
10
Main Memory

Till now we have been treating the main memory as a static and passive array of bytes. We have been
assuming that once there is a miss in the last level cache (LLC), we send a request to main memory. It takes
100-300 cycles to get the answer back, and thus sending a request to main memory should be avoided at all
costs. Unfortunately, the main memory is just not a block of DRAM. There is much more to designing main
memory these days. In fact, inside the main memory we have a microcosm of DRAM banks, interconnections,
and controllers. There is a small component of the main memory within the CPU chip as well. It is called the
memory controller. The role of the memory controller is to take all the memory requests from the caches,
queue them, schedule them, and send them to the main memory. We shall see in this chapter that the
scheduling algorithm for the memory controller is very crucial. It is a very important determinant of the
overall performance.

There are several challenges in managing large memories. As of 2020, it is not uncommon to find 1
TB memories in server class systems. Managing such a large memory in terms of scheduling accesses, and
distributing the bandwidth among different cache banks and I/O devices is in itself a fairly complex problem.
We need to understand that memory capacity has been increasing with Moore’s law (refer to Section 1);
however, DRAM access latency has traditionally reduced very slowly. Hence, there is a need to design
effective strategies to bridge this gap – known as the memory wall.

Moreover, DRAM based memories sadly lose all their data once the system is powered down. The next
time that we turn on the system, all the data needs to be read from the hard disk once again. This causes
an unacceptable delay. Additionally, we need to periodically refresh a DRAM, which means that we need to
periodically read all the blocks, and write them back again. If we do not refresh the values, the capacitors
that hold the values will gradually lose their charge and the stored data will be lost. In modern DRAMs the
refresh operation causes unacceptable delays, and thus there is a need to create memory that is nonvolatile in
nature, which means that it maintains its state even after the system is powered off. Such modern memories
are already being used in USB drives and many chips containing them are being produced commercially. In
the future, we expect them to become commonplace in computing systems starting from small embedded
systems to large servers. The latter half of the chapter will focus on such nonvolatile memories.

529

Smruti R. Sarangi 530

10.1 Dynamic RAMs: Devices, Circuits, and Systems

10.1.1 DRAM Cell

Recall our discussion in Section 7.3.1 where we created a 6-transistor SRAM cell; let us do something similar
here. The most significant drawback of an SRAM cell is that each cell requires 6 transistors and thus the
storage capacity is limited. If we could design a memory with a much smaller cell, then we could store more
bits per unit area. Keeping this in mind, let us design a very simple memory structure, which is known
as a dynamic memory cell or DRAM cell. It is shown in Figure 10.1. Note that the subsequent discussion
assumes that the reader is well versed with the material presented in Chapter 7.

Word line (WL)

Bit line (BL)

W1

Figure 10.1: A DRAM cell

The charge is stored across a single capacitor and there is only one access transistor: W1 in Figure 10.1.
This is controlled by the word line. Recall that in the case of an SRAM cell there were two access transistors
that were controlled by the word line. This is because the inverter-pair had two outputs. In this case, the
capacitor has only one input/output terminal. Hence, only one word line transistor and one bit line are
required.

The capacitor is particularly very important in this case because it is the charge storage device. Moreover,
unlike an SRAM cell, a capacitor cannot maintain a steady voltage for a long period of time. Due to some
current leakage between the parallel plates, ultimately all the stored charge will leak out. Even if the leakage
current is very small, these capacitors will ultimately lose their stored charge. It is thus necessary to reduce
the leakage current to as small a value as possible. The standard technique to handle this situation is that
we periodically read the value of a DRAM cell and write it back. This ensures that even if the potential has
dropped due to a leakage of charge, the voltage across the capacitor can be restored to the ideal level. This
process is known as a refresh, and DRAM cells require periodic refresh operations to ensure that we do not
lose any data.

Definition 89
The process of periodically reading the values of blocks in DRAM memory and writing them back is
known as a refresh operation. The capacitors in the DRAM cells gradually lose their stored charge;
hence, it is necessary to periodically read their state and then restore the voltage across the capacitors
to the ideal values.

Keeping these considerations in mind, let us quickly look at the technology used to build capacitors for
DRAM cells.

531 Smruti R. Sarangi

10.1.2 Capacitors used in DRAM Cells

To create a capacitor in silicon, we need to create two parallel plates and put a dielectric material in between.
Given that we wish to maximise the density of DRAM devices, we need to make the capacitor as small as
possible. Note that if the capacitor is very small, there is a possibility that its charge might leak out very
quickly and we will need more refresh operations. Hence, there is a need to strike an optimal trade-off
between storage density and the maximum time between two refresh operations issued to the same cell.
There are two main methods that are used to create capacitors for DRAM processes. The first type of
capacitor is called a trench capacitor that is embedded in the silicon substrate. The second type is called a
stacked capacitor that is above the silicon surface.

Trench Capacitors

Buried n+
region

Polysilicon
electrode

Dielectric

Access transistor

n+ region

Word line
Bit
line

Figure 10.2: A trench capacitor along with the word line transistor.

The structure of a trench capacitor is shown in Figure 10.2. It is literally shaped as a trench or rather
a deep hole in silicon. The hole is filled with a conducting material such as polysilicon. This acts like one
of the plates of the capacitor, which is connected to a terminal of the access transistor of the DRAM. Often
one of its electrodes is embedded within one of the terminals of the access transistor such that we do not
need additional metallic connections between them. The next inner layer is made of an insulating dielectric
such as Al2O3, HfO2, or Ta2O5. This dielectric layer is typically very thin. For a 40 nm wide trench, it is
typically in the range of 15-20 nm [Gutsche et al., 2005]. The only way to scale such designs is to have very
deep trenches and have thin layers of dielectrics such that we can pack more capacitors per unit area. For
a feature size of 40 nm, the trenches can be several microns deep (typically 4 to 6 microns), which means
that the trench is 100 times as deep as it is wide! This allows us to increase its capacitance. The advantage
of this design is that we can pack many such deep trenches in silicon without increasing the cross-sectional
area. The dielectric is enclosed by a buried plate (or a region) made of n-type doped silicon. This acts as
the other electrode, which is connected to the ground terminal.

Such trench capacitors are embedded in silicon and are ideal for embedded DRAMs in 3D chips. We can
have transistor layers or metal layers over the memory layer. These layers can have their own connections.

Smruti R. Sarangi 532

The memory layer will not introduce any congestion or wire routing problems because it is below them.

Stacked Capacitors

Even though trench capacitors have many advantages, they have a few disadvantages as well. The major
disadvantage is that the trench is hard to fabricate. Particularly at the deepest point, it is hard to guarantee
the parameters of the trench. Hence, for many commercial processes, a stacked capacitor is preferred even
though it requires more area and has structures above the silicon layer.

Electrode 1
Metal or
Polysilicon

Electrode 2
Metal or
Polysilicon

Dielectric

Substrate

Figure 10.3: A stacked capacitor. The electrode touching the substrate is connected to one of the terminals
of the word line transistor.

As shown in Figure 10.3, the stacked capacitor does not have deep trenches. It is a 3D structure, where
the capacitor is fabricated in layers above the access transistor. One of the terminals of the access transistor
is connected to a polysilicon electrode that is vertically stacked above it. The other electrode is also a
polysilicon electrode, which is separated by a dielectric. Note that it is possible to replace polysilicon with
metallic electrodes as well (depends on the process).

A stacked capacitor is still much better than a regular planar capacitor that is made on silicon because
it is a 3D structure. The capacitor can be fabricated above one of the terminals of the access transistor and
thus we can increase density. Modern avatars of stacked capacitors have multiple fins and some designs have
a cylindrical structure. Such designs increase the density such that we can store more bits per unit area in
a DRAM.

10.1.3 Array of DRAM Cells

Let us now create an array of DRAM cells on the same lines as an array of SRAM cells. Note that in this
section we shall refrain from describing the basic underlying concepts of the design of an array of memory
cells. The reader is referred to Section 7.3.1.

Recall that in an array of cells, the address is first sent to a row decoder, which enables one of the word
lines in the 2D array of DRAM cells. This enables all the cells in a given row, which is also called a page1.
They can then be accessed by the bit lines. Note that in this simplistic design we have a single bit line per
memory cell. Each bit line is connected to a sense amplifier that senses the voltage and converts it to a
logical 0 or 1. Unlike SRAM arrays, in a DRAM array we can only read a single column in one cycle. We
have a column multiplexer/demultiplexer (mux/demux) that chooses the right column to read or write. It is

1This is different from a page in virtual memory

533 Smruti R. Sarangi

controlled by a column decoder that takes as input a set of bits from the address. The column mux/demux
is connected to read and write buffers that buffer the values that are read or need to be written. The value
that is read then needs to be sent on the CPU-memory bus.

An important point to note here is that in DRAM arrays the sense amplifiers appear between the bit lines
and the column mux/demux. This was not the case in SRAM arrays. In SRAM arrays the bit lines were
directly connected to the muxes/demuxes, and this structure was then connected to the sense amplifiers.
The reasons for this will gradually become clear over the next few sections.

Important Point 17
A row in a DRAM array is also called a page.

Read Access

Figure 10.4 shows an array of DRAM cells. Let us consider a read access. The address first arrives at the
row decoder. Recall that a decoder takes n inputs and produces 2n outputs. The n inputs encode, in binary,
the number of the output that needs to be set to a logical 1. For example, if n = 3, and the input bits are
equal to 101, then it means that the 5th output (word line) is set to 1 (count starts from 0). This enables
the corresponding word line, which enables all the cells in its row. The cells start setting the values of their
attached bit lines. In a DRAM array we typically read an entire row at a time and buffer its contents.

Here also we can use the precharging trick, where we first set all the bit lines to a fixed voltage, which is
typically half of the supply voltage (Vdd/2). Subsequently, we monitor the direction in which the voltage on
the bit line is gravitating towards. If it is gravitating towards a logical 0, then we declare the bit to be 0,
much before the voltage actually reaches 0 Volts, and vice versa for the case when the cell stores a logical 1.
The advantage of precharging (see Section 7.3.1) is that we do not have to wait for the voltage to swing to
either 0 or Vdd). We simply need to ensure that the voltage difference between the current voltage and the
precharged voltage is more than the noise margin. This helps us significantly speed up the operation of a
memory array. The reason that we can precharge the bit lines quickly is because we can use strong precharge
drivers to pump in current into the bit lines; however, we do not have this luxury when a bit line’s voltage
is set by a feeble DRAM cell.

Now, consider the case where the capacitor in the DRAM cell stores a logical 1. When we enable the
access transistor via the word line, the capacitor starts to charge the bit line. This means that stored charge
from the capacitor flows towards the bit line and increases its voltage. This further means that the voltage
across the capacitor in the DRAM decreases. The next time that we read this cell, the voltage across it
might not be enough to infer a logical 1. This means that the DRAM cell will lose its value, which is not
desirable. This phenomenon is known as a destructive read. The only way to avoid this situation is to ensure
that we rewrite the value after it is read. This is known as restoring the value that has been read. This is
essential in a DRAM and adds to the latency of a read operation.

Definition 90 Once a DRAM cell is read, its capacitor loses its charge, and the cell cannot be read
again. This phenomenon is known as a destructive read. It is thus necessary to restore the potential
across the capacitor if it stored a logical 1.

The circuit to detect these small voltage swings is called a sense amplifier (similar to sense amplifiers in
SRAM arrays). Recall that a sense amplifier is a differential voltage amplifier that converts a small voltage
swing to a logic level: 0 or 1. Once we have read the data and converted it into appropriate logic levels, it

Smruti R. Sarangi 534

R
o
w

 d
e
co

d
e
r

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

Row
address

BL
WL

WL

WL

Write
driver

Data in

Column
address

Sense
amplifier

Sense
amplifier

Sense
amplifier

Sense
amplifier

Column mux/demux

Read
buffer

C
o
lu

m
n
 d

e
co

d
e
r

Data out

Figure 10.4: Array of DRAM cells

is buffered in the sense amplifiers. DRAM sense amplifiers are special in the sense that they function both
as differential amplifiers as well as buffers. We can then choose the subset of the DRAM row that we are
interested in. In a quintessential DRAM array, we typically choose a single bit to read or write to. This bit
is selected using a column mux/demux that internally uses a column decoder. This data is sent to powerful
driver circuits that send the data over the bus to the CPU.

Sense amplifiers for SRAM arrays have been discussed extensively in Section 7.3.1; however, DRAM
sense amplifiers are slightly different. The specific differences are as follows. In an SRAM array, the sense
amplifiers are placed after the column multiplexers. We first choose the appropriate set of columns, and
then we sense their logic levels. However, in a DRAM array, sense amplifiers are placed before the column
multiplexers. We first convert all the voltage values on the bit lines to logical 0s or 1s, and then we choose a
subset of these values. The reasons for this are as follows. In a DRAM array, along with sensing the values,
the sense amplifiers are also used to buffer the data, and even restore the values. Since we need to buffer

535 Smruti R. Sarangi

the entire row of data, we need a sense amplifier for each column. As compared to an SRAM array, this
design choice does increase the number of sense amplifiers that are required; however, this is a necessity in
a DRAM array because a lot of DRAM access schemes try to serve data directly from the sense amplifiers
as opposed to accessing the DRAM row once again. The sense amplifiers thus act as a small cache that is
much faster to access as compared to making a fresh DRAM access. With this vision in mind, let us discuss
sense amplifiers next.

DRAM Sense Amplifiers

A sense amplifier has two inputs. It compares the voltage difference between them and senses the direction
in which the voltage difference is progressing. If the voltage difference exceeds a positive threshold, then we
can infer a logical 1, and likewise if it decreases beyond a negative threshold, then we infer a logical 0. In
the case of SRAM arrays, the bit lines BL and BL were the inputs to a sense amplifier. However, in this
case, we have a single bit line and thus we have a single input. It is thus necessary to add an additional
input. The naive solution is to use a line with a fixed voltage, which is the base voltage that all the bit lines
are precharged to. However, this is expensive in terms of area and wiring overhead. Since we never activate
two rows in the same array at once, we can divide each bit line into multiple subsections. We can then use
these bit line segments as inputs to the sense amplifiers. Let us elaborate by discussing the two broad design
paradigms in this space.

Open Bit Line Array Architecture

In this design, we split the entire array by dividing each bit line into multiple segments as shown in
Figure 10.5. We then connect the bit lines for segments i and i+ 1 to the same sense amplifier. Recall that
since we never activate two rows of the array at the same time, at most one sense amplifier will be activated
at any given point of time. This design has two advantages: each sense amplifier is connected to two inputs
without adding any additional wires, and the number of transistors connected to each bit line can be kept
within limits. The latter effect is important because it limits the capacitive loading and consequent latency
of each bit line.

In the DRAM world, we typically describe the area of a memory cell as a function of the feature size,
F , which is the minimum size of a feature that can be reliably fabricated in a given process. The area of
each cell is at least 4F 2. This is because the DRAM cell’s minimum dimensions are F × F . In addition, it
needs to be separated by a distance of at least F from the nearest cell. This means that the area that needs
to be apportioned for each cell is 2F × 2F . However, we need to additionally account for the area taken by
bit lines, circuitry, and also the fact that the capacitor and the transistor cannot be completely vertically
stacked. Taking all of these overheads into account, the area of each cell in the open bit line architecture is
around 6F 2.

The main disadvantage of this design is that it has reduced noise tolerance. Bit lines are large structures
that can pick up a lot of inductive noise. Since the bit lines that are inputs to a sense amplifier are not
co-located, they can pick up different degrees of noise. Thus, this design is susceptible to more noise-induced
errors.

Folded Bit Line Array Architecture
Such noise-induced errors are mitigated by folded bit line architectures that try to co-locate the bit lines

that are inputs to the sense amplifiers.

Figure 10.6 shows an architecture that twists two bit lines to cover a column of DRAM cells. Counting
from the top, cells 1, 2, 5, and 6 are connected to the first bit line, whereas cells 3 and 4 are connected to
the second bit line. The bit lines change their direction, and intersect in the figure after every two DRAM
cells in a column. Note that they do not actually intersect – they just seem to do so when viewed from the
top. This ensures that for every group of two cells, one bit line is connected and the other is disconnected.
The disconnected bit line always runs parallel to the connected bit line.

The advantage of this design is that both the bit lines are in close proximity to each other. As a result,

Smruti R. Sarangi 536

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

Sense Amplifier
Word
lines

Bit lines

Figure 10.5: Open bit line array architecture.

they accumulate roughly the same amount of noise. Since the sense amplifier senses the difference in voltage
between the bit lines, any noise that is common will get rejected. As a result, the noise tolerance of this
design is much more than the architecture with open bit lines.

However, there are several shortcomings of this design as well. The first is that we need additional area
for the second bit line that is disconnected. This increases the cell area even though the design is not planar.
The area increases to 8F 2 (from 6F 2 in the the open bit line array architecture). Secondly, the number of
cells connected to each bit line is roughly equal to half the number of rows. This can increase the capacitance
of a bit line significantly and slow it down.

Many designs for bit line array architectures have been proposed to extend these schemes and use different
combinations of splitting the bit lines and folding.

Design of a Sense Amplifier

Sensing the voltage difference is a two-stage process. We first equalise the voltages of the two bit lines.
This is done using the circuit shown in Figure 10.7. This is a very simple circuit that is connected to the
two bit lines. When the EQ line is set to a logical 1, transistor T1 gets enabled. After this the potential
difference between the two bit lines (1 and 2) becomes roughly zero. Next, we need to ensure that it is equal
to the precharged voltage: Vdd/2. Look at transistors T2 and T3. After EQ is set to Vdd, transistors T2 and
T3 will turn on and the bit lines will get set to the voltage Vdd/2. Once this is done, both the bit lines are
said to be precharged.

Then in the second stage, we enable a row of the DRAM array and allow the bit lines to gradually get
charged or discharged. Next, we need to sense the difference in the voltages between Bit line 1 and Bit line
2 (see Figure 10.8). Note that we are deliberately avoiding the notation BL and BL over here because these

537 Smruti R. Sarangi

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

Figure 10.6: Folded bit line array architecture

are two separate bit lines that are connected to different sets of DRAM cells. Assume that the voltage on
Bit line 1 (V1) is slightly higher than the voltage on Bit line 2 (V2), where V2 = Vdd/2. At this point of time
let us set the voltage on SAN to 0 V and the voltage on SAP to Vdd (assume logical 1 is Vdd volts). This
enables the sensing operation.

The sequence of actions is as follows. Gradually, T2 starts becoming more conducting. As a result, the
voltage on Bit line 2 dips because SAN is set to 0 V. Because of this, the voltage at the gate of T3 also starts
dipping and this makes T3 more conductive. Since SAP is set to Vdd, the voltage on Bit line 1 starts to
increase. Very quickly the voltage on Bit line 1 reaches Vdd and the voltage on Bit line 2 reaches 0 V. At this
point, the voltages on the bit lines have reached the maximum and minimum levels respectively. We have
a reverse case when the voltage on Bit line 1 stays at Vdd/2 and the voltage on Bit line 2 increases slightly.
We leave it as an exercise for the reader to reason about what happens when the voltage on any bit line
decreases slightly from the reference value (Vdd/2) because the value stored in the DRAM cell is a logical 0.
In all cases the bit lines swing to the maximum and minimum voltage values. Also note that they always

Smruti R. Sarangi 538

Bit line 1 Bit line 2

T1

T2 T3

EQ

Vdd

2

Figure 10.7: A voltage equaliser

SAN

SAP

Bit line 1 Bit line 2

T1 T2

T3 T4

Figure 10.8: A DRAM sense amplifier

have complementary voltages. This is a stable state for the sense amplifier. The bit lines will continue to
maintain their state. This design of a sense amplifier has thus helped us to store a bit as well. Finally, note
that once the respective bit line gets charged or discharged, the DRAM cell can also “restore” its value. For
example, if the cell stored a logical 1, the charged bit line can restore the charge of the capacitor.

We thus see that the sense amplifier serves several purposes at the same time. First, it senses small
changes in the voltages of the bit lines and amplifies the difference such that the bit lines quickly get fully
charged or discharged. Once, the voltages of the bit lines have been set, they will remain that way and
keep restoring the value of the DRAM cell till we disable the word line. For accessing a new row, we need
to activate the equaliser circuit once again and set the voltages of both the bit lines back to the precharge
voltage: Vdd/2. To disable the sense amplifier at this point, we can set the voltages of SAN and SAP to
Vdd/2; this will ensure that all the four transistors are in the cut-off state.

The sense amplifier and the precharge circuit are connected to powerful write drivers via access transistors

539 Smruti R. Sarangi

as shown in Figure 10.9. The access transistors are controlled by a chip select line (CS), which effectively
enables the DRAM chip. To summarise, to read a row we perform the following actions in sequence.

1. Precharge the bit lines. Set the voltages on the SAN and SAP lines to Vdd/2.

2. Enable the corresponding word line.

3. Set the values of the SAN and SAP lines.

4. Enable the “Chip select” and “Read enable” signals.

5. Send the column address to the column decoder within the column mux/demux unit. Read the data
out.

Write Access

The process of writing in DRAMs is different as compared to SRAMs. We can divide the overall process
into two broad stages. The first stage is the same as most of the read process where we precharge the bit
lines, send the address to the row address decoder, enable the row, sense and restore all the values.

The actual write part is the second stage of this process. After all the cells in a row have been sensed and
restored, the column address is sent to the column decoder. Then we enable the two write drivers (refer to
Figure 10.9). It is assumed that the write drivers are strong enough to override the sense amplifiers. They
set the state of the corresponding bit lines, the DRAM cell, and the corresponding sense amplifier. This
finishes the write. The additional time required to do this is known as the write recovery time.

Refresh Operation

It is necessary to refresh the values of DRAM cells periodically (once every 32 to 64 ms), otherwise any
charge stored across the capacitor will gradually leak out and the cell will lose its value. Thankfully, the
refresh operation by itself is very simple – it is just the regular sense and restore operation. Recall that the
sense and restore operations read the values of all the cells in a row, then use the sense amplifiers to set
the values of the bit lines to either the maximum or minimum voltage. This process in effect refreshes the
value that is stored in each cell by restoring the charge on the capacitor to the ideal value. Just in case
some charge has leaked out, the corresponding capacitor gets fully charged after this operation. Hence, a
refresh can be thought of as a dummy read operation. Note that we do not need to use the column decoder
or enable the chip select line.

There are two types of refresh operations: burst and distributed. In the burst operation, we freeze the
entire DRAM array and refresh all the rows one after the other. During this time, it is not possible for
the DRAM array to process any requests. This is inefficient, hence, advanced processors use the distributed
refresh mode. In this case, refresh accesses are interspersed with regular memory accesses. This is done to
hide the overhead of refresh operations as much as possible. Moreover, it is possible to further optimise this
process by not refreshing the rows that do not contain any valid data. Additionally, in modern DRAMs it
is possible to slightly overshoot the maximum refresh interval without causing any correctness issues. This
allows us to schedule critically important read requests.

10.1.4 A Computer System with DRAM Arrays

Since DRAM arrays have a very high storage density, they are typically used as off-chip memories. They can
be used to store a large amount of data off chip and are thus ideally suited for a last level memory system.
They are not particularly suitable for on-chip caches because SRAM arrays tend to be faster. There are
several reasons for this.

Smruti R. Sarangi 540

SAN

SAP

Bit line 1 Bit line 2

EQ

Vdd

2

DRAM cells

Precharge
circuit

Sense
amplifier

Chip
select (CS)

Write
driver

Write
driver

Column mux/demux

Read
enable

Write
enable

Figure 10.9: Layout of a part of a DRAM array with the precharge circuit, sense amplifier, and write drivers

1. A DRAM cell is very feeble. It has a single capacitor that needs to charge a very long bit line. In
comparison, in an SRAM, the bit line is connected directly to either the ground or supply terminals
via the transistors in the SRAM cell. As a result, it is possible to supply much more current and thus
charge the bit lines more quickly.

2. In a DRAM, a read access is destructive. This means that we need to write the original value back to
the cell that we read from. This requires additional time because in a DRAM array a read is actually
a read and a write. This overhead is absent in an SRAM.

3. We need to spend some time doing a refresh on a compulsory basis, otherwise we run the risk of losing
data.

541 Smruti R. Sarangi

Given these factors, it is almost always advisable to have a large off-chip DRAM memory, which is
typically at the lowest level in the memory hierarchy. Recently, embedded DRAM (eDRAM) devices have
arrived where we can integrate DRAM memory into the same die as the processor or have a separate module
within the same package. The main advantage of eDRAM devices is that they allow shorter and higher
bandwidth connections between the LLC (last level cache) and the eDRAM memory.

CPU

i-cache d-cache

L2 cache bank

Memory
controller

Main memory

Figure 10.10: Processor + memory controller + DRAM

Generic Architecture

In this section, let us discuss a generic architecture for all kinds of DRAM devices that are used with modern
processors (refer to Figure 10.10). The processor is connected to a memory hierarchy that consists of layers
of caches of increasing sizes. The i-cache and the d-cache occupy the highest levels, then we have the L2
cache, and some processors might optionally have an L3 or L4 cache. The last layer of caches in a processor
is known as the last level cache – abbreviated as LLC. The layer below the LLC is the off-chip memory,
which is made of DRAM arrays. In a chip we have multiple memory controllers, which act as mediators
between the LLC and the DRAM memory. If we have a miss in the LLC, then a request is sent to a memory
controller, whose job is to interact with the DRAM arrays and complete the memory access.

Let us look at this in some more detail. A processor can have many memory controllers. The physical
address space needs to be partitioned across these memory controllers. For example, we can use the MSB bits
of the memory address. Consider a system with two memory controllers. If the MSB is 0, we access memory
controller 0, else if it is 1, we access memory controller 1. Each memory controller is connected to a set of
DRAM arrays via a set of copper wires. These sets of wires are known as channels. A channel is typically
32-128 bits wide. Channel widths are getting shorter with time mainly because if we are sending data at a
high frequency, it is hard to keep the data across the different copper wires in the channel synchronised. The

Smruti R. Sarangi 542

channels are connected to a set of printed circuit boards (PCBs) that contain DRAM chips. These PCBs are
known as DIMMs (dual inline memory modules). The picture of a DIMM is one of the most recognisable
images for DRAMs. It is shown in Figure 10.11. Note that both sides of a DIMM have DRAM chips.
The DIMMs are inserted into the motherboard, which has dedicated slots for them. Refer to Figure 10.12
that shows a motherboard having multiple DIMMs installed in its slots. Installing a DIMM is as simple as
aligning the DIMM with the slot and then pressing it such that it fits snugly in the slot. Many desktops and
servers are often sold with a few empty DIMM slots such that if later on there is a need, the user can buy
new DIMMs and install them. This will increase the memory capacity. If some DIMMs develop faults, they
can be replaced as well.

Figure 10.11: Photograph of a DIMM (Photo by Franck V. on Unsplash)

Each DIMM contains a set of DRAM chips. We typically divide a DIMM into multiple ranks (typically 1
to 4), where each rank contains a set of DRAM chips that execute in lockstep. Moreover, it is assumed that
the chips in a rank are equidistant from the memory controller: it takes the same amount of time for signals
to reach all the chips from the memory controller. Typically, the memory controller issues a command to a
given rank. All the DRAM chips that are a part of the rank work in lock-step to execute the command. The
main advantage of grouping DRAM chips together is to provide a high bandwidth memory. For example,
if we need to supply 64 bits every cycle, then it makes sense to create a rank of 16 chips, where each chip
supplies 4 bits. This keeps each individual DRAM device small and power efficient.

Subsequently, each rank has multiple banks (grouped into bank groups in the DDR4 protocol). A bank
is a set of arrays within a DRAM chip that operates independently with respect to other banks on the same
chip. A bank typically contains multiple arrays that cannot be independently addressed.

543 Smruti R. Sarangi

Figure 10.12: Photograph of a motherboard with DIMM slots (Photo by Stef Westheim on Unsplash)

The arrays within each bank work in synchrony. For example, if we have 4 arrays in a bank, we access
the same row and column in each array while performing a bank access. We read 4 bits in parallel. This
is conceptually the same as assuming that we have one large array where each cell or each column is 4 bits
wide. Using more arrays increases the bandwidth of a DRAM device because we can read more bits in
parallel. In a DRAM chip all the banks have the same number of arrays.

This is typically specified as follows. When we say that we have an x4 DRAM, this means that we have
4 arrays in a bank, and we read and write 4 bits at a time. An xN DRAM has exactly N arrays in a bank.
As of 2020, x16 to x128 DRAMs are there in the market. x64 and x128 configurations are typically only
present in 3D DRAMs (we shall study them later in Section10.5.6).

Each array is a matrix of DRAM cells. We first access the row and then the column to read or write a
single bit. The entire hierarchy of structures in a DRAM is as follows: channel → DIMM → rank → chip or
device → bank → array → row → column. This is shown in Figure 10.13.

Topology

There are several methods to connect a memory controller to memory modules (DIMMs). The simplest
possible arrangement is that we connect one memory controller to one DIMM using a dedicated channel.
Typically on a channel, we send four kinds of information: address, data, command, and chip-select. The
first three are self explanatory, the chip select signal is used to enable a specific rank of devices. If we have
4 ranks in a DIMM, then we need a 2-bit chip select signal to select the specific rank. The address and
command buses are unidirectional, and so is the chip select bus. However, the data bus is bidirectional
because data can flow either from the processor to the memory or in the reverse direction. We can either
use separate address and command buses, or have a single bus to carry the information for both memory
addresses and commands. It is possible to fuse them because we typically send the address and commands
at different points of time.

It is additionally possible to connect multiple DIMMs per channel. There are several advantages of doing
this.

Smruti R. Sarangi 544

Channel

Rank

Bank

Rank

Bank Bank

DIMM

BankChip

Row

Column

CPU MC

Memory
controller

Figure 10.13: Hierarchy of elements in DRAM memory

1. To increase the bandwidth, we can split the channel across the DIMMs. For example, if we have a
128-bit wide data bus, we can split it into two equal halves across two DIMMs that read or write 64
bits at a time. Both the DRAMs can operate in lockstep. This will effectively double the bandwidth of
the channel assuming the maximum amount of data that we can transfer from each DIMM per cycle
is 64 bits.

2. We can also connect different DIMMs that are not similar. For example, if our data bus is 64 bits wide,
we can use one DIMM that has a 64-bit interface and another DIMM that has a 32-bit interface. Such
topologies can be used to support legacy systems that use older technologies. In this case, we cannot
use both the DIMMs simultaneously. We need to interleave their accesses and the achieved bandwidth
is the maximum of the bandwidths of the individual DIMMs.

3. If the channel is not being kept busy all the time because the DIMMs take time to perform their accesses,
we can use this time to access other DIMMs connected to the same channel. The total bandwidth in
this case depends on the degree to which we can interleave the accesses. It can theoretically scale with
the number of DIMMs per channel till we are limited by the channel capacity.

Now, let us see how we connect the address, data, command, and chip select buses to the DRAM chips
within each DIMM. One of the most common topologies is shown in Figure 10.14. In this topology, the DRAM
chips are arranged as a 2D matrix. DRAM chips in the same rank are the columns, and corresponding chips
across ranks form the rows. The address/command bus is routed to every DRAM chip, and the chip select
lines are connected to each rank separately. The latter are used to either enable or disable the entire rank
in one go. The data bus is split into four lanes (one-fourth the width of the data bus). Each of these lanes
is connected to a row of banks across the ranks. Only one of the ranks can use the lanes of the data bus at
a given point in time, and thus this ensures that we can read 32 to 128 bits in parallel from all the banks in
the rank.

Important Point 18
There is a very important point to note here. Note that the address/command bus is connected to all

545 Smruti R. Sarangi

Memory
controller

Ranks

Bank

Chip select lines

Address/
command
bus

Data bus

Figure 10.14: Organisation of memory banks

the banks across the ranks. In this case, it is connected to 16 banks. Whereas, each data bus lane is
connected to only 4 banks. This means that the capacitive loading on the address/command bus is 4
times more than that of a data bus lane. As a result, its RC delay is more, and thus it is a slower bus.
In comparison, the data bus is faster, because each of its lanes is connected to a fewer number of devices.
It can thus sustain a higher data transfer frequency. This is a crucial insight, which we shall use while
designing DDR (double data rate) memory later on.

10.2 Design Space of DRAMs

10.2.1 DRAM Access Protocols

DRAM memories are passive memories. There are no computing elements embedded inside the memory.
As a result, the entire job of scheduling all the accesses, ensuring that there are no conflicts, and providing
fairness is left to the memory controller. The memory controller needs to be aware of the timing details of
the memory devices and then it needs to schedule all the requests that it gets from the cores and the cache
banks. Previously, the memory controller used to reside in a separate chip on the motherboard; however,
nowadays the memory controller is placed on the same die as the CPUs and caches. It needs to be aware
of the details of the devices that are attached to the memory channels, for example, their timing and the

Smruti R. Sarangi 546

commands that they support. Let us look at DRAM devices now in some more details.
Over the last two decades, DRAM technology has been improving at a significant pace. Initially, they

were asynchronous devices. The advantage was that they could be connected with any memory controller
because there were no strict constraints on the timing. However, this also introduced additional complexities
in orchestrating the data transfer and it also made buffering commands difficult. Hence, gradually DRAM
technology has moved towards synchronous devices where the DRAM devices have their own clocks, and
there is some degree of synchrony between the DRAM clock and the clock of the core. This has paved the
way for modern synchronous DRAM access protocols that are fast and reliable. In the next few sections, let
us look at the evolution of DRAM access protocols over the last two decades.

Asynchronous Transfer

The first memory transfer protocols were asynchronous protocols, where the CPU and the memory did not
share a clock. In an asynchronous mechanism there is no common time base, hence, the sender needs to let
the receiver know when it can read the data.

Let us first explain a simple scheme. Let us have two buses to transfer data: one each way (simplex
mode). The two buses carry two signals: a strobe signal (DQS) and the data signal (DQ). The reason we
need a strobe signal is as follows. Whenever the sender sends data, the receiver needs to read the data and
store it in a latch. Such latches are typically edge triggered (read data in at a clock transition). Since the
sender and receiver do not share a clock, synchronisation is an issue. There needs to be a mechanism for
the sender to let the receiver know when it can read the data. This is where the strobe signal is used. The
receiver monitors the strobe, and whenever there is a transition in its voltage level, it reads the data bus
(DQ signal).

If we assume that a transition in the strobe signal happens at t = 0, then no transition is allowed in
the data bus in the time interval [−tsetup,+thold]. The data signal (DQ) needs to be steady in this time
window, otherwise we shall have a phenomenon called metastability that leads to unpredictable behaviour.
tsetup and thold represent the setup time and hold time respectively. Refer to Figure 10.15 for the timing
diagram. It is not necessary for strobe signals to always convey information via transitions, many times the
level is also used to convey some information such as whether a given unit is enabled or disabled. Note that
we can latch data at either the falling edge of the clock (as shown in Figure 10.15(b)) or the rising edge of
the clock.

Latch

DQS

DQ

tsetup thold

(a) (b)

Figure 10.15: Storing a value in a latch with a strobe input

Let us now slightly complicate the scheme and consider two half-duplex buses (only one side can send at
a time) between the memory controller (MC) and the DRAM. One of these buses is an address bus to carry
row or column addresses and the other is a data bus, also called DQ. In an asynchronous memory, we have
two strobe signals: RAS and CAS. RAS stands for row address strobe and CAS stands for column address
strobe. These are active low signals and are said to be asserted when the voltage is a logical 0. To indicate
this fact, we use the symbols RAS and CAS in our diagrams. They mean that the signals are said to be

547 Smruti R. Sarangi

asserted when the voltage is equal to a logical 0. This can be slightly confusing. Readers should make a note
of this. They need to understand that the signals that are being transmitted are RAS and CAS, which are
said to be asserted or active when they are equal to a logical 0.

The first action that the memory controller needs to perform is that it needs to activate the DRAM row.
This is done by sending the row address on the address bus, and then after some time asserting the RAS
signal (setting it to 0). The reason that we do this is as follows. We want the data on the address bus to be
stable before the device starts reading it. The device will start reading it when it sees the 1→ 0 transition
of the RAS signal (refer to Figure 10.16). Once the DRAM device sees the row address and the RAS signal
set to 0, it activates the row decoder, and then activates the row.

Subsequently, the memory controller sets the CAS signal to 0, and then after some time sends the column
address on the address bus. Along with this, it can send one bit indicating if it wants to read or write. This
activates the column decoder, which then prepares the column for reading or writing.

row

RAS

CAS

col

dataDQ

Address

Figure 10.16: Timing diagram of an asynchronous DRAM

Consider a read access. The DQ bus is set to the value of the column by the DRAM device when the
data is ready to be sent to the memory controller. After that the device sets CAS to 1, which indicates to
the memory controller that it can start reading the DQ bus.

In the case of a write access, after sending the column address, the memory controller sends the data bit,
which is then written to the device. In some protocols, after a write is done, an acknowledgement is sent to
the CPU. The timing of the write is also managed by the strobe signals.

Fast Page Mode (FPM)

The basic asynchronous DRAM protocol is inefficient because we need to send the row and column address
for every data transfer. This can be improved by operating the DRAM devices in fast page mode. In this
mode, an entire row of data (page) is stored in the sense amplifiers, and then read over subsequent cycles. It
is not necessary to send a separate row address for reading a different set of columns. This process is shown
in Figure 10.17. The same holds for writes.

We first send the row address by asserting (setting to 0 in this case) the RAS signal. The DRAM
banks read the entire row (page) and store the contents in the sense amplifiers. Subsequently, we send a
sequence of column addresses to the DRAM banks. Each bank then chooses the right column using the
column multiplexers and sends the data back. Since the entire page is stored in the sense amplifiers, it is not
necessary to send the row address again if we intend to read more data from the same row, which is often
the case because we read an entire 64-byte block at a time. In this case, we just need to send subsequent
column addresses, and the banks can quickly transmit the data. Since this process is asynchronous, we need
a strobe signal. We use the CAS signal to provide the timing for this process.

Smruti R. Sarangi 548

The key insight in this scheme is that we are using the sense amplifiers as a buffer. A typical FPM device
can have 1024 columns per row, where each column is 16 bits wide. We can realise such a design by having
a total of 16 arrays in each rank. We first read the entire row and store it in the sense amplifiers. We then
select one column at a time, and in each array we read a single bit. The entire rank can thus provide 16 bits
at a time, and we do not need to incur the overhead of row activations several times. We activate the row
only once, and then read out all the columns that we are interested in.

We shall henceforth not discuss how we handle writes because they are handled in a very similar manner.

row

RAS

CAS

col

dataDQ

Address col

data

col

data

Figure 10.17: Timing diagram of a Fast Page Mode (FPM) DRAM

row

RAS

CAS

col

DQ

Address

data

col

data

col

data

DQS

Figure 10.18: Timing diagram of an Extended Data-Out (EDO) DRAM

row

RAS

CAS

col

DQ

Address

data data data

col

data

Figure 10.19: Timing diagram of a Burst Extended Data-Out (BEDO) DRAM

Extended Data Out (EDO)

In the FPM protocol, we send the column address, then we wait for the data to be read, and then we send
the next column address, and so on. This process can be optimised further. We can send a column address,

549 Smruti R. Sarangi

internally buffer the data that has been read, and while that data is being transferred, send the address of
the next column. This process is shown in Figure 10.18.

This will however require another strobe signal (DQS) as shown in the figure. This strobe signal indicates
to the memory controller that the data is available on the data bus. If we compare Figures 10.18 and 10.17,
we observe that the throughput has increased because of a reduced column-to-column delay.

Burst Extended Data Out (BEDO)

Most of the time, we do not access DRAM devices with random addresses. We typically wish to read
consecutive columns because we transfer 64-byte blocks to the CPU. This takes multiple cycles, where we
issue reads to consecutive columns by sending separate column addresses. It is not necessary to send the
column addresses for consecutive sets of bytes in a 64-byte block. They can be generated internally.

In a certain sense, the DRAM device prefetches data words (groups of data bits) and sends them to the
CPU via the memory controller. Since most accesses read contiguous sequences of data words, this access
pattern is very common in practice. Hence, as shown in Figure 10.19, after one column address is sent, we
can generate the next k column addresses internally, read those columns, and send their data over the data
bus. We do not have to waste time in sending column addresses separately. In Figure 10.19, our prefetch
length is 2 (read two columns after sending a single column address). We do not need a separate strobe
signal, we can use the CAS signal to provide the timing.

The prefetch length or prefetch width is the number of bits we read in one go from each DRAM array.
For example, if we read 8 bits in one go, the prefetch length is 8. In a clocked bus, we need 8 bus cycles to
send these 8 bits (1 bit per cycle).

Synchronous DRAM

Even though asynchronous memory devices became very efficient, they still had numerous drawbacks. In
general, maintaining timing is difficult, particularly in complex DRAM systems. As a result, almost all of
the memory devices today use synchronous DRAM (SDRAM). In such devices, the memory controller and
the DRAM devices use a common time base, which means that they use the same clock. All the latencies
are specified in terms of clock signals, and all the messages are aligned with respect to clock boundaries.
This simplifies the communication to a large extent and makes it possible to create elaborate and scalable
protocols. Some of the other advantages of synchronous communication are as follows.

1. A synchronous system is simple to design and verify.

2. In asynchronous memory, the RAS and CAS signals directly control the banks. It is not possible to
add additional programmable logic within the DRAM devices. However, with synchronous memory, it
is possible to simply send commands to the devices, and let the devices implement them in different
ways.

3. SDRAM devices are more configurable. For example, it is possible to switch the mode of an SDRAM
device, and also dynamically change its prefetch length (typical values: 1, 2, 4, or 8).

4. SDRAM devices contain multiple banks. It is possible to send different commands to different banks.
For example, it is possible to pipeline commands where we can read one bank while precharging another
bank.

It is possible that there is a phase difference between the clock of the memory controller and the internal
clock of the DRAM device. To ensure clock synchronisation, most SDRAM devices have a DLL (delay locked
loop) circuit within them. This ensures that the clock of the DRAM devices and the memory controller
remain synchronised and the phase difference is reduced to a minimum. The clock of the memory controller
can either be recovered from transitions in the data or from a dedicated strobe signal sent by the memory
controller.

Smruti R. Sarangi 550

ACT NOP CAS

ROW COL

data data data

CAS

COL

data data data

CLK

Command

Address

DQ data data

Figure 10.20: Timing diagram of synchronous DRAM memory

Figure 10.20 shows the timing diagram for a typical SDRAM device. We have four buses: CLK (clock),
Command, Address, and DQ (data). The commands and the addresses are latched into the SRAM device
at the rising edge of the clock.

We first activate the row by sending the row activate ACT command along with the row address on the
address bus. Subsequently, we assume that it takes one cycle to activate the row, then we send the column
activate command CAS, along with the column address. After sending the column address, we wait for one
clock cycle, then the memory controller starts receiving data from the DRAM device. In the case of a read
transaction, the data transmission starts at the rising edge of the clock. In this case, the prefetch length is
4. Similar to BEDO DRAM, we can send additional column addresses to read other data words from the
row (opened page) in subsequent clock cycles. The advantage here is that we do not need to send the row
address and activate the row again.

Note two things. We shall sometimes issue the NOP command indicating that we are not issuing any
command; this will be done whenever it is necessary to show inactivity on the command bus. Second, a
shaded hexagon on the data or address bus means that we do not care about the data or address being sent.

10.2.2 DDR Generations and Timing

ACT NOP CAS

ROW NOP COL

CAS

COL

CLK

Command

Address

DQ

DQS

Figure 10.21: Timing diagram of DDR memory

Recall that we had argued that the command and address buses have a much higher capacitive loading,
and are consequently much slower because they are connected to all the DRAM banks. In comparison, the
data buses are connected to far fewer banks, and thus the loading on each bus is significantly lower (refer to
Figure 10.14). Given that the data bus is expected to be much faster than the address or command bus, we

551 Smruti R. Sarangi

can use this fact to further speed up our memory access protocol.

Because of the fundamental asymmetry in the speeds of the data bus and the address and command
buses, double data rate memory (DDR memory) was developed. In this memory, the data bus runs at twice
the speed of the address and command buses.

Figure 10.21 shows the timing diagram of a DDR memory device. The clock, command, and address
buses have the same functions. The major difference is that we transmit data at twice the rate. Additionally,
we have a new signal, a data strobe signal DQS, that is sent along with the data. This is because we can
have minor clock skews, and for the receiver to read the data correctly, it needs to use the DQS signal for
clock synchronisation. This method of transmission is known as source synchronous transmission. As we
can see from Figure 10.21 this signal can take three values: logical 0, logical 1, and an intermediate voltage
that represents the undefined state. Furthermore, its voltage can be set by either the memory controller or
the DRAM device depending upon the direction of data transmission.

Let us now study some of the subtle aspects of the design of DDR memory. We see a one-cycle bubble
between the two data bursts. In this case, we assume that the second burst of data in the figure is provided
by another rank of DRAM devices whose corresponding row has been activated in the past. To switch the
rank it takes one cycle because the new rank has to re-synchronise its clock with the data strobe.

When we are using this protocol to write data to the DRAM devices, the memory controller sends data
such that transitions of the strobe signal happen at the middle of transmitting each bit. This makes it easier
for the DRAM device to latch the data. However, it increases the complexity of the circuit at the end of
the memory controller. This is acceptable because we want DRAM devices to be simple, and we want to
migrate the complexity to the memory controller where we can afford it.

It is important to understand that while reading data, this is not necessary. This is because while reading
data, the DRAM device is the sender. It is much easier for it to transmit data at clock boundaries. The
memory controller can then recover the clock from the strobe and latch the data at the correct time instants.
This requires more circuitry but is an acceptable overhead at the side of the memory controller.

Note that the data bus in this case runs in half-duplex mode, Which means that it does not allow
simultaneous transmission of data in both directions. Thus DDR memory is the most efficient when we either
have only reads, or only writes. To remedy this problem, QDR (quad data rate) memory was proposed that
has two data buses: one read bus and one write bus. This allows us to effectively achieve a higher bandwidth
by interleaving reads and writes.

DDRX Memory

After the basic DDR memory was proposed, no fundamental changes to the paradigm were made. Instead,
there were subsequent improvements in the process and signalling technologies to realise faster memories.
Thus, we have several DDR generations: DDR2 to DDR4. They are collectively known as DDRX technolo-
gies.

Technology Bus clock Prefetch Transfer Voltage Maximum
speed length rate (MT/s) DIMM size

DDR 100-200 MHz 2 200-400 2.5-2.6 V 1 GB
DDR2 200-400 MHz 4 400-800 1.8 V 4 GB
DDR3 400-1066 MHz 8 800-2133 1.35/1.5 V 16 GB
DDR4 800-2133 MHz 8 1600-4266 1.2 V 64 GB

Table 10.1: Description of the different DDR technologies

Table 10.1 describes the different DDR technologies. In the list of technologies, DDR is the oldest
standard, and DDR4 is the newest standard (as of March, 2020). As of March 2020, DDR5 is still in the
process of standardisation. Each DDR device has an internal clock that runs at a much lower clock speed

Smruti R. Sarangi 552

as compared to the bus frequency. For example, in DDR4, the internal clock can vary from 200 MHz to 533
MHz (increasing in units of 331

3 MHz). However, the bus frequency varies from 800 MHz to 2133 MHz.
Note that the bus frequency is always more than the devices’ internal clock frequency. This is because

buses have gotten faster over the years, whereas DRAM devices have not sped up at that rate. Consider
DDR once again, for a bus frequency of 800 MHz, the internal clock is 200 MHz. There is thus a rate
mismatch, which can only be equalised if the internal bus width of the DRAM devices is more. Given that
we are transmitting data at both the edges of the clock, the DRAM devices need to provide 2× 800/200 = 8
times more data per cycle. This means that, internally, the rank needs to produce data at 8 times the rate
per cycle by parallelising the read/write operations among the arrays and by reading more data per clock
cycle.

Let us do the math for this example. In all DDR technologies, the channel width is 64 bits (72 bits with
ECC), and we send 64 bits in parallel in each half-cycle. This set of 64 bits is known as a memory word and
each half-cycle is also known as a beat. If the internal frequency is 200 MHz and the bus frequency is 800
MHz, then as argued before, DRAM devices need to produce more data per cycle. Let us consider 8 beats,
which is equal to the length of a DRAM device’s clock cycle (internal cycle). In 8 beats, we need to transmit
512 bits. If we have 64 arrays in a rank, then we need to read 8 bits in every internal cycle. This can be
done by prefetching columns as we had discussed before in the case of BEDO DRAM. The number of bits
we prefetch per internal cycle is known as the prefetch length in the case of synchronous DRAM. This needs
to be equal to 512/64, which is equal to 8.

The prefetch length scales with the ratio of the bus frequency to the internal DIMM frequency. It was 2
for DDR, 4 for DDR2, 8 for DDR3 and DDR4. For example, if the prefetch length is 8, then we will require
8 beats to transmit all the data that has been read from the DRAM devices. This means that the minimum
data transfer size in DDR4 is 64 bytes (8 × 64 bits). A sequence of bits being transmitted is known as a
burst. In this case, the minimum burst length is 8.

This unfortunately has negative consequences. This stops us from transmitting data that is less than 64
bytes in DDR3 and DDR4. Hence, in DDR3 the burst chop mode was introduced. It is possible to program
the DRAM devices such that they disregard the second half of a 8-beat burst. We can thus effectively reduce
the minimum burst length to 4 beats, even though we are not sending useful data in place of the disregarded
beats.

The next column in Table 10.1 shows the transfer rate of the DRAM device measured in millions of
transfers per second (MT/s). A transfer is defined as the transfer of a 64-bit data packet (equal to the
channel width) from the memory controller to DRAM or vice versa. In a DDR memory, the number of
transfers per second is equal to twice the bus frequency. For example, if the bus frequency is 400 MHz, then
we perform 800 million transfers per second (MT/s) because of double data rate transmission. The standard
nomenclature that we use to label DRAM devices is of the form (〈Technology〉 − 〈Transfer rate〉). For
example, a DDR3-1600 technology means that we are using the DDR3 technology and we perform 1600
million transfers per second.

The next column shows the transmission voltage. It has steadily decreased from 2.6 V to 1.2 V. As we
lower the voltage, we also reduce the time it takes to transmit a message. However, the susceptibility to
noise and crosstalk increases. These need to be managed with technological innovations. Subsequent DDR
generations are expected to reduce the supply voltage even further.

Furthermore, due to increased miniaturisation and improvements in fabrication technology, the density
of bits is increasing. The maximum capacity of a DIMM has also been steadily increasing from 1GB (DDR)
to 64 GB (DDR4).

10.2.3 Buffered DIMMs

An important shortcoming of conventional memory systems is that there is a trade-off between the frequency
of the memory bus, the frequency of the DIMMs, and the number of DIMMs that we can connect to each
channel. As we connect more DIMMs to the channel, the capacitive loading on the address, command and
data buses increases, which adversely impacts their RC delay. Recall that the RC delay or the time constant

553 Smruti R. Sarangi

is the time that it takes to charge the bus to 63% percent of its final value. This means that with more
connected devices, it takes more time to effect voltage transitions on the bus, and this directly places limits
on the bus frequency. For the different DDR generations, this is what is happening. For example, in DDR2
where the bus frequency was 400 MHz, we could connect 8 devices to each memory channel, whereas in an
800 MHz DDR3 bus, we can only connect 2 devices. Such trade-offs limit DRAM scaling to a large extent.

As a result, it became necessary to think of new bus technologies that can circumvent such limitations.
On the flip side, there are very strong business reasons to keep DIMMs unmodified. The DRAM business
is very competitive; therefore, vendors have been averse to adding additional circuitry to the devices. In
addition to that, it is necessary for all memory controllers and the RAM chips to be compliant with the
DDR standards. Hence the space for innovation is very restricted.

Keeping all of these constraints in mind, a set of buffered memories were proposed. These classes of
DIMMs contain a buffer with every DIMM chip that buffers either the data or the control messages. The
effect of such buffers is that it reduces the net capacitive loading on the memory channel. It thus allows
for faster data transfer, and we can connect more devices to a channel. There are many classes of buffered
memories. We shall discuss two of the most popular classes in this section: fully buffered DIMMs and
registered memory.

Fully Buffered DIMMs (FB-DIMMs)

In the 2000-2005 time frame, there was an increasing realisation that traditional DDR based memory tech-
nologies will not scale. We are limited by the frequency of the bus, and since these are multidrop buses
(many DIMMs are connected), the capacitive loading on the command and address buses is a key limiting
factor. There was a need to create large server-based systems that could sustain large memories and provide
robust communication. At that point of time, an audacious attempt was made to completely re-architect
the memory system. One such attempt was the proposal to create Fully Buffered DIMMs (FB-DIMMs).
Given that this idea involved significant changes to the memory system, DIMMs, memory controllers, and
the motherboards, the industry was not very enthusiastic, and thus this technology is not very popular as of
2020. However, from an educational perspective, this technology has immense theoretical value and provides
insights into what it takes to create robust and scalable DRAM based memory systems.

AMBs
The crux of the idea behind FB-DIMMs was a custom chip called the Advanced Memory Buffer (AMB) that
was supposed to be a part of each DIMM. A representative diagram of the system is shown in Figure 10.22.
The CPU has a dedicated FB-DIMM memory controller, which is connected to the AMB of the first DIMM
chip. The AMB is connected to all the DRAM devices within the DIMM. The AMB can use traditional
DDR protocols to communicate with the DRAM devices. They need not be aware of the fact that a different
protocol is being used.

The AMB in the first DIMM chip is connected with the memory controller via a set of lanes. Akin to
high-speed I/O protocols such as USB and PCI-X, each lane is a high-speed serial bus, whose timing is
independent of other parallel lanes. The memory controller sends data and commands to the first AMB
via a set of lanes known as the southbound lanes. The AMB sends responses to the memory controller via
another set of lanes known as the northbound lanes. The advantage of using lanes is as follows.

1. Since each lane is a high-speed serial bus, its timing need not be synchronised with other lanes, and
thus we can raise the transmission frequency significantly.

2. The communication architecture is more immune to failures. Assume that a given lane fails, or the
timing on a lane changes due to ageing, the system remains unaffected. In the first case, we can simply
disregard the lane and transmit on the remaining lanes that are functional. In the second case, since
the transmission on the different lanes happens independently, this will not lead to a failure.

The AMBs are connected in a chain using point-to-point links. The role of each AMB is as follows.

Smruti R. Sarangi 554

Memory
controller

AMB

AMB

AMB

Southbound
bit lanes

Northbound
bit lanes

DRAM
devices

Figure 10.22: An FB-DIMM system

1. Receive data from southbound lanes (from the memory controller).

2. If the data is meant for the DIMM associated with the AMB, then reconstitute the packet by reading
data from the serial bit lanes, and send it to the constituent DRAM devices. If the data is meant for
an AMB downstream, then forward it to the next AMB in the chain.

3. Get data from northbound lanes, and send it towards the memory controller (northward).

A few of the advantages are obvious.

Scalability This is a scalable system, because we can add a large number of DIMMs.

555 Smruti R. Sarangi

High-speed The loading on buses is minimised and this ensures that we can have high-speed buses. Fur-
thermore, since we use a set of serial bit lanes, they can use very high-speed signalling to transfer data
as quickly as possible.

Reduced Pin Count The increasing number of pins associated with memory controllers was an issue
because they needed to support many channels. There are limits to the pin count due to packaging
issues. This protocol reduces the number of pins that are required in memory controllers.

Reliability Because we can use a variable number of bit lanes, and the loading per lane is deterministic,
the overall reliability is enhanced.

The FB-DIMM technology was unfortunately not adapted at a large scale because of the complexity of
the AMB. It needs to act as a router, serialise/deserialise data, buffer data, run the DDR protocols between
itself and the DRAM devices, and monitor the reliability of transmission. Instead of being relatively passive
devices, which can be produced in bulk, FB-DIMMs are active devices with elaborate AMBs. This increased
the cost. However, FB-DIMMs are still attractive solutions for large servers.

Let us now discuss some of the specific technologies that are used in FB-DIMMs.

High Speed Transmission
Normally, we have 10 bit lanes in the southbound channel and 14 bit lanes in the northbound channel. We
have more bit lanes in the northbound channel because they are used to transmit data for read operations,
which are often on the critical path. Because all of these bit lanes are high-speed serial buses, we can afford
to transmit data at a much higher clock rate. On each lane, we can transport 12 bits per DRAM clock
cycle. This means that on the southbound channel with 10 bit lanes, we can transmit 120 bits in one DRAM
clock cycle. On the northbound channel, we can transmit 168 bits in one DRAM clock cycle. This includes
status bits, commands, and bits to perform error correction. The FB-DIMM protocol uses the CRC (Cyclic
Redundancy Check) error detection and correction scheme that is particularly useful for detecting a burst
of errors.

Let us compare this approach with a DDRX protocol. In such a protocol, we can transmit 144 bits in
one DRAM cycle, assuming that the bus is 72 bits wide (64 bits for data and 8 bits for error correction
bits). With FB-DIMMs, we can send one write command with 64 bits of data and 8 error correction bits
every cycle on the southbound channel. On the northbound channel, we can simultaneously transmit 144
bits of read data inclusive of error correction bits. Thus the total amount of useful data that we can transfer
between the memory controller and the FB-DIMMs is 144+72 = 216 bits. This is one and half times the
bandwidth of a DDRX channel. Hence, there is an advantage in terms of bandwidth.

Along with this, we can support more FB-DIMM devices per channel, and more memory channels per
memory controller because the number of pins required by each channel is much lower in this case.

Resample and Resync
Recall that AMBs also forward commands, addresses, and data to adjacent AMBs. We can use two methods.
The first method called Resampling is as follows. An AMB directly forwards the data to the next AMB on
the chain. In this case, it is possible that there would be some skew between the signals being sent on the
different bit lanes. The skews will tend to accumulate over several hops. Even though this scheme is fast, we
can still end up having a large amount of skew between different bit lanes. Note that at the destination, we
need to wait for the slowest signal to arrive. We can however be slightly lucky if over the long transmission
across several AMBs, the skews get balanced. This is not uncommon; however, we still need to be prepared
for the worst case.

The other method is to read the entire data frame sent on the bit lanes, remove all the skew, and then
retransmit the entire data frame to the downstream AMB. This method is known as resync, and introduces
more delay in the protocol. It is good for a network with large skews that are unbalanced across the bit
lanes.

Bit Lane Steering

Smruti R. Sarangi 556

Reliability is a key advantage of FB-DIMMs. Note that reliability is a key requirement of servers that
typically use a lot of DRAM memory. Faults can often develop while replacing DIMMs or due to temperature
induced stresses.

Let us assume that at some point of the transmission, we find that we are having too many errors
(detected with the CRC error detection code). We shall first attempt a channel reset, which means that
both ends of the channel discard their state, and try to resynchronise themselves. However, if this is not
successful, we need to conclude that one of the bit lanes has developed a fault. FB-DIMMs have various
BIST (built-in self test) mechanisms that allow us to determine which bit lanes have developed faults.

We can then use the bit lane steering mechanism to use the rest of the lanes for the communication. This
will have a minimal effect on the bandwidth of the bus, however it will increase the reliability significantly.

Summary of the Discussion on FB-DIMMs
Undoubtedly, FB-DIMMs incorporate many technological advances. Their most important advantages in-
clude reducing the pin count, tolerating a high amount of skew during transmission, reducing the capacitive
load on the bus, and using bit lane steering to use only those lanes that are fault-free. However, any revolu-
tionary technology is still a slave of market economics, and if significant changes need to be made to the
memory controller, DIMMs, and the channels on the motherboard, it is necessary for all of those vendors
to adapt this technology. This sadly did not happen in the 2005-10 time frame, hence as of today such
memories are not very popular. However, simpler variants of FB-DIMMs such as registered memories have
become commonplace (as of 2020), and it looks like that the industry is making evolutionary changes in this
direction.

Registered Memory

As compared to FB-DIMMs that have large overheads, registered memory is a much simpler technology
that is in use today, and in many ways has taken over the space that FB-DIMMs were supposed to occupy.
Registered memory modules (RDIMMs) have a register associated with a DIMM. This buffers memory
addresses and commands, effectively reducing the capacitive loading on the address and command buses.
Some variants of RDIMMs called LRDIMMs (Load-Reduced DIMMs) also place buffers on the data bus as
well. Other than placing simple buffers on regular DDRX buses, they do not have any of the sophisticated
features of FB-DIMMs.

Given that reads and writes are delayed by an extra cycle, there is an associated performance penalty.
However, this is offset by the fact that buses can run at a higher frequency when using RDIMMs and can
support more DIMMs. RDIMMs are very popular in the server market. The pitfalls of this technology are
that motherboards need to be designed differently to support RDIMMs. Moreover, it is typically not possible
to have a mix of regular DIMMs and RDIMMs.

10.3 DRAM Timing

The memory controller and the DRAM banks communicate via an elaborate set of commands. These
commands have their own timing requirements, and there are rules that dictate when a command can be
issued after another command. In this section, let us look at the world of DRAM commands and the DRAM
access protocol in general.

We primarily perform three simple operations: read, write, and refresh. However, to support these
operations we need a large portfolio of commands such that we can extract the maximum possible throughput
from today’s complex DRAM systems. We can divide the life cycle of every operation into four distinct stages:
(1) transporting and decoding the command, (2) performing the actual read or write in the DRAM array, (3)
moving the data within the DRAM chip, and (4) transmitting the result on the bus back to the processor.
Each of these stages has its own set of commands and timing requirements. We shall broadly describe
the latest DDR4 protocol in the next few sections and abstract away many of the details for the ease of
explanation. Note that many simplifications have also been made for the sake of clarity. For an accurate

557 Smruti R. Sarangi

description of the DDR4 protocol readers can refer to the corresponding JEDEC standard [JEDEC Solid
State Technology Association, 2020]. This section presents only a very small subset of the overall protocol.
Note that all the copyrights belong to JEDEC. The material in this section is reproduced with permission
from JEDEC.

We assume a single DRAM device (DRAM chip) with 16 banks divided into groups of banks. We can
create groups of 4 banks each or create groups with 8 banks each. Assume that all delays are in terms of
bus cycles.

10.3.1 State Diagram

Power
On

Power on
Reset Initialise

Idle

Self
refreshing

SRE

SRX

Refreshing

REF

ACT

Activating

Power
down

PDE

PDX

Bank
active

Active
power
down

PDE

PDX

Writing

Writing-Pre

Reading

Reading-Pre

Precharging

READ

READA

WRITE

WRITEA

READWRITE

READ

WRITE

PRE/
PREA

PRE/
PREA

PRE/
PREA

WRITEA

READA

Transition
after a
command

Automatic
transition

W
RI

TE
A R

EA
D

A

Figure 10.23: State diagram of the DDR4 protocol. Copyright JEDEC. Reproduced with permissions from
JEDEC. Source: [JEDEC Solid State Technology Association, 2020]

Figure 10.23 shows the state diagram of the DDR4 protocol from the point of view of a DRAM device
(DRAM chip). There are two kinds of arrows: solid and dashed. The solid arrows indicate a state transition
that happens because we either receive a command from the memory controller or a command is generated

Smruti R. Sarangi 558

internally. The dashed arrows indicate a state transition that happens automatically.

We first power the device on, reset its state, initialise it, and then reach the Idle state. Along with
commands for reading and writing, there are many commands for managing the device. Let us look at them
first.

Modern DRAMs support two kinds of refresh modes: external refresh and self refresh. An external refresh
means that the memory controller sends the REF command to the device, and then it enters the Refreshing
state. However, if the CPU is powered down, the DRAM can still maintain its values by using the self refresh
mechanism. In this case, it has a built-in timer that generates two commands SRE (self refresh enter) and
SRX (self refresh exit). These are used to enter and exit the Self refreshing state respectively. If there is no
activity, we can save power by entering the Power Down state.

Before accessing any row, it is necessary to activate it first. The controller sends the ACT command to
the device, the device activates the corresponding row and transitions to the Bank active state. In this state,
we can also power the device down and transition to the Active power down state upon receiving the PDE
command and later exit this state after receiving the PDX command.

For reading and writing, there are two kinds of commands: one without auto-precharge and one with
auto-precharge. The former class of commands keep the row open, which means that it is possible for
subsequent reads and writes to access columns in the same row. The contents of the row are buffered in
the sense amplifiers. In this class, there are two commands: READ and WRITE. Upon receiving them, the
state transitions to the Reading and Writing states respectively. After the operations are over, the device
switches back to the Bank active state. The row remains open for future accesses. In the Writing state, if
the device gets a READ command, it transitions to the Reading state and vice versa.

The next set of commands automatically precharge the DRAM array after the commands finish executing.
These commands are READA and WRITEA for reading and writing respectively. Whenever, the device
receives a READA command, it executes the read and also transitions to the Reading-Pre state. It behaves
in a similar manner when it receives a WRITEA command: it transitions to the Writing-Pre state along
with performing the write. From both of these states, an automatic transition is made to the Precharging
state where all the bit lines are precharged, and made ready for a subsequent memory access to another row.

From any state, it is possible to enter the Precharging state directly by issuing the PRE (precharge one
bank) and PREA (precharge all banks) commands.

This state diagram determines the operation of each DRAM device. The memory controller also keeps a
copy of the state of each DRAM device and also tracks the transitions. This is done such that the memory
controller can issue the right commands at the right instances of time.

Next, let us look at the major commands used for controlling and operating DRAM devices, and their
associated timing constraints.

10.3.2 Activate and Precharge Commands

Activate Command

The activate command ACT is used to activate a given row in a bank, read all the columns into the sense
amplifiers, and wait for a subsequent read or write access. Note that each row (or page) can be fairly large:
1024 or 2048 bits. Whenever we activate a row, all of this data is brought into the sense amplifiers, and
subsequently the column multiplexers choose a subset of the bits. This is thus an expensive operation.

The timing parameters associated with the ACT command are shown in Table 10.2. The way to interpret
this table is as follows. The first column indicates a pair of events, and the second column shows the minimum
time interval between the first event and the second event. The events can either be external commands
or internally generated commands. For example, the parameter tRAS refers to the minimum amount of
time that needs to elapse between issuing an ACT command and subsequently issuing the PRE (precharge)
command. We can also specify the minimum time interval between a command, and issuing an internal
command such as IntREAD. The second row means that we issue the internal read command IntREAD
at least after tRCD (row to column delay) units of time after issuing the ACT command. An internal read

559 Smruti R. Sarangi

Consecutive pair of commands Time interval
ACT → PRE tRAS
ACT → 〈IntREAD/IntWRITE〉 tRCD
ACT → ACT

tRC
ACT → REF

Relationships: tRC > tRAS > tRCD

Table 10.2: Timing constraints for the ACT command

command is issued to read the values stored in the sense amplifiers. The internal write command IntWRITE
is defined on similar lines.

Next, let us consider tRC (row cycle time). It is the largest among the three parameters because it
specifies the duration of the entire process: activate a row, close the row, and precharge.

Precharge Command

The precharge commands, PRE and PREA, are used to precharge the bit lines in a given bank, or in all the
banks respectively. The row is subsequently deactivated and the bank enters the Idle state. For a subsequent
access, we need to activate a row first.

Consecutive pair of commands Time interval
PRE → ACT tRP

Relationships: tRC = tRAS + tRP

Table 10.3: Timing constraints for the PRE command

The timing parameters associated with the precharge command PRE are shown in Table 10.3. The
minimum time interval between issuing the PRE command and a subsequent ACT command is tRP . We
thus have tRC = tRAS + tRP (refer to Tables 10.2 and 10.3). In other words, the minimum row cycle time
is equal to the sum of the time it takes to issue a precharge command after activation and the minimum
duration of precharging.

Timing Constraints for Limiting Power Consumption

Consecutive pair of commands Time interval
Different bank group: ACT → ACT tRRDS

Same bank group: ACT → ACT tRRDL

Four-bank Activation Window tFAW
Relationships: tFAW ≥ 4 ∗ tRRDS and tRRDL ≥ tRRDS

Table 10.4: Timing constraints added for limiting power consumption

In modern DRAM systems, power and temperature are important issues. Hence, it is necessary to limit
the power consumption of DRAM devices. As a result, there are two timing parameters to limit the power
usage of DRAM devices (refer to Table 10.4). Both these parameters target row activations, because a row
activation is an extremely power-hungry operation. We need to read an entire row of 512-2048 cells, and
store their contents in the sense amplifiers. Furthermore, since reads are destructive, the data needs to be

Smruti R. Sarangi 560

restored. Consequently, we need to have a minimum delay between row activations such that we can limit
the power consumption.

The first is the row-to-row delay (tRRD). This is the minimum time interval between activating a given
row and activating another row. There are two types of row-to-row delays: tRRDS (short) and tRRDL

(long). tRRDS is the minimum delay when the rows are in different bank groups. Whereas, tRRDL is
the minimum delay when the rows belong to different banks in the same bank group. tRRDL ≥ tRRDS

because we wish to enforce a power constraint for each bank group. Here same means same as the previous
access, and the term different is defined likewise. This definition holds for the rest of the commands that
use the same nomenclature. This means that we are discouraging consecutive row activations in the same
bank group, which needs to be done to limit power consumption and local temperature rise.

Another parameter that limits the device-wide power consumption is tFAW (Four-bank Activation Win-
dow). This means that in any sliding window of time that is tFAW cycles wide, we can have at most four
row activations. For example, if this window is 50 cycles wide, then there is no 50-cycle window of time in
which there are more than four row activations. This limits the overall power consumption of the DRAM
device.

10.3.3 Read Operation

To initiate a read, the memory controller sends the READ command along with the number of the column
(on the address bus), and the address of the bank group. Subsequently, the device starts to read the values
by issuing the internal read command IntREAD.

Preamble and Postamble

Modern DRAM devices have extremely high frequencies and thus recovering the clock signal is difficult.
We thus have a data strobe signal, DQS, that helps the receiver properly latch the data. However, with
extremely high frequencies this also proves to be difficult. Hence, there is the notion of adding a preamble
to the data transmission. The preamble is a set of cycles in which we do not transmit data. We allow the
receiver to synchronise its clock with the transmitted data. This is known as the read preamble.

The read preamble is typically 1-2 cycles. This process of adjusting the clocks before a read operation is
known as read levelling.

Similar to the preamble, we also have the option of adding a postamble where we wait for a given number
of cycles after transmitting the last data bit before starting the next transmission. This allows the receiver
to latch all the bits correctly. The preamble and postamble are graphically shown in Figure 10.24.

ACT NOP READ

ROW NOP COL

CLK

Command

Address

DQ

DQS

Postamble

Preamble

Figure 10.24: The read preamble and postamble in the DDR4 protocol

We have two timing parameters defined for these operations: RPRE and RPST (see Table 10.5). In

561 Smruti R. Sarangi

a burst of read and write commands, the requirement of the preamble and postamble is sometimes relaxed
because there is no need to synchronise the clock.

Operation Duration
Read preamble tRPRE
Read postamble tRPST

Table 10.5: Timing constraints for the preamble and postamble

READ command

Consecutive pair of commands Time interval
READ → 〈First data bit on the bus〉 RL
READ → IntREAD AL
IntREAD → 〈First data bit on the bus without parity checking〉 CL
Time to verify the parity PL
IntREAD → PRE tRTP

Relationships: RL = AL+ CL+ PL

Table 10.6: Timing constraints for the read operation

The parameters for the read operation are shown in Table 10.6. The time between issuing the READ
command and getting the first data bit is the read latency RL. Subsequently, we get 1 bit every half-cycle
(beat) depending upon the burst length. The read latency can be broken down into three components:
additive latency (AL), CAS latency (CL), and the parity latency(PL). We have RL = AL+ CL+ PL.

The DDR4 protocol allows us to issue a READ command immediately after an ACT command. However,
we need to wait for tRCD time units before we can start an internal read operation. This means that the
READ command needs to be internally buffered till the device is ready to issue an internal read. This delay
is known as the additive latency (AL). Once an internal read command is issued, the time it takes to put
the first data bit on the bus is the CAS latency CL. Furthermore, we can program the device to check for
any parity errors before the data is sent on the bus. This takes some additional time, which is known as the
parity latency (PL). We thus have RL = AL+ PL+ CL.

Finally, we define tRTP as the delay between an internal read command and the precharge command.
This is the amount of time that it takes to complete the read operation and send the data to the buffers of
the bus. After this operation is done, the precharge command can be issued. We can infer that the minimum
spacing between an external read command READ and the PRE command is AL+ tRTP time units.

Burst of Read Commands

Till know we have considered a single read command. Let us now consider a burst of read commands for
different columns in the same row (see Table 10.7).

We define the column-to-column delay for access to the same bank group as tCCDL, and for access to
different bank groups as tCCDS . This is the minimum duration between issuing two READ commands to
two different columns across the same or different bank groups. It is faster to access a different bank group
than the same bank group (tCCDL ≥ tCCDS). This is a standard feature of DDR4. The reason is that the
same bank group (one that is being currently used) has many resources allocated for the current transfer,
whereas, a different bank group has more resources available and is thus faster to access. Additionally, we
wish to limit localised power consumption.

Smruti R. Sarangi 562

Consecutive pair of commands Time interval
Column to column delay (same bank group) tCCDL

Column to column delay (different bank group) tCCDS

Relationships: tCCDL ≥ tCCDS

Table 10.7: Timing constraints for the column-to-column delay

10.3.4 Write Operation

The write operation is similar to the read operation. It is initiated by sending a WRITE command. At
the same time, we send the column address on the address bus and the address of the bank group. Let us
discuss the specifics.

Preamble and Postamble

Similar to the READ command we also have a preamble and postamble (refer to Table 10.8) for the WRITE
command. The reasons are similar – detecting the relative skews between the data, strobe, and the internal
clock of the DRAM. Once we detect the skews, we can correctly latch the data. This process of training the
circuit for correctly latching the data is known as write levelling.

Operation Duration
Write preamble tWPRE
Write postamble tWPST

Table 10.8: Timing constraints for the write preamble and postamble

WRITE command

The WRITE command is similar to that READ command in terms of the way it is issued. In this case, we
define a term called the write latency (WL). It is the sum of the additive latency (AL), the parity latency
(PL), and the CAS write latency (CWL). Refer to Table 10.9 for a description of the parameters that are
relevant to the write operation. We have WL = AL+ PL + CWL.

Consecutive pair of commands Duration
WRITE → 〈First data bit on the bus〉 WL
WRITE → IntWRITE AL
Time to compute the parity PL
IntWRITE → 〈First data bit on the bus〉 CWL

Relationships: WL = AL+ PL+ CWL

Table 10.9: Timing constraints for the write operation

Burst of Write Commands

In a write burst, we use the same timing constraints as the READ command for issuing different WRITE
commands. The parameters tCCDS and tCCDL are relevant (with the same meanings) for writes as well.

563 Smruti R. Sarangi

10.3.5 Interaction between the Read, Write, and Precharge Operations

The READ and WRITE commands have several interactions between them. The timing constraints are
shown in Table 10.10.

Consecutive pair of commands Time interval
READ →WRITE tRTW
WRITE → READ tWTR
Burst length tBL
WRITE → PRE tWR

Table 10.10: Interaction between read and write operations

tRTW (read to write) is the minimum time interval between a READ and a subsequent WRITE
command. Similarly, tWTR (write to read) is the minimum time interval between a WRITE command,
and a subsequent READ command. We also define the parameter tBL, which is the burst length – the
number of beats used to transmit data for a single command. As we have discussed in Section 10.2.2, for
DDR3 and DDR4, it is normally equal to 8 beats. If the burst-chop mode is used, it is equal to 4 beats.

Read to Write Delay

Let us derive the timing relationship between issuing a READ command and issuing a WRITE command.
This is shown in Figure 10.25. Let us make a simplistic assumption that PL = 0 for the ease of explanation.

READ NOP WRITE

COL NOP COL

CLK

Command

Address

DQ

DQS

Postamble
Read

Preamble
Write

RL = 4

WL= 8

tRTW = RL + BL/2 + 1 + tWPRE - WL

BL = 8

Figure 10.25: Read to write delay (tRTW)

If the READ command is issued at the beginning of cycle 0, then the earliest we can write data to the
bus is cycle RL + BL/2 + tWPRE + 1 (refer to Figure 10.25). The reason we add BL/2 is because we
are assuming that the unit of BL is half-cycles. In most DDR4 devices, we need to add the additional 1
cycle delay because for starting a write operation we need to change the direction of the data transmission
on the bus. Given that the write latency is WL, the minimum spacing between the READ and WRITE
commands is therefore equal to RL+BL/2 + tWPRE+ 1−WL. Note that in this case the read postamble
is getting subsumed within the read burst. Otherwise, we needed to add a component of it as well.

Smruti R. Sarangi 564

Write to Read Delay

The tWTR (write to read) parameter is defined differently. It refers to the minimum interval between the
end of a write operation (including its postamble) and a subsequent READ command. Here also, we can
define two parameters tWTRS (different bank group) and tWTRL (same bank group). We have the same
relationship: tWTRLL ≥ tWTRS . A write operation is slightly slower as compared to a read because after
every write we need to do some more work. tWTR cycles are needed to ensure that we are able to write the
correct state to the sense amplifiers and the DRAM cells. This requires time because some of the bit lines
need to undergo voltage transitions.

Write Recovery Time

The write recovery time tWR is defined in a similar manner as the write-to-read time. Its corresponding
interval starts from the end of a write (including its postamble). It is the minimum duration from this point
till we can issue a precharge command. The reason for the write recovery time is similar to the extra time
required for starting a read operation after a write operation (tWTR).

10.3.6 Refresh Operation

Every time that the memory controller requires a refresh, it issues the REF (refresh) command. DDR4
memories require a refresh cycle once every tREFI cycles. Before a refresh command is sent, all the banks
need to be precharged and be idle for at least tRP cycles. Every DRAM device has an internal refresh
controller that generates a list of all the addresses that need to be refreshed. The entire process takes tRFC
cycles (refresh cycle time). All the banks are set to the idle state and can be accessed.

Modern memory protocols provide some flexibility in scheduling refresh commands particularly if the
memory traffic is high. They allow us to postpone refresh commands subject to a maximum limit.

Along with an external refresh mode, most DDR devices also have a self-refresh mode that allows them
to retain their data even when the CPU is powered down. The process is similar to that of an external
refresh. The timing constraints are summarised in Table 10.11.

Interval Duration
Maximum refresh interval tREFI
Refresh cycle time tRFC

Table 10.11: Timing constraints for the refresh commands

10.3.7 Example of a Protocol

Let us enumerate the parameters of the DDR 1600 protocol. It can support 1600 transfers per second with
a 800 MHz clock rate. The clock cycle time is thus 1.25 ns. Table 10.12 lists all the parameters. The unit
is clock cycles.

10.4 Memory Controller

The general structure of the memory controller is shown in Figure 10.26. We typically have one memory
controller per channel.

It receives requests from different cache banks. All the requested memory transactions are first handed
over to the transaction scheduler. It ascertains the priority of the transaction with respect to other transac-
tions that are being processed. For example, at this stage it can decide that a much-needed refresh operation
should have the highest priority. The second stage, address mapper, maps the physical memory address to

565 Smruti R. Sarangi

Parameter Mnemonic Value
(cycles)

Row cycle time tRC 38
ACT to PRE command period tRAS 28
PRE to ACT command period tRP 10
ACT to internal read or write tRCD 10
CAS latency CL 10
CAS write latency CWL 9
Column to column delay (same bank group) tCCDL 5
Column to column delay (different bank group) tCCDS 4
Row to row delay (same bank group, 1Kb page size) tRRDL 5
Row to row delay (different bank group, 1Kb page size) tRRDS 4
Four-bank activation window (1Kb page size) tFAW 20
Write to read latency (same bank group) tWTRL 6
Write to read latency (different bank group) tWTRS 2
IntREAD to PRE command period tRTP 6
Write recovery time tWR 12

Table 10.12: Parameters for the DDR 1600 protocol

Transaction
scheduler

Write
cache

Memory
requests

Address
mapper

Command
generator

Command
scheduler

Bank queues

Memory controller

To the
DIMMs

Read unitResponse

Figure 10.26: Structure of the memory controller

addresses on the DRAM devices. For a given physical address, this stage maps it to a given rank and a set
of banks. There are a range of possibilities here depending on the number of DRAM devices, the number of
arrays within each device, and the request pattern. After the address mapping stage, the memory request
is converted to a sequence of DRAM commands by the command generator, which are then inserted into a
set of bank-specific queues. Finally, we have a command scheduler, that dispatches the commands to the
banks. This needs to follow the timing rules that we discussed in Section 10.3.

To summarise, the main components in the memory controller are as follows.

1. A high-level read/write transaction scheduler.

2. Address mapping engine.

3. DRAM command generation unit.

4. Command scheduling unit.

Let us revisit the notion of the rank. Multiple DIMMs are connected to each channel, and we have
multiple DRAM devices on each DIMM. All of them share the same address and command buses. This

Smruti R. Sarangi 566

makes life complicated. This is because in principle all the devices can have different clock skews because
their distance from the memory controller might vary. However, this is not allowed because ensuring proper
timing would become a very onerous task. Hence, we divide the set of devices into ranks. All the devices in
each rank have roughly the same degree of clock skew and are equally distant from the memory controller
in terms of timing. As a result, it is possible to run all the DRAM devices in a rank in unison.

In the DDR4 protocol, we specify three pieces of information with each command: chip-select id, bank
group id, and bank id. The chip select signal selects the rank. The rest of the ranks are disabled for that
command. This signal is routed to all the devices within the rank such that they all get enabled. The bank
group and bank id bits are used to choose a specific bank within each device. Then the command is delivered
to all the chosen banks across the DRAM devices. Let us consider a concrete example. Assume we have 8
DRAM devices in a rank with 4 banks per device and 8 arrays per bank. Thus each bank can read 8 bits at
a time (one bit from each array). When we send the read command, we also send the id of the bank (and
the bank group, if we have bank groups). For example, if we send bank id 2, then this selects all the banks
with id 2 in all the 8 DRAM devices. The read access commences. Once the data is ready each selected
bank produces 8 bits (1 bit per array). Since we have selected 8 banks (1 bank per device), all 8 of them
produce 64 bits in a single cycle. These bits can then be sent to the memory controller.

Since read accesses take time, we can utilise the time in the middle to activate and schedule requests on
other banks. Note that in most memory systems, accessing a bank means accessing the same bank id across
all the devices. Some advanced memory protocols such as DDR4 do allow commands to be sent to individual
devices in a rank; however, that is mainly for setting specific electrical parameters.

Important Point 19
It is important to note that the reason we organise memory devices into a rank is such that we can
increase the amount of parallelism and read or write a large number of bits in a single cycle. Furthermore,
each memory device has multiple banks where only one bank is allowed to process a command from the
bus in a given cycle. For any memory request, we enable one bank from each device, and then send a
read/write/activate request to the set of enabled banks across the devices in a rank; they work in lockstep.

10.4.1 DRAM Transaction Scheduling

Each DRAM controller receives memory requests from the NoC. An overwhelming majority of them are
either read or write requests. Sometimes it can also generate its own requests such as refresh operations.

The first part of transaction scheduling is to decide the relative priorities of the operations. Typically,
memory controllers prioritise read requests because they are most of the time on the critical path, whereas
write requests can be deferred. Additionally, in the DDR4 protocol, back-to-back read requests are much
faster than request pairs in which the first request is a write. Recall that we need time to recover from a
write because along with writing to the sense amplifier array, we also need to write to the memory cells. As
a result, it is a much better idea to schedule write operations when the DRAM devices are relatively free.

Write Caching

Sadly reordering reads and writes can introduce correctness and consistency problems. This can be easily
solved by adding a write cache (similar to a write buffer). This stores all the outstanding writes. A read
operation first checks for its address in the write cache. If there is a hit, then it returns with the value stored
in the write cache, otherwise if there is a miss, then the read operation is sent to the DRAM devices.

567 Smruti R. Sarangi

Open-Page Access Policy

One major advantage of having a sense amplifier array is that it can store an entire row (512, 1024, or 2048
bits). Recall that we refer to a row as a page as well, and the storage part of the sense amplifier array is
synonymously referred to as the row buffer or the page buffer. In every access, we typically need to access
a subset of these bits. Here, the advantage is that we need not perform a precharge operation after every
read or write, instead if there is temporal and spatial locality, then this row buffer can be used as a cache.
This saves us unnecessary activate and precharge operations. This is efficient in terms of both time as well
as power.

This policy is known as the open-page access policy where after a read or write operation completes, we
do not set the bank to the idle state. Instead, we keep the row open such that it can serve later requests
that map to the same row. Because of temporal and spatial locality, we expect a lot of hits to the open
row (or page). To ensure that the hit rate is high, most memory controllers reorder the requests such that
contiguous requests map to the same open page.

Once we run out of requests, we precharge the bank and set its state to the idle state.

Close-Page Access Policy

The close-page access policy closes the row after it has been accessed once. This favours a random-access
pattern, where there is very little spatial and temporal locality. The memory controller issues the READA
and WRITEA commands that immediately issue a precharge after completing the read or write respectively.

Hybrid Access Policy

Most memory controllers as of today use a hybrid access policy, where they decide when the row should be
kept open and when it should be closed. They monitor the sequence of memory accesses and if they predict
that a given row is unlikely to be used again in the near future, then it is immediately closed after the access.

Managing Refreshes

A typical DRAM row can hold its data for 32 to 64 ms. It needs to be refreshed at least once during this
period. Let us assume that it can hold its data for 64 ms and we have 8192 rows. Then we need to send a
refresh command to the devices once every 64,000/8192 = 7.8 µs. Each refresh command refreshes a given
row. During that period (refresh cycle time: tRFC), the bank cannot be used for any other purpose.

Modern DRAM devices have refresh modes: self refresh and external refresh. The self refresh mode is
useful when the CPU is powered down or is not in a position to send refresh commands. Otherwise, we
rely on external refresh commands, where the memory controller explicitly sends refresh commands to each
row. Sometimes it is possible that we may have to delay critical read and write requests to accommodate a
refresh. The DDR4 protocol does give us some flexibility in this regard. We can defer a refresh message by
up to 8 refresh intervals (a refresh interval is 7.8 µs in our example). During this period we can finish sending
critical read and write messages. After that we need to quickly finish all the pending refresh operations.

10.4.2 Address Mapping

Every physical address needs to be mapped to an equivalent DRAM address. A DRAM address is a combin-
ation of the channel id, the rank, the bank, the row, and the set of columns. This determines the available
parallelism, number of bank conflicts, and the time it takes to wait between consecutive accesses. The ad-
dress mapping scheme is dependent on the technology that is used, latencies of different operations, and the
memory access pattern.

Smruti R. Sarangi 568

Symbol Description
c Channel id
k Rank id
g Bank group id
b Bank id
r Row id
l 64-byte block id in a row

Table 10.13: Symbols used in address mapping

Basic Terminology

Table 10.13 shows the symbols that we shall use to describe the address mapping scheme. Let us first go
over our main assumptions.

1. We read or write data at the granularity of 64-byte blocks.

2. We assume that each row stores an integral number of 64-byte blocks. The id of a block in a row is
denoted by the symbol l.

3. All the counts start from zero.

4. We assume that a physical address given to the DRAM memory controller points to the starting address
of a 64–byte block. In each beat, we transfer 64 bits.

5. If the paging mechanism has indicated that a given frame is present in the DRAM, then we are
guaranteed to find the frame. Unlike a cache, there are no misses in main memory. We would like to
reiterate that a page in DRAM is not the same as a virtual memory page.

We can deduce that the address of each 64-byte block in the DRAM memory is uniquely specified using
c+ k + g + b+ r + l (= N) bits. To operationalise this, once the memory controller gets the address of the
block, it retrieves N bits from the address, and discards the rest of the bits. These are typically the least
significant bits of the block address. The virtual memory system needs to ensure that no two blocks who
have these N bits in common in their physical addresses are present in the DRAM memory at the same
time. This will remove the need for having a tag array. This further ensures that our DRAM structure
can be used in modern processors very easily. Note that this design choice is not a significant issue when it
comes to performance because main memories are typically very large and we have a lot of locality at the
page level.

Now we need to decide which bits we need to use to address the channel, which bits we need to address
the rank, and so on. Any addressing scheme can be described using the following format. Let’s say we have
a scheme, c : k : g : b : r : l. This means that in the N -bit block address, we use the least significant l bits
to address the block in the row, the next r bits to address the row in the bank, and so on. In comparison,
the addressing scheme k : b : r : l : g : c means that we use the least significant c bits to address the channel,
the next g bits for the bank group id, and so on.

Let us create addressing schemes for the open-page and close-page policies.

Addressing for the Open-Page Policy

The key insight is that the least significant bits tend to vary more, and there is more randomness in them.
In comparison, the more significant bits vary less. If for some reason we want to distribute the accesses, we
should use the least significant bits.

569 Smruti R. Sarangi

Out of the six parameters – c, k, g, b, r, l – we need to first decide which parameter we should map to
the least significant bits. Let us look at the most common access pattern, which is accessing the next
block address. Most of the time we tend to read consecutive blocks because this is the typical pattern of
both instruction accesses and data accesses, notably array or stack accesses. Hence, we should optimise the
addressing method for this pattern.

Switching between channels is the cheapest operation in terms of time. We typically have different
memory controllers for different channels, and it is possible to operate them independently. We can even
read consecutive blocks in parallel if they are mapped to different channels. Hence, our addressing scheme
should be of the form x : x : x : x : x : c. Here, x, refers to a parameter that is unspecified as of now.

Since we are considering the open-page access policy, the row buffer will continue to maintain the contents
of the entire row unless it is explicitly precharged. We can leverage this fact and read the next block from
the row buffer. Hence, the next set of bits should be mapped to the parameter l (block id in a row). The
addressing scheme thus becomes x : x : x : x : l : c.

Let us now make a choice between a different bank and a different rank. We shall discuss why we
are discarding the row id at this stage slightly later. To send an access to a different rank, we need to
resynchronise the timing of the processor-memory bus. Recall that different banks have different timing
requirements and have different clock skews. Some re-synchronisation, read levelling, and write levelling
needs to be done. This will take time. Consequently, let us reduce the priority of switching the rank.

Let us thus maximise locality at the level of the banks by switching to another bank in the same rank.
Recall that banks are independent of each other. We can activate bank 2, while bank 1 is completing a
read operation. This feature can be leveraged to send consecutive accesses to other banks. Recall from
Section 10.3 that the delay is larger if we send a request to another bank in the same bank group; therefore,
we need to send a request to a different bank group. To achieve more randomness in this regard, let us map
the next set of bits to the bank group g. After this, let us consider the bank id b. Thus our addressing
scheme now looks like x : x : b : g : l : c.

We are now left with the choice of the rank id and row id. We have already discussed that switching to
a new rank involves costly re-synchronisation. However, switching to a new row is even more expensive. We
need to close the row buffer by performing a precharge operation, and then activate the new row. This is
very expensive in terms of time. Hence, let us prefer switching to a new rank.

The final addressing scheme is r : k : b : g : l : c.

Addressing for the Close-Page Policy

Here also the first priority should be the channel because it is very easy to switch between channels, and
requests can be sent to different channels in parallel. Since we do not intend to reuse the row, we need to
look at increasing bank-level parallelism. We thus map the next few bits to b and g. The addressing scheme
at this stage is x : x : x : b : g : c.

Next we can switch the rank because that is much faster than precharging and accessing a new row.
Hence, the scheme becomes x : x : k : b : g : c.

We now have a choice between the id of the block in a row (l), and the row id (r). Since we close the
row after an access, we cannot leverage any locality at the level of the row buffer. However, we can always
take advantage of caching schemes at the memory controller, if we stick to the same row. Hence, we map
the next few bits to l.

Therefore, the final addressing scheme is r : l : k : b : g : c.

10.4.3 Command Scheduling

After the address mapping stage, we generate the DRAM commands and store them in a set of queues.
The queues are typically bank specific, which means that each bank has a set of queues. Furthermore, for
each bank we can have three separate sub-queues: a read queue, a write queue, and a refresh queue. Let us
discuss different scheduling mechanisms for the different bank queues.

Smruti R. Sarangi 570

Bank Round-Robin (BRR)

This is one of the simplest scheduling mechanisms. For a given rank, the scheduler follows a round-robin
algorithm. It visits each bank queue, picks a request, and sends it to the DIMMs. At this stage, several
optimisations are possible. For example, we can prioritise reads as compared to writes. The DDR protocols
allow us to send a READ command immediately after an ACT command. This can be done at this stage.
This is a beneficial feature because we need to otherwise wait for a long time before we revisit the same bank
queue once again.

Once we are finished with processing the requests of a given rank, we move to the next rank. Note that
at this stage, the memory controller also maintains some state regarding the timing of the commands such
that no timing constraints are violated.

Rank Round-Robin (RRR)

The rank round-robin algorithm (RRR) differs slightly from the bank round-robin algorithm (BRR) in terms
of the order of accessing the queues.

We first access the same bank id in each rank, and then go to the next bank id. This approach distributes
requests between ranks more uniformly as opposed to BRR. Note that the choice of the command scheduling
algorithm and the addressing scheme are related. In practice, memory controller designers take all of this
into account, conduct extensive simulations, and then create a design that provides the highest aggregate
speedup for a wide variety of memory access patterns.

Greedy

Both the scheduling algorithms, BRR and RRR, are relatively oblivious of the timing constraints while
making their scheduling decisions. Their main aim is fairness across banks and ranks. Note that they still
need to observe timing constraints, and this is done after the scheduling decision has been made.

As opposed to this philosophy, the greedy algorithm works very differently. Out of all the bank queues
we choose that request that can be issued (sent to the DIMMs) as soon as possible. This ensures that our
system waits as little as possible to issue commands. Even though this approach works well in a lightly
loaded system, there can be issues with starvation and fairness in a moderate to heavily loaded system.

Most practical scheduling algorithms in modern processors try to maximise performance by minimising
the waiting time, and simultaneously also try to not compromise on fairness significantly.

10.5 Emerging Memory Technologies

The single largest criticism of modern DRAM memory is that it is volatile in nature. This means that when
we turn the power off, a DRAM chip loses all of its data. It thus cannot be used as a persistent storage
medium. The next time that we restart the machine, it will be necessary to repopulate the DRAM by
reading all the pages that it needs to have from the disk. This increases the system startup time and induces
page faults during execution. Wouldn’t it be nice to have a memory that is nonvolatile in nature? This
means that it will not lose its data when the power is switched off. In this section, we shall look at the basic
physics, and the design of such nonvolatile memories, henceforth referred to as NVMs.

To design a nonvolatile memory device, it needs to have two distinct permanent states. As long as we can
switch the device from one state to the other and back, we have a functional memory cell. These memory
cells can then be interconnected to create a memory array, which can then be connected to the CPU via a
set of memory channels. In this section, we shall look at different kinds of nonvolatile memories.

Please note that a nonvolatile memory is a storage device, which is meant to permanently store data.
We still require regular DRAM memories for speed and efficiency. Nonvolatile memories compete with hard
disks and other forms of slow secondary storage. Moreover, a nonvolatile memory can be used as a fast cache
for a hard disk. Additionally, it can be used in critical applications where we do not want to spend any time
in reading cold data from the disk.

571 Smruti R. Sarangi

Definition 91

• A memory is said to be volatile when it loses its data after the power is switched off. DRAM
memory is an example of a volatile memory.

• In comparison, a memory is said to be nonvolatile if it does not lose its data when the power is
switched off. The most popular example of such memory is flash memory that we have in USB
sticks. Nonvolatile memories will be referred to as NVMs henceforth.

10.5.1 Flash Memory

Hard disks and optical drives are fairly bulky, and need to be handled carefully because they contain sensitive
mechanical parts. An additional shortcoming of optical storage media is that they are very sensitive to
scratches and other forms of minor accidental damage. Consequently, these devices are not ideally suited
for portable and mobile applications. We need a storage device that does not consist of sensitive mechanical
parts, can be carried in a pocket, can be attached to any computer, and is extremely durable. Flash drives
such as USB pen drives satisfy all these requirements. A typical pen drive can fit in a wallet, can be attached
to all kinds of devices, and is extremely robust and durable. It does not lose its data when it is disconnected
from the computer. We have flash based storage devices in most portable devices, medical devices, industrial
electronics, disk caches in high end servers, and small data storage devices. Flash memory is an example of an
EEPROM (Electrically Erasable Programmable Read Only Memory) or EPROM (Erasable Programmable
Read Only Memory). Note that traditionally EPROM based memories used ultraviolet light for erasing
data. They have been superseded by flash based devices.

Let us look at flash based technology in this section. The basic element of storage is a floating gate
transistor.

The Floating Gate Transistor

Source Drain
SiO2 Floating gate

Control gate

Symbol

(a) (b)

Figure 10.27: A floating gate transistor

Figure 10.27 shows a floating gate transistor. The figure shows a regular NMOS transistor with two gates
instead of one. The gate on top is known as the control gate, and is equivalent to the gate in normal MOS
transistors. The gate below the control gate is known as the floating gate. It is surrounded on all sides by

Smruti R. Sarangi 572

an SiO2 based electrical insulation layer. Hence, the floating gate is electrically isolated from the rest of
the device. By some means if we are able to implant a certain amount of charge in the floating gate, then
the floating gate will maintain its potential for a very long time. In practice, there is a negligible amount of
current flow between the floating gate and the rest of the components in the floating gate transistor under
normal conditions.

Let us now consider two scenarios. In the first scenario, the floating gate is not charged. In this case,
the floating gate transistor acts as a regular NMOS transistor. In the second scenario, the floating gate
has accumulated electrons containing negative charge (we will discuss how this can happen later). Then
we have a negative potential gradient between the channel and the control gate. Recall that to create an
n-type channel in the transistor, it is necessary to apply a positive voltage to the gate, where this voltage
is greater than the threshold voltage. In this case, the threshold voltage is effectively higher because of the
accumulation of electrons in the floating gate. In other words, to induce a channel to form in the substrate,
we need to apply a larger positive voltage at the control gate.

Let the threshold voltage when the floating gate is not charged with electrons be VT , and let the threshold
voltage when the floating gate contains negative charge be V +

T (V +
T > VT). If we apply a voltage that is in

between VT and V +
T , then the NMOS transistor conducts current if no charge is stored in the floating gate.

Otherwise if charge is stored, the threshold voltage V +
T of the transistor is greater than the gate-to-source

voltage, and thus the transistor is in the off state. It thus does not conduct any current. We typically
assume that the default state (no charged electrons in the floating gate) corresponds to the 1 state. When
the floating gate is charged with electrons, we assume that the transistor is in the 0 state.

Now, to write a value of 0 or program the transistor, we need to deposit electrons in the floating gate.
This can be done by applying a strong positive voltage to the control gate, and a smaller positive voltage
to the drain terminal. Since there is a positive potential difference between the drain and source, a channel
gets established between the drain and source. The control gate has an even higher voltage, and thus the
resulting electric field pulls electrons from the n-type channel and deposits some of them in the floating gate.

Similarly, to erase the stored 0 bit, we apply a strong negative voltage between the control gate and the
source terminal. The resulting electric field pulls the electrons away from the floating gate into the substrate
and source terminal. At the end of this process, the floating gate loses all its negative charge, and the flash
device comes back to its original state. It now stores a logical 1.

To summarise, programming a flash cell means writing a logical 0, and erasing it means writing a logical
1. There are two fundamental ways in which we can arrange such floating gate transistors to make a basic
flash memory cell. These methods are known as NOR flash and NAND flash respectively.

NOR Flash

Figure 10.28 shows the topology of a 2-transistor NOR flash cell that saves 2 bits. Each floating gate
transistor is connected to a bit line on one side and to the ground on the other side. The control gates are
connected to distinct word lines. After we enable a floating gate transistor (set the voltage of the control
gate to somewhere between VT and V +

T), it pulls the bit line low if it stores a logical 1, otherwise it does
not have any effect because it is in the off state. Thus the voltage transition in the bit line is logically the
reverse of the value stored in the transistor. The bit line is connected to a sense amplifier that senses its
voltage, flips the bit, and reports it as the output. Similarly, for writing and erasing we need to set the word
lines and bit lines to appropriate voltages. The advantage of a NOR flash cell is that it is very similar to a
traditional DRAM cell. We can build an array of NOR flash cells similar to a DRAM array.

NAND Flash

A NAND flash cell has a different topology. It consists of a set of NMOS floating gate transistors in
series similar to series connections in CMOS NAND gates (refer to Figure 10.29). There are two dedicated
transistors at both ends known as the bit line select transistor and ground select transistor, respectively. A
typical array of transistors connected in the NAND configuration contains 8 or 16 transistors. To read the
value saved in a certain transistor in a NAND flash array, there are three steps. The first step is to set the

573 Smruti R. Sarangi

WL1

WL2

Bit
line

Figure 10.28: NOR Flash Cell

Bit line
selectWL4 WL3 WL2 WL1WL8 WL7 WL6 WL5

Ground
select

Bit line

Figure 10.29: NAND flash cell

gate voltages of the ground select and bit line select transistors to a logical 1 such that they are conducting.
The second step is to set the voltages of the control gates of the rest of the floating gate transistors other
than the one we wish to read by setting their word line voltages to V +

T . Finally, we need to read the specific
transistor by setting its word line voltage to some value between VT and V +

T . If the cell is not programmed
(contains a 1), it drives the bit line low, otherwise it does not change the voltage on the bit line. Sense
amplifiers infer the value of the logical bit saved in the transistor. Such arrays of floating gate transistors
known as NAND flash cells are connected in a configuration similar to NOR flash cells.

This scheme might look complicated at the outset; however, it has a lot of advantages. Consequently,
most of the flash devices in use today use NAND flash memories instead of NOR flash memories. The bit
storage density is much higher. A typical NAND flash cell uses a lesser number of wires than a NOR flash cell
because all the floating gate transistors are directly connected to each other, and there is just one connection
to the bit line and ground terminal. Hence, NAND flash memories have at least 40-60% higher density as
compared to NOR flash cells. Of course, accessing a single cell is more complicated. Nevertheless, given the
advantages in storage density, market economics has chosen the NAND flash cell.

Smruti R. Sarangi 574

Blocks and Pages

The most important point to note here is that a (NAND) flash memory device is not a memory device, it is
a storage device. Memory devices provide word-level access. In comparison, flash devices typically provide
page-level access, where a page’s size can be between 512-4096 bytes. Note that a page as defined here is
different from a page in virtual memory. Due to temporal and spatial locality in accesses to flash media, the
working set of most programs is restricted to a small number of pages.

Page-level access to flash media is typically not very inefficient. This is because of the following reason.
To reduce the number of accesses to storage devices, most operating systems have in-memory storage caches
such as hard disk caches. Most of the time, the operating system reads and writes to the in-memory caches.
This reduces the I/O access time. Such caches are typically large contiguous regions in physical memory,
and thus they can be read or written in bulk – at the level of pages. This naturally aligns with the page-level
access paradigm of flash devices. Let us look at an example.

After certain events, it is necessary to synchronise the cache with the underlying storage device. For
example, after executing a sync() system call in Linux, the hard disk cache writes its updates to the hard
disk. Depending on the semantics of the operating system, and file system, writes are sent to the underlying
storage media after a variety of events. For example, when we right click on the icon for a USB drive in the
“My Computer” screen on Windows and select the eject option, the operating system ensures that all the
outstanding write requests are sent to the USB device. This is a bulk operation and uses page-level I/O.

On a humorous note, most of the time users simply unplug a USB device. This practice can occasionally
lead to data corruption, and unfortunately your author has committed this mistake several times. This is
because, when we pull out a USB drive, some uncommitted changes are still present in the in-memory cache.
Consequently, the USB pen drive contains stale and possibly half-written corrupted data. Hence, don’t do
this !!!

Data in NAND flash devices is organised at the granularity of pages and blocks. Note: the connotation
of the term block is different here, its definition is specific to flash devices. As we have discussed, a page of
data typically contains 512 – 4096 bytes (in powers of 2). Most NAND flash devices can typically read or
write data at the granularity of pages. Each page additionally has extra bits for error correction based on
CRC codes. A set of pages are organised into a block. Blocks can contain 32 – 128 pages, and their total
size ranges from 16 – 512 KB. Most NAND flash devices can erase data at the level of blocks.

Let us now look at some of the salient points of NAND flash devices.

Program/Erase Cycles

Writing to a flash device essentially means writing a logical 0 bit since by default each floating gate transistor
contains a logical 1. In general, after we have written data to a block, we cannot write data again to the
same block without performing additional steps. For example, if we have written 0110 to a set of locations
in a block, we cannot write 1001 to the same set of locations without erasing the original data. This is
because, we cannot convert a 0 to a 1 without erasing data. Erasing is a slow operation and consumes a lot
of power. Hence, the designers of NAND flash memories decided to erase data at large granularities, i.e., at
the granularity of a block. We can think of accesses to flash memory as consisting of a program phase, where
data is written at the granularity of pages, and an erase phase, where the data stored in all the transistors
of the block is erased. After an erase operation, each transistor in the block contains a logical 1. We can
have an indefinite number of read accesses between the program phase, and the erase phase. Let us define
a new term here: a pair of program and erase operations is known as a program/erase cycle or P/E cycle.

Unfortunately, flash devices can endure a finite number of P/E cycles. As of 2020, this number is between
50,000 to 150,000. This is because each P/E cycle damages the silicon dioxide layer surrounding the floating
gate. There is a gradual breakdown of this layer, and ultimately after hundreds of thousands of P/E cycles
it does not remain an electrical insulator anymore. It starts to conduct current and thus a flash cell loses its
ability to hold charge. This gradual damage to the insulator layer is known as wear and tear. To mitigate
this problem, designers use a technique called wear levelling.

575 Smruti R. Sarangi

Wear Levelling

The main objective of wear levelling is to ensure that accesses are uniformly distributed across blocks. If
accesses are non-uniformly distributed, then the blocks that receive a large number of requests will wear out
faster, and develop faults. Since data accesses follow both temporal and spatial locality, we expect a small
set of blocks to be accessed most often. This is precisely the behaviour that we wish to prevent. Let us
further elaborate with an example. Consider a pen drive that contains songs. Most people typically do not
listen to all the songs in a round robin fashion. Instead, they most of the time listen to their favourite songs.
This means that a few blocks that contain their favourite songs are accessed most often and these blocks
will ultimately develop faults. Hence, to maximise the lifetime of the flash device, we need to ensure that
all the blocks are accessed with roughly the same frequency. This is the best case scenario, and is known as
wear levelling.

The basic idea of wear levelling is that we define a logical address and a physical address for a flash
device. A physical address corresponds to the address of a block within the flash device. The logical address
is used by the processor and operating system to address data in the flash drive. Every flash device contains a
circuit that maps logical addresses to physical addresses. Now, we need to ensure that accesses to blocks are
uniformly distributed. Most flash devices have an access counter associated with each block. This counter
is incremented once every P/E cycle. Once the access count for a block exceeds the access counts of other
blocks by a predefined threshold, it is time to swap the contents of the frequently accessed block with another
less frequently accessed block. Flash devices use a separate temporary block for implementing the swap.
First, the contents of block 1 are copied to it. Subsequently, block 1 is erased, and the contents of block 2
are copied to block 1. The last step is to erase block 2, and copy the contents of the temporary block to
it. Optionally, at the end, we can erase the contents of the temporary block. By doing such periodic swaps,
flash devices ensure that no single block wears out faster than others. The logical to physical block mapping
needs to be updated to reflect the change.

Definition 92
A technique to ensure that no single block wears out faster than other blocks is known as wear levelling.
Most flash devices implement wear levelling by swapping the contents of a block that is frequently accessed
with a block that is less frequently accessed.

Read Disturbance

Another reliability issue in flash memories is known as read disturbance. If we read the contents of one
page continuously, then the neighbouring transistors in each NAND cell start getting programmed. This is
because the control gate voltage of the neighbouring transistors needs to be greater than V +

T such that they
can pass current. Note that in this case, the voltage of the gate is not as high as the voltage that is required
to program a transistor, and it also lasts for a shorter duration. Nonetheless, a few electrons do accumulate
in the floating gate. After thousands of read accesses to just one transistor, the neighbouring transistors
start accumulating negative charge in their floating gates, and ultimately get programmed to store a 0 bit.

To mitigate this problem, we can start out with having a read counter with each page or block. If the
read counter exceeds a certain threshold, then the flash controller needs to move the contents of the block to
another location. Before copying the data, the new block needs to be erased. Subsequently, we transfer the
contents of the old block to the new block. In the new block, all the transistors that are not programmed
start out with a negligible amount of negative charge in their floating gates. As the number of read accesses
to the new block increases, transistors start getting programmed. Before we reach a threshold, we need to
migrate the block again.

Smruti R. Sarangi 576

10.5.2 Ferroelectric RAM (FeRAM)

Basic Physics

Ferroelectric RAM (or FeRAM) is a strong competitor of flash memory. It was commercialised way back
in 1998, and it has been available ever since. It is in principle similar to a DRAM cell. Each FeRAM cell
has one transistor and one capacitor. However, the capacitor is special, instead of using a normal dielectric
material, it uses a ferroelectric dielectric. A ferroelectric dielectric is made of a ferroelectric material such
as lead zirconate titanate (PbZrO3 + PbT iO3), popularly known as PZT, barium titanate (BaTiO3), or
strontium bismuth tantalate SrBi2Ta2O9 (SBT).

These materials exhibit the phenomenon of ferroelectricity. Its explanation is as follows. In general, when
we apply an electric field across a dielectric, the electrons get displaced towards the positive pole and the
positively charged ions get displaced towards the negative pole. As a result, there is a net electrical dipole
moment. This means that the centre of the positively charged elements and the centre of the negatively
charged elements do not coincide. There is a separation between them, which results in an electric field. The
product of the charge (positive or negative) with the distance is known as the dipole moment. Polarisation
is defined as the dipole moment per unit volume.

For most materials, the degree of polarisation that is induced by an externally applied electric field
is linearly proportional to it. Additionally, when the electric field is removed the polarisation becomes
zero. However, ferroelectric materials are an exception to this rule. As shown in Figure 10.30, there is a
certain degree of hysteresis in the relationship between the applied electric field and the degree of induced
polarisation. Particularly, it is possible that even when the electric field is zero, the material can have an
inherent polarisation. Here, the degree of polarisation depends on the history of how the electric field across
the medium has varied in the past, we say that there is a certain degree of hysteresis to it, which is clearly
visible in Figure 10.30.

+Vdd

-Vdd

Polarisation

Voltage

1

0

A

B

D

C

E

F

Figure 10.30: Hysteresis loop of polarisation vs voltage in a ferroelectric capacitor

Consider a point of time when we are at point A (in Figure 10.30). The applied voltage is −Vdd. Then
as we increase the voltage and the voltage becomes zero, we arrive at point B. Note that at this point,
the applied voltage is zero, still there is an inherent polarisation. Then as we increase the voltage towards
+Vdd, we arrive at point C where the degree of polarisation is zero, and finally when the voltage is +Vdd,
we arrive at point D. Now as we decrease the voltage we do not follow the same path, rather we follow a

577 Smruti R. Sarangi

different path. This is a characteristic of all systems that exhibit some degree of hysteresis. For example, as
we reduce the voltage to 0, we start arriving at point E. At this point, there is a certain amount of inherent
polarisation, which the device seems to remember. Finally with a further decrease in the voltage across the
capacitor, we first arrive at point F , and then when the voltage reaches −Vdd, we arrive at point A (the
same point at which we started).

The key point to note here is that there is a notion of a state associated with the dielectric material.
When the electric field is zero there are two states B and E, where it can either have a positive polarisation
or a negative polarisation: these can correspond to different logical states (0 and 1). FeRAMs use this
property to store data: a negative polarisation is a logical 1 (point B) and a positive polarisation is a logical
0 (point E).

FeRAM Cell

Now that the basic physics has been established, the next step is to create a functioning device out of an
FeRAM cell. Figure 10.31 shows the design of an FeRAM cell. Akin to a DRAM cell, each FeRAM cell has
a bit line and a word line. The bit line is connected to one of the terminals of the access transistor, which
is controlled by the word line. The other terminal of the access transistor is connected to the ferroelectric
capacitor, which is made by sandwiching a layer of ferroelectric material with two metal electrodes typically
made of platinum or iridium.

WL (Word line)

PL (Plate line)

BL (Bit line)

Sense amp.

Ferroelectric
capacitor

Figure 10.31: An FeRAM Cell

Note that here there is a major difference as compared to DRAM cells. The other terminal of the
ferroelectric capacitor is connected to a plate line (PL), instead of being connected to ground. We can
independently control the voltages on the bit line and the plate line. Furthermore, note that the convention
is that the voltage across the capacitor is considered to be positive if the voltage on the plate line is greater
than the voltage on the bit line. It is necessary to have a separate plate line because we need to create both
positive and negative voltages across the capacitor.

Smruti R. Sarangi 578

Let us now look at the basic read and write operations. We shall describe the write operation first because
it is easier.

The Write Operation

To write a value, all that we need to do is set appropriate voltages on the bit line (BL) and the plate line
(PL), after setting the word line. For example, when we want to write a 0, we need to ensure that the
dielectric is positively polarised. This can be done by increasing the voltage of the plate line to Vdd, and
setting BL = 0 V. To write a logical 1, we need to do the reverse. We need to set BL = Vdd, and PL = 0 V,
which also means that as per our convention, the voltage across the two terminals of the capacitor is equal
to −Vdd. After doing this, if we set the word line to 0, the dielectric will move to any one of the stable states:
logical 0 (point E) or logical 1 (point B).

The Read Operation

The read operation is slightly more tricky. In this case, we set PL = Vdd, and set the voltage on the bit line
(BL) to 0 V. After this, we enable the word line. There are two choices: either the cell stores a logical 0
or a logical 1. Assume it stores a logical 0, then it will move from point E to D, and this will increase the
polarisation of the capacitor. This will cause a net current outflow from the cell into the bit line, which will
increase its voltage. Let this increase in voltage be ∆V0.

Next, let us consider the other case where the cell stores a logical 1. In this case the movement will be
from B to D. This will lead to a reversal in the polarisation. This can happen only if there is a net current
flow down the bit line, which will charge a few capacitors along the way and raise the potential of the bit
line to ∆V1. We expect that ∆V1 > ∆V0 from the shape of the hysteresis curve as shown in Figure 10.30.

The sense amplifier can thus be tuned to sense a voltage that is between ∆V0 and ∆V1. Akin to a DRAM
array, subsequent stages can buffer the logical values that were read and send them on the bus to the memory
controller.

We have a special case if the cell contained a logical 1. In this case, we will move from point B to D.
Once the electric field is removed, because of the nature of the hysteresis curve, we will arrive at point E,
which actually corresponds to a logical 0. We thus observe that when the cell stores a logical 1, we have a
destructive read. However, if the cell stores a logical 0, we move from E to D, and back to E again when
the access transistor is disabled. Thus in this case, the read is not destructive. Sadly, in the former case,
when the cell stores a logical 1, it is necessary to write the value back again (similar to DRAMs).

Comparison vis-a-vis DRAM and Flash

Even though FeRAM memories have been around for a long time, they have not gained the kind of popularity
that flash memories have gained. There are many reasons for this. Let us analyse some of the important
ones.

The first is that flash memories use the regular silicon fabrication process to a large extent. They
are not dependent on special fabrication processes or special materials. However in this case, we need
to integrate materials such as PZT or SBT in the fabrication process. This requires us to create new
fabrication facilities and also these materials are associated with a lot of contamination issues. Another
important factor that prevented the FeRAM technology from scaling is that researchers could not build an
analogue for trench capacitors or very small stacked capacitors using PZT-based dielectrics, thus preventing
their further miniaturisation. Moreover, it was observed that as we reduce the size of the dielectric, its
ferroelectric properties diminish significantly.

The FeRAM technology however does have its advantages. Unlike DRAM arrays it does not need periodic
refreshes, which helps save a lot of power. Furthermore, unlike flash where writing is a very expensive
operation, in this case we can write to cells very easily and the energy difference between writes and reads is
minimal. FeRAM also has much more endurance than flash memories. An FeRAM cell can support at least
up to 1012 read/write cycles as compared to just 105 cycles for flash memory cells as of 2020.

579 Smruti R. Sarangi

10.5.3 Magnetoresistive RAM (MRAM)

MRAMs stand for magneto-resistive random access memories.

MRAM Cell

An MRAM cell has three layers: two ferromagnetic layers that are separated by a very thin layer made of an
electrical insulator. One of the ferromagnetic layers is known as the pinned layer because the direction of its
magnetisation is fixed. The other layer is known as the free layer because the direction of its magnetisation
can be changed by applying a magnetic field. This is shown in Figure 10.32. There are thus two states
of this device. If the magnetic fields of both the ferromagnetic layers are aligned, then we call this the
parallel state, otherwise if the fields are in opposite directions, then we call this the anti-parallel state.
Figure 10.32 shows an avatar of the device where the magnetic field lines are in the same plane as the
thin film separating the ferromagnetic layers. These devices are increasingly giving way to devices where
the direction of magnetisation is perpendicular to the plane of the film. For the sake of simplicity, we shall
describe the former approach. Note that the method of operating the cell is the same for both the approaches.

Pinned layer

Insulating layer

Free
layer

Figure 10.32: Structure of an MRAM cell

Since the insulating layer (often made from MgO) is very thin, typically 1-2 nanometers thick, a quantum
mechanical effect called tunnelling magnetoresistance (TMR) is seen. It is possible for electrons to jump from
one ferromagnetic layer to the other layer, even though this is forbidden by the rules of classical physics.
This means that if there is a voltage difference between the two ferromagnetic layers, a current can flow
through the MRAM cell. Specifically, the current through the insulator will flow because of the TMR effect,
which acts as a resistive element. The greatness of this device is that the resistance of the cell is a function
of the orientation of the magnetic field of the free layer. If the cell is in the parallel state (the pinned layer
and the free layer have the same direction of magnetisation), then the resistance is low, and if the cell is
in an anti-parallel state (opposite directions of magnetisation), then the resistance is high. We assume that
low resistance means a logical 1 and high resistance means a logical 0. Measuring the resistance is easy
(sense the voltage with a fixed current or vice versa) and thus reading the value stored in the cell is fairly
straightforward.

However, the main challenge is to create a mechanism such that we can write to the cell efficiently, which
means that we need to be able to generate a magnetic field that can set the direction of the magnetic field
in the free layer. The traditional approach was to create a magnetic field by passing a very high current; the
main problem is that such approaches do not scale with decreasing feature sizes and it is possible that the
value stored in the nearby cells gets perturbed. Hence, a new avatar of such devices has been proposed that
also relies on nanoscale effects, albeit in a different manner.

STT-MRAMs

These are called spin-transfer torque (STT) devices, or STT-MRAMs. Recall from high school physics that
electrons are associated with an angular momentum, which is known as the spin. In quantum mechanical

Smruti R. Sarangi 580

terms, the spin can take two values: +1/2 and −1/2. Furthermore, if any charged particle like an electron
has an associated angular momentum, then it also has an associated magnetic moment. In general, if we
consider electric current as a stream of electrons flowing along the wire, half of them will have a positive spin
(+1/2) and half of them will have a negative spin (−1/2). However, if we pass an electric current through
a magnetised medium such as the pinned layer of an MRAM cell, we can produce spin-polarised current,
where a majority of electrons have the same type of spin. Furthermore, when this current passes through
the insulating layer and reaches the free layer, it is possible for it to transfer some of its spin (or angular
momentum) to the electrons in that layer. This can flip the direction of its magnetic field, and we can thus
program the memory cell. The process of transferring this angular momentum is also known as applying
a torque to the electrons in the free layer. Hence, the name of this device is a spin-transfer torque device.
In terms of both latency and power, this technique is far superior to previous approaches that use large
magnetic fields to set the state of an MRAM cell. Let us delve into the details.

The Write Operation

Bit line

Free layer

Pinned layer

Select
line

Word
line

Figure 10.33: Design of an MRAM cell [Kawahara et al., 2012]

Figure 10.33 shows the design of an MRAM cell. The free layer of an MRAM cell is connected to the bit
line, and the pinned layer is connected to the select line via an access transistor. Let us look at the process
of programming a cell. Recall that when the cell is in the parallel (P) state (directions of magnetisation are
the same), we store a logical 1; when the cell is in an anti-parallel (AP) state (high resistance), we store a
logical 0.

To switch from the AP to the P state, electrons need to flow from the pinned layer to the free layer. This
is because as they pass through the pinned layer their spins get polarised (most of them in one direction).
Subsequently, as they tunnel through the MgO layer, and enter the free layer, they transfer some of the spin
torque to magnetise the free layer in the direction of the pinned layer. To achieve this, we need to have the
bit line at a higher potential as compared to the select line such that current flows from the bit line to the
select line.

581 Smruti R. Sarangi

Now to move from the P to the AP state, we pass electrons in the reverse direction – from the free layer
to the pinned layer. This is achieved by setting the potential of the select line higher than the bit line. In
this case, the electrons pass through the free layer first. The electrons that have the same spin direction as
the direction of magnetisation in the pinned layer seamlessly pass through. However, a fraction of electrons
that do not have the same spin direction, bounce back. They get reflected from the MgO-pinned layer
boundary. Gradually, more and more such electrons accumulate in the free layer. They transfer their torque
to electrons in the free layer, and the direction of the magnetisation in the free layer gets reversed. Thus the
free layer’s magnetisation changes its direction, and the cell enters the AP state.

Pros and Cons

The STT-MRAM cell has several advantages. The leakage current, which is the current that flows through
the cell even when it is inactive is almost zero. As we shall see in Chapter 11, this is not the case in
conventional SRAM and DRAM memories. For them, the leakage power is a major component of the overall
power consumption. Additionally, the current requirements to read or write an STT-MRAM cell are low.

A major disadvantage of this device is that it is not as fast as a traditional DRAM cell. The reason is
that a DRAM cell relies on fast electrical switching, whereas in this case, there is an interaction of magnetic
and quantum mechanical effects. For example, to write a value it is necessary to wait till the magnetic field
in the free layer reverses and reaches a certain strength. Similarly, to read a value it is necessary to sense the
resistance of the cell, where the main issue is that the difference in the resistances of the two states might be
as low as 20%. This requires a sophisticated sensing circuit. In addition, thermal stability of such memory
cells is an issue, particularly, when there are large variations in die temperature.

Notwithstanding such concerns, STT-MRAMs as of today are considered fairly mature technology; they
have relatively fast read and write times and a very high endurance. There are challenges in large-scale
production (as of 2020), however it is expected that in the coming years many of these issues will be solved.

10.5.4 Phase Change Memory (PCM)

Basic Physics

Another popular memory technology is Phase Change Memory (known as PCM). It encodes information
in the phase of a material, which is typically a chalcogenide glass. A chalcogenide glass is an amorphous
solid that is made of one or more chalcogen elements such as sulfur, selenium, or tellurium. One of the most
popular materials for making phase change memory is GeSbTe (germanium-antimony-tellurium) abbreviated
as GST.

Unlike the memory cells that we have seen up till now, the PCM memory cell changes its state based
on its temperature. It has two states: amorphous and crystalline. In the amorphous state, it has a high
resistance (logical 0), and in the crystalline state it has a low resistance (logical 1). The reason that a
material made of GST has a low resistance in the crystalline state is because there is a lot of order in the
structure and there are a lot of free electrons to carry current. The situation in the amorphous state is the
reverse, hence it has a high resistance.

Given that the PCM cell has two states, we need a method to switch between the states. All previous
technologies have relied on the injection of electric current to either deposit charge, or induce magnetism
in a material. A PCM cell also relies on current injection, however the current is required to change the
temperature such that the material melts and then either transforms to the amorphous state or to the
crystalline state. Whenever we apply a short and high amplitude current pulse, the material melts quickly
and then rapidly transitions to the amorphous state. This sets the value stored in the cell to a logical 0,
and resets it. On the other hand, if we apply a low amplitude and long current pulse, then the material
crystallises. The cell stores a logical 1. This current is known as the set current, which sets the value stored
in the cell.

Let us quickly deduce the properties of a PCM cell from its basic physics. Given that it stores data in
the phase of the material, it can hold its data for a very long time. Commercially available PCM devices

Smruti R. Sarangi 582

as of 2020 can hold their data for at least 10 years. In addition, it allows us to directly overwrite the value
of a cell, quite unlike flash memory where we erase data at the level of blocks. Finally, unlike DRAM and
FeRAM cells, reads are not destructive. The structure of a basic cell is shown in Figure 10.34.

Bottom
electrode

Heater
(resistance)

Crysalline GST

Programmable
region

Top electrode

Figure 10.34: Design of a PCM cell

Several improvements have been proposed to the basic PCM cell. For example, it is possible to store
multiple bits in a single cell. Between a fully crystalline and a fully amorphous state, we can have two more
partially crystalline states, and thus we can realise a total of four states, which are sufficient to encode two
Boolean bits. This further increases the density of storage.

Read and Write Operations

A PCM cell is typically a 1T1R (1 transistor, 1 resistor device) as shown in Figure 10.35. The access
transistor (controlled by the word line) is connected to one end of the cell, and the other end of the cell is
connected to the bit line.

Word
line

PCM
cell

Bit
line

Figure 10.35: A PCM cell connected to the word line and bit line

The read process is simple. We precharge the bit line, and then enable the access transistor. If it is
in the low resistance state, then the bit line discharges quickly. This can be sensed using sense amplifiers.
Conversely, if it is in the high resistance state, then the voltage after a certain period of time is much higher.

The write operation is dependent on whether we are setting (writing a 1), or resetting the cell (writing
a 0). If we are writing a logical 1, then we need to move the state of the chalcogenide material to the
low-resistive crystalline state using a low current for a relatively long time. However, if we are resetting
the state of the cell (setting to a logical 0), then we need to provide a short high-amplitude current pulse.
Finally, note that unlike DRAMs, reads in PCM are not destructive, and there is no need for restoring the
state.

583 Smruti R. Sarangi

Dealing with Slow Writes

In PCM, writes are slow. It takes time to change the state of the chalcogenide material. Particularly, if we
are changing the state from the amorphous to the crystalline state, then we need to supply a write current
for a long duration of time. During this time the bank cannot be used for servicing any other request. Often
writes are not on the critical path, however reads are very often on the critical path.

At the level of the memory controller, we can reduce the priority of writes, implement a DRAM based
write cache, and discard ineffectual writes. An ineffectual write operation has no effect. For example, if we
are successively writing two values to the same location, then the first write operation is ineffectual.

There are two more sophisticated methods of dealing with slow write operations: write cancellation and
write pausing. Assume that a write operation is in progress, and a high-priority read arrives. We can
immediately cancel the write in the middle of the operation by deasserting the write enable signal of the
PCM device. This will stop the write midway, and the state of the cell will be in a non-deterministic state.
This is not necessarily a problem because we always know what we were writing, and this value can be stored
in a write buffer till the write is finally completed at a later point of time. This allows us to immediately
service the read request.

Another method in this space is write pausing. In modern PCM cells, the time of a write operation
becomes more and more non-deterministic over time because of the varying rates of crystallisation of the
devices based on how much they have been used. Moreover, if we are using a PCM cell that can store
multiple logic levels, this process is even more complicated. Hence, the conventional approach to deal with
this problem is that we perform a write iteratively. For one iteration, we apply the write current, and then
verify if the value has been correctly written. If it has not been correctly written, then we start the next
iteration, and keep doing this till the value is correctly written. Let us say that when we have completed an
iteration, a high-priority read arrives. Then we can pause the next iteration of the write, service the read,
and then come back and complete the rest of the iterations for the write operation. This allows us to service
requests with minimal delay.

Reliability and Endurance

High write currents and thermal cycling in the chalcogenide material reduce the reliability of the PCM device
significantly. Similar to flash memory, the standard approach for dealing with such problems is wear levelling.
This means that we ensure that all the banks in the PCM array are equally accessed. We need to create a
mapping between the CPU generated addresses, and the internal PCM addresses, and keep updating this
mapping to ensure that all the PCM blocks are roughly equally accessed. Note that we care about writes
more than reads, because writes are more intense operations in PCM memory.

An important approach in the space is start-gap wear levelling. In this technique, we periodically move
each block L to another block L′, where there is a one-to-one mapping between them. It can be proven
that if we do this, all the locations are roughly equally accessed. A simple function can be L′ = L + 1. It
is possible to work out more complicated functions that are based on cryptographic primitives and provide
better guarantees.

10.5.5 Resistive RAM (ReRAM)

Basic Physics

ReRAMs or resistive RAMs rely on the resistive switching phenomenon. This phenomenon is observed in
several metal oxides (such as NiO or TiOx), where the resistance is a function of the history of the voltage
applied across the material. To create a nonvolatile memory, we need to have two physical states that are
stable. For such materials we can have a high resistance state (HRS) and a low resistance state (LRS).

Similar to the other nonvolatile memory cells, a ReRAM cell also contains a metal oxide layer sandwiched
between two electrodes (see Figure 10.36). The metal oxide layer is typically a transition metal oxide or
titanium nitride, and the electrodes are made of Pt (Platinum), Ir (Iridium), or Ag (silver). Depending

Smruti R. Sarangi 584

upon the history of the voltage that is applied between the electrodes, the resistance varies. The I-V curve of
such devices typically shows a certain degree of hysteresis, this is why we observe two distinct physical states
(explained later). The HRS state corresponds to a logical 0, and the LRS state corresponds to a logical 1.
The process of changing the state from HRS to LRS (0→ 1) is known as the set process. The reverse process
(1→ 0) is known as the reset process.

Top electrode

Bottom electrode

Metal oxide

Figure 10.36: Basic ReRAM cell

Reading such a cell is easy; we just need to apply a small voltage and measure the current. Let us now
discuss the two main types of ReRAM cells: Redox ReRAMs, and CBRAMs.

Redox ReRAMs

The most important charge transport mechanism in such ReRAMs is the filamentary conduction mechanism.
As per this mechanism, when we apply a large voltage across the electrodes, tiny conducting filaments form
between the two electrodes; these filaments can carry current and thus the cell enters the low resistance state.
If we can somehow destroy these filaments, the cell will enter the high resistance state. Let us elaborate.

In a Redox ReRAM, the mechanism is as follows. Let us assume that the material in the middle metal
oxide layer is of the form V O2. Here, V is a transition metal. Similar to electrons and holes, here also we
have two kinds of charge carriers: O2− ions and oxygen vacancies (Vo). An oxygen vacancy is similar to a
hole in device physics, and is a positively charged quantity. Let us now look at the different phases of a
Redox ReRAM.

At the beginning, the density of oxygen vacancies is low. Then each cell needs to go through the forming
phase. In this case, we apply a large potential across the electrodes. Dielectric breakdown takes place and
the negatively charged O2− ions move towards the anode. Meanwhile the oxygen vacancies stay back in the
metal oxide layer. Near the anode we have an excess of negatively charged oxygen ions. If the material of
the anode electrode reacts with oxygen ions then an oxide layer forms on top of the anode. These ions are
thus effectively removed from the metal oxide layer.

The oxygen vacancies in the metal oxide layers align themselves along the electric field and form a
conductive filament. This is a conducting path that can carry current, and thus the cell enters the low
resistance state (LRS). This is shown in Figure 10.37. This is the set process. Typically, the oxide layer at
the anode is amorphous in nature and has large-sized grains. The filaments form at the grain boundaries.

Let us now look at the reset process. In this case, we need to break the filaments that have been created
such that the cell enters the high resistance state. There are two mechanisms in this space. We can either

585 Smruti R. Sarangi

Anode

Cathode

O2- ion

Oxygen
vacancyFilament

Figure 10.37: Filament in a Redox ReRAM cell

have unipolar switching or bipolar switching. In unipolar switching only the magnitude of the voltage is
important, whereas in bipolar switching the sign of the voltage (positive or negative) is also important. In
the case of unipolar switching, we send a high reset current through the conducting filament. This causes
localised heating (Joule heating). The O2− ions that are trapped at the anode get displaced and they
combine with the oxygen vacancies in the filament effectively rupturing it.

In the case of bipolar switching we have a smaller reset current. We apply a negative voltage at the
anode, which pushes the O2− ions towards the metal oxide layer. They combine with oxygen vacancies and
rupture the filament. The cell thus enters the high resistance state (logical 0). The next time that we want
to set the value of the cell, we apply a positive voltage at the anode again. This attracts the negatively
charged oxygen ions leaving oxygen vacancies in the metal oxide layer. The filament forms again. Given
that we have a series of Redox (oxidation-reduction) reactions, this cell is known as a Redox ReRAM.

Let us quickly summarise what we have learnt in Point 20.

Important Point 20

• In a Redox ReRAM, to enter the low resistance state, we apply a positive voltage to the cell. The
negatively charged oxygen ions migrate towards the anode and get deposited over there. In some
cases, they might also react with the material in the anode electrode and form an oxide layer. In
the metal oxide layer, the remaining oxygen vacancies align themselves along the electric field and
form a conductive filament.

• To rupture this filament there are two mechanisms: unipolar switching and bipolar switching.

• In unipolar switching we apply a large positive voltage to the anode. Because of the large current
flow and resultant Joule heating, some of the oxygen ions get dislodged and move towards the
conducting filament. They combine with oxygen vacancies and break the filaments. The cell thus
enters the high resistance state.

• In bipolar switching, we apply a negative voltage at the anode; this sends back oxygen ions back
to the metal oxide layer. There they get combined with oxygen vacancies in the filament. The
filament thus gets ruptured.

Smruti R. Sarangi 586

CBRAMs

A conductive bridging RAM or a CBRAM is another kind of a ReRAM cell that also relies on the filamentary
switching mechanism. The basic structure of this cell is the same as that of the Redox ReRAM cell. We
have two electrodes and a thin electrolyte layer in between.

However in this case, the electrodes play a very significant role and provide the material for the filament.
One of the electrodes is called an electrochemically active electrode and is made of Ag (silver), Cu (copper),
or Ni (nickel). The other electrode is called the inert electrode and is made of Pt (platinum), or Ir (Iridium).
In between both the electrodes, we have a thin layer of an electrolyte: GexSy, SiO2, TiO2, Ta2O5, or ZrO2.

The process for programming the cell is as follows. If we apply a highly positive voltage to the active
electrode (typically Ag), it dissolves into the electrolyte. The positively charged silver ions(Ag+) drift into
the thin electrolyte and get pushed towards the inert electrode by the electric field. Some of them finally reach
the inert electrode (cathode), absorb an electron (Ag+ + e−) and get deposited on the surface of the inert
electrode. Gradually a channel of Ag atoms forms between the anode and the cathode (see Figure 10.38).
Once this is fully formed, this becomes a conducting filament, which can carry current. The cell subsequently
enters the low resistance state. Even after turning off the voltage source, the filaments remain. This state
of the cell thus represents a logical 1.

Active electrode

Inert electrode

Ag+ metal
atoms/ions

Electrolyte

Filament

Figure 10.38: Filament in a CBRAM cell

To reset the cell, we need to apply a negative voltage to the active electrode (bipolar switching). Positively
charged silver ions (Ag+) migrate towards the active electrode, absorb an electron, and get deposited on the
active electrode. This resets the state of the cell. Subsequently, the filament gets ruptured and thus there is
no conductive path between the two electrodes; the cell enters the high resistance state (logical 0).

Applications in Neural Networks

Resistive devices have an interesting property – they can work as a multiplier. In a modern ReRAM, we just
don’t have one high resistance state, and one low resistance state, we can create several intermediate states
with different levels of resistance. If the conductance of a ReRAM device is G, then we have V G = I from
the Ohm’s law. This means that for a variable voltage, this device works as a multiplier.

Moreover, if we have an array of ReRAM cells, then we can compute a dot product by adding the
currents (according to Kirchhoff’s law). We shall see in Chapter 14 that this is the most performance-
sensitive operation in deep neural networks. We can directly implement such operations in ReRAM based
hardware and achieve significant speedups.

10.5.6 3D and Embedded Memory Technologies

Typically, the memory system proves to be the bottleneck for many high-bandwidth applications. Hence,
there is a need to adopt futuristic memory technologies. A few of the technologies that stand out in this
regard are 3D memory technologies such as High Bandwidth Memory (HBM) and Hybrid Memory Cubes
(HMC). They use DRAM devices; however, instead of a single 2D layer, they are composed of multiple 2D
layers stacked over each other.

587 Smruti R. Sarangi

The underpinnings of all these memory technologies are the same. The core idea is that we have a 3D
stack of DRAM memory arrays. The memory arrays are connected to each other via TSVs (trans-silicon
vias) or microbumps that form high-bandwidth connections across the layers. Microbumps are small metallic
structures that are used to connect to the layer below. Furthermore, we divide each layer into a set of blocks
and we consider a column of blocks to be one unit. It is known as a vault. There are several ways of
integrating such 3D memory stacks. The most common method is a configuration where the silicon die and
the 3D memory are placed side by side on the motherboard. They are connected via a high-bandwidth
connection known as an interposer, which typically consists of several 128-bit wide links to connect the 3D
DRAM memory and the chip.

The reason for the high bandwidth is two-fold. The first is that we can read many bits in parallel from
each vault. The second is that because of the close proximity between the CPU chip and the 3D memory
chip, we can afford a very wide bus.

Another technology that allows for high-bandwidth connections is embedded DRAM (eDRAM). Here, the
DRAM module is integrated into the same die as the chip or is present in a multi-chip module configuration
(within the same package). There are process challenges because we typically use different processes to
fabricate logic and to fabricate DRAM. Hence, 2.5D integration, where we fabricate separate dies for the
processor and the DRAM, respectively, and place them in the same package is considered to be a more
feasible and practical solution. Here, of course, there is a need to create a high-bandwidth network within
the package, something similar to an interposer.

10.6 Roofline Model

In this chapter we have introduced a large number of techniques to optimise the memory system. They need
to work in conjunction with the techniques that we proposed to optimise the design of the OOO pipeline.
Let us now look at modelling and understanding the performance of such systems. We have discussed basic
performance equations in Section 2.2 and Section 7.1.6. In this section let us present a simple method
for modelling the performance of such systems using simple diagrams. We shall introduce the Roofline
model [Williams et al., 2009] in this section.

10.6.1 Overview

It is possible to propose many models that relate the DRAM throughput with the performance. Many such
models have been proposed in the literature that extend the performance equation and incorporate the effect
of different kinds of off-chip memory technologies. The main drawbacks of all of these models is that they
are dependent on the workload and use too many constants. This makes the models hard to use and they
are also not very intuitive. The quest for such models ended with the Roofline model that proposes a simple
technique to find out the limitations of a workload – is it memory bound or compute bound or both?

Using this model it is possible to understand how the peak off-chip memory bandwidth and peak per-
formance interact. It is also possible to find out how much a given set of workloads can be optimised till
they reach the limits imposed on them by the system. Furthermore, with this model, it is possible to study
the effects of different performance enhancing optimisations in the pipeline and the memory system.

At the outset, let us define three terms.

Operational Intensity This term captures the crux of the model – it is defined as the average number
of floating point operations a processor can perform for every single byte read from off-chip memory.
In other words, it represents the processing power of the CPU and the efficiency of the caches. An
increased operational intensity means that the CPU can very effectively make use of the information
that it reads from main memory. We typically measure this using performance counters that give us
an estimate of the number of floating point operations and the number of off-chip memory accesses.

Smruti R. Sarangi 588

Memory Bandwidth For a given system (processor + off-chip memory), this quantity represents the
observed off-chip memory bandwidth. This includes the effect of caching, memory controller optimisa-
tions, and prefetching. It is measured with the help of performance counters.

Performance The performance in this case is defined as the number of arithmetic operations performed
per second. Typically, in the high-performance computing world, it is measured in the unit of FLOPS
(floating point operations per second). It is possible to use other measures as well such as the number
of integer operations per second; however, this is not very common and is not relevant in a high-
performance computing context.

Hence, we shall go with FLOPS. Note that we shall use the term “FLOP” (floating point operation) to
indicate a single floating point operation, the term “FLOPs” as its plural, and the term “FLOPS” to
denote the number of floating point operations per second. The performance of a program is measured
using dedicated performance counters to compute the number of floating point operations per second
(FLOPS).

It is very easy to relate these three quantities – operational intensity, memory bandwidth, and the
performance. The relation is shown in Equation 10.1. This follows from the definition of these quantities.

FLOPs

second︸ ︷︷ ︸
Performance

=
bytes

second︸ ︷︷ ︸
Memory bandwidth

× FLOPs

byte︸ ︷︷ ︸
Operational intensity

(10.1)

We thus observe that the performance at any point of time is a product of the memory bandwidth and
the operational intensity. The performance and the operational intensity can be varied by changing the
benchmark and by making architectural optimisations. Hence, let us plot a graph where the performance is
on the y-axis and the operational intensity is on the x-axis. In this graph, let us consider all the points that
have a constant memory bandwidth B.

The equation for this line is y = Bx (from Equation 10.1). This is a line with constant slope B and passes
through the origin. For different memory bandwidths we shall have lines with different slopes as shown in
Figure 10.39. We can make improvements to Figure 10.39 to make it look more intuitive. Let us plot the
same data in the log-log scale.

We have:

y = bx

⇒log(y) = log(x) + log(B)
(10.2)

In this case, all the constant-bandwidth lines have a slope of 45◦. They are all parallel lines. This is
shown in Figure 10.40. Points P and Q require a memory bandwidth that is less than B1, and points R and
S require a memory bandwidth that is more than B3 . Finally, note that for representing a line corresponding
to another memory bandwidth, B′, we just need to draw a line at 45◦. If B′ < B, the new line for bandwidth
B′ will be below the line for B. Otherwise, it will be above it.

10.6.2 Adding Ceilings

Now that we have explained the justification for the log-log plot, and also explained how to draw lines that
contain all the points that need the same memory bandwidth, let us proceed to add computation ceilings.

Consider the peak performance (measured in terms of FLOPS). There are two ways to measure the peak
performance in a system. First, we compute the theoretical maximum by looking at the processor’s data
sheets, or we write dedicated micro-benchmarks to stress the processor to the maximum limit. We can then
find the peak performance using dedicated performance counters.

589 Smruti R. Sarangi

Operational intenslity
(FLOPs/byte)

P
er

fo
rm

an
ce

 (
F

LO
P

s/
se

c)

B1

B2

B3

Different
bandwidths

Figure 10.39: Different memory bandwidths

 Operational intenslity

Pe
rf

o
rm

a
n
ce

B1

B2

B3

Different
bandwidths

log-log plot

P

Q

R

S

B3 > B2 > B1

Figure 10.40: Log-log plot of performance vs operational intensity

The peak performance can be represented as a horizontal line in the log-log plot. It is not possible to
exceed the peak performance unless we change the configuration of the system, i.e., enable new architectural

Smruti R. Sarangi 590

optimisations or increase the frequency.
On similar lines, we can define the peak memory bandwidth. It is a 45◦ line in the log-log plot. If

we consider both of these constraints (also known as ceilings), then we have a trapezoidal region in which
any workload can lie. It will always use less memory bandwidth than the maximum, and its computational
throughput will be limited by the peak performance. This is shown in Figure 10.41. Since these ceilings
establish limits on the performance and memory bandwidth, they are also known as Rooflines. Such a
diagram is known as a Roofline diagram.

Operational intenslity

Pe
rf

o
rm

a
n
ce

B

Roofline diagram

Peak performance

Feasible region
of operation

Figure 10.41: Performance vs operational intensity (with Rooflines)

We can have several ceilings corresponding to different architectural and compiler configurations. If we
consider the memory bandwidth, we can have different 45◦ lines corresponding to different memory system
optimisations. Figure 10.42 shows three different lines for different configurations: theoretical-maximum,
with-prefetching, and without-prefetching. All of these are memory bandwidth ceilings.

Similarly, we can add computational ceilings. These are parallel horizontal lines on the log-log plot.
Examples of the computational ceilings are as follows. (1) The peak performance for a default configuration
without SIMD instructions such as Intel SSE, (2) performance with SIMD instructions, and (3) the peak
theoretical computational capacity. These are shown in Figure 10.42 . We thus observe different feasible
regions of operation for different kinds of ceilings.

10.6.3 Uses of the Roofline Model

The Roofline model is a very simple tool to reason about the bottlenecks in an application. Let us consider
Figure 10.43. In this figure we show several points: P , Q, and R. Point P is close to the memory bandwidth
ceiling. In this case, we cannot get additional performance without increasing the memory bandwidth. Hence,
any additional investment should be made in increasing the available memory bandwidth. In comparison,
point Q is close to the performance ceiling. This means that it has saturated all the computational power, and
memory bandwidth is not an issue because this design is not using all the bandwidth that it can use. In this
case, we need to enable newer architectural optimisations for increasing the computational power. Finally,

591 Smruti R. Sarangi

Operational intenslity

Pe
rf

o
rm

a
n
ce

 B1

B2

B3

P1

P2

P3
B1

B2

B3

P2

P3

P1 Default

With SIMD

Peak performance

Without prefetching

With prefetching

Theoretical maximum

Figure 10.42: Roofline diagram with many ceilings

Operational intenslity

Pe
rf

o
rm

a
n
ce

 Ba
nd

w
id

th
 c
ei

lin
g

Roofline diagram

Peak performance

P

Q

R

Figure 10.43: Three different operating points in the Roofline diagram

let us consider point R, which is far away from both the memory bandwidth and performance ceilings. In
this case, the design can be modified to use far more memory bandwidth, and much more computational
capacity as compared to the current implementation.

We thus see from these three examples that given any workload or architectural configuration, we can
easily find out the bottlenecks by finding the proximity of the point to different ceilings. We can use these
models in many different ways. For example, it can tell us that given a certain value of the operational
intensity, what is the minimum memory bandwidth that is needed to sustain a given performance.

Additionally, we can also define a lower threshold for the performance, which means that we are guar-
anteed a certain level of performance. Now between the upper and lower ceilings, we can reason about the
bandwidth that is required to sustain a given level of performance. Researchers have proposed numerous

Smruti R. Sarangi 592

extensions to this model to include different kinds of additional effects, notably energy [Choi et al., 2013].

10.7 Summary and Further Reading

10.7.1 Summary

Summary 9

1. A typical DRAM cell is very simple; it has a single transistor and a single capacitor.

2. Two kinds of capacitors are used to create modern DRAM cells: a trench capacitor and a stacked
capacitor.

3. Akin to SRAM cells, we can create an array of DRAM cells. The major difference is that in this
case, the sense amplifiers appear before the column multiplexer/demultiplexer. The sense amplifiers
are also designed differently. They are designed to also buffer data for the entire row (page) of
cells, and drive the voltages of the bit lines.

4. It is typically necessary to split each bit line into multiple segments. There are two architectures in
this space: open bit line array architecture and folded bit line array architecture. The latter design
is more tolerant to noise, at the cost of lower storage density.

5. DRAM reads are destructive in the sense that once a row is read, the contents of the cells that
store a logical 1 are destroyed. Hence, it is necessary to restore their values. Since the contents
of the row are stored in the array of sense amplifiers (row buffer), if subsequent reads are to the
same row, then their values can be supplied from the row buffer.

6. Each DRAM cell can maintain its state for at the most 32 to 64 ms. The charge stored across the
capacitor gradually leaks out. Hence, it is necessary to periodically refresh (read and then write)
every single cell in the DRAM array.

7. The earliest versions of DRAM used asynchronous transfer. The row address was synchronised
with the RAS strobe signal and the column address was synchronised with the CAS strobe signal.
Even though pure asynchronous transfer is a generic solution; however, it has low performance
and scalability.

8. Given that we often fetch a sequence of bytes from DRAM memory, a more efficient method of
transfer is the fast page mode (FPM). After sending a row address, the controller sends a series of
column addresses for that row. We read the sequence of bits corresponding to the column addresses.
A shortcoming of this method is that we wait to receive the data and then only we send the next
column address.

9. The next generation of DRAM technology was called extended data out (EDO). This overcomes the
shortcoming of the FPM technology, by overlapping the transmission of data and column addresses.
To provide the timing for the data signals, an additional data strobe signal DQS is used

10. EDO was succeeded by the burst extended data out (BEDO) technology. In this case, for a single
column address, we read multiple bits – essentially prefetch the next few bits. This reduces the need
to send additional column addresses.

593 Smruti R. Sarangi

11. All of these technologies have been superseded by synchronous DRAM technologies. The DRAM
devices have a clock that is synchronised with the clock of the memory controller prior to a message
transmission.

12. The command and address buses are connected to every single device; this increases the capacitive
loading on them. In contrast, the data buses are only connected to a subset of DRAM devices.
Hence, they are faster. To leverage this, the double data rate (DDR) memory was proposed where
we transfer data at both the edges of the clock.

13. There are multiple DDR generations: DDR1, DDR2, DDR3, and DDR4. Over the generations,
there has been an increase in the bus frequency and storage density, whereas the supply voltage has
reduced.

14. The topology of a DDR4 memory is as follows.

(a) The CPU is connected to memory modules via a set of channels. Each channel is a set of
copper wires that are used to transmit memory addresses, data, and commands. Each channel
has its dedicated memory controller that is co-located with the cores and cache banks.

(b) Several DIMMs (dual inline memory modules) are connected to each channel.

(c) Each DIMM is divided into ranks, where each rank is a set of DRAM devices (chips). All the
devices in each rank operate in lockstep. They perceive the same amount of clock skew and
signal delay.

(d) Each device has multiple banks, where each bank can operate independently of the others. In
modern DRAM devices, these banks are organised into bank groups.

(e) When sending a command, we specify the rank, the bank group id, and the bank id. All the
banks across the devices in the rank, with the specified bank group id and bank id, get activated
(one bank per device).

(f) Each bank consists of multiple memory arrays that are always accessed together. Each array
has a set of rows and columns.

(g) We can either read 1 bit (single column) at once, or read multiple bits. If the latter is the
case, and we read n contiguous columns, then the prefetch length or prefetch width is said to
be n.

15. The DDR4 protocol is associated with different timing parameters. Some of the major parameters
are as follows.

Parameter Mnemonic
Row cycle time tRC
ACT to PRE command period tRAS
PRE to ACT command period tRP
ACT to internal read or write tRCD
CAS latency CL
CAS write latency CWL
Column to column delay (same bank group) tCCDL

Column to column delay (different bank group) tCCDS

Row to row delay (same bank group, 1Kb page size) tRRDL

Row to row delay (different bank group, 1Kb page size) tRRDS

Four-bank activation window (1Kb page size) tFAW
Write to read latency (same bank group) tWTRL

Write to read latency (different bank group) tWTRS

IntREAD to PRE command period tRTP
Write recovery time tWR

Smruti R. Sarangi 594

16. The memory controller schedules and orchestrates all the memory accesses. It has the following
components:

(a) A high-level transaction scheduler that reorders read and write operations. It also has a write
cache that services later reads.

(b) An address mapping engine that maps the physical address to internal DRAM addresses.

(c) A DRAM command generator. There are two broad strategies. Either we can keep a row open
after it has been accessed once such that later accesses to the row can read or write to the row
quickly using the row buffer. This is known as the open page access policy. The other option
is to immediately close the row and precharge it. This is the closed page access policy.

(d) A command scheduler that chooses DRAM commands from multiple bank queues. The com-
mands are scheduled based on fairness criteria, priorities (e.g. refresh), and the timing re-
quirements of the DRAM devices.

17. Nonvolatile memories that maintain their state even after the system is powered off are becoming
increasingly popular. It is a storage technology that has replaced hard disk drives in almost all
mobile and hand held devices. The main types of nonvolatile memories are as follows:

Flash memory Such kind of a memory uses a novel transistor that traps charge in an additional
gate called the floating gate. The presence and absence of charge in the floating gate represents
its two permanent states. Flash memory is easy to manufacture and reads are fast. Sadly,
writes are slow because to write a page, it is necessary to first erase an entire set of pages
(block). Moreover, it has a relatively low shelf life because it can tolerate roughly 105 to 106

program-erase cycles.

FeRAM FeRAM uses a ferroelectric dielectric in the capacitor, as opposed to using a normal
dielectric. This dielectric has two polarisation states when no voltage is applied across the
capacitor. To switch between these two states, we need to change the direction of the potential
across the parallel plates of the capacitor. Similar to a DRAM, the reads are destructive.
However, both reads and writes are very fast and the endurance is much more than flash
memory.

STT-MRAM In an STT-MRAM cell we have two magnetic layers: pinned layer (fixed direc-
tion of magnetisation) and the free layer (direction of magnetisation can change). They are
separated by a thin film made of MgO. This cell has two permanent states based on the direc-
tions of magnetisation of the pinned and free layers: parallel (low resistance) and anti-parallel
(high resistance). Reading is very fast because we just need to sense the resistance of the cell.
However, writing is a slower process because electrons need to transfer their spin torque to the
electrons in the free layer and appropriately change their direction of magnetisation. Unlike
flash memory, we can access individual words and the leakage current is negligible.

PCM PCM (phase change memory) relies on the state of a chalcogenide material: amorphous or
crystalline. If we apply a large current quickly, then because of Joule heating, the material
melts and enters the amorphous state. This state has a high resistance. However, if we apply
a relatively lower current for a longer time, then the material crystallises and this state is
associated with a lower resistance. PCM memory has fast reads and slow writes. Two methods
to deal with slow writes are write cancellation and write pausing, where the process of writing
a value is terminated midway to give way to scheduling read operations. Endurance is an
issue, hence there is a need to ensure that all the locations are equally accessed.

ReRAM Resistive RAM (ReRAM) is a family of technologies where the instantaneous resistance
of the cell depends upon the history of voltages applied to the terminals of the cell. In Redox

595 Smruti R. Sarangi

ReRAMs, a conductive channel forms in an oxide layer sandwiched between two electrodes
when a positive voltage is applied to the anode. This conductive channel is a filament that is
made of oxygen vacancies after oxygen ions migrate to the anode. This conductive channel can
be ruptured by either applying a large voltage (unipolar switching), or reversing the voltage
across the cell (bipolar switching). On similar lines, a CBRAM also forms a conductive
filament of Ag+ ions that migrate towards the cathode. Off late, ReRAMs are increasingly
being used to implement neural networks because they basically work as multipliers.

18. The Roofline model is used to study the limits of performance in a system. It is a log-log plot
with the operational intensity (FLOPs/byte) on the x-axis and the performance (FLOPs/sec) on
the y-axis. A 45◦ line represents a set of points that have a fixed memory bandwidth, and a line
parallel to the y-axis represents constant performance. Using these two lines – memory bandwidth
and performance – we can define a feasible region of operation, and study the effect of different
architectural optimisations.

10.7.2 Further Reading

The references that we have used for the topics on DRAMs are as follows: the book by Jacob, Ng, and
Wang [Jacob et al., 2007], the design of the DRAMsim simulator [Wang et al., 2005], and the JEDEC
standards [JEDEC Solid State Technology Association, 2003, JEDEC Solid State Technology Association,
2008a,JEDEC Solid State Technology Association, 2008b,JEDEC Solid State Technology Association, 2020].
We have used the same symbol names as the JEDEC standards. Readers can consult them for a deeper
understanding of technologies related to DRAMs particularly the DDR4 protocol that we have described in
great detail.

The following references [Yu and Chen, 2016, Chen, 2016, Feng et al., 2010] give an overview of NVM
technologies and future directions. For understanding the physics and the operation of FeRAMs, readers can
refer to the FeRAM guide book [Fujitsu Semiconductor Limited, 2010] from Fujitsu. A thorough description
of spin transfer torque mechanisms is provided by Khvalkovskiy et al. [Khvalkovskiy et al., 2013], Kawahara
et al. [Kawahara et al., 2012], and Apalkov et al. [Apalkov et al., 2013]. For phase change memories, we
would recommend the seminal paper by Lee et al. [Lee et al., 2009] and the e-book by Qureshi et al. [Qureshi
et al., 2011]. Finally, for ReRAMs the following references [Wouters, 2009, Akinaga and Shima, 2012, Yu,
2016,Wang et al., 2018] will prove to be useful.

Exercises

Ex. 1 — Why is the sense amplifier placed after the column mux/demux in SRAMs? In comparison, why
is it placed before, i.e., between the array and the column mux/demux in DRAMs?

Ex. 2 — Compare the open and folded bit line array architectures.

Ex. 3 — Calculate the refresh rate for a DRAM cell with a capacitor of capacitance 1 fF and a transistor
whose leakage current is 1 pA . Assume that the voltage across a fully charged capacitor is 1.5 V and the
cell needs refreshing before the voltage drops below 0.75 V.

Ex. 4 — Define a DRAM rank. Why is it required?

* Ex. 5 — Why do we typically avoid multi-ported DRAM arrays? Furthermore, why do we typically
access the DRAM array at the level of single columns, where a column usually stores a single bit.

Smruti R. Sarangi 596

Ex. 6 — Why is it typically necessary to use a strobe in high-speed DRAM protocols?

Ex. 7 — What is the advantage of using active low signals?

Ex. 8 — Prove that tRC = tRAS + tRP .

Ex. 9 — Why is the ACT → ACT delay less for a different bank group?

Ex. 10 — Why is a preamble and postamble required?

Ex. 11 — Prove the formula for the read to write delay. Modify the formula to include the parity latency
as well.

Ex. 12 — Can the algorithm followed by the DRAM memory controller cause any memory consistency
issues?

Ex. 13 — Create an addressing scheme for an FB-DIMM DRAM system. Make your own assumptions.

Ex. 14 — Why is NAND flash called NAND flash? How is it superior to NOR flash?

Ex. 15 — Design a memory controller for a 3D memory.

Ex. 16 — Can we use the Roofline model to compare a CPU and a GPU? Assume that they use the same
off-chip DRAM-based memory system. What insights will we get?

Ex. 17 — How can we model software prefetching, hardware prefetching, and NUCA caches using the
Roofline model?

Design Problems

Ex. 18 — Design the sense amplifier circuit using any popular circuit simulator.

Ex. 19 — Understand the working of the memory controller in DRAMSim2 or the Tejas architectural
simulator.

Ex. 20 — Design a DDR4 DRAM memory controller using Logisim, Verilog, or VHDL.

