted as RdX.
We assume a bus controller that gets requests from different caches, and then in a fair manner allocates the
bus to them. This ensures that our protocol follows the WP axiom.

After the cache broadcasts the read miss message, the rest of the sister caches get the message by snooping
on the bus. If any of the sister caches has a copy of the block, then it sends it over the bus to the requesting
cache. There is a subtle point that has to be made here. Assume three sister caches have a copy of the
block. It should not be the case that all three of them send back a copy of the block. This will not happen
in a bus based system, because the cache that gets control of the bus first will send a copy of the block. The
rest of the caches will see this and decide not to send a response (with a copy of the block) to the requester.

Let us thus propose a simple protocol known as the MSI protocol to implement this high-level idea. In
this protocol, each cache line has three states: modified (M), shared (S), and invalid (I). The protocol is as
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follows. When a given cache line is empty, it is said to be in the invalid state I. When it gets a copy of the
block after a read miss, it transitions from the I to the S state. S refers to a shared state, where it is known
that the block is possibly shared with other caches. This means that other sister caches might have the
same copy of the block with them. This part of the protocol is shown with a state machine in Figure 9.34.
The standard method of annotating a state transition is to create an event-action pair separated with the
‘|’ symbol. For example, the notation “Evict | −” means that whenever we need to evict a block, we just
evict it and do not do anything else. However, if we need to read a cache line, when it is in the invalid state
(block not present in the cache), we send a read miss message (RdX) on the bus. Once the block arrives,
we transition to the shared state. The action in this case always means that a message is sent on the bus,
which every sister cache can read.

I S
Evict | - 

Rd | RdX

Rd | - 

Figure 9.34: State transitions in the write-update protocol: S and I states

Note the transitions from the shared state. If we need to read a line that is already in the shared state,
then we can just go ahead and read it. There is no need to send a message to any sister cache. This transition
is shown as “Rd | −” in Figure 9.34.

Next, consider evictions from the cache when the line is in the S state. The S state basically means
that we have not written to the block. We are only reading it. Since the current cache has not modified the
block, it can seamlessly evict the block. We will not lose any data.

Writes

Let us now consider the tricky case of writes. Assume that we have a write miss. This means that the block
is not present in the cache. We need to first request the rest of the sister caches for a copy of the block, and
the write can be effected only after we get a copy of the block (like regular caches). This is similar to the
case of a read miss. We send a write miss message WrX to the rest of the caches. If we do not get a reply
within a specific period of time, or we get a negative response from the sister caches, then it means that the
block must be fetched from the lower level. This part is exactly similar to the case of a read miss. Once we
get a copy of the block, we transition to the modified (M) state. This is shown in Figure 9.35. Note that till
this point we have not performed any read or write yet, we are merely requesting a copy of the block from
other caches. Once, we have made the I → M transition after receiving a copy of the block, we can then
proceed with the read or write operation.

I M
Evict | Wb 

Wr | WrX

Rd | - 

Figure 9.35: The I →M and M → I transitions (writes in the M state are not shown)

Once, the block is in the M state, reads are seamless. This is indicated by Rd | − in Figure 9.35, which
means that no message needs to be sent on the bus. We can go ahead and read a copy of the block. However,
if we evict the block we need to write a copy to the lower level, because we have modified its contents. If we
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do not write back a copy to the lower level, then it is possible that we might lose our updates because no
other sister cache may have a copy of the block. Hence, to be on the safer side, every time we evict a block
in the M state, we should write back the block to the lower level such that updates are not lost. We use
the term Wb in Figure 9.35 to denote a write back. We can thus conclude that unlike the S state, in the M
state, evictions are more expensive.

Let us now look at writes in the M state, which is the only event-action pair that is not shown in
Figure 9.35. This is where we need to ensure that the WS (write serialisation) axiom is not violated.

Let us first consider a simple solution that might appear intuitive yet is wrong. Our algorithm could be
that we write to the block, and then broadcast the write on the bus to the rest of the sister caches such
that they can update the copy of the block that they may have with them. This will ensure that at all
points of time, all the caches have the same contents of the block. However, this is not correct. Assume
cache C1 writes 1 to x, and at the same time cache C2 writes 2 to x. Then they will try to broadcast the
values. Whoever (C1 or C2) gets control of the bus the last will end up writing the final value. Assume C1

broadcasts first and then C2 broadcasts. It is perfectly possible that on C1 two successive reads will read
the following values: first 1 and then 2. Now, on C2 we might have a read operation that arrives after we
have just written 2 to x, and not performed or received any write messages on the bus. In this case, we will
read x = 2. After C2 receives the broadcast from C1 and updates x to 1, the second read operation on x by
C2 will return 1. Thus, the order of writes perceived by C2 is (2,1), whereas for C1 it is (1,2). This clearly
violates the WS axiom. The writes are not serialised.

Let us thus try to fix this. Let us make writes atomic, where a write is visible to all the caches at the
same time. This can be done very easily. When we need to write to a block, which is present in the cache,
we wait to get control of the bus. Then we broadcast the write. All the sister caches update the copy of
the block if they have a copy of it. This includes the requesting cache as well, which effects the write when
it is broadcasted successfully. This process ensures that we can implement an atomic write operation, where
all the caches see it at the same time. This will ensure write serialisation.

Figure 9.36 shows the final diagram for the transitions in the M state. The flow of actions on a write
miss is as follows: broadcast a WrX message on the bus, wait to receive a copy of the block, transition to
the M state, and then effect the write.

I M
 

 Evict | Wb

Wr | WrX

Rd | - 
Wr | Broadcast 

Figure 9.36: I →M and M → I transitions

Till now we have looked at transitions from the I state to the S and M states. We now need to look at
transitions between the S and M states. In the write-update protocol, we never make a transition from the
M state to the S state. This is because if we have write access to the block, then it automatically implies
that we have read access to the block. However, we do need to make a transition from the S state to the M
state if there is a write request. This would indicate that we have modified a copy of the block. The final
state diagram for the protocol with all the three states is shown in Figure 9.37.

Transitions due to events received from the bus
There are three kinds of events that a cache can receive from the bus: RdX (read miss), WrX (write miss),
and Broadcast (a write being broadcasted to the rest of the caches). We need to process these messages for
each of our valid states: S and M . The state transition diagram is shown in Figure 9.38.

Whenever we get a read miss or a write miss from the bus, it means that some other sister cache needs
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Rd | - 
Wr | Broadcast 

S
Evict | - 

Rd | RdX

Rd | - 

Wr | Broadcast

Figure 9.37: The write-update protocol: state transitions due to read, write, and evict events

M RdX | Send 
WrX | Send 

RdX | Send 
WrX | Send 

S

Broadcast | Update

Broadcast | Update

Figure 9.38: The write-update protocol: state transitions due to events received from the bus

to be sent a copy of the block. One of the caches that contains a copy of the block needs to reply with the
copy, and when the rest of the caches see the reply they need not send their own copies to the requesting
cache. In terms of messages, when we receive the RdX and WrX messages from the bus, we need to start
the process of sending a copy of the block over the bus to the requesting cache. This is denoted by the Send
action in Figure 9.38. The fact that the Send action may be suppressed because a sister cache already sent
a copy of the block is not shown in the figure.

The other message that a cache can receive is a Broadcast message, which means that a sister cache has
written to a block. The caches that contain a copy of the block need to update their local copies with the
values being sent over the bus. This is an Update action.

Summary

The axioms of coherence hold because of the following reasons. The WS axiom holds because all the writes
are atomic, and they are instantaneously visible to all the caches. Alternatively, the caches see the same
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Term Meaning
States

I Invalid state. This means that the block is not
present in the cache.

S Shared state. The block can be read and evicted
seamlessly. However, we cannot write to the block.

M Modified state. We can read or write to the block.
Cache actions and events

Rd Read request
Wr Write request
Evict Eviction request for a block.
Wb Write back data to the lower level.
Update Update the copy of the block with values sent on the

bus.
Messages on the bus

RdX Read miss
WrX Write miss
Broadcast Broadcast a write on the bus.
Send Send a copy of the block to the requesting cache.

Table 9.3: Glossary of terms used while describing coherence protocols

order of writes, which is also the same as the order in which the caches get access to the bus. The WP
axiom needs to be guaranteed by the bus master – circuit that controls access to the bus. It needs to ensure
that all the caches get access to the bus in finite and bounded time. This way writes will not be lost. Every
cache will be able to place its requests on the bus without waiting indefinitely.

Even though we have guaranteed the axioms of coherence, significant performance and power issues still
remain mainly because a write is very expensive. Let us elaborate.

1. For every write operation, we need to broadcast the values on the bus. This increases the bus traffic
and power utilisation significantly.

2. Whenever a write is broadcast on the bus, every cache needs to check whether it contains the cache
block or not. If it does, it needs to update its contents. This increases the contention at every cache
and also increases the power utilisation significantly.

Before proceeding to discuss more efficient protocols, let us conclude this section by providing a glossary
that defines all the terms used for the states and transitions. We shall use the same terminology later as
well. Refer to Table 9.3.

9.4.2 Write-Invalidate Protocol using a Bus

The main drawback of the write-update protocol is that we need to send a message on every write. This
increases the power utilisation and the bus occupancy significantly. The write-invalidate protocol does not
suffer from this problem. To keep matters simple, let us keep the model of the system the same: all the caches
are connected to each other using a shared bus. Since every cache can snoop on the bus, this is another
example of a snoopy protocol. This protocol has the same three states albeit with different connotations.
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Basic Insights

The insights for this protocol are as follows. The reason that we need to broadcast writes to the rest of the
caches is because the rest of the caches need to be kept up to date. Hence, their state needs to be kept
updated all the time. The cost of ensuring this is significant, and it encumbers every single write operation.
To solve this problem, we need to constrain the process of reading and writing to copies of the same block.
Let us thus propose the following set of rules.

Single Writer At any point of time, we can at the most have only a single writer for each block and no
readers.

Multiple Readers If no cache has the permission to write to the block, then multiple caches can read the
block simultaneously. In other words, we can support multiple readers at a time.

Either we have a single writer situation or a multiple readers situation. We never have a case where we
have two caches that can write to different copies of the same block simultaneously. We also do not have
a case where one cache is writing to the block, and another cache is concurrently reading it. This is very
different from the conditions that we had in the case of the write-update protocol. However, because we
allow a single writer at a time, we shall show that we can design a protocol where we do not need to send a
message after every write operation.

Let us define the term conflicting access. Memory instructions A and B that access the same block are
said to be conflicting if one of the following conditions is true.

• A is a write and B is a write.

• Or, A is a read and B is a write.

• Or, A is a write and B is a read.

We can express the set of rules (single writer or multiple readers) that we have seen before in another
way:

In the write-invalidate protocol, we do not support concurrent and conflicting memory accesses.

Write-Invalidate Protocol: Read, Write, and Evict events

In the write-invalidate protocol, the shared (S) state represents the multiple-readers scenario, and the M
state represents the single-writer scenario. The state transitions for read, write, and evict events are shown
in Figure 9.39.

We make a transition from the I state to the S state, when there is a read request. In this case, we send
a read miss RdX on the bus, and get a copy of the block. If it is there with a sister cache, then we get that
copy, otherwise we get it from the lower level. The logic for avoiding multiple responses is the same as that
in the write-update protocol, which is that once a response is sent, the rest of the sister caches that have the
data discard their responses.

In the S state, we can read as many times as we want. However, we are not allowed to write to the block.
It is necessary to transition to the M state, and for that it is necessary to seek the permission from the rest
of the sister caches. Recall that we can only support a single writer at a time. If there is a need to write to
the block in the S state, then the cache places a write miss, WrX.u, message on the bus. It is important to
make a distinction between a regular write miss message WrX, and a write miss upgrade message, WrX.u.
We have seen the WrX message in the write-update protocol as well. We send a WrX message when the
requesting cache does not have a copy of the block. A copy of the block needs to be supplied to it by a sister
cache if it is present with it. However, when we are transitioning from the S state to the M state in the
write-invalidate protocol, we already have a copy of the block, we do not need one more copy. Instead, we
wish to let the sister caches know that they need to discard their copies such that the requesting cache can
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Figure 9.39: MSI protocol (messages from the higher level)

perform a write. Discarding copies of a block is known as invalidation. This is why this protocol is called
the write-invalidate protocol. As a result, we send a different message that informs the rest of the caches
that the state of the block is being upgraded to the M state. This is why we introduced a new message
called the write miss upgrade message WrX.u.

Subsequently, we can transition to the M state. In the M state, the cache is guaranteed to have an
exclusive copy of the block. No other cache has a copy. The cache is thus free to perform its reads and
writes. There is no need to inform the other caches. This is the crux of this protocol. In the M state, a
cache can read or write a block any number of times without placing messages on the bus because no sister
cache has a copy of the block. This is where we save on messages.

Now consider the I → M transition. This happens, when the block is not present in the cache, and we
wish to write to the block. In this case, we place a write miss message WrX on the bus. A sister cache, or
the lower level forward a copy of the block, and then we directly transition to the M state.

Let us now look at evictions. If a block gets evicted in the S state, then we transition to the I state.
Since we were only reading the block, its contents have not been modified. We can thus seamlessly evict the
block. Nothing needs to be done. However, an eviction in the M state is more expensive. This is because we
have modified the contents of the block, and we are sure that there are no copies of the block in other sister
caches. If we seamlessly evict it, then the updates to the block will be lost. It is thus necessary to write-back
a copy of the block to the lower level. Then it can be evicted and we can make an M → I transition.

Write-Invalidate Protocol: Messages from the Bus

Let us now see how a cache needs to react to messages coming from the bus (see Figure 9.40). Consider the
S and M states because considering the I state in this case is pointless. In the S state, if we get a read miss
message, we can prepare a response with a copy of the block. If no other cache has sent a response already,
then the response can be immediately sent. However, if we get a write miss, it is necessary to transition to
the I state; recall that only one cache can have the permission to write to the block at any point of time.

In the M state, if we receive a read miss, then it means that another cache is requesting for read-only
access. Since it is not possible for two copies of the block to be in the M state simultaneously, or for one
copy to be in the M state and the other copy to be in the S state, we need to do several things.

1. Provide a copy of the block. This needs to be done because no other cache, or even the lower level of
memory contains an up to date copy of the block.
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Figure 9.40: MSI Protocol with invalidate messages (messages from the bus)

2. Transition to the S state (M → S). The cache will at least be able to seamlessly read the data in the
future.

3. Write back a copy of the block to the lower level. This needs to be done because we wish to have
seamless evictions in the S state. Assume that we make an M → S transition, and we do not write-back
a copy. Subsequently, if the copies get evicted, the updates will be lost, because we support seamless
evictions from the S state. Hence, a write-back is required upon an M → S transition.

Let us now consider write miss messages. In the S state, if we get a write miss message then it means
that we need to transition to the I state. This is because when a cache writes to a block, it needs to do so
exclusively. If the message is WrX, we need to forward a copy of the block to the remote cache because it
does not have a copy. However, if the message received is of type WrX.u, which is just an announcement
that the requesting cache is transitioning the state of the cache line containing the block from the S to the
M state, we do not have to send a copy of the block. The requester already has a copy of the block in the
S state. On the same lines, we need to transition to the I state from the M state upon receiving a write
miss. Since the block was in the M state, the remote cache does not have a copy of it; it is thus necessary
to forward a copy.

Summary of the Write-Invalidate Protocol

Let us summarise our discussion. The write-invalidate protocol either allows a single writer or multiple
readers to simultaneously exist for each cache block at any single point of time. Since we do not have
multiple writers at a time, the order of writes to a single location can be clearly established. It is the order
in which we enter the M state across the caches. This ensures that the WS axiom holds. For the WP axiom,
we need to ensure that if a cache needs to write to a block, it ultimately gets write access to it. This is
possible to ensure by having a fair bus that gives every cache a fair chance to send messages on the bus.
Once a waiting cache gets access to the bus, it can send a write miss message on the bus and subsequently
get write access to the block. Note that some corner cases are possible. For example, it is possible that
before the cache is able to write the data, it receives a write miss on the bus from a sister cache. In such
cases, the pending operation – write operation in this case – needs to complete first. Such policies will ensure
that the axioms of coherence hold.
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9.4.3 MESI Protocol

Let us now make the snoopy protocol slightly more efficient. Assume that a cache has a read miss, and it
tries to read the data from other sister caches. If none of the sister caches have the block, then there is a need
to go to the lower level in the memory hierarchy. Once the block is fetched, the cache is sure that it holds
an exclusive copy of the block, and no other sister cache has a copy of the block. Now, if it desires to write
to the block it needs to follow the same procedure that entails broadcasting a write miss on the bus, and
waiting for other caches to invalidate their copies. This is not required given the fact that we already know
that no other cache has a copy of the block. The MSI protocol has no way of dealing with the situation. It
will always broadcast a message when we need to transition from the S to the M state. This can be fixed
by adding an extra state called the exclusive state – E state. This state will indicate that the given cache
can read the block and no other sister cache has a copy.
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E M

Rd | RdX

Rd | RdX
(from lower
level)
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rX

Rd | -

Wr | WrX.u

Wr | -

Rd | -
Wr | -Rd | -
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Evict | -

Evict | -

Evict | W
b

Figure 9.41: MESI protocol (read, write, and evict)
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Figure 9.42: MESI protocol (bus events)

Let us explain the E state in the context of the state diagram that only considers reads, writes, and
evicts. Refer to Figure 9.41. Let us start from the I state. If we have a read miss (denoted by Rd), there
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are two possible choices. Either the data is present in a sister cache, or we need to fetch it from the lower
level. Initially we do not know. We place an RdX message on the bus. If we get a reply from a sister cache,
then we transition to the S state, because we know that there are multiple copies of the block. However,
if we do not get a reply from any sister cache, then it is necessary to fetch the block from the lower level.
After fetching a copy, we can transition to the E (exclusive) state because we are sure that no other cache
has a copy.

The S and M states behave in the same manner as the original MSI protocol. Let us thus solely focus
our attention on the E state. We can seamlessly read a block that is in the E state because no other cache
is writing to it. However, the key advantage of having the E state is that we can silently move from the E
to the M state if we need to write to the block. There is no need to send a message on the bus. This is
because there is no need to send any invalidate messages to any of the other sister caches (they do not have
a copy of the block). Eviction from the E state is also seamless (no messages are sent) because the data has
not been modified.

Let us now look at the state transitions due to events received from the bus (see Figure 9.42). The
transitions for the M , S, and I states remain the same. Let us divert our attention to the transitions from
the E state. We can receive two kinds of messages from the bus: RdX and WrX. RdX indicates that
another sister cache wants to read the data. In this case, we need to send the data and then transition to the
shared state. This is because at this point of time two caches contain a copy of the block; it is not exclusive
to any single cache. Second, if we get a write miss message, WrX, on the bus, then we need to make an
E → I transition and also send the data to the requester. This transition is similar to the M → I transition.

Let us summarise.

1. The MESI protocol adds an extra E (exclusive) state. The state transitions for the M , S, and I states
remain mostly the same.

2. The main advantage of the E state is that we can take advantage of codes where we access a lot of
blocks that are not shared across the caches. In such cases, we should have the ability to silently write
to the block without sending invalidate messages on the bus. The E state allows us this flexibility.

The MESI protocol reduces the traffic on the bus as compared to the MSI protocol. However, both the
protocols suffer from the same problem, which is that we need to perform frequent write-backs to the lower
level, when we have a transition from the M to the S state. Note that this is a very frequent pattern for
shared data. Write-backs to the lower level are required to ensure that we can perform seamless evictions
from the S state. Let us try to fix this issue by introducing one more state, where the explicit aim is to
reduce the number of write-backs to the lower level.

In addition, we need to solve one more problem. Whenever we have a read miss or a write miss, a sister
cache needs to forward a copy of the block. If multiple caches have a copy, then all of them will try to send
a copy; however, we want only one of them to succeed. Our current solution is that all of them create their
responses, and the moment they see a response on the bus sent by a sister cache, they discard their responses.
This is time consuming, and requires additional hardware support. It is possible to do something better
such that most of the sister caches do not create such responses in the first place. The process of choosing
one candidate among a set of interested candidates, like sister caches in this case, is known as arbitration;
our aim is to ease this process or eliminate its need by proposing a more efficient cache coherence protocol.

Definition 75
The process of choosing one entity among a plurality of interested entities (software or hardware) is
known as arbitration. For example, in this case, multiple sister caches compete amongst each other to
send a response to the requesting cache. There is thus a need for arbitration.
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9.4.4 MOESI Protocol

We need to solve two problems:

1. Minimise the number of write-back messages that write data back to the lower level. These messages
are slow and time consuming.

2. Eliminate (as far as possible) the need for arbitration while forwarding a copy of the block to the
requesting cache.

We shall achieve this by creating an additional state called the owner, O, state, and two more temporary
states – St and Se. If a cache contains a block in the owner state then it is by default responsible to forward
the data. This ensures that caches do not compete among each other to supply data to the requesting cache.
Furthermore, caches do not have to prepare responses, and discard them. A lot of effort will get reduced by
just adding this extra state. In addition, the O state can contain data that has been modified. The aim is
to eliminate write-backs as far as possible.

Let us thus create a MOESI protocol, where we have the MESI states, and an additional owner state.
The state transition diagrams are shown in Figures 9.43 and 9.44 for messages received from the bus and
regular read/write/evict events respectively. We shall argue later that we need the two temporary states St
and Se for the sake of correctness.
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WrX | Send
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O

RdX | Send

RdX | Send

RdX | SendWrX | Send

 WrX.u | -

WrX.u | -

Probe | Send

Figure 9.43: MOESI protocol (bus events)

Let us first focus on Figure 9.43 that shows the state transitions after receiving a message on the bus.
We can transition to the O state from either the E state or the M state. Whenever a block is in the E state
and an RdX (read miss) message is received from the bus, it means that another sister cache is interested
in reading the block. In the MESI protocol, we would have transitioned to the S state. However, in this
case, we set the new state as the O state. After this operation, there are two caches that contain a copy
of the block: one has the block in the S state and the other has it in the O state. Henceforth, if another
sister cache has a read miss and requests for a copy of the block, arbitration is not required. The cache that
has the block in the S state simply ignores the read miss message. The only cache that responds is the one
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that has the block in the O state. It responds with the contents of the block. Thus there is no need for
arbitration.

The other interesting feature of the O state can be observed by taking a look at the M → O transition.
We make an M → O transition when we receive an RdX message on the bus (instead of transitioning to the
S state). The cache with the block in the O state subsequently keeps supplying data to requesting caches.
Note that in this case, the block’s contents are possibly modified, yet we do not perform a write-back. If
another cache wishes to write to a block by sending a WrX (write miss) or WrX.u (write upgrade) request,
then the block simply transitions from the O to the I state. In the former case, there is a need to send the
contents of the block; however, in the latter case, there is no need to send a copy.

We add one more message called the Probe message. If in the S state, a Probe message is received, then
we send a copy of the block. The reasons will be clear later. The rest of the transitions remain the same.
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Figure 9.44: MOESI protocol (read, write, and evict)

Let us now look at regular reads, writes, and evict operations (see Figure 9.44). The transitions in the M ,
E, S, and I states are the same other than the I → S and I → E transitions; they require new intermediate
states, which we shall discuss later. The main addition is the O state. In the O state, we can seamlessly
read data. However, we are not allowed to write to the block. In this case, there is a need to invalidate the
rest of the copies by sending a write upgrade message WrX.u, and to transition to the M state. In the M
state, we can seamlessly read and write to the block.

Let us now consider the case in which we evict a block in the O state. Since the O state can possibly
contain modified data, we need to write the data to the lower level. A write-back is obvious in the M → I
transition because no other cache has a copy of the block. However, in an O → I transition because of an
eviction, there is theoretically no need to perform a write-back if another cache has a copy.

There is space for a new optimisation here. If a sister cache has a copy of the block, then we need not write
the data to the lower level upon an eviction in the O state. We should simply transfer ownership. However,
this requires arbitration because the block might be present with multiple sister caches. This overhead is
justified if it is significantly lower than accessing the lower level. The MESIF protocol that introduces a new
F state (on the lines of our O state with some differences) has the notion of transfer of ownership. We can
introduce this notion in our MOESI protocol as well. The reader is advised to look up the details of the
MESIF protocol on the web. For the sake of simplicity, let us not introduce this state and continue without
it.

In the vanilla MOESI protocol, we do not transfer ownership, instead we write-back the block upon an
eviction in the O state. Assume that there are other caches that have a copy of the block in the S state.
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Now if a new cache requests for a copy of the block, it will not find a cache that has the block in the O
state. It will thus be forced to read a copy of the block from the lower level, which is inefficient. There is a
correctness problem as well. When a cache that does not contain a copy of the block reads the block from
the lower level, what is its state: E (exclusive) or S (shared)? We do not know if sister caches have a copy
or not. Either they have the block in the S state only, or none of them have a copy. We have no way of
distinguishing between these two situations.

Hence, we introduce two temporary states: St and Se (see Figure 9.44). Let us focus on the tricky
corner case when there is a read miss from the I state. We send a read miss (RdX) message on the bus and
transition to the St state. This is a temporary state, because we need to make a transition from it in finite
time. Then we wait for a reply. If we get a reply from a sister cache (Reply in the figure), we transition to
the S state. Otherwise we wait till there is a timeout. We assume that there is a timeout period after which
we can conclude that none of the caches have a copy of the block in the O, E, or M states. After a timeout,
we transition to the second temporary state, Se, and simultaneously we send a Probe message on the bus.

If any cache has the block in the shared state, it prepares a response with a copy of the block. The cache
that gets control of the bus first sends the response. Once we get this message (Reply in the figure), we can
transition to the S state because another sister cache also has a copy of the block. However, if we have a
timeout in the Se state, we can conclude that no sister cache has a copy of the block in any state. We thus
need to read the block from the lower level. We do this, and then transition to the E state because we are
sure that no other cache has a copy of the block.

To summarise, we observe that even though the MOESI protocol solves an important problem by in-
troducing an additional state, there is a need to add two temporary states to solve resultant correctness
problems.

9.4.5 Write-Invalidate Protocol using a Directory

Let us now try to make the write-invalidate protocol even more efficient and scalable. Recall that we proposed
the invalidate protocol in the place of the update protocol to reduce the number of bus accesses; we wanted
to reduce the contention on the bus. Let us go one step forward and try to improve the performance even
more.

The biggest problem with bus based protocols is the bus itself. The bus is by definition a centralised
structure and can only handle one message at a time. It is true that a protocol using a bus naturally
places an order on all the requests based on the order in which they get access to the bus. This proves
beneficial while ensuring the axioms of coherence. However, at the same time, it reduces the communication
bandwidth, and thus does not scale with the number of constituent caches. For 2-4 caches, using a bus is a
good idea. However, as we increase the number of constituent caches, the bus fails to scale. We need to use
a network-on-chip (NoC) as we studied in Chapter 8. In an NoC we can sustain many parallel read-write
operations between pairs of nodes, and thus the net bandwidth is much larger.

Sadly, we lose the most important advantage of a bus with regards to the cache coherence axioms –
ensuring an order between write operations. Ensuring the write propagation axiom is still easy because we
can always design an underlying network that provides fairness guarantees.

To solve these issues, let us centralise our NoC. This means let us add a new node in the NoC whose
job is to provide an order between write operations – serialisation. Let us refer to this structure as the
directory. It provides serialisation along with a few more services to the set of caches in a distributed cache.
The conceptual diagram of the system is shown in Figure 9.45. A cache coherence protocol that uses the
directory is known as a directory protocol.

Structure of a Directory

The main role of a directory is to keep track of the sharing status of all the blocks in a cache. It is organised
as a cache where we have a standard tag array and a data array. It contains a list of entries known as
directory entries, where an entry corresponds to a single block. The structure of a directory entry is shown
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C1 C2 Cn

Directory

Figure 9.45: Conceptual view of a directory. C1 . . . Cn are the sister caches connected to the directory via
the NoC.

in Figure 9.46. We have a state field that stores the state of the block, and then we have a list of sharers.
The state indicates if the block is shared, or held exclusively by a single cache. The list of sharers is a list
of cache ids that contain copies of the block.

State List of sharers

Figure 9.46: Structure of a directory entry. The tag part of the block address is not shown.

The state field is similar to the state fields that we maintain in the MSI based protocols that we have
already seen. However, unlike the snoopy protocols where we never maintain a list of caches that contain
a copy of the block, in this case we need to maintain an explicit list. Since we do not have a bus based
configuration, a broadcast is a very expensive proposition in an NoC, and thus it is necessary to maintain
an explicit list and send point-to-point messages the the sharers of a block. A sharer is a sister cache that
has a copy of the block.

The simplest way for storing a list of sharers is to have a bit vector where each bit corresponds to a sister
cache. If the ith bit is set, then it means that the ith sister cache has a copy of the block. If there are N
sister caches in a given distributed cache, then each entry in its directory contains N bits (1 bit per cache).
This is known as the fully mapped scheme. We shall discuss more schemes to optimise the list of sharers
after discussing the cache coherence protocol.

Definition 76
A scheme in which we have an entry for each sister cache in the list of sharers is known as a fully
mapped scheme.

Protocol

Let us design a MESI protocol. Let us keep the same set of states: M , E, S, and I at the level of each
constituent cache. The only difference is that whenever we evict a block we need to send an Evict message
to the directory. We were not doing this in the case of the snoopy protocols. Moreover, all the read and
write miss messages are sent to the directory first, not to the sister caches.
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Taking this account, let us list the messages that a cache sends on the NoC. They are as follows: RdX
(read miss), WrX (write miss), WrX.u (write upgrade), and Evict (block evicted from a cache). The rest
of the state transition diagram for read, write, and evict messages remains the same. Hence, we do not show
the modified state diagrams for these events. Let us instead focus on the state transition of a given
directory entry as shown in Figures 9.47 and 9.48. We use three states: U (uncached), E (a sister cache
contains a copy of the block in either the E or M state), and S (one or more sister caches have the block in
the S state).

U S

E

RdX | 1. Send RdX to one of the
         sharers. Ask it to forward 
         a copy.
         2. sharers += {P}

WrX.u | 1. Send WrX.u to all sharers
                 (other than P)
            2. sharers = {P} 

WrX | 1. Send WrX to all sharers
              (other than P)
          2. Ask one of the sharers to 
              forward a copy.
          3. sharers = {P} 

WrX | 
1. sharers = {P}
2. Read from LL

sharers={} | - Evict | sharers -= {P}
RdX | 
1. sharers = {P}
2. Read from LL

Figure 9.47: State transitions in a directory entry (from the U and S states)
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RdX | 1. Send RdX to the sharer. Ask it
           to forward a copy of the block.
         2. sharers += {P} 

Evict | 
1. sharers = {}

WrX | 1. Send WrX to the sharer
         2. Ask the sharer to forward a copy
         3. sharers = {P}  

Figure 9.48: State transitions in a directory entry (from the E state)

Let us focus on Figure 9.47 that shows all the transitions from the U and S states. Initially, we start
from the uncached (U) state. In this state there are no sharers – no sister cache contains a copy of the data.
Whenever the directory gets an RdX message from a cache, it transitions to the E (exclusive) state: only
one sister cache contains a copy of the block in either the E or M state. For this U → E transition, the
directory can initiate a read from the lower level (LL in the figure) to get a copy of the block and forward
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it to the requesting cache. Let us adopt a convention to designate the id of the sister cache that is sending
an event to the directory as P . In this case we add P to the list of sharers, which hitherto was empty.

We have an S state, which has the same connotation as the S state in the MESI protocol. It represents
the situation where the block is present in one or more sister caches in the shared state. In the S state, we
can keep on receiving and responding to read miss (RdX) messages from caches. In each case, we forward
the read miss message to one of the sharers, and ask it to directly send a copy of the block to the requesting
cache. The response need not be routed through the directory. Subsequently, we add P to the list of sharers.
If we get an evict message, then we remove P from the list of sharers. If the list of sharers becomes empty,
then it means that a copy of the block is not present in any sister cache, and we can thus change the state
to U .

Next, let us consider the write miss messages: WrX and WrX.u. We need to transition to the E state.
The E state indicates that only one cache contains a copy of the block, and the block in that cache can
either be there in the E state or M state. Recall that E →M transitions are silent, and thus the directory
will never get to know if the block has transitioned from the E to the M state in a sister cache. Hence, we
have just one state to denote exclusivity with possible write access in the directory entry. First consider the
U → E transition. This happens when we get a WrX message from a sister cache. In this case, there is a
need to read a copy of the block from the lower level because no other cache contains a copy, and forward it
to the requesting cache P . In addition, we make P the only sharer because it has an exclusive copy of the
block. We transition from the S to the E state upon receiving two kinds of messages: WrX and WrX.u.
In the case of the upgrade message WrX.u, the requesting cache already has a copy of the block. It is just
requesting for write permission. We thus need to send invalidate messages (WrX.u) to all the sharers other
than P , and make P the only sharer. In the case of the WrX message, it means that the requesting cache
does not have a copy of the block. Hence, it is necessary to additionally ask one of the existing sharers to
forward a copy of the block to the requesting cache P .

Now consider Figure 9.48, which shows the transitions from the E state. Upon an eviction, the list of
sharers will become empty, and we need to transition to the U state. This is because no sister cache will
contain a copy of the block after the block is evicted. If there is a read miss (RdX), then we make an E → S
transition. Additionally, we send an RdX message to the lone sharer such that it can move to the S state,
and also provide a copy of the block. The requesting cache, P, is then added to the list of sharers.

For a write miss (WrX) message, we do not need to change the state. The state can remain to be E.
However, we need to invalidate the sharer, forward the requesting cache a copy of the block, and update the
list of sharers to contain only the requesting cache P .

Let us summarise. A directory has taken the place of a snoopy bus. It acts as a point of serialisation
where the order of writes is determined by the order in which the directory chooses to process them. This
ensures the WS axiom. To ensure the WP axiom, it is necessary to ensure that the directory is fair – it does
not delay write requests indefinitely. This can easily be achieved with a FIFO queue.

Let us now look at some optimisations and consider corner cases.

9.4.6 Optimisations and Corner Cases in the Directory Protocol

Evicting an Entry from the Directory

The directory needs to have a finite size. It cannot have an entry for every single block in the memory
system. If we have 32 GB of main memory, and each block is 64 bytes, then we need half a billion entries,
which is clearly not practical. The directory is thus organised as a set associative cache, where each way
contains directory entries. When we access the directory, we first search for the entry, and if there is no
entry for the block address, then it is necessary to allocate a new entry.

Let us now consider the case when an entry needs to be evicted. Note that we need to evict the state of
the block (stored in the directory entry) and the list of sharers. One option is to keep a copy of the directory
entries in main memory or in secondary storage. The other option is to discard the contents of the entry
altogether after it is evicted. The first option necessitates a lot of storage in the memory system and in
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secondary storage. It is thus not practical. The only feasible solution is to forget about the contents of the
directory entry after it is evicted. However, this will cause problems. We will forget the list of sharers. Next
time if the block associated with the entry is accessed, we will not be able to run the state machine correctly
because we would have no record of its previous state and the list of sharers.

The only way out of this quagmire is to invalidate all the sharers once a directory entry is evicted. If the
block has been modified, then we write it back to the lower level. This ensures that the next time we access
the block, the directory entry can be initialised to the pristine U state. Sadly, the process of invalidation and
write-back increases the overheads significantly and makes the protocol slow. There is however no choice,
and thus our strategy should be to reduce the number of evictions from the directory as far as possible. We
thus need a very good replacement algorithm.

Multiple Directories

If we have a single large directory, then we need many read and write ports to cater to different requests
every cycle. Thus we will require a large multiported storage structure in the directory. This will be slow and
consume a lot of power. Hence, an effective idea is to split the physical address space into disjoint subsets,
and associate a directory with each subset. For example, we can create 8 such subsets by considering the
3 LSB bits of the block address. A subset corresponds to a distinct combination of bits. This way we can
create subsets that are mutually disjoint. We can then create 8 separate directories: one for each subset.
This is similar to creating a banked cache and the reasons for doing this are the same. Each directory will
be smaller, and hence faster; additionally, it will also suffer from less contention. Note that there is no
correctness issue here.

Managing the List of Sharers

Let us now consider the list of sharers. In a large server processor we can have tens of cores. Often it is
possible to add more processors and cores using expandable slots in the motherboard at runtime. If we were
to design for the worst case, then we have to create space for the maximum possible number of sharers, which
is the maximum possible number of cores in the system if we are considering a distributed L1 cache. In large
servers, this can be a fairly large number such as 256. Adding 256 bits to every entry in the directory is a
significant overhead. This should thus be avoided.

Thankfully we can leverage some patterns here. It is very unlikely that a single block will be accessed
by all the threads running on all the cores. The degree of sharing is limited to 4 or 8 sister caches in an
overwhelming majority of cases. Thus instead of having a bit-vector based scheme for storing the list of
sharers, we can optimise the space by explicitly storing a few sharers: 4 or 8. If the maximum possible
number of sharers is 256, then it takes 8 bits to represent each sharer; therefore, we need to store 32 or
64 bits in each directory entry depending on the number of sharers that we wish to support. Note that
storing 32 or 64 bits as compared to 256 bits is a significant reduction in the number of bits that need to
be stored. Hence, a significant savings in storage space is possible. Such a scheme is known as a partially
mapped scheme.

Definition 77
A partially mapped scheme in a directory refers to a method where we explicitly store the ids of a limited
number of sister caches in the list of sharers. We do not have a dedicated entry in the list of sharers for
every single sister cache in the ensemble of caches.

If the number of sharers is less than the maximum number of entries that we can store, then there is no
problem. However, if the number of sharers exceeds this number, then there is an overflow. We did not have
this problem in a fully mapped scheme, where we had a single bit for every sister cache. However, in the
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partially mapped scheme, we shall have the problem of overflows. There are several strategies to deal with
this situation.

Replace: Assume that a directory entry can store up till K sharers. If it is full, and we need to add an
additional entry to the list of sharers, we have the problem of overflow. In this case, we select one of
the K sharers and invalidate its contents. It does not remain a sharer anymore. In its place, we can
store the id of the requesting cache for the current request.

Invalidate All: The other option is to have an overflow bit. This bit indicates that we were not able to fit
the ids of all the sharers in the list of sharers, owing to space constraints. If the overflow bit is 1, then it
means that we have had an overflow. This is not a problem for read accesses; however, it is a problem
for write accesses because every single copy needs to be invalidated. The most feasible solution in this
space is to send invalidate messages to all the sister caches that are a part of the distributed cache
after receiving a write miss. This is undoubtedly a slow and time consuming process.

Coarse Grained Coherence: Another solution is to change the granularity of the information. Assume
that we store the ids of 8 caches in a system with 256 caches. In this case, the id of each cache is 8
bits long, and since the list of sharers stores 8 such ids, it needs 64 bits of space. Now assume that a
block is present in 9 caches. This situation represents an overflow. Let us change the granularity of
information that is stored. Let us divide the set of 256 caches into 128 sets that contain 2 caches each
(with consecutive ids). Since we have 128 sets, we require 7 bits to uniquely identify each set. In these
64 bits, let us store the ids of 9 such sets containing two caches each.

The advantage of this scheme is as follows. In this case, 9 sets can potentially cover up to 18 caches.
Even in the worst case when we do not have two caches in the same set, we can still cover 9 caches,
which is one more than what we could do before. We can increase the granularity of this scheme
further and cover more caches. In the worst case, we can have one large set containing 256 caches.
The advantage of this scheme is that all the sharers are mapped to at least one set. The disadvantage
is that we have no way of recording which caches in a set are genuine sharers and which caches are
not. This means that if we need to send an invalidate message, we need to send it to all the caches in
a set. Those that have a copy of the block will invalidate it, and the rest of the caches will ignore the
message. This adds to the overheads of the scheme.

However, this scheme is very flexible. If a block is stored in a single cache then we use a granularity
of 1, and in the worst case if is contained in all the caches, then we use a granularity of 256. We can
easily adopt the resolution of our sharing vector (list of sharers) depending on the degree of sharing of
a block.

Race Conditions

Till now we have assumed that the transition between states is atomic: appears to be instantaneous. However,
in practice this is not the case. Assume we are transitioning from the S to the M state. In this case, the
requesting cache needs to first send a message to the directory, and then wait. The directory in turn needs to
first queue the request, and then process it when it is the earliest message for the block. The directory then
sends write miss (invalidate) messages to all the sharers, and waits for them to finish their state transitions.
In most practical protocols, the sharers send acknowledgements back to the directory indicating that they
have transitioned their state. After collecting all the acknowledgements, the directory asks the requesting
cache to change its state and perform the write access.

To support this long chain of events, we need to add many more waiting states that indicate that the
respective caches and directories are waiting for some message or some event. Furthermore, modern high
performance protocols try to break the sequence of actions and interleave them with other requests. These
are known as split transaction protocols. In an environment with so much complexity, we need to effectively
deal with race conditions (concurrent events for the same block).
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Let us elaborate. Assume cache A has a block in the modified state. Cache B wishes to read a copy of
the block. Cache B sends a message to the directory and the directory initiates the process of getting a copy
of the block from A. However, assume that before the messages reach A, it decides to evict the block. In
this case, there is a race condition between the read miss and the evict. The relative ordering of the actions
is important. If A evicts the block before a copy is sent to B, then the directory will search for the copy of
the block in A, and it will not find it. If it goes to the lower level, here also there is a race condition. We
need to ensure that an earlier write-back reaches the lower level before we search for a copy of the block in
the lower level later. Since these messages are sent via the NoC, their ordering cannot be guaranteed, and
there is a chance that a reordering may happen. One option is that we do not allow A to evict the block till
it gets a final confirmation from the directory; this will happen after B completes its operation. Such design
choices are overly conservative and restrict performance. To get more performance, protocols typically add
more states, transitions, and messages (see the Cray X1 protocol [Abts et al., 2003]) such that we can achieve
a better overlap between different operations on different copies of the same block. The main idea behind
such protocols is that we add more waiting and pending states where the caches and directories wait for
parts of their operations to complete. This adds more states to the protocol and more transitions. It is not
uncommon for protocols in modern processors to contain more than 20-30 states and 100+ transitions.

To summarise, while designing correct cache coherence protocols in the presence of simultaneous requests
and resultant race conditions, we need to add more states and transitions to a protocol. Vantrease et
al. [Vantrease et al., 2011] report the existence of cache coherence protocols that have up to 400 state
transitions. Verifying these protocols requires exhaustive testing and massive formal verification efforts.
There is a trade-off between correctness and performance, and thus such complex protocols are necessary
for performance reasons, even though they require a significant design and verification effort.

False Sharing

Our cache coherence protocol operates at the granularity of cache blocks. A typical cache block is 64 or 128
bytes wide. However, a typical access to memory is for 4 or 8 bytes.

Let us now look at another problem that will only happen with multiprocessor coherence. Consider
a block with 64 bytes where the bytes are numbered from 1 to 64. Assume core A is interested in bytes
1 . . . 4, and core B is interested in bytes 33 . . . 36. In this case, whenever core A writes to bytes 1 . . . 4, it
will invalidate the copy of the block that is there with B. Similarly, when B writes to bytes 33 . . . 36, it will
invalidate the copy of the block with A. Even though there is no actual overlap between the data that is
accessed by cores A and B, they still end up invalidating copies of the same block in each other’s caches.
Such a phenomenon is known as false sharing. Here, we have cache misses and invalidations because two
separate cores are interested in different sets of bytes that are a part of the same block. As opposed to false
sharing, we can also have true sharing where invalidations happen because two cores access the same data
bytes. In this case, there is a need to genuinely invalidate a copy of the data residing in the other core’s
cache. False sharing is a consequence of the fact that an entire block is treated as one atomic entity.

Definition 78
When two threads running on separate cores have conflicting accesses for the same set of data bytes, the
associated cache lines will keep getting invalidated, and the data block will keep moving between caches.
Such cache misses are known as true sharing misses, because the cause of the misses is data sharing
between threads.

As opposed to true sharing, we can have false sharing, which is defined as follows. In this case, both
the threads make conflicting accesses to disjoint sets of bytes within the same cache block. Note that the
sets of data bytes do not have any overlap between them. In spite of this, because of the nature of our
coherence protocol that tracks accesses at the level of blocks, we shall still have invalidations, and block
migration. This is an additional overhead, and will also lead to an increased number of read and write
misses.
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A lot of misses in parallel programs can be attributed to false sharing. The common approaches for
handling false sharing are as follows.

1. Use a smart compiler that lays out data in such a way that multiple threads do not make conflicting
accesses to the same block. It is necessary for the compiler to find all overlapping accesses between
threads, and ensure that data is laid out in such a way in memory that the probability of false sharing
is minimised.

2. Use word-level coherence tracking. In this case, we modify the invalidate protocol to allow conflicting
accesses to different non-overlapping parts of a block. We maintain multiple copies and explicitly keep
track of the words within the block, which have been modified by the thread accessing the cache. This
approach is expensive and complicates the hardware significantly. The compiler based approach is
significantly simpler.

9.4.7 Atomic Operations

Till now we have been using the coherence protocol to implement the cache coherence axioms. However, let
us now use it to implement advanced functionalities that most parallel applications require. Let us consider
a realistic scenario, where we are running a multithreaded banking application. The code for updating the
balance in an account will be similar to that shown in Listing 9.1. We shall prove that this code is erroneous
when run in a multithreaded setting, and we need atomic operations to ensure that this code works correctly.
Let us devote this section to the study of such operations.

Listing 9.1: Code to update the balance in an account

void update (int amount) {

balance += amount;

}

This code for the update function looks simple; however it is not safe in a multithreaded environment.
To understand the reasons for this, let us look at an expanded version of the same code, where each line
corresponds to a statement in assembly. Here, all the variables starting with a ‘t’ stand for temporary
variables that are assigned to registers.

1 void update (int amount) {

2 t1 = balance; /* load instruction */

3 t2 = t1 + amount; /* add instruction */

4 balance = t2; /* store instruction */

5 }

We replaced one C statement with three instructions: one load, one add, and one store. Let us now see
what will happen when two copies of the same code run on two different threads. The execution is shown in
Figure 9.49. For the ease of understanding, in thread T2, we use a different set of temporary variables: t3
and t4. The instructions are numbered 1, 2, and 3 respectively for thread T1, and 1’, 2’ and 3’ for thread
T2.

If the set of instructions in T1 run before or after the set of instructions in thread T2, then there is no
problem. However, in Figure 9.49, both the threads are trying to credit a value of |100 to the account2. We
have assumed that the starting balance is |0. In this case, the final balance should be |200 irrespective of
the order in which the threads credit the amount. However, because of the overlap in the execution of the
functions, it is possible that both the threads read the value of the balance variable to be 0. As a result,

2|is the symbol for the Indian rupee
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1: t1 = balance

1': t3 = balance

2: t2 = t1 + amount

2': t4 = t3 + amount

3: balance = t2

3': balance = t4

T1 T2

balance = 0, amount = 100

balance = 100
Figure 9.49: Two threads executing the code to update the balance at the same time

t1 and t3 are 0. Subsequently, t2 and t4 are set to 100, and the final balance is set to 100. This is clearly
the wrong answer and this is happening because we are allowing an overlap between the executions of the
update function in both the threads. There is a need to in some way lock the set of instructions such that
we do not allow the same set of instructions to be executed concurrently by another thread. No two threads
should be executing the instructions in the update function concurrently. We need a mechanism to ensure
this.

A piece of code that does not allow two threads to execute it concurrently is known as a critical section.
In this case, we need to create a critical section and insert these three statements in it such that only one
thread can execute them at one time. Almost all languages today that support parallel programming also
support the notion of critical sections. Without supporting critical sections it is not possible to write most
parallel programs.

Definition 79
A critical section is a region of code that contains contiguous statements, and all the statements in
the critical section execute atomically. After thread t starts executing the first instruction in a critical
section, it is not possible for another thread to execute an instruction in the same critical section till t
finishes executing all the instructions in the critical section.

Lock and Unlock Functions

Most critical sections use the lock-unlock paradigm. Here the idea is that we lock a memory address before
entering the critical section. Locking a memory address is often tantamount to setting its value to 1 from 0.
Then, when a thread leaves the critical section, it needs to unlock the memory address, which means setting
its value back to 0 from 1. Let us call this memory address as the lock address.
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However, if the lock is acquired (value set to 1), which means that there is already another thread
executing the critical section, then in that case, we need to wait till that thread has left the critical section
and released the lock: performed an unlock operation. The thread that is trying to acquire the lock keeps
trying to acquire the lock till it is free. Let us represent this situation pictorially in Figure 9.50. Here, we
observe a call to the lock and unlock functions before we enter and exit the critical section respectively.

T1 T1T2 T2 T2

time

Successfully locked

Unlocked 

Failed to acquire a lock 

Figure 9.50: A time line that shows two threads acquiring and releasing a lock

Before discussing the details and corner cases, let us look at the implementation of the lock and unlock
functions. Let us make a simplistic assumption that there is one lock address in the entire system, and the
associated lock needs to be acquired before we enter the critical section. The assembly code for the lock
and unlock functions is as follows. Let us assume that the address of the lock is in the register r0. The bne
instruction means branch-if-not-equal.

1 .lock:

2 mov r1 , 1

3 xchg r1 , 0[r0]

4 cmp r1 , 0

5 bne .lock

6 ret

7

8 .unlock:

9 mov r1 , 0

10 xchg r1 , 0[r0]

11 ret

The key instruction in the lock function is the atomic exchange instruction called xchg. Note that till now
we have not introduced this instruction. The atomic exchange instruction atomically exchanges the contents
of a register and a memory location. The keyword here is atomic. This operation appears to happen to other
threads instantaneously. No thread can interrupt the operation in the middle or observe any intermediate
state. Let us now explain how to use this instruction to realise a lock function.
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We first set r1 to 1, and then atomically exchange the contents of r1 with the lock variable (address
stored in r0). If the lock is free, which means that no thread has currently acquired it, then the contents of
the lock variable will be 0. After the exchange, the lock variable will contain 1, because we are exchanging
its contents with register r1’s contents, which was set to 1 in Line 2. The interesting thing is that after the
exchange operation, r1 will contain the earlier value of the lock variable. We compare it with 0 in Line 4. If
the comparison is successful, which means that the lock variable contained 0, then it means that the current
thread changed its value from 0 to 1. It has thus acquired the lock by successfully changing its status. In the
other case, when the comparison fails, it means that the lock was already acquired – the value was already
equal to 1. If we find that we have not acquired the lock, then there is a need to try this process again, and
thus we loop back to the beginning of the lock function. If we have successfully acquired the lock function,
we return back to the caller function and start executing the critical section.

The unlock function is comparatively simpler. In this case, we just need to release the lock. This is as
simple as setting the value of the lock variable to 0. Other threads can then acquire the lock by setting
its value to 1. The key point here is that instead of using the regular store instruction, we use the atomic
exchange instruction that also contains a fence. The idea here is that the fence ensures that when other
threads see the unlock, they will also see all the reads and writes that have happened within the critical
section, regardless of the memory model.

First, let us convince ourselves that this mechanism genuinely ensures that only one thread can execute
the critical section at a given point in time. This property is also known as mutual exclusion. Let us try to
formally prove this.

Theorem 9.4.7.1 The algorithm with the lock and unlock functions ensures mutual exclusion.

Proof: Assume that two threads T1 and T2 are in the critical section at the same time. With no loss of
generality, let us assume that T1 got the lock first and then T2 got it. This means that T1 set the value of the
lock address to 1 from 0. When T2 executed the atomic exchange instruction, it must have seen the value
of the lock to be 1, which was set by T1. There is thus no way that it could have seen the lock’s value to be
0, because T1 is still there in the critical section. If T2 had seen the value of the lock to be 1, it could not
have entered the critical section. Hence, the hypothesis is wrong and we thus have a proof by contradiction.

Implementing Atomic Operations

Let us now look at implementing atomic operations like atomic exchange in cache coherent systems. Irre-
spective of the atomic operation, the method to implement it is roughly the same. The first step is to get
write access to the block that contains the lock variable. In an invalidate protocol with a directory, which is
the standard, the processing begins with a write miss received at the directory. It invalidates all the copies
of the block, and after collecting acknowledgements from all the sharers it sends a message to the requesting
cache. Once the requesting cache receives a go-ahead from the directory, it sets the state of the line to M
(modified).

Instead of doing a write, in this case we proceed with the atomic operation. Most atomic operations are
read-modify-write operations. We read the value of a memory location, compute the new value, and write
it to the memory location. We proceed with all the steps once the line’s state is set to M . The ideal case is
where all the steps complete without interruption and the atomic operation completes.

The worst case is when in the middle of the execution of the atomic operation another cache sends a read
miss or write miss. We clearly cannot abandon an atomic operation in the middle. There are several strategies
to deal with this. The simplest strategy is that the cache and the core executing the atomic operation hold
off sending the acknowledgement to the directory till the atomic operation completes. Another idea is a
lease based approach. The directory assumes that a cache requesting for a block in the M state should
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at least get κ cycles to work on the contents of the block. Meanwhile, if the directory receives any other
request, it simply queues it. If κ is enough for an atomic operation to execute, then we need not rely on
acknowledgements.

Atomic operations are often synchronisation operations (see Section 9.3.5). This means that they also
act as fence instructions. This is required because such operations are typically used to implement critical
sections or implement other important parallel programming primitives: this requires them to behave like
a fence and enforce some memory orders for the instructions before and after them in program order. This
aspect of their execution further increases their overhead.

Efficient Spin Locks

Our simple lock-unlock algorithm does indeed guarantee mutual exclusion. However, it is not a very efficient
algorithm because it keeps on trying to acquire the lock in a loop – such a pattern is known as a spin lock..
Let us look at some of the flaws of such naively implemented spin locks.

1. Each attempt requires the thread to perform memory, arithmetic, and synchronisation operations
repeatedly. This consumes a lot of power and is slow.

2. The other problem with a spin lock is that threads basically do useless work when they are waiting
for a lock. Even though the processor might perceive them to be busy; however, they are actually
not doing any useful work. Most processors will not be able to detect this pattern, and thus will not
schedule instructions from other threads. In modern locks used by the Linux operating system, the
code of the lock is written in such a way that after a certain number of iterations, the thread notifies
the OS that it is ready to sleep. The OS can then schedule another thread or another process on the
core.

3. There is a possibility of starvation, which means that a thread might never be able to acquire a lock.
It might always lose the competition to another thread. Modern locking algorithms have a notion of
fairness, where they ensure that a thread does not have to wait forever. However, they are far more
complex as compared to the simple code that we have shown. Interested readers can take a look at
the book by Herlihy and Shavit [Herlihy and Shavit, 2012] for a discussion on modern algorithms to
implement locks.

Creating a fair locking algorithm is out of the scope of this book. This requires a complex locking algorithm,
where we maintain an order between the requests, or ensure that the system somehow increases the priority
of threads that have been waiting to get a lock for a long time. Let us instead focus on the time and power
overheads.

In Linux, locks typically wait for a fixed duration, typically 100 µs, and then automatically send an
interrupt to the OS kernel. The OS kernel puts the thread to sleep and schedules some other thread. This
ensures that threads waiting for a lock do not unnecessarily tie up a core. Furthermore, this reduces the
power overheads of spin locks significantly. The sad part is that this also makes our parallel programs slower.
Let’s say we have 10 threads, and we want all of them to finish a critical section, before we can make progress.
If one of the threads gets swapped out of the core by the OS, then it will not be able to execute even if the
lock becomes free. We need to wait for the OS to reschedule the swapped thread. This will unnecessarily
block the entire set of 10 threads. Let us thus slightly speed up the execution of the basic lock primitive.

The main problem with a basic spin lock that uses the exchange instruction is that in every iteration,
we try to set the value of the lock variable using an expensive synchronisation instruction. This means that
we need to send a write miss message on the bus, and wait till we get the data in the M state. Recall that
in the M state, a cache owns the block exclusively and it can modify its contents. The main problem with
modern write-invalidate protocols is that their performance dips if multiple threads are desirous of writing
to a block simultaneously. Because of exclusive ownership in the M state, the block keeps bouncing between
caches, and this causes a lot of network traffic as well as slowdown. This can be reduced by creating an
optimised version of a spin lock.
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Let us create an algorithm that tries to write to a block only if it feels that there is a high probability of
the atomic exchange operation being successful, which alternatively means that there is a high probability of
lock acquisition. To achieve this, let us first test if the value of the lock variable is 0 or not, and only if it is
0, let us make an attempt to acquire the lock. This will drastically reduce the number of invalidate messages
and the number of times we need to use synchronisation instructions such as atomic exchange. The code to
implement this concept is as follows.

1 /* the address of the lock is in r0 */

2 .lock:

3 mov r1 , 1

4

5 .test

6 /* test if the lock is 0 */

7 ld r2 , 0[r0]

8 cmp r2 , 0

9 bne .test

10

11 /* attempt an exchange only if the lock is free */

12 xchg r1 , 0[r0]

13 cmp r1 , 0

14 bne .test

15 ret

16

17 .unlock:

18 mov r1 , 0

19 xchg r1 , 0[r0]

20 ret

In this case, we have added three extra lines: Lines 7 till 9. The aim of these lines is to first read the
value of the lock variable, check if it is equal to 0, and then exit the loop if the value of the lock variable
is found to be equal to 0. Assume that another thread has acquired the lock. Then it will have the lock
variable in the M state. The first time that the current thread reads it, the blocks in both the caches will
transition to the S state. This requires a read miss message. However, after that the current thread will
keep on reading the block, and since it is in the S state, this will not require any messages to be sent to the
directory nor do we need to use the atomic exchange instruction to test if the lock is free or not. This is
far more power efficient and also the messages on the NoC will reduce significantly. This method is called
test-and-exchange (TAX). Once, we read the value of the lock variable as 0, we are sure that the thread that
was holding the lock has released it.

We can then proceed to Line 12, where we try to perform the atomic exchange. Here, if we are successful,
then we are deemed to have acquired the lock. Note that it is possible that two threads may have realised that
the lock is free, and both of them may try to execute the atomic exchange operation in Line 12 concurrently.
In this case, only one thread will be successful. The other thread needs to start the entire operation of trying
to acquire the lock once again.

It is true that this algorithm increases the time it requires to acquire a lock if there is no contention. This
is because of the additional test step. However, in the case of a contended scenario, we will need to execute
multiple exchange instructions using the basic algorithms that we have proposed. This is slow because of
the inherent fence operation and will cause many write misses. With the TAX mechanism, we have replaced
write misses with read hits because till a thread owns the lock, the rest of the threads will continuously read
the lock variable, and find it to be in their caches in the S state: no messages are sent to the directory. A
read hit is power efficient and does not lead to NoC traffic. Once we have some hope of getting the lock, we
issue the expensive atomic exchange instruction.
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Definition 80
A spin lock is a locking algorithm where we repeatedly check the value of a lock variable stored in memory,
in a loop. The advantage of a spin lock is that the threads get to know very quickly when a lock is released.
However, the disadvantage is that a thread keeps on executing the same code over and over again in a loop
without doing any other useful work. This wastes power. Furthermore, the CPU and system software
also falsely believe that a thread is doing useful work and thus do not schedule other threads on the same
core.

Other Atomic Operations

We have seen the atomic exchange operation, and we have also seen how we can implement a lock with it.
This is not the only kind of atomic operation. There are many more types of operations that can be used
for many different kinds of operations. Implementing a lock is one of the simplest operations in the field of
parallel and concurrent algorithms. There are far more complicated algorithms (refer to [Herlihy and Shavit,
2012]) that require more complicated atomic operations. Let us list some such atomic operations with a
snippet of pseudo code describing their operation in Figure 9.51.

Test and Set tas r1, 8[r0] if (8[r0] == 0) {
    8[r0] = 1;
    r1 = 1;
}
else r1 = 0;
 

Fetch and 
Increment

fai r1, 8[r0] r1 = 8[r0];
8[r0] = r1 + 1;

Fetch and
Add

faa r1, r2,  8[r0] r1 = 8[r0];
8[r0] = r1 + r2;

Compare and
Set
 

cas r1, r2, r3,  8[r0] if (8[r0] == r3) {
    8[r0] = r2;
    r1 = 1;
} 
else r1 = 0;
 

Load linked (ll)
Store conditional (sc)
 

ll r1, 8[r0]
...
...
mov r2, 1
sc r3, r2, 8[r0]

r1 = 8[r0];  /* ll */
 
 /* sc */
if (8[r0] is not written to
    since last ll ){
    8[r0] = r2;
    r3 = 1;
} 
else r3 = 0;

Atomic operation Example Explanation

Figure 9.51: Different types of atomic operations
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Figure 9.51 shows a set of atomic operations starting from the simple test-and-set operation to the
elaborate LL/SC operation. Here, LL stands for load-linked and SC stands for store-conditional. In an
LL-SC pair, each of these operations are atomic operations. They work as follows. An LL operation loads a
value from memory like a regular load operation. However, in addition to this, it also sets a flag in the cache
line containing the local copy of the block indicating that an LL operation has been executed. Subsequently,
we can execute other instructions depending upon the logic of the program. It is necessary to execute an
SC operation at a later point in time. This operation is mostly similar to a regular store operation with one
critical difference. The operation returns a value and is conditional. If the block has not been modified after
the last LL operation, then the paired SC operation returns 1, and also completes its operation. However, if
the block has subsequently been modified by the same thread or another thread then SC returns 0 and does
not execute the store operation. We can easily implement a lock using the LL/SC operations as shown3 in
Example 12.

We can implement all the operations by slightly modifying the cache coherence protocol such that we
finish the execution of the atomic operation by acquiring the lock variable in the M state. For LL/SC we
need to set a bit in the cache line that contains the lock variable. Whenever a write miss arrives from another
cache, we set this bit to 0, otherwise this bit continues to remain 1. Now, when we subsequently perform the
SC operation, we check the bit in addition to getting write access to the block. If the bit is still set to 1, the
SC operation is successful. If the bit is 0, or if the block has been evicted, then the SC operation fails: this
means that there may have been an intervening write by another thread. If the SC operation is successful,
the write operation to update the lock variable is effected. Both LL and SC operate atomically.

Example 12 Implement the lock and unlock functions using the LL/SC primitive and fence instructions.
Assume that the address of the lock is stored in register r0. Reduce the number of NoC messages by first
testing the value of the lock.

Answer:

lock function

.lock:

ll r1, 0[r0]

cmp r1 , 0

bne .lock /* If the lock is not free

iterate once again */

mov r2 , 1

sc r3, r2, 0[r0]

cmp r3 , 1

bne .lock /* iterate if sc is not

successful */

ret

unlock function

.unlock:

mov r1 , 0

fence

st r1, 0[r0]

ret

3The code for acquiring and releasing a lock for obvious reasons cannot use locks.
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On similar lines, we can use other atomic operations to implement locks. Before the reader asks the
question, “Why do we have so many types of atomic operations?”, let us answer this question. The trivial
answer that comes to the mind is that some operations do some computations with fewer lines of code.
For example, we can always implement a fetch-and-add operation with a compare-and-set (CAS) operation.
However, this will be cumbersome. As a result, having more instructions will allow us to write simple and
elegant code. This is however just the superficial part of the story. There is a much deeper answer, which is
that different atomic operations have different amounts of power. This means that some operations are less
powerful and some other operations are more powerful. We can always implement a less powerful operation
with a more powerful operation; however, we cannot do the reverse.

For example, operations such as test-and-set and atomic exchange are regarded as the least powerful. In
comparison, compare-and-set and LL/SC are the most powerful. There is a spectrum of atomic operations
whose power lies between them. Let us elaborate.

9.4.8 Lock-free Algorithms using Atomic Operations

Consider the problem of updating the bank balance once again. The crux of our argument was that if we
use multiple RISC instructions to update the balance, then it is possible that due to conflicting operations
by different threads, the final result can be wrong. Hence, we decided to wrap the code in a critical section
such that only one thread can access it. Each critical section begins with a call to a lock function, where we
set the value of the lock (memory address that contains it) to 1, and then it ends with a call to the unlock
function. To ensure that we atomically update the value of the lock, we introduced atomic operations (see
Figure 9.51).

Locks unfortunately have their share of problems. The biggest problem is that they do not allow disjoint
access parallelism. This means that even if two threads need to update the balance of two separate accounts,
only one thread can be in the critical section at any point in time. Note that if the accounts are different, it
is possible for both the threads to execute their critical sections concurrently – this is not allowed. To solve
this, we can have different lock addresses for different bank accounts. This solution will work for a simple
update of a bank account. However, if we are implementing a parallel data structure such as a concurrent
queue where multiple threads can enqueue and dequeue items concurrently, such approaches will not work.
In general, using locks will ensure that only one operation can be done at any single time. Hence, using locks
with a concurrent queue will effectively make it a sequential queue. Other disadvantages of locks include the
possibility of starvation where a thread never gets the lock.

Additionally, with locks we can have deadlocks (no thread makes progress) as follows. Assume that there
are two locks: A and B. Consider a situation where thread 1 holds lock A and tries to acquire lock B.
Similarly, thread 2 holds lock B and tries to acquire lock A. In this case, none of the threads will be able
to make progress. This situation is a deadlock. Furthermore, in most practical systems, instead of wasting
power by continuously testing the value of a lock (spin locks), most operating systems put the thread to
sleep. It takes a disproportionately long time to wakeup the thread later.

It is possible to do better by using a set of algorithms known as non-blocking or lock-free algorithms that
do not use locks at all. Most concurrent libraries are today written using such non-blocking algorithms. There
is a general result that all operations on data structures such as stacks, queues, etc., can be implemented
using lock-free algorithms (see [Herlihy and Shavit, 2012]. Note that even though lock-free algorithms are
very promising, they are very hard to code and debug.

Let us show a simple lock-free algorithm for updating the bank balance with the compare-and-set (CAS)
primitive. The format of the special CAS instruction is as follows: CAS〈reg4〉, 〈reg3〉, 〈reg2〉, 〈mem〉. If the
contents of the memory location are equal to the value of reg2, then the value stored in the memory address
is atomically set to the value of reg3. If the CAS is successful, then we set the value of reg4 to 1, else we
set it to 0.

/* address of balance is in r0
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the additional amount is in r1 */

.start:

ld r2, 0[r0] /* r2 contains the balance */

add r3 , r2 , r1 /* r3 contains the final balance */

CAS r4 , r3 , r2 , 0[r0] /* if (r2 == 0[r0]) 0[r0] = r3*/

cmp r4 , 0 /* test the result */

beq .start /* retry if the CAS fails */

In this case, we do not use locks. We repeatedly invoke the CAS instruction to set the value of the
variable balance. If the CAS fails, then it means that some other thread has succeeded in updating balance,
and we try again. In this case starvation is possible; however, this implementation is more efficient. If the
lock is free, we need 5 instructions to finish the operation using the lock-free algorithm. Whereas in the
implementation using locks, we require 5 instructions for the lock, 3 instructions for the unlock, 3 instructions
for updating the balance, and 2 function calls.

Wait-free Algorithms

Lock-free algorithms are typically much faster than their lock based counterparts for implementing con-
current data structures. However, they have the problem of starvation. We can use wait-free algorithms
that additionally guarantee that every operation completes in finite time. Wait-free algorithms are more
complicated than their lock-free counterparts, and on an average are slower.

They work on the principle of helping. If any thread is not able to complete its operations, then other
threads help it complete its operation. This ensures that there is no starvation.

Definition 81

• A lock-free algorithm does not use locks. With such algorithms we can have starvation where a
given thread may never complete its operation because other threads successfully complete their
operations.

• A wait-free algorithm provides more guarantees. It guarantees that a given thread will complete its
operation within a finite or bounded number of internal steps.

Consensus Numbers and the Power of Atomic Operations

Definition 82 The consensus problem is as follows. Let us assume that we have n threads. Each thread
proposes a value. Ultimately all the threads choose a value that is one among the set of proposed values.

The consensus problem is a very basic problem in concurrent systems. Its definition for an n-thread system
is as follows. Let each thread propose a value. Eventually, all the threads need to agree on a single value
that is one among the proposed values. It can be shown that a lot of real world problems are basically
different variants of consensus problems. In fact, the heart of modern cryptocurrencies such as Bitcoin is a
consensus problem. The basic problem that most transaction processing systems such as online payments
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solve is a consensus problem. As a result, solving the consensus problem is of paramount importance in
concurrent systems, and moreover, it can be shown that many problems of interest can be mapped to
equivalent consensus problems. The power of different atomic operations is based on who can efficiently
solve the consensus problem in finite time in different settings.

This is quantified by the consensus number of an atomic operation, which is defined as follows. It is the
maximum number of threads for which we can solve the consensus problem using a wait-free algorithm that
uses the atomic operation and simple read/write operations. If the consensus number is k for a given atomic
operation, then it means that it is theoretically not possible to write a wait-free algorithm that solves the
consensus problem in a k + 1 thread system.

Let us look at the consensus numbers of some of the common atomic operations.

Type of operation Consensus number
Atomic exchange 2
Test and set 2
Fetch and add 2
CAS (compare and set) ∞
LL/SC ∞

From the definition of consensus numbers, it is clear that an operation with a lower consensus number
cannot be used to implement an operation with a higher consensus number. This automatically implies that
we cannot use test-and-set to implement CAS using a wait-free algorithm. The most powerful operations
are CAS and LL/SC.

9.5 Memory Models

Let us quickly summarise what we have learnt in the preceding sections with respect to memory models.

Way Point 12

• There are four kinds of relationships between regular memory operations: ws, fr, po, and rf .

• ws and fr orders are global in most systems today because of the requirements imposed by PLSC.

• Different processors relax different orders within po and rf . They thus have different memory
models. If a given order is not global, it is said to be relaxed.

Given that we can relax different orders that are a part of rf and po, we can create a variety of memory
models. Different models have different trade-offs between flexibility and performance. Let us look at each
of these relaxations from an architectural perspective.

9.5.1 Relationships in rf

Let us look at cases where we need to relax the rfi and rfe relationships. Recall that the rfi relationship is
between a write and a successive read to the same address in the same thread, whereas the rfe relationship
is between a write and a read to the same address across threads. The rfe edge will be global if we have
atomic writes because the write will appear to happen instantaneously and thus all the threads will agree
on the write-to-read order.

When we use a write buffer (see Section 7.1.7), we are breaking the rfi order. Consider the situation,
where we have a write and a subsequent read from the same address (in the same thread). The write
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operation is not made visible to the rest of the cores immediately. The write is sent to the write buffer and
is not immediately broadcast to the rest of the cores. However, a later read operation can read its value and
make progress. This effectively means that the read is visible globally, before its earlier write. The earlier
write operation is visible to the rest of the cores, when it is ejected from the write buffer. From the point
of view of the rest of the cores, the write executes after the read. Hence, the rfi relation in this case is not
global. We have a similar case when we have forwarding in the LSQ. A later read gets the value from the
LSQ and moves ahead, whereas the write needs to wait till the instruction gets committed.
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Figure 9.52: Execution witnesses: rfi and rfe orders

Consider the execution witness as shown in Figure 9.52(a). In this case, the read and write are a part
of the same thread. Let us assume that the rfi relation is global. Additionally, the rfe edge, which is a
write to read edge across threads is also assumed to be global because we are assuming atomic writes in this
example. Now, assume that we do not have a program order edge between a write and a read. In We can
thus add only an rfi edge between Wx1 and Rx1. Then we add a po edge between Rx1 and Wy1 because
in this case we assume that a read to write program order is global. We then add an rfe edge between Wy1
and Ry1. Finally, we add a program order edge (poRR) between Ry1 and Rx0, and then an fr edge between
Rx0 and Wx1. The reason that we add an fr edge is because the instruction Rx0 reads an earlier value of
x. Now, we see that we have a cycle in the execution witness. Since many processors obey the RR and RW
program orders, fr is global, and we have assumed rfe to also be global because of atomic writes, the only
relation that we can relax is rfi for this execution to be valid.
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In almost all OOO processors with atomic writes, this execution will be valid because the rfi edge is not
respected. We say that an order is respected if it holds globally. In fact, whenever we delay earlier writes
and use structures like write buffers, rfi is not global: this execution will be valid.

Now consider the example in Figure 9.52(b). Assume that the RW and RR program orders hold. Since
the fr edge is global, the only edge in the graph that can be relaxed is the rfe edge. To avoid a cycle, the
rfe order needs to be relaxed. This means that this execution is valid in a system with non-atomic writes.
If we have atomic writes, this execution is not allowed.

9.5.2 Write-to-Read Program Order
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Figure 9.53: Execution witness: poWR should not be global

In most conventional OOO pipelines, we send stores to the memory system once they reach the head of
the ROB and are ready to be committed. We, however, do not stall later loads to different addresses. If there
is no chance of a forwarding in the LSQ, the loads are sent to the memory system. This means that later
loads can overtake earlier stores. In other words the W → R program order is not respected. In fact, the key
aim of having an LSQ is to allow later loads to overtake earlier stores. Hence, in almost all practical memory
models this ordering is relaxed. Figure 9.53 shows an example along with its execution witness, where the
W → R program order edge needs to be relaxed for the execution to be valid. Readers are welcome to run
this code on any multicore machine. We claim that they will see the output ((t1, t2) = (0, 0)) at least once.

9.5.3 Write-to-Write Program Order

Let us now consider the write-to-write (W → W ) program order. If we have writes to different addresses,
there is no requirement for them to take effect in program order for a single-threaded program. The correct-
ness of the thread is not dependent on the order in which these writes are executed. However, for the rest
of the cores, the order matters.

Such an order can break for a variety of reasons. It is true that from the point of view of the core, we
commit write instructions in program order. However, it does not mean that they are sent to the memory
system in that order. Consider the write buffer. Let’s say we have two writes, W1 and W2, in a thread where
W1 is before W2 in program order. If there is a write buffer entry for the address of W1, then the write will
be written to the write buffer entry. However, if the entry for W2 is not there in the write buffer, we have
an option of sending it directly to memory, instead of freeing a write buffer entry. In this case, W2 appears
to happen before W1 to other cores, which is not true.

The W1
po→ W2 relation can also break because of messages in the NoC. It is possible that the write

messages might get reordered. Thus the W →W order will not remain global.
A guaranteed way to ensure that the write to write order is maintained is to make use of acknowledgement

messages. The assumption is that an acknowledgement message is sent to a core after the write becomes

globally visible. This means that the write is visible to all the threads. In the case of W1
po→ W2, we wait
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for the acknowledgement of W1 and then send the write W2 to memory. The main problem with such
acknowledgements is that they make a write more expensive. The write unnecessarily blocks the pipeline
till its acknowledgement arrives. This delays later instructions ultimately reducing the IPC.

There are other mechanisms as well that ensure that the memory system is designed in such a way that
later writes do not overtake earlier writes. These require changes to the write buffers, MSHRs, and the NoC.
This is why most weak memory models in use today do not ensure the W →W order. The Intel TSO model
is an exception to this rule. It obeys the W →W ordering.
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Figure 9.54: Execution witness: poWW edges should not be global

Consider the example in Figure 9.54. The execution witness has a cycle. If we assume that rfe is global
(writes are atomic), and fr is also global, then we have two more edges left: poWW and poRR. Assume
that poRR holds. Then the only edge that we can relax is the poWW edge between Wx1 and Wy1 to make
this execution valid. In most modern processors that have a weak memory model, such W → W program
orders are not global. Hence, this execution is valid. However, in processors that follow the total store order
memory model (mostly Intel processors), where the order of writes (stores) is global, this execution is not
allowed.

9.5.4 Read-to-Read Program Order

The read-to-read (R→ R) order is also not respected by many OOO processors as of 2020. To ensure that
this ordering holds we need to issue load operations in program order. Note that this decreases performance
because it is possible that the address of a later load might be computed before the address of an earlier
load. In this case, it is not fair from a performance point of view to make the later load wait for the earlier
load. Recall that we are considering loads to different addresses.

Even though ensuring this order is easy, which is by making modifications to the LSQ, we should realise
that we would be sacrificing some amount of performance. This is not acceptable in high performance
processors.
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Figure 9.55: Execution witness: poRR edge should not be global
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Let us understand this order with an example (refer to Figure 9.55). We have three threads running on
a machine with atomic writes (rfe is global). Assume that the poRW edge is global, which is hard to relax
even in OOO processors (discussed in the next subsection). Given that the fr edge is always global, the
only edge that we can relax is the poRR edge. On a machine with weak ordering that does not respect the
read → read program order, this execution would be valid. However, if the LSQ ensures a strict ordering
between reads, this execution is not possible.

In an OOO processor, we ideally do not want to stall later reads because of earlier unresolved reads
(address is not computed). We would ideally like to send read operations to the memory system as soon as
possible. This is because many instructions are typically dependent on the result of a read operation. Hence,
the program order between read operations to different addresses is seldom respected.
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Figure 9.56: Execution witness: poRW edge should not be global

9.5.5 Read-to-Write Program Order

In most OOO processors, this order is maintained; however, there are exceptions. In a conventional OOO
processor the earlier read needs to have read its value and left the pipeline before the later write can write
its value at commit time. To reverse the order, we need to think of a situation where the read operation
appears to read its value after the write. This can happen in systems where writes are sent to the memory
system early. We can design systems where an instruction can go ahead and write to an entry in the write
buffer after we know that it is on the correct branch path. In this case, writes can be visible before earlier
reads have read their value. Another case is when we use load-value prediction, where the prediction is
validated after the load has committed. Such a situation is shown in Figure 9.56, where we assume atomic
writes (rfe is global). The only edge that we can relax to avoid a cycle is the poRW edge. Now that we have
understood the implications of relaxing different orderings, let us look at the orderings that are relaxed by
different memory models.

9.5.6 The Special Case of rfi in SC

Consider a sequentially consistent machine. What will happen if the rfi edge is not global? Will it still
remain sequentially consistent? This will allow us to use LSQ forwarding in an SC machine. A core or thread
can effectively read its own write early.

Consider a write operation W and a later read operation R that accesses the same address. They belong
to the same thread. Let there be intervening operations of the form O1 . . . On. Furthermore, let us assume
that none of O1 . . . On are read operations that access the same address and there are no rfi dependences
between them (we can always find such a pair if W and R access the same address). Then we can write

W
ghb→ O1

ghb→ O2 . . . On
ghb→ R because program order holds in SC for the cases that we consider. This means
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that W
ghb→ R. In this case, it does not matter if rfi is global or not because they are globally ordered

anyway. Hence, rfi being global only matters when W and R are consecutive operations – there are no
intervening operations. Note that in this case, we do not add a po or rfi edge between them. The question
is whether the execution will still be in SC?

SC will be violated only when other threads see the read by R before seeing the previous write by W .
Note that this problem will not happen in the same thread because as far as future operations in the thread
are concerned – R is taking effect in program order. Now, consider the first operation O in another thread,

which is reachable from R in the execution witness. It is either reachable via an R
fr→ O edge or from an

edge from another instruction O′ in the same thread where we have R
po→ O′

ghb→ O. We use the
ghb→ edge here

because the nature of the edge between O′ an O does not matter. Now, consider the first case. We need to

also have W
ws→ O (by the definition of fr). In the second case, we will have W

po→ O′
ghb→ O. In both cases,

we will have W
ghb→ O. Hence, as far as O is concerned, both W and R happen before it, and R appears

to have executed after W because it returns the value written by it. The fact that we relaxed the rfi edge
between consecutive instructions is not visible to the same thread or to other threads. Hence, the execution
still is in SC because the rest of the conditions for SC hold.

We can thus conclude that in SC, a thread can read its own writes early.

Model
Program order (po) rf

poWR poWW poRR poRW rfe rfi
SC X
TSO X X
PC X X X
PSO X X X
Weak const. X X X X X
RC X X X X X
PowerPC X X X X X X
ARM X X X X X X

A X indicates that the ordering is relaxed

SC Sequential consistency Weak const. Weak consistency
TSO Total store ordering RC Release consistency
PC Processor consistency PowerPC PowerPC’s memory model
PSO Partial store ordering ARM ARM v7 memory model

Table 9.4: Popularly used memory models (adapted from [Adve and Gharachorloo,
1996])

9.5.7 Popular Memory Models

Table 9.4 lists some common memory models. Other than SC, each model relaxes some order in pursuit
of better performance. Each memory model can be characterised by the orderings that it respects and the
orderings that it relaxes. To find if a given execution is allowed by a memory model or not, we simply need
to create an execution witness, add the edges that are a part of the memory model, and see if there is a
cycle or not. If there are no cycles, then the execution is allowed by the memory model, otherwise it is not
allowed. For SC we need to add all the po, ws, rf , and fr edges, whereas for other models we add fewer
edges. They thus allow more executions.

Note that memory models are not necessarily artefacts of a hardware design, they can be used to describe
software systems as well. Consider the comments on a news story. It is non-intuitive to see replies to
comments before seeing the comments themselves. This is an example of consistency in the software world.
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We have defined memory models from the point of view of threads. Hence, the underlying substrate does
not matter – it can either be software or hardware.

Consider a system such as the Java virtual machine (JVM), which runs Java programs by dynamically
translating Java byte code to machine code. It also needs to implement a memory model such that pro-
grammers know what orderings are preserved in the final execution. In fact a lot of compiler optimisations
are dependent on the memory model. For the purposes of increasing efficiency, compilers routinely reorder
instructions subject to the uniprocessor access constraints. This reordering can violate the program order
relations of the memory model. Hence, the memory model interacts with compiler optimisations as well. As
a thumb rule, readers should assume that any entity in the stack starting from the compiler to the virtual
machine to the actual hardware can reorder instructions. Given the way that we have defined memory
models, the point of view of the programmer and the final outcome of the program determine the memory
model. Let us proceed with these assumptions in mind.

The gold standard of memory consistency models is sequential consistency (SC), which is mainly a
theoretical model and is used to reason about the intuitive correctness of parallel programs and systems.
Implementing SC is expensive in terms of performance, and thus is almost always impractical. Almost
all optimisations are precluded in SC, and thus very few mainstream processors support SC. The only
exception to this rule has been the MIPS R10000 processor that provided sequential consistency. We shall
see in Section 9.6 that there are methods to give the programmer an illusion of sequential consistency even
though the underlying hardware has a relaxed memory model.

As compared to SC, the second model, TSO (total store ordering), has seen more commercial applications.
The Intel x86 and the Sun Sparc v8 memory models broadly resemble TSO [Alglave, 2012]. This model
relaxes the poWR and rfi relations. TSO can thus be supported by OOO processors and we can seamlessly
use LSQs and write buffers. Note that the rest of the program orders still hold and writes are atomic.

Many multiprocessor systems (particularly software systems) relax the TSO model to allow for non-
atomic writes even though they do not relax the poWW edge. This means that writes from the same thread
are seen in program order, even though a thread can read the value of a write (issued by another thread)
before all the threads see it – a thread can read another thread’s write early. Implementing atomic writes is
actually difficult in large systems where we can have a large number of cached copies. Thus, it sometimes
makes sense to relax the requirements of write atomicity. The Processor Consistency (PC) memory model
falls in this class; it supports non-atomic writes.

The PSO (partial store ordering) model on the other hand supports atomic writes but relaxes the poWW

edge. It was supported by some of the Sun SPARC v8 and v9 machines. The advantage of relaxing the
write→ write order is that we can support non-blocking caches. A later write can be sent beyond the MSHR
to the lower levels of the memory systems, while an earlier write waits at the MSHR. This optimisation allows
write operations to be reordered in the NoC as well. Note that read and write operations are fundamentally
different. A read operation is synchronous, which means that the core gets to know when the value arrives.
It is thus easy for it to enforce an order between a read instruction and any other instruction. However,
writes are by nature asynchronous. Unless we have a system that sends write acknowledgements, a core has
no idea when a write takes effect. Thus, enforcing an order between writes and other operations is difficult.
Hence, PSO relaxes both the poWR and poWW orders. This simplifies the design of the memory system and
the NoC.

The next model is called weak consistency, which is a generic model where all the orderings are relaxed
other than write atomicity. A large number of RISC processors that are used to implement large multicore
systems use some variant of weak ordering. Note that here write atomicity is the key; it is not compromised.

All the memory models that we have seen up till now define synchronisation instructions, and all of them
respect the ordering between normal instructions and synch instructions. This means that they respect the
following orders:

synch
ghb→ (read | write | synch)

(read | write | synch)
ghb→ synch
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Let us now introduce another model called release consistency (RC) that was designed to implement
critical sections efficiently. It supports the same orderings as weak consistency. However, it defines two
additional synchronisation operations – acquire and release. In other words, a synch operation can be an
acquire, release, or any other synchronisation operation. The orderings between these operations are as
follows:

acquire
ghb→ (read | write | synch)

(read | write | synch)
ghb→ release

This means that we need to wait to complete an acquire operation, before any subsequent instruction
can complete. This operation can be used for example to acquire a lock, where no operation in the critical
section can begin till the lock is acquired. Similarly, we complete a release operation, only when all the
operations before it have completed. This can be used to release a lock.

The last two models – ARM v7 and PowerPC – relax all orders including write atomicity. They thus
allow for the maximum number of optimisations at the level of the compiler and architecture. They do have
synchronisation instructions though that enforce strict orders between synch instructions and the rest of the
instructions.

Note that relaxing orders beyond a certain point is not necessarily a good thing. It can make the design
of software more complicated. We might have to insert a lot of synchronisation instructions and fences to
make the code behave in a certain way. This has its performance implications. These issues will be dealt
with in Section 9.6.

9.5.8 Summary

Let us now summarise our discussion. A memory model, MM , is characterised by the orderings that it
respects. It needs to respect ws and fr because of PLSC. Then it needs to respect a subset of po and rf .
Let it respect gpo ⊆ po (program orders) and grf ⊆ rf (write→ read orders).

We thus can write,

MM = (gpo ∪ ws ∪ fr ∪ grf) (9.10)

9.6 Data Races

We discussed lock and unlock functions in Section 9.4.7. These are required to ensure that parallel code
executes correctly. Otherwise, we will not be able to implement critical sections, which are required to
correctly execute parallel code. Furthermore, in Section 9.4.7, we had considered an example where parallel
threads try to update an account’s balance. We concluded that two concurrent updates to the balance
variable of the same account might lead to an incorrect state. To fix this situation, we had decided to
enclose the update in a critical section.

9.6.1 Critical Sections, Concurrency Bugs, and Data Races

Now, if we forget to use critical sections, will we always have an error? The answer is NO. Let us look at an
example.

counter ++;
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In this case, we are just incrementing a global counter. The correctness of this piece of code depends on
how it is implemented in assembly (see the code snippets below). If we implement it as three instructions,
where we first read the value of the counter from memory, increment the value that has been read, and
then write the value to the memory location that holds the variable, counter, then there is a possibility of
an error, a concurrency bug. This is because another concurrent update operation can also read the same
initial value of the counter variable. This will lead to one update getting lost. However, if this statement
is mapped to a fetch-and-increment atomic operation, then there is no possibility of an error because it is
an atomic operation – not a regular read or write. Both the updates to the counter will get reflected in the
final state of the program.

Multiple instructions

t1 = counter;

t2 = t1 + 1;

counter = t2;

Single instruction

fetch_and_increment(counter);

Note that in these code snippets t1 and t2 represent temporary variables that are mapped to registers.
The first example with multiple instructions might clearly lead to incorrect execution, whereas the second
example will not. Before proceeding further, we need a far more precise definition of what is an error in a
parallel program, and how do we deal with it.

In general, in a parallel program, if we run it multiple times, the order of operations will be different
because of the complex interplay of messages in the NoC and the memory system. However, we want the
parallel program to be correct in all cases. For example, if it is multiplying two matrices, then the result
should always be correct irrespective of the order in which the instructions are executed. To ensure that
this genuinely does happen we need to regulate the behaviour of concurrent accesses to the same variable. If
both are reads, then there is no problem. However, if at least one of them is a write, then there is a problem;
the order of accesses to the variable become important. Different orders might lead to different outcomes. A
pair of accesses to the same address where at least one of them is a write are said to be conflicting accesses.

Definition 83
A pair of accesses to the same address, where at least one of them is a write, are said to be conflicting
accesses.

Let us reconsider our example with the counter variable. If it is implemented with regular load/store
assembly instructions, then there is a possibility that the execution might be incorrect. This is because it
uses regular reads and writes, and this is where there is a possibility of an error because of concurrent and
conflicting accesses by the two threads. Let us characterise this scenario by defining the term data race. A
data race is informally defined as a situation where we have regular, concurrent, and conflicting accesses to
a variable by different threads, where at least one of them is a write access. If we can eliminate data races in
our program, then we can at least claim that between any two conflicting accesses to the same variable, there
is some kind of an order. Such an order must have been enforced by the programmer using program logic
and synch instructions. This order ensures that the accesses are ordered sequentially and such kind of errors
do not happen. This means that one thread will finish its updates, and then somehow signal another thread
to begin. If we were to enclose the counter update function within lock and unlock functions, then such
an order will automatically be imposed. It will not be possible to incorrectly update the counter variable.
However, we can always make concurrent and conflicting accesses using synchronisation operations such as
fetch and increment. They update the counter variable atomically and correctly.

We have deliberately not defined the term concurrent accesses precisely. In computer architecture par-
lance, it does not mean “at the same time”. It has a deeper meaning, which we shall explore in the subsequent
sections.
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From our informal discussion, we have learnt several things. Two conflicting accesses need to be somehow
ordered if we are using regular loads and stores. Otherwise, the output of the program may be wrong as we
saw with the example to update the counter. This order can be enforced by wrapping the code in a critical
section (demarcated by a lock and unlock function), otherwise we need to use atomic operations such as
fetch and increment. Let us formalise this.

9.6.2 Data Races in the Context of Memory Models

A Formal Model of Data Races
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Figure 9.57: (a) and (b): Code and execution witness of a program that updates a counter. (c) and (d):
Code and execution witness of a program that transfers the value of variable x across threads. Assume that
y is a synch variable.

Assume an SC machine. Consider the code and execution witness in Figure 9.57 (a) and (b). It shows
the code of a regular counter update where there is a data race (as we have defined, albeit, informally). The
value of x (counter in this case) is finally set to 1, which is wrong. We need to disallow such executions. Now
consider the code in Figure 9.57(c) and (d). Further assume that x is a regular variable and y is a synch
variable, and the while loop exits in the first iteration. This piece of code basically transfers the value of x
from thread T1 to thread T2. This execution seems to be correct. Until the value of y has not been read to
be 1 by T2, it will keep looping. Once it reads y = 1, it has to read t1 = x = 1. This is correct execution on
an SC machine. In fact all executions will yield the same output, which is correct.

So what is wrong in the execution witness shown in Figure 9.57(b) and what is correct in the execution
witness shown in Figure 9.57(d)? Look closely. Consider only regular variables: x in both cases. The answer
is that between two conflicting accesses in Figure 9.57(b), there is a path that has no synchronisation order
(so) edges. For example, between the instructions (b) and (d) (both Wx1), we only have a path with a ws
edge. Now, focus on the execution witness shown in Figure 9.57(d). The path from Wx1 to Rx1 has an so
edge. This is the crux of the definition of concurrent accesses. Consider two accesses to the same regular
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variable in the execution witness. If there is no path between them with an so edge, they are said to be
concurrent. Let us now define a data race with the concepts we have just learnt.

Definition 84
Consider two accesses to the same regular variable across threads. If there is no path between them in
the execution witness with an so edge, they are said to be concurrent. Whenever we have a pair of such
conflicting and concurrent accesses, we refer to this situation as a data race.

Let us appreciate the definition. We want that at least one path should exist with an so edge between
conflicting accesses to the same variable, and this edge should be across threads. When we had such an edge,
we saw that the execution was correct, and the lack of such an edge led to an incorrect execution. Can we
generalise this?

When there is a path with an so edge, it means that synchronisation instructions of the program are
involved in enforcing a dependence between two conflicting accesses to the same variable. It will allow us to
regulate conflicting accesses. Of course, here we need to differentiate between regular and synchronisation
variables. We do allow concurrent and conflicting accesses to synchronisation variables: we assume that they
are always updated in a sequentially consistent fashion. However, when it comes to regular variables, if we
want the program to be free of data races, then if there is a rf , fr, or ws edge between any two operations on
regular variables in the execution witness across threads, there has to be another alternative path between
them that has so edges. This would mean that the operations are ordered by other instructions; they are
not concurrent.

Does SC Imply Data-Race-Freedom?

Let us look at the examples shown in Figure 9.58.
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Figure 9.58: Different SC executions of the same program. S1 and S2 are synchronisation operations.

We observe in Figure 9.58 that for the same code, we can have many different sequential executions on
an SC machine. The first execution (Figure 9.58(a)) is free of data races because there is a happens-before
relationship between Rx0 and Wx1 with an so edge; however, the second execution has a data race because
there is no happens-before ordering between the accesses Wx1 and Rx1 with an so edge. Now from our
point of view, this code has a concurrency bug because it is possible to have an execution that has a data
race. Hence, SC does not guarantee data-race-freedom.
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Does Data-Race-Freedom Imply SC?

Let us ask the reverse question now. Assume an execution does not have any data races. Is it in SC? Let us
look at a few theorems.

Theorem 9.6.2.1 Consider two conflicting accesses e1 and e2 in two different threads T1 and T2, where

e1
hb→ e2. If the execution is data-race-free, then there have to be two synchronisation operations s1 and

s2 with the following properties.

• s1 ∈ T1 and s2 ∈ T2

• e1
hb→ s1, s2

hb→ e2, and s1
hb→ s2

• The paths from e1 → s1 and s2 → e2 will each have a po edge.

Proof: Given that the execution is data-race-free, there will always be a path from e1 to e2 that has at
least one so edge in the execution witness. Let us name this path P. Assume that there are two threads in
the system: T1 and T2.

By the definition of data-race-freedom, in the path P, we will find two accesses s1 and s2 to a synch
variable. This will be an so edge.

Given that we will find such an edge from s1 ∈ T1 to s2 ∈ T2, we see that we have satisfied all the

conditions. We have e1, e2, s1, s2 ∈ P . From the definition of a synch operation, it follows that e1
hb→ s1,

s1
hb→ s2, and s2

hb→ e2. Note that since e1 and s1 access different addresses, there has to be a po edge between
them. The same holds for s2 and e2.

This argument can easily be extended to the case of multiple threads.

Now, the time has come to expose the magic of data-race-freedom. We shall prove that it implies SC
execution regardless of the memory model.

Theorem 9.6.2.2 A data-race-free execution is in SC regardless of the memory model.

Proof: Consider a data-race-free execution E. Let us add all the edges to the execution witness that an
SC execution needs to have namely po, rf , fr, and ws edges. If there is no cycle, the execution is in SC.
Assume there is a cycle.

First consider the case of two threads. There have to be at least two edges in E with the following
properties. The first edge has to be from e1 ∈ T1 to e2 ∈ T2. The second edge has to be from e3 ∈ T2 to

e4 ∈ T1. Without loss of generality, assume that the cycle is of the form: e1
hb→ e2

hb→ e3
hb→ e4

hb→ e1. As

proven in Theorem 9.6.2.1, for any edge of the form e1
hb→ e2, we need to have an edge of the form s1

hb→ s2,

where e1
hb→ s1, and s2

hb→ e2. s1 ∈ T1 and s2 ∈ T2. s1 and s2 are synch instructions. Similarly, we will have

s3
hb→ s4, where e3

hb→ s3 and s4
hb→ e4. Here, s3 ∈ T2 and s4 ∈ T1.

Since we have a cycle comprising 〈e1, e2, e3, e4〉, and program orders hold between synch operations is-
sued by the same thread, we shall also have a cycle comprising the accesses 〈s1, s2, s3, s4〉. However, we have
assumed that synch instructions’ execution is sequentially consistent. Hence, they cannot form a cycle. This
proves by contradiction that we cannot have a cycle in the execution witness between e1, e2, e3, and e4.
This result can be extended to consider multiple threads. Hence, the execution is in SC.
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Herein lies the greatness of data-race-freedom – it implies SC. Let us quickly recapitulate what we have
proven.

Property Reference
SC does not imply data-race-freedom Figure 9.58
Data-race-freedom implies SC Theorem 9.6.2.2
Non-SC execution implies data races Contrapositive of

Theorem 9.6.2.2
What do data races imply? –

Let us now see what does having data races imply? Let us say that we have data races in a given
execution with a certain memory model. Can we say something more? It turns out that we can. See the
following theorem.

Theorem 9.6.2.3 If we have a data race in a program, then it is possible to construct a sequentially
consistent execution that also has a data race.

Proof: Assume a multithreaded program has an execution, E, that exhibits a data race. This execution
is as per the memory model of the machine. Let us construct an SC execution from it that also has a data
race.

Let us keep running the program until we detect the first data race. Assume that just after executing the
memory operation ej , we observe the first data race. We stop there. Let us refer to this partial execution as

Ê. Till this point (Ê− ej), the execution has been data-race-free. By Theorem 9.6.2.2, the execution Ê− ej
is sequentially consistent because it is free of data races. Let us now add ej to the execution.

Is execution Ê still sequentially consistent? Assume it is not. Then there will be a cycle involving ej .

Let ej ∈ Tj and let the cycle be of the form ej−1
hb→ ej

hb→ e1 . . .
hb→ ej−1. If the cycle has any other node that

is in thread Tj , then we need to have a synchronisation edge, because before adding ej , no data races were
detected. If the synch operation in thread Tj is after ej in program order, then it should not have executed
in the first place because ej had not completed. This is a contradiction. If it is before ej in program order,
then also we cannot have a cycle involving ej because there will be a path from e1 to ej containing so edges.
This means that ej is globally ordered after e1 and there can be no path from ej to e1. Hence, the only
option is that there are no other nodes of the cycle in Tj .

Assume ej is a write. Note that because SC has held up till now, no node in Ê − ej has read the value
written by ej . Hence, we can treat ej as the latest write to its location. Thus, no rf or ws edges will
emanate from it and it cannot complete a cycle.

Now, assume that ej is a read. This means that an rf edge will enter it, and an fr edge will exit it. Let
the rf edge be from ei to ej , and let the fr edge be from ej to ek. By definition, we will also have a ws
edge from ei to ek. For the cycle to complete, there needs to be a path from ek to ei that does not have ej .
This means that there will be a cycle that does not involve ej . This would have existed even before ej was
considered. Given that SC held up till now, this is not possible. Hence, there is a contradiction in this case
as well.

Hence, there are no cycles and the execution Ê is in SC. Furthermore, this execution has a data race.
Let the equivalent sequential order be S.

Is the execution Ê complete? This means that if a given operation of a thread is present, are all of its
previous operations (in program order) there? If they are not there, let us add them. Let us refer to all the
operations that are missing as the set of skipped operations. For every such skipped operation, there is some
memory operation e ∈ Ê that succeeds it in program order. Because Ê is in SC, the backward slice (all the
operations that determine the values of the operands) of every operation in Ê is present in it. Furthermore,
because of PLSC all the preceding instructions of e ∈ Ê in the same thread that access the same address
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are also present in Ê. This means that adding the skipped instructions is not going to change the outcome
of memory operations in Ê.

Now, let us add the skipped instructions to the equivalent sequential order, S. Note that given that we
are at liberty to set their outcome and moreover their outcome does not influence the values read or written
in Ê. For each thread we add its earliest skipped instruction at the appropriate point (as per program order)
in S. It reads the latest value in the sequence. Similarly, for a write, we also add it at an appropriate
point in S. We assume it is the latest write for the location. Given that we are ensuring that the resultant
sequence of instructions is in SC after each step, we can prove by induction that after adding all the skipped
instructions, the final sequence is still in SC, and still has data races.

We can then simulate the rest of the execution in a sequentially consistent manner.
This proves that it is possible to construct an SC execution that also contains a data race, if the original

program has a data race with any memory model.

From the results of Theorem 9.6.2.3, we can say that a program has a data race, irrespective of
the memory model. We can complete the table now.

Property Reference
SC does not imply data-race-freedom Figure 9.58
Data-race-freedom implies SC Theorem 9.6.2.2
Non-SC execution implies data races Contrapositive of

Theorem 9.6.2.2
A program with a data race has an SC
execution with a data race Theorem 9.6.2.3

9.6.3 Properly Synchronised Programs

Can we guarantee that all executions of a program are data-race-free? Such a program is called a data-race-
free or a DRF program.

Let us first answer this question. Consider a program where every shared variable is accessed within a
critical section, and the same shared variable is always protected by the same lock. Recall that a critical sec-
tion is demarcated by lock and unlock functions – these functions access synch variables. This automatically
disallows concurrent accesses to the same shared variable because only one thread can hold a lock at a time,
and thus it is not possible for two threads to concurrently access the same shared variable – one of them will
not be able to acquire the corresponding lock for the shared variable. This program is thus data-race-free.
Let us refer to such programs as properly synchronised programs or PS programs.

Definition 85 In a properly synchronised program (PS program), every shared variable is accessed
within a critical section, and throughout the program, the same shared variable is protected by the same
set of locks. This ensures that we cannot have concurrent accesses by two threads to the same shared
variable. Such programs are free of data races.

Discussion

We thus observe that any properly synchronised program is data-race-free and always produces sequentially
consistent executions. It is thus a DRF program. In other words, properly synchronising a program ensures
that our executions are both data-race-free and in SC regardless of the underlying memory model! This
is arguably one of the most impactful results in modern parallel computing and parallel architecture, and
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allows hardware designers to pursue all kinds of performance enhancing optimisations while maintaining the
intuitiveness of the high level code.

Regardless of the memory model, all that programmers need to do is that they need to enclose all the
accesses to shared variables in critical sections (individually or in groups), and always ensure that the same
shared variable is protected by the same set of locks. Once this is done, the execution is in SC, and thus it
is very easy to write parallel programs. Additionally, our executions do not exhibit data races, as a result
we avoid many classes of concurrency bugs.

Regarding performance, this depends on the proportion of shared variables that are accessed. In most
modern parallel programs, shared variable accesses are relatively infrequent. Most of the accesses are to
private data (private to a thread), therefore there is no additional overhead in terms of synchronisation
instructions while accessing such data. Given this pattern, the overheads of properly synchronising are
considered to be rather modest, and it is by and large possible to reap the advantages of a relaxed memory
model.

The main challenge now is to ensure that a given program is properly synchronised. This is unfortunately
computationally undecidable, and thus it is not possible to write a tool to find this out. However, we can
analyse programs and their executions for evidence of data races. If we find a data race, we can conclude that
the program is not properly synchronised, and we can also pinpoint the regions of the code the programmer
should look at based on the addresses involved in the data race. Note that the absence of data races in a
few sample runs does not indicate that the program is properly synchronised, however, this approach has
proven to be an extremely efficient and successful method for finding bugs in parallel programs.

9.6.4 DRF Memory Models

The main aim is to “properly synchronise” a program. This will give us the best of all worlds: relaxed
memory models, SC execution, and data-race-freedom.

Now how do we do this? As discussed, one way is to enclose all accesses to shared variables within critical
sections. This means that the high level language needs to give us the facility for creating critical sections.
We can thus define a memory model at the level of a high level language such as C++ or Java that specifies
a set of orderings similar to memory models in hardware. Additionally, this model needs to specify what
a programmer needs to do to produce data-race-free executions. Such memory models are known as DRF
memory models. They are defined for programming languages.

They can be of different kinds because we can have many kinds of synch operations. For example, a synch
operation need not be a regular fence operation. We can instead use the acquire and release operations defined
in release consistency (see Section 9.5.7). Theorem 9.6.2.1 only says that the following relations need to hold:

e1
hb→ s1, s2

hb→ e2, and s1
hb→ s2. s1 and s2 need not be regular fence operations; s1 can be a release and

s2 can be an acquire. The theorem will still hold. We can then prove that with such acquire and release
operations, data-race-freedom implies SC. A DRF model that provides such acquire and release operations
will be different from a DRF model that just provides regular fences. Modern languages such as C++and
Java have many such synchronisation constructs and thus provide a complex DRF model.

9.6.5 Lock Set Algorithm

We have concluded that by ensuring that there are no data races, we will not face issues with different
memory models, particularly models that have non-atomic writes. All that we need to ensure is that the
code is properly synchronised and consequently data-race-free. Even though such theoretical models have
taken us very far, still in practice, it is possible that programmers might forget to “properly synchronise”
their programs. In this case, we might encounter data races, and this will give rise to a new class of bugs
called concurrency bugs.

Hence, there are several algorithms in both software and hardware to ensure that the code is properly syn-
chronised. Let us discuss one of the simplest algorithms in this class known as the Lock Set Algorithm [Savage
et al., 1997]. The basic idea is as follows. We associate a set of locks with each memory location v (the lock
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set). When we initialise the program, we assume that the lock set for each location contains all the locks
that the program uses.

Additionally, each access (read or write) is also associated with a lock set. It is defined as a set of locks
held by the thread that is issuing the memory access.

To summarise, there are two lock sets that we are considering: one held by the memory location (L(v)),
and the other held by the thread, T , while accessing the memory location (represented as L(T )). Now it is
possible that several locks protect a given memory location, however we do not know them. Hence, we need
to instrument reads and writes to the shared variables, and find the set of locks that protect each shared
variable (its lock set). Hence, after each access we compute

L(v) = L(v) ∩ L(T ) (9.11)

This further narrows down the set of locks that protect each variable. In every step, we keep iterating
and refining the lock set till we reach the end of the program. At this point of time, there are two possible
scenarios. The first scenario is that the lock set is non-empty. This means that for the variable (and its
associated memory address), we have found a set of locks that protect it. The other scenario is when the
lock set is empty. In this case, it means that we were not able to find a set of locks that protect a given
location. This means that most likely there is a data race associated with this location.

The standard approach for implementing this technique is in software. In this case, we augment each
access to a shared variable with additional code that refines the lock set for the variable. At the end, we
analyse the lock sets for all the shared variables, and find those variables with empty lock sets. We can then
report these variables to the programmer, and then she can check if the code that accesses these variables is
properly synchronised or not. This is thus a method for data race detection.

This basic mechanism is however suboptimal as pointed out by Savage et al. [Savage et al., 1997]. There
are three important patterns in modern programming languages that are falsely reported to be data races,
whereas these patterns are perfectly safe.

Initialisation We often initialise shared variables without using any locks.

Read-only variables A program might use many read-only variables that are written once during initial-
isation, and later they are read many times. This algorithm will report such accesses to be data races.
This is however not the case.

Reader-writer pattern Such access patterns allow multiple readers to read the same variable concurrently.
Multiple concurrent read accesses do not lead to data races. However, this algorithm will find the
different read accesses to contain different lock sets, and thus might report a few of them to be data
races.

It is thus necessary to refine the basic algorithm.

Improved Version of the Basic Lock Set Algorithm

Figure 9.59 shows the state diagram for the advanced version of the algorithm. We start in the Start state.
The first access to a memory location has to be a write because we need to set its initial value. After it is
initialised with the write, the initialising thread will continue to make accesses (reads or writes). This should
be kept out of the purview of the data race detection algorithm. We refer to this state as the Exclusive state.
Subsequently, we need to track the accesses made by other threads.

If there is a read by another thread, we transition to the Shared state. This captures the multiple-readers
scenario. At this point, even if multiple threads are reading the variable, we do not report a data race.
However, if there is a write, then we need to start using the regular lock set-based data race reporting
algorithm. We transition to the Modified state. On similar lines, if we have a write access by another thread
in the Exclusive state, we transition to the Modified state. Subsequently, we remain in this state and keep
using the regular lock set algorithm, where we continue refining the lock set. Only in this state, we detect
and report data races.
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Figure 9.59: States in the advanced version of the lock set algorithm

9.6.6 Data Race Detection with Vector Clocks

Let us now discuss one more approach that uses a mechanism called vector clocks. Most approaches in this
space are in software, where a compiler or a module at runtime, instruments the reads and writes to record
their dependences. If we find some unusual patterns symptomatic of data races, then an error is flagged.
There are approaches in hardware to detect dynamic data races; however, they are expensive and at best
only make probabilistic guarantees.

Theoretical Preliminaries

Let us now look at a more general mechanism for detecting data races.

The key question that we need to answer is how do we find if two events are concurrent? Recall that in
the world of concurrent systems, two concurrent events need not take place at the same time. In fact, when
we are considering multiple cores, with their own clocks, the definition of time itself is fuzzy. We need to
come up with an alternative definition.

Till now we have been saying that two events e1 and e2 are concurrent if there is no happens-before
ordering between them. We have however not dwelt on how to find if there is a happens-before ordering
between two events. To do so, we will use results from classic distributed systems literature – vector clocks.

Consider n processes. There is no global clock. All the processes have their separate clocks, and the
relationship between these clocks is not known. There are two kinds of events: internal and external. Internal
events are local to a process. They are not visible to other processes. However, external events are visible to
other processes. They are modelled as send-receive messages, where one process sends a message to another
process.

Let every process contain an n-element vector, which is a vector clock. The ith process’s vector is denoted
as Vi. The ith element of Vi represents the local time of process i. We increment the local clock, Vi[i], before
sending a message, and after receiving a message. Vi[j] (i 6= j) represents i’s best estimate of j’s local time.

Let us see what happens when processes send and receive messages. Before sending a message, process i
increments Vi[i], and sends the message along with its vector clock, Vi. When j receives the message, it first
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increments its own time, Vj [j], and then sets Vj as follows.

∀k, Vj [k] = max(Vi[k], Vj [k]) (9.12)

We refer to this as the union operation of Vi and Vj : Vi ∪ Vj .
Here, the symbol ∀ stands for “for all”. This operation gives j the most up to date estimate of the local

times of the rest of the processes. Given two vector clocks, we can define a few relationships between them.
Two vector clocks, Vi and Vj , are equal if and only if all their elements are pairwise equal.

Vi = Vj ⇔ ∀k, Vi[k] = Vj [k] (9.13)

Let us now look at the conditions where we can say that event ei (by process i) happened before event
ej (by process j). Let us define a precedence relationship, ≺, between vector clocks. Let us say that Vi ≺ Vj
if the following relationship holds (note that ∧ stands for logical AND).

Vi ≺ Vj ⇔ (Vi 6= Vj) ∧ (∀k, Vi[k] ≤ Vj [k]) (9.14)

The first term in Equation 9.14 means that the two vector clocks are not equal (both the arrays are not
exactly equal). The second term means that each entry in the first vector clock Vi is less than or equal to
the corresponding entry in Vj . This alternatively means that there is some k′ for which Vi[k

′] < Vj [k
′]. Let

us understand the logic behind comparing vector clocks in this manner.

Causal Ordering

Let us list some classic results in distributed systems. Let event ei happen at time Vi and event ej happen
at time Vj .

Theorem 9.6.6.1 Vi ≺ Vj ⇒ ei
hb→ ej

Theorem 9.6.6.2 ei
hb→ ej ⇒ Vi ≺ Vj

By considering both the theorems, we can say that the following relationship holds.

ei
hb→ ej ⇔ Vi ≺ Vj (9.15)

Two events, ei and ej , are said to be concurrent if none of the following relationships hold: Vi ≺ Vj or
Vj ≺ Vi. We write Vi||Vj or ei||ej to indicate concurrency.

Definition 86 A vector clock is defined as an n-element vector, where there are n processes in the
system. Whenever, process i sends a message to process j, it also attaches its vector clock along with
the message. The vector clock of each process is initialised to all zeros.

Before process i sends a message, it increments, Vi[i]. When process j receives the message, it first
increments its own time, Vj [j], and then sets Vj as follows.

∀k, Vj [k] = max(Vi[k], Vj [k])
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Two vector clocks can be compared with a precedence relationship.

Vi ≺ Vj ⇔ (Vi 6= Vj) ∧ (∀k, Vi[k] ≤ Vj [k])

For vector clocks, we have the following relationship.

Vi ≺ Vj ⇔ ei
hb→ ej

Two events, ei and ej, are said to be concurrent if none of the following relationships hold: Vi ≺ Vj
or Vj ≺ Vi.

Data Race Detection using Vector Clocks

If we have n threads, we assign an n-element vector clock to each thread (process in theoretical parlance).
Additionally, each memory location, v, is assigned two vector clocks: a read clock Rv and a write clock
Wv. Let CT be the vector clock of the current thread, tid be its thread id, and let CL be the vector clock
associated with the acquired lock.

Algorithm 1: Lock acquire

1 CT [tid]← CT [tid] + 1
2 CT ← CT ∪ CL
3 CL ← CT
4 CT .inLock ← True

Let us first consider the lock acquire function. In this case, we are using synch variables, and since
the system ensures an SC execution for such variables, we have allowed data races between their accesses.
Whenever, a given thread acquires a lock, it is necessary to set both the vector clocks to the same time
because this point is a rendezvous point for the thread and the lock. Hence, we first increment the local
clock CT [tid] of the current thread, compute the union of both the vector clocks (CT and CL), and set both
of them to the computed union. Finally, we set the inLock bit of the current thread to 1, which indicates
the fact that the current thread is inside a critical section.

Algorithm 2: Lock release

1 CT .inLock ← False

On similar lines, when we release the lock we set the inLock bit to 0. A thread may make accesses to
shared variables without a lock, some of these will be data races.

Algorithm 3: Read operation

1 if ¬CT .inLock then
2 CT [tid]← CT [tid] + 1
3 end
4 if Wv � CT then
5 Rv ← Rv ∪ CT
6 end
7 else
8 Declare Data Race
9 end

Let us now discuss the read operation. If the current thread does not hold a lock, then an access is being
made outside a critical section. We are not in a position to detect if this variable is shared or not. However,
to indicate that this is a separate event, we increment CT [tid] (local clock of the current thread).
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For any read operation, all the writes to location v should precede it or be equal (denoted by the �
symbol) in terms of logical time. We explicitly verify this by comparing the write clock Wv with the current
time. If Wv precedes the current time or is equal to it, then we replace the read clock Rv with Rv ∪ CT .
This ensures that the read clock is up to date as per the semantics of standard vector clocks. Note that we
do not require the read clock to precede or be equal to the current time because we allow concurrent reads
in our system – they are not classified as data races.

However, if we find that Wv||CT or CT ≺Wv, then there is a data race, and it is immediately flagged.

Algorithm 4: Write Operation

1 if ¬CT .inLock then
2 CT [tid]← CT [tid] + 1
3 end
4 if (Wv � CT ) ∧ (Rv � CT ) then
5 Rv ← Rv ∪ CT
6 Wv ←Wv ∪ CT
7 end
8 else
9 Declare Data Race

10 end

Finally, let us consider the write operation. Here also, we first check if the access is made within a critical
section or outside it. This is handled on the same lines as the read operation.

For a write, we need to ensure that both the read clock and the write clock either precede or are equal to
the current time. This follows from the way we have defined data races. Writes need to be totally ordered
with respect to prior reads and writes. If this is not the case, then we can immediately flag a data race.
Otherwise, we proceed to update the values of Rv and Wv with information contained in the current time
using the union operation.

This notion of vector clocks can thus be very easily used to create data race detectors in software.

9.7 Transactional Memory

We had discussed critical sections in Section 9.4.7, and then connected them to data races in the previous
section. It should not be possible for other threads to see the values written by instructions in the critical
section before it has ended and the lock has been released. Also, instructions within the critical section
should not be able to see values written by concurrent writes. This means that the entire block of code
within the critical section needs to appear to execute as a single statement. Either it appears to other
instructions that the entire block of code has executed, or it appears that the execution of the block has not
begun. This property as we have seen in the case of write operations is known as atomicity. It basically
signifies an all-or-none behaviour. We need atomicity at the level of critical sections as well.

Let us now also consider how we implemented critical sections. We created a special pair of lock and unlock
functions, where the lock function uses an atomic exchange instruction to atomically exchange the contents
of a register and a memory location. This instruction does the atomic exchange in such a manner that no
other instruction can interrupt it in the middle or can view any intermediate state. The atomic exchange
instruction is supported by almost all instruction sets as of 2020, and more sophisticated locking algorithms
use other primitives such as atomic fetch-and-increment, and atomic compare-and-set. All of these atomic
primitives are implemented by modifying the coherence protocol. We delay sending acknowledgements to
the directory till the atomic operations complete.

Such simple modifications to the coherence protocol allow us to implement atomic instructions, which
in turn allow us to implement critical sections in parallel programs. All parallel programming libraries
including pthreads and OpenMP implement a variety of locking mechanisms that allow us to create many
kinds of critical sections. Additionally, they ensure fairness by providing a guarantee on how long it will
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take a thread to acquire a lock.
However, there are problems with such conventional mechanisms. Consider the following C code snippet

to credit or debit money from a bank account referred to as account. In this case, the bank account is
an instance of a class of type Account. Let the Account class have a single field called balance. The way
we present the following code snippet is similar to the way we presented the notion of critical sections in
Section 9.4.7, where each line corresponds to a line of assembly code.

Listing 9.2: Java code to update the balance in a bank account. Assume that account is passed by reference
(a pointer to it is passed).

void updateBalance(int amount , Account account){

lock();

int temp = account.balance;

temp = temp + amount;

account.balance = temp;

unlock ();

}

In this case, we lock all three lines. However, if a bank has a lot of accounts, then it is not necessary that
two accesses to the updateBalance function access the same data. In fact they might be accessing different
sets of data (different accounts). There will be no overlap in terms of memory addresses between the two
sets of accesses; however, given the nature of our critical section, we will only allow one of the threads to
proceed. In other words, with conventional locks, we do not allow disjoint access parallelism. This means
that if different threads access different accounts, we do not execute them in parallel. In the conventional
code that we show, irrespective of the data being accessed, we encapsulate the statements accessing shared
data in a critical section, and force threads to execute the critical section in sequence. This is good because
it ensures correctness; however, it is bad because it limits opportunities for parallel execution.

Let us look at the term disjoint access parallelism in some more detail. It is defined as a property of
a parallel program, where two threads can execute the same set of statements concurrently if they access
different sets of data. A critical section as shown in Listing 9.2 that is enclosed between a lock and an unlock
statement, does not allow disjoint access parallelism.

Definition 87
Disjoint access parallelism is defined as a property of a parallel program, where two threads can execute
the same set of statements concurrently if they access different sets of data.

Now, to enable disjoint access parallelism, we can change the locking logic. Instead of having one single
lock for the entire function, we can associate a different lock with each account. Before accessing an account,
we need to acquire the lock associated with the account, and then once we are done with the processing, we
can release the lock. The modified code is shown below.

void updateBalance(int amount , Account account){

account.lock(); /* account specific synchronisation */

int temp = account.balance;

temp = temp + amount;

account.balance = temp;
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account.unlock ();

}

Having a separate lock for each account takes care of the problem of an absence of disjoint access
parallelism. However, it introduces other problems. Let us consider realistic code where we might be
accessing different accounts. In this case, before executing the code of the critical section, we need to lock
all the accounts that might be accessed beforehand. At the end we release all the locks. For example, if we
want to write a function to transfer money from one bank account to the other, then we need to lock both
the accounts.

Sadly, we may have a deadlock situation. Assume that there are two accounts A and B. It can so happen
that similar to deadlocks in an NoC, we have a situation where thread 1 holds the lock for A and waits
for the lock for B, and there is a reverse situation with thread 2. Then no thread will be able to progress,
because there is a circular wait between threads A and B. A wants a resource that B has and at the same
time B wants a resource that A has. Similar to ordering virtual channels, we can use the same algorithm
here. If we acquire the locks in order, for example, if we acquire the lock for A before we acquire the lock
for B, it is not possible to have a deadlock.

Again this approach creates a few more problems. This means that we need to be aware of all the locks
that a given critical section is going to acquire at the beginning of the critical section. This might not
always be possible in critical sections with a complex control flow. In fact, when the address of the account
is computed dynamically, we might not be aware of the lock variable’s address till we execute the relevant
statements at runtime. We can always be conservative by prohibiting certain kinds of code within the critical
section, particularly, code that dynamically computes the addresses of locks, and also ensure that we acquire
a superset of locks at the outset – more than what we actually require.

Many such techniques unnecessarily restrict our freedom in writing parallel code and also reduce per-
formance. It is thus essential to look at a solution beyond locks such that we can write critical sections with
ease, and without bothering about how we acquire locks and avoid deadlocks. We can borrow inspiration
from the world of database design and introduce the notion of transactions. A transaction is defined as a
block of code that executes atomically and allows disjoint access parallelism. This is exactly the property
that we want, where in a certain sense the entire block of code executes as if it is a single instruction. Let us
motivate our discussion by looking at how our running example will look like with support for transactions.

void updateBalance(int amount , Account account){

atomic { /* an atomic transaction */

int temp = account.balance;

temp = temp + amount;

account.balance = temp;

}

}

We create an atomic block where we assume that the code encapsulated within it executes atomically
as a transaction – all or nothing. Moreover, it executes like a critical section and also allows disjoint
access parallelism. This means that two instances of this code that access different variables can execute in
parallel. The benefits of such an approach are obvious: ease of programmability and support for disjoint
access parallelism. We need not bother about low level issues such as how locks are implemented.

Transactions have a notion of succeeding or failing. If a transaction succeeds, then it means that it was
able to complete the execution of all the statements encapsulated within it. On the other hand, if there
was interference from other threads meaning that different transactions clashed with each other by accessing
the same set of addresses in a conflicting manner, the transaction might need to fail or abort. In this case,
the transaction is said to have failed or aborted. In either case – success or failure – the transaction should
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appear to execute instantaneously; moreover, its partial state (before completing) should not be visible to
other threads. Formally, a transaction is expected to possess the four ACID properties.

Atomicity: Either the entire transaction completes or if there is a problem (discussed later) the entire
transaction fails. If a transaction fails, no traces of its execution are visible to the same thread or other
threads. This is also known as all-or-nothing semantics.

Consistency: Let us define a valid state of a system as a state that has been created by following all the
rules of program execution, coherence, and consistency. If the state of the system is valid before a
transaction starts its execution, then the state is valid after the transaction finishes its execution. The
transaction might either succeed or fail; irrespective of the outcome, it should appear that after the
transaction is over, the state of the system is valid. For example, if a failed transaction leaves back
some of its updates in the system, the state would be invalid. We need to ensure that this does not
happen.

Isolation: Transactions are executed concurrently with other transactions and regular read/write instruc-
tions. Particularly with respect to other transactions, we wish to have a property akin to sequential
consistency. The property of isolation states that a parallel history of transactions is equivalent to
some sequential history of transactions, where transactions initiated by different threads execute one
after the other. This further means that it appears that each transaction has executed in isolation.

Durability: Once a transaction finishes or commits, it writes its memory updates to stable storage. This
means that those updates will not get lost.

Most transactional memory systems as of 2020 follow these four ACID properties. This ensures that each
transaction looks like a large single instruction that executes atomically.

Definition 88
A transaction is defined as a block of code that executes atomically. It acts like a critical section; however,
it also allows disjoint access parallelism. The transaction appears to execute instantaneously to other
transactions. A software or hardware mechanism that has support for transactions is a transactional
memory system.

A software-only mechanism is known as software transactional memory (abbreviated as STM). On
similar lines, a hardware based mechanism is known as hardware transactional memory (abbreviated as
HTM).

If a transaction executes successfully, then it is said to finish normally, and the finish operation is
called a commit. However, if it fails for some reason, then it is said to have aborted.

9.7.1 Fundamentals of Transactional Memory

Let us now define some basic terminology with respect to transactions. Consider an atomic block of code.
If we need to run it as a transaction, then we need support for transactions either exclusively at the level
of software, or at the level of both hardware and software. At runtime, software or hardware entities will
create transactions that will execute the instructions within an atomic block.

Conflicts

Consider a scenario, where we have two threads executing an atomic block. We thus have two transactions:
TSA and TSB . If they access disjoint sets of variables, then they cannot affect each other’s execution, and
both the transactions can proceed in parallel. However, if there is an overlap in the set of variables that they



505 Smruti R. Sarangi

access, then they are not executing in isolation. We would ideally like sequential consistency to hold among
transactions, which means that they should appear to execute serially. Either TSA sees the state written by
TSB or vice versa. However, if they are executing concurrently on different cores, and modifying the same
set of variables, this will not happen. One of the transactions needs to be either stalled or it needs to abort.

If such a scenario arises, we say that the transactions are conflicting, or they have a conflict. A conflict
is defined as follows. Let the set of variables that a transaction reads be defined as its read set (R), and let
the set of variables that a transaction writes be defined as its write set (W). Let the read and write sets of
transaction TSA be RA and WA respectively. Similarly, let the read and write sets of transaction TSB be
RB and WB respectively.

We say that TSA and TSB conflict if and only if any one of the relations (shown below) is true.

RA ∩WB 6= φ (9.16)

WA ∩RB 6= φ (9.17)

WA ∩WB 6= φ (9.18)

In simple terms, if one transaction writes something that another transaction reads, then they have a
conflict. Or, if two transactions write to the same variable, then also they have a conflict. However, if their
read sets overlap (RA ∩ RB), then this is not a conflict because we can read the same data in any order –
it does not matter. At this stage, please realise that the notion of conflicts among transactions is similar to
dependences between instructions. If two instructions have a dependence, they cannot execute in parallel.

Concurrency Control

With each conflict, we define three events of interest: occurrence, detection, and resolution. A conflict is said
to have occurred, when the conflicting memory accesses happen (read-write, write-read, or write-write). It
need not be detected immediately, it can be detected later. However, we are not allowed to detect a conflict
after the transaction finishes – it will be too late. After we detect a conflict, we must resolve it. We can
either roll back one of the conflicting operations and stall the transaction that issued it, or we can kill one
of the conflicting transactions. Killing a transaction is also known as aborting a transaction. Sometimes
aborting a transaction is the best choice, otherwise if we stall transactions, we might create a deadlock.

The timing of these events varies with the TM (transactional memory) system. It depends on the type of
concurrency control, which is defined as the way in which we deal with accesses to shared variables. There
are two common kinds of concurrency control: pessimistic and optimistic.

Pessimistic Concurrency Control In this type of concurrency control, conflict occurrence, detection,
and resolution happen at the same point of time. In other words, this means that we do not execute
any instructions after we detect a conflict, and this saves wasted work. However, we need to work
harder to detect conflicts every time there is a memory access. In software-only schemes, this is hard
to do; however, in hardware based systems, this approach does not have significant overheads.

Optimistic Concurrency Control In this case, we allow transactions to execute without performing a
lot of checks while they are accessing memory variables. When a transaction completes, we check if it
has completed successfully, and if there are any conflicts. If there are no conflicts, then the transaction
commits, otherwise it aborts. This kind of concurrency control is well suited for software transactional
memory systems, because this minimises the work that needs to be done for each memory access. We
simply need to check for conflicts at the end, which involves fewer instructions.

Conflict Detection

With pessimistic concurrency control, we detect conflicts as soon as they occur. This is also known as eager
conflict detection. There are many flavours of eager conflict detection. We can either detect the conflict when
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the transaction accesses a variable or a cache block for the first time or when its coherence state changes,
or we can detect conflicts every time the variable is accessed. The latter is a very inefficient approach, and
thus is typically not preferred.

The other paradigm of conflict detection is lazy conflict detection, where we detect a conflict after it has
occurred. This happens in systems with optimistic concurrency control. Here also, we have many different
approaches. We either detect a conflict at the time of committing a transaction, or we can detect it at
specific points in the transaction known as validation points. The validation points can be inserted by the
compiler, or can be decided dynamically by the hardware. At these validation points a dedicated thread or
hardware engine checks for conflicts.

Conflict detection has some subtle complications. Assume that transactions TSA and TSB conflict.
However, later TSB gets aborted. It would have been wrong to abort TSA based on the conflict, because its
conflicting transaction TSB ultimately got aborted. Hence, many systems have dedicated optimisations to
take care of such cases.

Version Management

To ensure that a transaction executes in isolation, we need to ensure that all of its updates are not visible
to other threads. This means that it needs to create a new version of memory for itself. This version of
memory contains the values of all the variables/memory locations before it started, and the changes it has
made to the variables in its write set. The changes that a transaction makes to memory is known as the
transactional state, and this needs to be made visible only after the transaction commits. Managing the
transactional state is also known as version management.

Eager Version Management

There are two kinds of version management: eager and lazy. In eager version management, we directly
make changes to memory. The write set is not separately buffered in any software or hardware structure. A
thread goes ahead and changes the values of variables in memory, this reduces the read or write time. To
safely recover the state if the transaction is aborted, we need to maintain an undo log. The first time that
the thread writes to a variable in a transaction, it saves its previous value in an undo log, which can be a
structure in hardware or software. Subsequent changes need not be logged because if there is an abort, we
only need the value that existed before the transaction began.

Eager version management is very efficient for large transactions that abort very infrequently. All the
updates to variables are directly sent to memory. Commits are fast because the changes are already there in
memory. In comparison, aborts are very slow. We need to read all the values from the undo log and restore
the memory state. However, the most important problem is maintaining isolation. If the values are written
directly to memory, then other threads can see data written by the transaction before it has committed.
This violates the property of isolation.

There are two ways of dealing with this problem. In software based systems, we add a version number
to each variable in the write set. At commit time, we increment the version of each variable in the write set.
Additionally, we lock each variable before writing to it. This ensures that other transactions cannot write to
the variable at the same time. For transactions that read the variable, they record the version number, and
also check the version number when they commit. If the version numbers do not match, then it means that
some other transaction has written to the variable in the meanwhile. We shall discuss such schemes later in
Section 9.7.3.

For hardware based systems, we augment each cache line with additional bits that indicate whether a
variable has been read or written by an active transaction. The system does not supply the values of such
variables to memory accesses made by other threads. This ensures isolation. Once a transaction commits
or aborts, it is necessary to clear all such bits. There is a fast method in hardware to clear such bits. It is
known as flash clearing. Flash clearing can be used to quickly set or unset a given bit in all the lines of a
cache. We can then discard the undo log.
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If a transaction with eager version management aborts, then we need to read each entry in the undo
log, and send the corresponding write to the memory system. This ensures that the changes made by the
transaction are not visible to any other thread. Note that as compared to commits, aborts are more expensive
in terms of time.

Important Point 16
Let us provide the main insight regarding flash clearing. The reader might want to go through the
relevant background in Section 7.3 before reading this paragraph. If a cache line is 64 bytes, only one
or two additional bits are used to store transactional state, and they may need to be flash cleared after
a transaction commits or aborts. It is often a good idea to create a separate subarray to store the bits
that need to be flash cleared. We need to support two kinds of accesses for this subarray. We need to
read/write the bits, and flash-clear them. For reading and writing, we can use the same mechanism as
the data array, where the decoder drives the corresponding word line to high, and then we read the value
through the bit lines. For flash clearing, we need to ensure that all the cells in the entire subarray store
a logical 0 after the operation is over. One solution is to enable all the word lines, set one bit line to a
logical 0, and the other to a logical 1. By using this approach, we can write a logical 0 to all the memory
cells in a single cycle. Another approach is to create a 2-ported memory, where we have two word lines.
One word line can be used for regular access, and the other can be used for the purpose of flash clearing
(writing a 0 to the cell). These approaches have different trade-offs in terms of the complexity of the
decoder and the overheads in creating an additional memory port.

Regardless of the design, simultaneously writing to an array of memory cells is difficult. We typically
need a large amount of current to charge or discharge so many transistors. This places an unreasonable
demand on the power grid. Hence, a lot of practical flash clearing systems [Miyaji, 1991,Rastegar, 1994]
propose to divide the subarray into different continuous groups of memory cells. We clear them in stages.
We first clear the bits in the first group, then after a given time delay we move to the next, and so on.
This ensures that at no point of time, we place an unreasonable demand on the power grid of the chip.
This does increase the latency of the entire operation; however, faults related to an excessive current
draw do not happen.

Lazy Version Management

In lazy version management, we have a redo log that unlike an undo log stores data written by the
transaction. All the variables in a transaction’s write set have an entry in the redo log. Whenever, a
transaction writes to a variable for the first time, it adds an entry for it in the redo log. Any subsequent
read request made by the transaction needs to check for the variable in the redo log first. If the variable is
present, then we treat its value as the current value of the transactional variable. If we do not find an entry,
then we need to read the value of the variable from the regular memory system.

In this case, commits are more expensive than aborts. While committing a transaction, we need to write
its entire redo log to memory. Moreover, all read requests in a transaction now have to be routed through
the redo log. If they find their data in the redo log, then they need to use it. However, if they do not find
their data, they need to read it from the regular memory system. The redo log basically acts like a cache.
In the case of aborts, we simply need to discard the redo log; nothing else needs to be done.

The redo log per se can be stored as a software structure or as a separate hardware buffer. The good
thing about a redo log is that it is more flexible, and allows us to support very large transactions. Since
buffering the transactional state is an issue with eager version management, this approach is more scalable.
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Way Point 13

• The methods to manage concurrent transactions are collectively known as concurrency control
mechanisms. There are two broad families of approaches: optimistic concurrency control and
pessimistic concurrency control.

– In optimistic concurrency control, we detect and recover from a conflict possibly after it has
occurred. This means that we execute instructions after the conflicting accesses, and fix any
resultant problems later.

– In pessimistic concurrency control, whenever a conflict occurs, we immediately detect it and
try to resolve it.

• There are two ways for detecting conflicts: eager and lazy. Eager conflict detection implies that
we detect a conflict as soon as it occurs, as opposed to lazy conflict detection where we detect it
much later.

• On similar lines, we have two kinds of version management: eager and lazy.

– Eager version management implies that we write directly to the memory system. We maintain
an undo log. We flush it if the transaction commits, and restore the state upon an abort.
With this scheme commits are much faster than aborts. The main problem is maintaining the
isolation property, where we need to ensure that other transactions are not able to read the
temporary state of a transaction.

– Lazy version management requires a redo log. While a transaction is active, all the writes
are sent to the redo log. It acts as a temporary cache for the transaction, which the read
operations need to check first. In this case, aborts are fast because we just need to discard
the redo log; however, commits are slow because the entire contents of the redo log need to be
written to the program’s permanent state.

9.7.2 Correctness Conditions

The same way we defined correctness conditions for parallel programs, we need to define some correctness
conditions for transactions. There are a few widely used models for transactional correctness. Let us discuss
a few of them. Note that in the following subsections, we only discuss correctness models for transactions.
We do not discuss the interactions of transactions with non-transactional instructions. These are known as
mixed mode accesses, and will be discussed later.

Serialisability

This is a direct import from the world of databases with the same meaning. It states that a parallel execution
with transactions should be equivalent to a serial execution with the same set of transactions. In other words,
it should be possible to order the transactions in some sequence such that the results of both the executions
are the same. In general, it is assumed that the transactions issued by the thread take effect in program order,
hence, we shall use this as a necessary property in the definition of serialisability. This is like sequential
consistency at the level of transactions. Furthermore, the property of serialisability does not specify the
behaviour of transactional accesses with respect to non-transactional accesses.
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Strict Serialisability

This is an extension of serialisability, where we consider the real-time order as well. If transaction TSA
created by thread 1 completes before transaction TSB (created by thread 2) starts, then the property of
serialisability does not say anything about how they should be ordered in the equivalent sequential order.
TSA can be ordered before TSB or vice versa. However, strict serialisability says that if TSB begins after
TSA completes, then TSB has to be ordered after TSA in the sequence. If TSA and TSB are concurrent,
which means that they overlap in time, then they can appear in any order in the equivalent sequence. For
non-concurrent transactions, this property effectively enforces a real-time order on the transactions.

Opacity

The main problem with strict serialisability can be seen in the following example (see Figure 9.60). Here, we
read from two variables x and y. Initially, both of them are initialised to 0. The transaction by thread 2 sets
both of them to 5. Now, assume that we have lazy conflict detection (at commit time), and eager version
management. If we take a look at the transactions, we can quickly conclude that t1 should always be equal
to t2. If the transaction of thread 2 executes first, then both x and y are equal to 5, otherwise both of them
are equal to 0. It will never be the case that t1 6= t2. Thus, thread 1 will never go into an infinite loop.

Listing 9.3: Thread 1

atomic {

t1 = x;

t2 = y;

while (t1 != t2) {}

}

Listing 9.4: Thread 2

atomic {

x = 5;

y = 5;

}

Figure 9.60: A code snippet showing the need for opacity (adapted from [Harris et al., 2010] )

This argument is correct for committed transactions because committed transactions need to follow all
the ACID properties. However, we cannot say the same for aborted transactions that can read incorrect
data, and then as a consequence get aborted. In this case, we use eager version management, which means
that as soon as we effect a write, the value is visible to the rest of the transactions. They can access the
variable; however, they may get aborted in the future. Here, thread 2 writes 5 to x. Then transaction 1
begins. It reads x = 5 and y = 0. In this case, thread 1 needs to get aborted. This will only happen when
it reaches the end of the transaction. Sadly, before it reaches the end, we check if t1 = t2. This turns out to
be false, and thus thread 1 goes into an infinite loop and never aborts. This behaviour was not expected.

The reason that we have this behaviour is because we did not define the correctness semantics for aborted
transactions. We only defined them for committed transactions. Given that the transaction by thread 1 is
aborting, we assumed that it need not follow any rules. This however lead to an infinite loop, and as far as
the entire system is concerned, this execution is incorrect. We thus need to define a correctness model for
aborted transactions as well. This model is known as opacity, which extends strict serialisability by saying
that it should be possible to order all transactions – committed, running or aborted – in a linear sequence.
Every transaction Tx, committed or aborted, needs to see a consistent state, which is defined as the state
produced by all the committed transactions ordered before Tx in the linear sequence. Furthermore, no
transaction should be able to see the writes made by an aborted transaction. The execution in Figure 9.60
will not lead to an infinite loop if the TM system follows opacity.

Mixed Mode Accesses

Till now we have only discussed correctness models for transactions. We have not included non-transactional
accesses in our discussion. Let us now consider non-transactional accesses as well. Since we are considering
both transactional as well as non-transactional accesses, let us refer to such accesses as mixed mode accesses.
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Single Lock Atomicity

The simplest correctness model in this space is known as Single Lock Atomicity or SLA. We assume a
hypothetical lock variable that has a global scope. Let us consider an execution to be valid if all the
transactions appear to first acquire the hypothetical global lock, and then release it at commit/abort time.
If an execution or a TM system follows this property, then we say that it satisfies single lock atomicity.

This model takes mixed mode accesses into account very well. We can borrow all the results from an
equivalent lock based program, where we replace each transaction begin event with an acquire operation
that acquires the global lock, and we replace the completion (abort/commit) of each transaction with a lock
release operation. For example, in a TM system with SLA we have a data race, if the equivalent lock based
execution has a data race.

The main problem with SLA is that it does not allow disjoint access parallelism, and creates unnecessary
dependences between all the transactions in the system. Now, all of them need to acquire the same global
lock. This defeats the purpose of having a TM system.

Disjoint Lock Atomicity

The problem of an absence of disjoint access parallelism in SLA is readily solved by adopting another
correctness criterion called Disjoint Lock Atomicity or DLA. Here, a transaction acquires all the locks for
the variables that it accesses before hand. Then the transaction progresses. It finally releases all the locks
when the transaction finishes. This model allows disjoint access parallelism, and we can realise many of the
expected gains of transactional memory.

Even though DLA sounds very appealing, its biggest drawback is that we need an exact knowledge of the
locks that a transaction needs. Later transactional models (see Section 9.7.3) have relaxed this requirement
to make the DLA model more practical. They require the transaction to acquire locks for all the variables
that it accesses just before the first access to each variable. We thus need not know which variables a
transaction is going to access a priori.

Transactional Sequential Consistency

Transactional sequential consistency (TSC) is defined as an extension of sequential consistency for TM
systems. It is defined on the same lines as opacity and traditional sequential consistency. It says that we can
order all transactions (committed or aborted) and all non-transactional instructions in a linear sequence. In
this sequence, all the instructions including the ones within transactions appear in program order.

We have the notion of transactional data race freedom (TDRF), which prohibits races between non-
transactional accesses, and races between transactional and non-transactional accesses. On similar lines, we
can prove that TDRF programs obey TSC.

9.7.3 Software Transactional Memory

Software Transactional Memory (STM) is a popular paradigm for implementing transactional memory sys-
tems. An STM is easy to use and it requires changes to just the compiler or the runtime. Unlike hardware
transactional memory, it does not suffer from limitations of space. We shall describe two commonly used
STM algorithms in this section. They are at different points in the design space of transactional memory
technologies.

First, we need to augment each variable used in transactions with some additional data called metadata.
This metadata is used to track different versions of a variable, check for conflicts, and effect commits and
aborts. Different algorithms use different kinds of metadata. In addition, each transaction maintains a read
set and a write set. The read set contains the set of variables read by the transaction, and the write set
contains the set of variables written by the transaction.

Finally, the compiler or the runtime convert every read or write operation into equivalent readTX and
writeTX operations. In addition to performing regular reads and writes, these operations execute additional
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code to check for conflicts, and also buffer either speculative data, or data that has been overwritten. Let
us look at two popular designs in this category.

Bartok STM

The Bartok STM [Harris et al., 2006] uses optimistic concurrency control for reads, with eager version
management (an undo log), and lazy conflict detection.

Value Version Lock

Figure 9.61: Structure of a transactional variable

Every transactional variable has three fields (see Figure 9.61): value, version, and lock. The value field
(as the name suggests) is the value of the variable. The version is a monotonically increasing integer that
indicates the version of the variable. Every time we write to the variable, the version number is incremented.
Finally, the lock field is a 1-bit value that indicates if the variable is locked or not.

Read Operation

Record the version
 of the variable

Add the variable to 
the read set

Read the value

Figure 9.62: A read operation in the Bartok STM

A basic read operation is very simple as shown in Figure 9.62. We first record the version of the variable,
then we add it to the read set of the transaction, and finally we read the variable and return its value. The
main reason for recording the version of the variable is to use this information to detect a conflict later. If it
is found out that we read an outdated version, then the transaction needs to be aborted. We shall see later
that the version of a variable is incremented if a write to that variable commits.

Write Operation
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Lock the variable
Abort if it is already locked

Add the old value to
the undo log

Write the new value

Figure 9.63: A write operation in the Bartok STM

In the write operation, we first try to lock the variable. This is to ensure that no other thread modifies
the variable during the transaction. If the variable is already locked by another transaction, then we abort
the transaction. In other words, this means that the current transaction cannot proceed. If we are successful
in getting the lock, then we add the old (previous) value of the variable to the undo log. The undo log in
this case is a region in software that stores the old values of variables. Once, we have added the value to the
undo log, we proceed to effect the write. In this protocol, both the read and write operations are simple.
Let us now look at the commit operation. Figure 9.63 shows the flow of actions.

Commit Operation

For each entry in the read set

          Is the version 
    of the variable still 
              the same?

Abort
No

Yes

For each entry in the write set

1

2

Increment the version

Release the lock

3

4

Figure 9.64: The commit operation in the Bartok STM (the numbers indicate the sequence of actions)

We commit a transaction when we finish executing the last instruction in the transaction. The commit
protocol is shown in Figure 9.64. We have separate actions for the read set and the write set. For each entry
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in the read set, the protocol is as follows. For each variable, we compare its recorded version (at the time it
was read by the transaction for the first time), and the current version. If the versions are not the same, then
we can conclude that there was an intervening write by another transaction. Thus, the current transaction
needs to abort because in this case the two transactions are conflicting. After we abort the transaction, we
release all the locks.

For each entry in the write set, we first increment the version, and then release the lock. This ensures
that all other transactions see the results of this transaction, and also perceive the fact that the variable has
been updated. Once we have committed a transaction, we can discard its undo log. Let us now understand
why this protocol works.

Consider a read operation for variable x. Between the time that it is read for the first time in the
transaction, and when we commit the transaction, we are sure that no intervening write has committed.
A transaction that writes to x is thus ordered after the current transaction. Hence, a read-write conflict
is handled correctly. Now consider write operations. We need to lock a variable during the lifetime of its
use within a transaction. We lock it the first time that we use it, and keep it locked till we are ready to
commit the transaction. This ensures that no other transaction can write to the variable. Any transaction
that will write to the variable has to wait till the current transaction is over. This ensures that we do not
have write-write conflicts in our system.

Let us now consider the pros and cons. This approach is simple, and read operations simply need to
record the version of the variable. However, write operations are expensive. It is necessary to lock the
variables, and this increases their delay. Since this method uses lock and unlock operations, the performance
is dependent on how many variables within a transaction need to be locked, and how long it takes to acquire
a lock.

Since this protocol uses eager version management, commits are fast because nothing needs to be written
to memory. The final state has already been written to memory. However, aborts are more expensive because
we need to restore the state of all the variables that have been written to. This is done by reading the undo
log, and replacing the contents of each entry with the value stored in the undo log.

From the point of view of correctness, this protocol provides a strong semantics for transactions in the
sense it ensures that all the transactions are serialisable. However, it does not provide opacity, which also
mandates that aborted transactions see a consistent state.

TL2 STM

Let us now look at another STM solution that works very differently, yet provides opacity. It is known as the
TL2 STM [Dice et al., 2006]. Unlike the Bartok STM, it uses lazy version management, which means that it
requires a redo log. In this transaction memory protocol, we have a monotonically increasing atomic global
counter that provides a timestamp to every invoking process. Every time a transaction Tx starts, it reads
and increments the global counter. The timestamp provided by the global counter is stored as Tx.rv (field
called rv (read version) in the transaction). In addition, the metadata corresponding to each transactional
variable contains two additional fields: a timestamp and a lock.

Read Operations
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           Is
   obj there in 
the redo log? 

Return value
in the redo log

Yes

v1 = obj.timestamp
result = obj.value
v2 = obj.timestamp
if ( (v1!=v2) || (v1 > Tx.rv) ||
        obj.isLocked() )
        abort() 
addToReadSet (obj)

No

return result

read (Tx, obj)

Figure 9.65: The read operation in the TL2 STM (adapted from [Harris et al., 2006,Harris et al., 2010])

Figure 9.65 shows the flow of the read operation. Since we have a redo log, whenever we read a value, we
need to check in the redo log first. The redo log is a software structure that keeps the values of transactional
variables till the transaction is over. If the variable is present in the redo log, then we return the value,
otherwise we need to follow a complex protocol.

We first record the timestamp of the variable in v1. Then we read the value of the object, and then we
read the timestamp of the variable once again, and store it in v2. Then we check a couple of conditions. If
any one of them is true, we need to abort the transaction. The reasons are as follows.

[v1 6= v2] This means that the variable has possibly changed between the time that it was read and the
time that we are checking the timestamp for the second time. This algorithm is known as an atomic
snapshot. The reason we need to do this is as follows. We are reading the value of the variable and
the timestamp at the same time. It is possible that we read the timestamp first and then the variable
changes. Then both the pieces of information will be out of sync. There is thus a need to read the
timestamp once again and verify that it is the same. We will be sure that we have atomically collected
a snapshot of both the variable and its timestamp. This is a standard technique that is used to read
an object that spans multiple memory words. We read the timestamp twice – once before reading the
variable and once after reading the variable.

[obj.isLocked()] If the variable is locked by some other thread, then this variable is in the process of getting
updated. Its value cannot be read at the moment. Thus, the current transaction needs to abort.

[v1 > Tx.rv] This means that some other transaction has incremented the timestamp of the variable, after
the current transaction began. We cannot guarantee the isolation of transactions, and thus the current
transaction has to abort.

Note that in this case all the checks are being done at the time of reading. We are ensuring that a value
that is being read is safe to read. We then add the variable that was read to the read set and proceed.
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Write Operations

Add entry to the redo log
if required

Perform the write

Figure 9.66: The write operation in the TL2 STM

A write operation is far simpler (see Figure 9.66). We just add an entry into the redo log if it is not
already there, and we go ahead and perform the write. Note that in this case, the value that is written is
sent to the redo log. Writes are made permanent only while committing.

Commit Operation



Smruti R. Sarangi 516

For each entry in the write set

          Is the entry
            locked? 

Abort
Yes

No

Tx.wv = ++globalClock (atomic)

1

2

For each entry e in the read set

Lock object

if (e.timestamp > Tx.rv) Abort
Yes

No

Write back redo log4

For each entry e in the write set

3

5

e.timestamp = Tx.wv
release the lock

Figure 9.67: The commit operation in the TL2 STM (adapted from [Harris et al., 2010,Harris et al., 2006])

Figure 9.67 shows the flow of actions while performing a commit. For each entry in the write set, we
lock the variable. If we are not able to lock any variable, then we need to release all the locks that we have
obtained, and abort.

Now, assuming that we have gotten all the locks, we increment the global timer and get a new timestamp
for the current transaction, which is stored in the variable Tx.wv (write version). Next, we validate the read
set. Note that in this protocol reads are expensive. We did a round of validations while reading a variable
for the first time, and we need to do another round of validations at the time of validating the read set.

As shown in Figure 9.67, we compare the timestamp of each variable with the read timestamp of the
transaction, Tx.rv. Recall that we had collected the read timestamp when the transaction began. This
comparison checks if the variable has been updated after the current transaction began. If it has, then we
need to abort the current transaction.

At this point, the read set and the write set have been validated. We can thus proceed with performing
the writes. We read all the entries in the write set, get their values from the redo log, and write them to
memory. These writes make the transaction visible. Once we are done with the writes, the redo log can be
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discarded.

Finally, we set each variable’s timestamp to Tx.wv, and then we unlock all the variables in the write set.
This finishes the commit process. We need to note a couple of subtle points in this algorithm.

1. With a redo log, commits are more expensive than aborts. If we need to abort the transaction, we just
need to release all the locks and discard the redo log. Commits in comparison are more expensive.

2. We use two timestamps per transaction: Tx.rv and Tx.wv. Tx.rv is set at the beginning of a trans-
action by reading the value of the global counter, whereas Tx.wv is set at the time of committing the
transaction. Tx.wv ≥ Tx.rv + 1.

3. We first write the variables to permanent state and then we update their timestamps. This ensures
that if another transaction sees an updated timestamp, it is sure that the changes have been made to
the permanent state.

4. As compared to Bartok STM, we do not hold locks for very long. They are only held for the duration
of the commit operation. This is expected to be a short duration since the commit operations are a
part of the transaction manager library and large delays are not possible by design.

9.7.4 Hardware Transactional Memory

Software transactional memory (STM) systems have numerous shortcomings. They essentially convert reads
and writes into function calls. For every read and write in a transaction, it is necessary to call a function that
records the version of the variable that is read/written, makes changes to the undo/redo log, and acquires a
lock. Furthermore, at the end of a transaction, it is necessary to look at every single read and write in the
read and write sets and take appropriate action. This can involve releasing the locks, comparing versions,
and aborting the transaction (if necessary). Coming to correctness, even in models that provide opacity, they
do not guarantee safety against data races when one of the accesses is outside the scope of a transaction. It
is thus necessary to create support for supporting transactional operations in hardware.

Hardware transactional memory (HTM) has numerous advantages over STMs. Individual operations such
as reads, writes, transaction begin and end events are much faster. In addition, maintaining undo and redo
logs is done at the level of hardware, which can be done very efficiently. Along with performance advantages,
hardware transactional memory requires little software support other than additional instructions to mark
the beginning and end of transactions, and methods to indicate if a transaction has aborted or committed.

Coming to disadvantages, HTM systems have plenty of them. As is common in hardware based im-
plementations, such augmentations increase the complexity of hardware and increase power consumption.
Furthermore, hardware has more resource constraints. For example, if we wish to maintain undo or redo
logs in hardware then this limits the size of a transaction. If a transaction requires more storage for storing
values, then we need to either abort the transaction or create a complex mechanism to dynamically allocate
more memory to the transaction from the regular memory space.

Let us appreciate these trade-offs by looking at the design of a HTM, which is inspired by LogTM [Moore
et al., 2006] 4.

ISA Support

We need to add some extra instructions to the ISA. These instructions mark the beginning and end of trans-
actions. Most versions of hardware transactional memory typically add three instructions: begin, commit,
and abort. An abort instruction is required to enable the software to automatically kill a transaction if a
special circumstance arises. By default, the compiler or programmer place a commit instruction at the end
of a transaction.

4The protocol that we describe is not exactly similar. Some simplifications and modifications have been made.
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If we have nested transactions (transaction within a transaction), then the begin instruction increments
the nesting level, and the abort and commit instructions decrement the nesting level. Transactions typ-
ically contain simple processor instructions that only make changes to memory and the registers. Most
implementations of transactional memory do not allow transactions to make system calls or write to I/O
devices.

Version Management

In any HTM protocol, we have a choice between eager and lazy version management. From the point of view
of performance, using eager version management with an undo log is better, particularly if we have large
transactions. In this case, values can be read and written directly to memory. We do not have to maintain
a separate data structure to hold the values of transactional variables.

In our HTM, we shall use eager version management. Each thread creates an undo log in its virtual
memory space. This log is stored in the physical memory space and can be cached. The algorithm for reads
and writes is as follows. Whenever a transaction begins, the core sets a bit and remembers the fact that it
is in a transaction. Till the transaction ends, we need to keep track of the read set and the write set. This
is required to detect conflicts.

To help in this process our HTM adds two bits to every L1 cache line: R (read) and W (write). The
R bit is set when we read a word in the line. When we write to a word in the line, we set the W bit. We
need not set it all the time; we can set it only once at the time of the first write access. At this point of
time, it is also necessary to write the previous value to the undo log, which is a dedicated memory region in
the process’s virtual address space. For subsequent writes to the same block, it is not necessary to modify
the undo log. Once the transaction is over, there are fast mechanisms to quickly clear all the R and W bits
within a few cycles. These are known as flash clearing mechanisms in caches [Miyaji, 1991,Rastegar, 1994]
(see Point 16).

The main advantage of the R and W bits is that they identify the variables that have been read and
written in a transaction. This information can then be used to detect conflicts. They implicitly represent
the read and write sets.

Conflict Detection

The main advantage of using hardware is eager conflict detection. Unlike software based methods, where
we need to perform elaborate checks, a hardware based conflict detection scheme can leverage the coherence
protocol. Eager conflict detection saves a lot of wasted work. Secondly, since all processors support coherence,
a minor modification to the coherence protocol to support transactions does not represent a significant
overhead.

Whenever a given word is not there with a core, it sends a request to the directory asking for either read
access or write access. If it is a read request, the directory forwards it to the cache that has a copy of the
block. If it is a write request, then the directory needs to invalidate all the copies of the block that are there
with other sister caches. In both cases, it needs to send a message to a set of sister caches, indicating that
one of their blocks needs to be read or written by another cache.

This is where we can detect a conflict. For the subsequent discussion, let us assume a system with
coherent L1 caches; it forwards all the directory messages to the cores, which forward them to their attached
L1 caches after some processing. There are two kinds of replies that a core can send to a directory: ack
and nack. It sends an acknowledgement (ack) if the access does not conflict with its read set or write set;
otherwise, if there is a conflict, then it sends a nack message. This lets the directory know that a conflict
has occurred; the directory then forwards this message to the requesting core. Once a conflict is detected it
needs to be resolved, which means that one of the transactions involved in the conflict needs to either wait
or get aborted.

The main problem with such kind of conflict detection is that if a cache evicts a block, and if the directory
also removes its corresponding entry, then we will have no record of the fact that a given block is in the read
or write set of a given core. This means that if a cache evicts a block that is a part of the transactional
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state of the core, the directory still cannot remove it completely. It can be removed from the list of sharers;
nevertheless, its state still needs to be kept in the entry of the directory.

There are two cases: the block was in the M state or in the S state. When core C replaces a block that
was in the M state, its corresponding entry in the directory transitions to the state M@C (referred to as a
sticky state). For example, if core 2 replaced a block, then the state is set to M@2. In addition, C sets its
overflow bit – assume that each core has a dedicated overflow bit, which is initialised to 0, and reset to 0
when a transaction ends (commit or abort). The state M@C means that currently there are no sharers for
this block; C does not have a copy of it in its cache, even though this block is in its write set. When another
core requests for the block, the directory forwards the request to core C with its current state (M@C). C
infers that this block must be in its write set. If the transaction is still going on, then there is a conflict,
otherwise core C can return an acknowledgement (refer to Figure 9.68).

Now, consider the second case: the block in core C was in the S state. Depending upon the protocol,
we can either have silent evictions (no messages sent) or the core might send a message to the directory.
Consider the more difficult case, where the eviction is silent. In this case, the directory has no record of the
fact that C is no more a sharer. The next time it gets a write miss request from another core, it forwards
the request to C. This is where a conflict can be detected (similar to the earlier case with writes).

Directory

Core C Core D
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3. n
ack 4. nack
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Directory
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Figure 9.68: (a) Detection of a conflict (block present in the cache), (b) Detection of a conflict using the
overlap and M@C bits.

Subtle Correctness Issues

Let us conclude with looking at subtle correctness issues when it comes to evictions. If there is an eviction,
then we need to send the block to the lower level. This means that we are also polluting the lower levels of
the memory hierarchy with data that might belong to an aborted transaction.

Read and Write Sets
Let us first consider what happens to the read and write sets when a block is sent to the L2 cache from the
L1 cache. In this case, we are maintaining the read/write sets implicitly using the R and W bits. If the
block is evicted, this information is also gone.

However, we can avoid correctness issues by using the sticky states in the directory. They ensure that
processing another access (transactional or non-transactional) will not lead to errors. If the other access is
transactional, one of the transactions needs to abort because C will send a nack message. In this case, either
the transaction on C will abort, or it will continue to run (other transaction will abort). In the former case,
the read and write sets need to be discarded anyway, and in the latter case, the status quo will continue.
Now, if the other access was non-transactional and we do not want it to wait, then the transaction running
on core C needs to abort. This is because that other access cannot be rolled back because it is not a part of
a transaction. The read and write sets will be discarded and this is the correct behaviour.
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Contents of Evicted Blocks
The other issue that we need to account for is the contents of evicted blocks that are possibly written
to the lower levels of memory. If a transaction is active, then no other transactions or non-transactional
reads/writes can make conflicting accesses to the locations in its read and write sets.

There are two cases here: the original transaction commits or aborts. If the original transaction commits,
then there is no issue. However, if it aborts, then we may end up with incorrect data populating the L2
cache. Fortunately, this will not cause a problem because we need to write back the contents of the undo log.
Consider a block b that was evicted by core C, and this block was written to the L2 cache. If the transaction
aborts, then the old contents of b will be written to the L1 cache, and thus the correct state of the memory
system will be restored. Note that if L1 contains a block in the modified state (because of a write from the
undo log), then the contents in the L2 cache do not matter. It is anyway assumed to have a stale copy of
the data.

Commits and Aborts

With eager version management, commits are always easy. We need to flash clear all the R and W bits,
reset the overflow bit of the core, and clear the undo log. In this case, an additional action that needs to be
taken is that we need to ensure that all the sticky states created in the directory because of the committed
transaction are cleared. One easy option is to send a message to the directory with the core id, C. The
directory can then walk through all the entries whose state is M@C, and clear their states. If the write set
is very small, we can send messages for all the blocks in the write set as well.

If a transaction aborts, we need to restore each entry stored in the undo log. The time taken for this
step is proportional to the size of the undo log. After restoring the memory state, we need to flash clear all
the RW bits, and reset the rest of the states as we had done in the case of committing a transaction.

9.8 Summary and Further Reading

9.8.1 Summary

Summary 8

1. There are two major paradigms in parallel programming: shared memory and message passing.

(a) In the shared memory paradigm, we assume that all the threads share the memory space and
communicate via reading and writing variables.

(b) In the message passing paradigm, threads communicate explicitly by sending messages to each
other.

(c) The shared memory paradigm is typically used in strongly coupled systems such as modern
multicore processors, whereas message passing is used in loosely coupled systems such as
cluster computers.

2. The speed up with parallel execution as a function of the number of computing units, and the
sequential portion of the benchmark is governed by the Amdahl’s law.

Speedup =
1

fseq +
1−fseq
P

Here, fseq is the fraction of the execution that is sequential, and P is the number of processors.
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3. The Amdahl’s law assumes that the size of the workload remains fixed as we scale the number of
processing units. This is seldom true. The Gustafson-Barsis’s law fixes this problem, and assumes
that the parallel portion of the work scales with the number of processing units. The net speedup is
thus as follows:

Speedup = fseq + (1− fseq)P

4. The Flynn’s taxonomy defines the spectrum of multiprocessing systems: SISD (uniprocessor), SIMD
(vector processor), MISD (redundant processing units in mission critical systems), and MIMD
(multicores). MIMD processors can further be divided into two types: SPMD (master-slave archi-
tecture) and MPMD (regular multithreaded programs).

5. Hardware multithreading is a design paradigm where we share the pipeline between multiple con-
currently running threads. Each thread has its PC, architectural registers, and rename table. The
rest of the units are partitioned between the threads.

6. A typical multicore processor contains multiple processing cores that use the shared memory
paradigm to communicate with each other. In such a system, having a single shared cache is
not efficient in terms of performance, hence we need to have a distributed cache.

7. If a distributed cache follows the properties of coherence, then it appears to the program as a single
shared cache. A distributed cache has a low access time and can support many parallel accesses by
different cores.

8. A key correctness property of a memory system is PLSC (per location sequential consistency). This
means that all the accesses to a single location can be laid out in a sequence such that each access
is legal – every read gets the value of the latest write. PLSC needs to hold even in systems with
non-atomic writes.

9. There are two fundamental axioms of cache coherence that naturally arise out of PLSC and the
fact that in practical systems writes are never lost.

Write Serialisation Axiom A write to the same location is seen in the same order by all the
threads.

Write Propagation Axiom A write is eventually seen by all the threads.

10. The behaviour of a memory system for multiple locations is governed by the memory model (or
memory consistency model).

11. Sequential consistency (SC) is the gold standard for memory models. An execution is said to be in
SC, if the memory accesses made by all the threads, can be put in some sequential order subject to
the fact that in this sequential order the accesses of each thread appear in program order, and each
read gets the value of the latest write.

12. SC forbids most optimisations such as write buffers, LSQs that send reads to the cache before
earlier writes, complex NoCs that reorder messages, MSHRs, and non-blocking caches.

13. Hence, in practice, most memory consistency models relax the program order constraint because
of performance issues. Many modern models such as those provided by IBM and ARM also allow
non-atomic writes.

14. The standard theoretical tool to model executions is the method of execution witnesses. In an
execution witness, we have four kinds of edges: a subset of program order edges (po), write→ read
dependence edges (rf : rfe and rfi), write serialisation edges (ws), and read→ write edges (fr).
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ws and fr edges are a direct consequence of PLSC, and are present in almost all systems. However,
the po and rf edges are relaxed (not present in the execution witness) to different degrees in different
memory models. In an execution witness, we add all the edges corresponding to a memory model,
and if there are no cycles, then it means that the execution is consistent with the memory model.

15. We also need to obey uniprocessor access constraints such that single-threaded code executes cor-
rectly on a multiprocessor machine and PLSC is not violated.

16. Most systems prohibit thin-air reads. This means that some data and control dependence relations
need to be respected by the memory model.

17. To implement coherence we need a cache coherence protocol. If we have a small number of cores,
then we prefer snoopy protocols, where all the cores are connected with a single bus. Otherwise we
prefer the directory protocol, where the directory is a dedicated structure that is reachable via the
NoC.

18. The two most common snoopy cache coherence protocols are the Write-Update and Write-Invalidate
protocols.

(a) In the Write-Update protocol, we broadcast every write to the rest of the sisters caches. Even
though we broadcast writes very quickly and eagerly, this protocol has a large overhead due to
the frequent write messages.

(b) The Write-Invalidate protocol solves this problem by broadcasting messages to the rest of the
sister caches only when there is a write miss.

19. We typically use the MESI protocol to implement the Write-Invalidate protocol. Each cache line
has four states: Modified (M), Exclusive (E), Shared (S), and Invalid (I). In the Shared state,
the cache can only read the block, in the Exclusive state we are sure that no other sister cache has
a copy of the block (read-only access), and in the Modified state the cache is allowed to both read
and write to the block. These protocols have elaborate state transition diagrams that determine
the rules for transitioning between the states. We can additionally add an O (Owner) state that
designates a given cache as the owner of a block – it supplies a copy of the block if there is a remote
request.

20. In the directory protocol, we typically have a few centralised directory structures that maintain
the list of sharers for each cache block. Whenever there is a read miss, a message is sent to the
directory, it adds the new cache to the list of sharers, and asks one of the sharers to send a copy of
the block to the new cache. If there is a write miss, then the directory sends an invalidate message
to all the sharers, and ensures that a copy of the block is sent to the cache that wishes to write to
it.

21. Atomic instructions that are used to implement locks and critical sections, are implemented using
extensions of the coherence protocol. Different atomic instructions are powerful to different degrees;
this is captured by the consensus number.

22. To implement different memory models, we need to explicitly enforce different orderings. This
often requires sending acknowledgements for write completion and ensuring that the ordering of
regular instructions with respect to synchronisation instructions is respected.

23. A data race is defined as a conflicting access of a regular variable by two concurrent requests across
threads. When two requests access the same variable, where at least one of them is a write, they are
said to be conflicting. Two requests are said to be concurrent, when there is no path between them
in the execution witness that contains a synchronisation edge (edge between two synch operations).



523 Smruti R. Sarangi

24. Data-race-freedom implies SC. However, it is possible for an SC execution to have a data race. If
we enclose all accesses to shared variables in critical sections and consequently disallow concurrent
accesses, we can prevent data races. Such programs are said to be properly synchronised.

25. If a program has a data race on a machine that uses a non-SC memory model, then we can construct
an execution of the program that has a data race and is in SC.

26. There are two common approaches for detecting data races: the lock set algorithm, and the al-
gorithm based on vector clocks.

27. Traditional programming that uses critical sections is difficult for most programmers, and many
desire simpler abstractions. Hence the paradigm of transactional memory was developed, where all
that a programmer needs to do is mark a block of code as atomic. The runtime ensures that the
block runs atomically, and it is not possible for any other thread to see a partial state (state in the
middle of an atomic block’s execution). Such atomic blocks are known as transactions, and such a
system is known as a transactional memory system.

28. There are two kinds of transactional memory systems: STMs (in software) and HTMs (in hard-
ware).

(a) Transactions typically have a begin and end operation.

(b) Every transaction has a read set and a write set – the set of variables read and written
respectively. Two transactions Ti and Tj are said to conflict if either Ri ∩ Wj 6= φ, or
Rj ∩Wi 6= φ, or Wi ∩Wj 6= φ.

(c) If a transaction executes correctly without any conflicts (concurrent conflicting accesses), then
it can commit (make its changes visible to the rest of the threads), else it needs to abort (none
of the changes made by it are visible).

(d) We can either detect conflicts eagerly or lazily (when the transaction ends).

(e) Every transaction needs to temporarily buffer its state till it commits. There are two ap-
proaches in this space. Either it can eagerly write to the memory system, and rollback changes
later if there is an abort (using an undo log). Conversely, it can adopt a lazy approach and
buffer its writes in a redo log during its execution. The entries in the redo log can then be
written to the memory system (permanent state), if the transaction commits.

29. STM systems instrument the transaction begin, end, commit, and abort operations to track the
version of each variable, perform book keeping, and in some cases lock a few variables. When
the transaction ends, they check if there have been any conflicting accesses during the lifetime
of the transaction, and if there have been, then one of the conflicting transactions needs to abort.
Otherwise, the changes are made permanent (committed). We discussed two STMs in this chapter:
the TL2 and Bartok STMs.

30. Hardware transactional memory (HTM) systems modify the coherence protocol to track conflicting
accesses to variables within the scope of transactions, and use this information to abort or commit
transactions.

9.8.2 Further Reading

Readers should start this chapter by first learning how to write parallel programs. They can refer to the
book by Quinn [Quinn, 2017]. If they would like to get a better understanding of the material on the theory
of memory models, then it is advisable that they read the first few chapters of the book by Herlihy and
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Shavit [Herlihy and Shavit, 2012]. This will teach them all about sequential and parallel executions, legal
sequences, lock-free algorithms, and consensus numbers.

For cache coherence readers can start with a survey of implementations of cache coherence protocols
by Stenstrom [Stenstrom, 1990] and then proceed to read the book by Sorin [Sorin et al., 2011]. For an
early implementation of the directory protocol in the Stanford Dash multiprocessor, the paper by Lenoski
et al. [Lenoski et al., 1990] is the most definitive reference. Modern implementations are described in the
references [Abts et al., 2003,Vantrease et al., 2011].

For memory consistency models, readers should first read the tutorial by Adve and Gharachorloo [Adve
and Gharachorloo, 1996] followed by the theses of the authors [Adve, 1993, Gharachorloo, 1995]. These
references are at a fairly high level, to get a deeper theoretical understanding, it is necessary to read papers
with more formal methods such as the papers by Alglave [Alglave, 2012], and Wickerson et al. [Wickerson
et al., 2017]. For a micro-architectural perspective, we recommend the papers by Arvind et al. [Arvind and
Maessen, 2006] and Lustig et al. [Lustig et al., 2014]. An important work in this space that generates tests
for different memory models is the work by Mador-Haim et al. [Mador-Haim et al., 2011].

Much of the theory of DRF memory models was developed by Adve in her thesis [Adve, 1993]. Sub-
sequently two papers discussed lockset based data race detection in software [Savage et al., 1997] and hard-
ware [Zhou et al., 2007] respectively. Readers can refer to Prvulovic et al. [Prvulovic, 2006] for a method to
detect races in hardware using simple timestamps.

For transactional memory, the book by Harris, Larus, and Rajwar [Harris et al., 2010] is a comprehensive
reference. For important theoretical results refer to the work by Guerraoui [Guerraoui and Kapalka, 2008,
Guerraoui and Kapa lka, 2010].

Exercises

Ex. 1 — Write a shared memory program to perform merge sort in parallel.

Ex. 2 — What are the pros and cons of the shared memory and message passing schemes.

Ex. 3 — Why is it often better to use the Gustafson-Barsis’s law in place of the Amdahl’s law?

Ex. 4 — Why do we write the block back to the lower level on an M → S transition?

Ex. 5 — What is false sharing? How can we avoid it?

Ex. 6 — What are the advantages of the directory protocol over a snoopy protocol.

Ex. 7 — Consider a regular MESI based directory protocol, where if a line is evicted, we do not inform
the directory. What kind of problems will this cause? How do we fix them?

* Ex. 8 — In the MOESI protocol, we may have a situation where a block does not have an owner. This
is because we do not have a mechanism for transferring the ownership. Propose a solution to this problem
that has the notion of ownership transfer.

** Ex. 9 — We need to create a new instruction called MCAS (multi-word CAS). Its pseudocode is as
follows.

boolean MCAS (int* addresses[N], int oldValues[N], int newValues[N]) {

int i, flag = true;

for (i=0; i < N; i++) {

if (* addresses[i] != oldValues[i]) {
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/* old value does not match */

flag = false;

break ;

}

}

/* at least one of the old values did not match */

if (flag == false) return false;

for(i=0; i<N; i++) /* set all the new values */

*addresses[i] = newValues[i];

return true;

}

1.Provide a hardware implementation of MCAS that makes it appear to execute atomically. What changes
do we need to make to the ISA, the pipeline, and the memory system. Note that we have to introduce
a simple RISC instruction called MCAS. How do you give it so many arguments?

2.Given two variables stored in different locations in memory, we need to read an atomic snapshot where
the snapshot contains a pair of values (one for each variable) that were present at the same point of
time. We cannot use normal reads and writes (values might change in the middle). How can we use
MCAS to do this? [Hint: Use timestamps]

3.Use MCAS to implement lock and unlock functions. Show the code.

* Ex. 10 — Assume a cache coherent multiprocessor system. The system issues a lot of I/O requests.
Most of the I/O requests perform DMA (Direct Memory Access) and directly write to main memory. It is
possible that the I/O requests might overwrite some data that is already present in the caches. In this case,
we need to extend the cache coherence protocol that also takes I/O accesses into account. Propose one such
protocol.

Ex. 11 — Does PLSC guarantee SC? Does SC guarantee PLSC?

* Ex. 12 — How does the method of execution witnesses provide an illusion of sequential execution?

* Ex. 13 — You are given a machine with many cores. You don’t know anything about the memory model
that it follows. You only know that the rfe order is global. You are allowed to write parallel programs, give
them as input to the machine, and note the outcomes. If you run the program for let’s say a million times,
it is guaranteed that you will see all the possible outcomes that the memory model allows.
Write four programs to find if each of these four orders hold: W → R, W →W , R→W , R→ R (R means
read, W means write). Prove that your approach will work using the method of execution witnesses. Try to
minimise the number of instructions.

** Ex. 14 — Consider the following relations between two loads, L and L′, in a multiprocessor system.

loc(L) = loc(L′) (same location)

∧ (A,L) ∈ ghb
∧ (A,L′) ∈ ghb
∧ (source(L), B) ∈ ghb
∧ (source(L′), B) ∈ ghb

loc(L) refers to the memory address of L. Consider A and B to be two other memory accesses. ghb is the
global happens before order. (X,Y ) ∈ ghb means that X needs to happen before Y . source(L) refers to the

store that produces the value for load L (source(L)
rf−→ L).



Smruti R. Sarangi 526

Does (A,B) ∈ ghb hold for all standard memory models, or only for some?

** Ex. 15 — What changes should be made to the pipeline and the memory system to ensure that thin
air reads do not happen with value prediction?

** Ex. 16 — Consider the following code for the Peterson lock with two threads. The threads are numbered
0 and 1 respectively. For a thread, we assume that the function getT id() returns the id of the thread. It can
either be 0 or 1. If (getT id() = t), then t is the id of the current thread, and (1 − t) is the id of the other
thread. turn and interested are global variables. Rest of the variables are local.

void lock(){

int tid = getTid ();

int other = 1 - tid;

interested[tid] = true;

turn = tid;

while ( (interested[other] == true) && (turn == tid))

{ /* keep looping */ }

/* lock acquired */

}

void unlock (){

int tid = getTid ();

interested[tid] = false;

}

1.Prove that this algorithm is correct in a sequentially consistent system.

2.Will this algorithm work in a system with weak consistency? Explain your answer.

3.Consider the TSO memory model that Intel uses. It has atomic writes, and the only ordering that
is relaxed is the Write → Read ordering. Where do we need to add fence instructions? Explain the
correctness of the code with fences.

For all the three problems preferably use execution witnesses.

** Ex. 17 — In any execution witness with a cycle, and different addresses, is it possible to have a single
po edge? Justify your answer.

** Ex. 18 — Is it true that a memory model = atomicity + ordering? Prove your answer.

Ex. 19 — Consider the RCpc memory model. RC stands for release consistency. However, the only extra
feature in this case is that the synchronisation operations follow the pc (processor consistency) memory
model instead of sequential consistency. Prove that for properly synchronised programs, RCpc leads to PC
executions.

Ex. 20 — How do lazy and eager conflict detection mechanisms differ from each other? What is the effect
of these schemes on the overall system performance?

Ex. 21 — Prove that the TL2 system algorithm is correct.

Ex. 22 — Can transactional memory systems suffer from livelocks? If yes, how do you prevent them.

* Ex. 23 — Define opacity. How do we ensure opacity in STM systems? Does hardware transactional
memory guarantee opacity?



527 Smruti R. Sarangi

Ex. 24 — When we want to commit a transaction in an STM, we lock all the locations that were written.
Can this lead to deadlocks? If yes, how will you avoid deadlocks?

Design Problems

Ex. 25 — Understand the working of cache coherence protocols in the Tejas architectural Simulator.

Ex. 26 — Design a circuit to implement the directory protocol in Verilog or VHDL.

Ex. 27 — Understand the memory models of different programming languages such as C++ 17 and JAVA.

Ex. 28 — Download a popular STM library. Use it to write parallel programs.
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