
4
The Issue, Execute, and Commit Stages

The fetch and decode stages that we designed in Chapter 3 can deliver a steady stream of instructions with
a very high throughput. Now, we need to create a high bandwidth instruction execution engine that can
execute as many instructions in parallel as possible, subject to area and power constraints. This is the area
of study in this chapter. Note that for understanding the contents of this chapter, Chapter 2 is an essential
prerequisite. We need to be confident in the concepts listed in Way Point 1.

Way Point 1
At this point we are supposed to be confident with the following concepts.

• In-order pipelines: 5 stages of instruction processing, interlocks, and forwarding.

• Data hazards: WAW, WAR, and RAW hazards. Special case of the load-use hazard.

• Basic idea of out-of-order pipelines: true and false dependences.

• Familiarity with the following concepts: branch prediction, instruction renaming, multi-instruction
issue, and the instruction window.

• Knowledge of precise exceptions and in-order instruction completion.

The first task is to remove all WAR (write after read) and WAW (write after write) dependences from
the sequence of instructions. As we had discussed in Chapter 2, this will increase the available parallelism
in the instruction stream significantly. This process is known as renaming, and requires elaborate hardware
support. After renaming the only dependences in the code will be RAW (read after write) dependences. A
RAW dependence enforces a strict order of execution between the producer and consumer instructions (see
Section 4.1).

Such dependences have the potential to reduce the ILP (instruction level parallelism) unless we take
additional measures. The standard approach to dealing with such issues is to take a look at a large set
of instructions together, and then find a set of instructions that can be executed in parallel. They should
not have any dependences between them. To find this set of independent instructions, we need hardware
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structures to track the dependences between instructions, and to find out when an instruction is ready to be
executed. For an instruction to be ready, all of its input operands should be ready. It is possible that many
instructions may become ready for execution in the same cycle. Given that we have a small set of execution
units, we need to choose a subset of the ready instructions for execution. There are elaborate heuristics to
select the appropriate set of instructions. This has implications in terms of the critical path of the program.
Owing to their complexity, these structures are some of the most performance-critical units in the pipeline,
and thus are designed very carefully (explained in Section 4.2).

Till now we have been discussing how to handle instructions that have only register based dependences.
Handling memory instructions requires a different set of architectural structures. This is because register de-
pendences can be figured out right after decoding the instructions; however, memory addresses are computed
much later in the execution stage. Hence, most processors use an additional structure called the load-store
queue (LSQ) to keep track of memory dependences. The LSQ as of today is a very sophisticated structure
that enforces correctness, as well as implements many optimisations to improve performance. We shall delve
into such issues in Section 4.3.

Finally, after processing all of these instructions out of order, it is necessary to create an illusion to an
external observer that the instructions have actually been executing in program order. This is required to
ensure precise exceptions (see Section 2.3.3) such that the program can transparently recover from faults,
interrupts, and exceptions. Ensuring this in a complex system with branch prediction and out-of-order
execution is fairly complex. We need to ensure that we restore the state of the program to exactly what it
should have been right before the exception. This requires us to periodically take checkpoints of the state,
and efficiently store them. In Section 4.4 we shall study the trade-offs between the overheads of taking
periodic checkpoints and the time it takes to correctly restore the state.

4.1 Instruction Renaming

As we discussed in Section 2.3.3, instructions can have three kinds of dependences between them: WAR
(write after read), WAW (write after write), and RAW (read after write). Out of these only the RAW
dependence is a true dependence. In other words, if instruction B is dependent on the output of instruction
A, B has to execute after A finishes. WAR and WAW dependences are in a sense false dependences because
they arise due to the limited number of registers. If we would have had an infinite number of registers, then
these dependences would not have been there. Note that in this discussion we are not talking about reads
and writes to memory addresses. We shall discuss memory dependences in Section 4.3.

4.1.1 Overview of Renaming

Let us quickly recapitulate what we had learnt in Section 2.3.3. Consider two pieces of code as shown in
Figure 4.1 (laid out side by side). The code on the left uses regular architectural registers. We note the
presence of WAR and WAW hazards, whereas the code on the right has only RAW hazards. This was made
possible because we replaced architectural registers by physical registers. This process was called renaming.

Before proceeding further, let us clarify the terminology that we shall use. All the architectural registers
start with r. We have 16 architectural registers: r0 to r15. For the time being let us assume an unlimited
number of physical registers. The architectural-to-physical register mapping scheme in Figure 4.1 is as
follows. Initially, architectural register ri is mapped to physical register pi. However, every time we write
to architectural register ri, we assign that avatar of ri to a new physical register. The physical registers are
numbered as follows in our example: pi1, pi2, . . .. For example, in Line 1 we write to r1. We thus assign it
to a new physical register p11. When we write to r1 again in Line 2, we assign it to a new physical register
p12. On similar lines, we assign r7 to the physical register p71 in Line 4. We can think of the first digit
as the number of the architectural register that the physical register is mapped to, and the second digit as
the version number. Every time we write to the register, we increment the version number. Note that this
numbering is used in our running examples for the purpose of better explanation. In a real system, the
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numbering is done differently (see Section 4.1.5). Notwithstanding the limitations of our simple scheme, we
clearly observe that the renamed code has only one dependence (between Lines 2 and 3), which is a RAW
dependence.

Needless to say, during this assignment of architectural to physical registers, the correctness of the
program is not affected. The producer-consumer relationships between instructions remain. The code looks
like it is compiled for a machine that actually has a very large number of registers. We need to ensure that
this is the case, when we discuss a more realistic implementation.

Original code

1 add r1 , r2 , r3

2 add r1 , r4 , r5 /* WAW dep. r1 */

3 add r6 , r1 , r7 /* RAW dep. r1 */

4 add r7 , r8 , r9 /* WAR dep. r7 */

Renamed code

1add p11 , p2 , p3

2add p12 , p4 , p5

3add p61 , p12 , p7

4add p71 , p8 , p9

Figure 4.1: Original and renamed code

Now, in practice, we will never have an infinite number of registers. However, let us aim for a situation,
where we will never fall short of physical registers. In this case, the number of such physical registers is
practically infinite.

This is a very good vision, and we would all like to have a system where the performance nullifying effects
of handling WAW and WAR hazards are not there. However, before proceeding, we need to answer a basic
question: “Who does the renaming?”

Let us consider what we already know about this issue. Recall that we had argued in Chapter 2 that
the programmer should not be aware if the processor is in-order or out-of-order. The programmer needs
to see the same view of the registers, which is the architectural register set. Any physical register has to
be defined exclusively inside the processor, and has to be visible only to elements within the processor. A
physical register should be an undefined concept outside the processor.

This discussion naturally answers the question, “Who does the renaming?” The answer is that the
processor does it, unbeknownst to the programmer and the compiler. All WAR and WAW hazards are
eliminated by the processor on its own volition, and no cooperation is required by software entities such as
the compiler. This is completely internal to the processor.

Let us thus proceed to answer the next question, “How does the processor rename instructions?”

4.1.2 Renaming using Physical Registers

Let us consider a typical ISA that has 16 architectural registers. Let us assume that there are 128 physical
registers that are used to do renaming. This means that a piece of code that uses architectural registers is
transformed into an equivalent piece of code that uses physical registers. The end result for both the pieces
of the code is exactly the same. However, as we have argued in Chapter 2, the code with physical registers
runs faster because it does not have WAR and WAW hazards.

Definition 18
A physical register file is a set of registers within a processor. Each physical register is used for the
purpose of renaming. The physical registers are not visible to software or any other entity outside the
processor.
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To achieve this, let us create a register file with 128 registers. A register file is defined as an array of
registers, where we access the contents of a register based on its id. In this case, since there are 128 registers,
each register will have a 7-bit id (27 = 128).

Way Point 2
Up till now we have covered the following concepts.

• A processor exposes a set of architectural registers, which are visible to the programmer, compiler,
and assembler. Most ISAs typically have between 8 and 32 architectural registers.

• For renaming we also need a set of physical registers that are completely internal to the processor.
They are not visible to the programmer or the compiler.

We want to run code, written with architectural registers in mind, to run on a processor that uses physical
registers. This is where there is a need to perform renaming. Let us illustrate this by one more example. In
Figure 4.2, the code in the column on the left side uses architectural registers, and the code in the column on
the right side uses physical registers. The register renaming scheme is the same as that used in Figure 4.1.

Original code

1 mov r1 , 1

2 add r1 , r2 , r3

3 add r4 , r1 , 1

4 mov r2 , 5

5 add r6 , r2 , r8

6 mov r1 , 8

7 add r9 , r1 , r2

Renamed code

1mov p11 , 1

2add p12 , p2 , p3

3add p41 , p12 , 1

4mov p21 , 5

5add p61 , p21 , p8

6mov p13 , 8

7add p91 , p13 , p21

Figure 4.2: Renaming with physical registers

4.1.3 The Rename Table

Let us now introduce the core idea of renaming. Let us not have an architectural register file. This means
that let us not have a separate dedicated storage area for saving the architectural registers. We shall
instead designate a subset of the physical registers as architectural registers. This mapping
between physical registers and architectural registers is dynamic and will keep changing throughout the
lifetime of the program. Note that this is a very important concept; hence, we would request the reader to
read the next few paragraphs very attentively.

Important Point 4
The programmer, and the compiler see a set of architectural registers. They are typically small in number.
Most processors have anywhere between 8 and 32 architectural registers. However, in our proposed design
architectural registers only exist in theory. They are a concept. They do not have a permanent home.

Instead, we define the concept of physical registers. We typically have 100+ physical registers in
OOO processors.
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The process of renaming creates a mapping between architectural registers and physical registers.
This means that if we wish to read the value of a given architectural register, we shall find it in the
physical register that is mapped to it. Note that this mapping is a function of time and keeps changing
dynamically.

Let us look at a few example mappings in Figure 4.3.

r0

r1

r14

r15

p0

p1

p2

p3

p31

p30

p32

p33

Architectural
registers

Physical
registers

Figure 4.3: Example mapping between architectural and physical registers

We denote the architectural registers as r0 . . . r15, and the physical registers as p0 . . . p127. We assume
that we have 128 physical registers. The need for that many physical registers is because we wish to have
a lot of instructions in flight such that we can always find a set of instructions that can be issued to the
execution units in parallel. The reasons for this will become clear as we read along. Even if readers at this
point are not able to understand this logic, we would still urge them to read ahead.

Now, that we have 16 architectural registers and 128 physical registers, we need to create a mapping
between architectural registers and physical registers. For example, a mapping would indicate that at a
given point of time architectural register r1 is mapped to p27, and at a later point in time, it is mapped to
p32, and so on. This means that if an assembly instruction wishes to read the contents of r1, the processor
needs to read the value of its corresponding physical register. As we just described, this can be p27 at one
point in the program and p32 at one more point in the program.

Figure 4.4 shows a high level overview of the mapping problem. We take an architectural register as input
and the output is a physical register. Since in our running example we consider 16 architectural registers,
we need 4 bits to encode architectural register ids. On similar lines, we require 7 bits to encode all the
128 physical register ids. Let us thus envision a simple 16-entry table where each entry corresponds to an
architectural register (see Figure 4.5). We index the table using the 4-bit architectural register id. Each
entry of the table stores a 7-bit physical register id. This is the current mapping between an architectural
register and a physical register. Let us call this the rename table.
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Mapping Engine
4-bit architectural
register id

7-bit physical 
register id

Figure 4.4: Renaming: replacing architectural register ids with physical register ids

physical 
register idarchitectural 

register id

Figure 4.5: The rename table

Definition 19
A rename table is a table in hardware that stores the mapping between architectural registers and physical
registers. It is also known as the register alias table (RAT table).

Renaming with a RAT table is very easy. We take a look at the source registers, read their corresponding
physical register ids from the table, and use them for renaming. However, we need to do something extra
for the destination register. Let us consider an add instruction of the form: add r1, r2, r3. Here, r1 is the
destination register, r2 and r3 are the source registers. We need to access the rename table for the source
registers r2 and r3. Subsequently, we need to replace r2 and r3 with the corresponding physical registers.
However, for the destination register, r1, we need to follow a different approach. If we think about it, we
are creating a new value (a fresh value) for r1. The lifetime of this new value starts after r1 is written, and
continues till r1 is written the next time. Let us thus assign an unused physical register to r1 (elaborated in
Example 2).
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Example 2
Rename the following piece of code.

add r1 , r2 , r3

sub r4 , r1 , r2

Let r2 be initially mapped to p10 and r3 to p17.

Answer: For r1, we assign a new physical register, which was hitherto unused. Let this be p5. Along
with assigning the physical register p5 to r1, we need to make an entry in the rename table such that
subsequent instructions get the mapping r1↔ p5 from the rename table.

The subsequent instruction sub r4, r1, r2 needs to get the value of r1 from the physical register p5.
The same mapping for r2 can be used as the previous instruction because its value has not been updated.
We need to assign a new (hitherto unused) physical register to r4. Let this be p6.

The renamed code is thus as follows:

add p5 , p10 , p17

sub p6 , p5 , p10

r1

r2

r3

r4

p1

p10

p17

p4

p5

p10

p17

p4

p5

p10

p17

p6

Initial State add r1,r2,r3 sub r4,r1,r2

Let us summarise the major steps:

• Consider the source registers (registers that will be read) in the instruction. These are architectural
registers.

• Find the corresponding physical registers from the rename table.

• Now, consider the destination register, if any. It needs to be assigned an unused physical register.
Assign a free physical register (algorithms to be discussed later) and update the rename table with the
new mapping.

The idea of renaming sounds easy in theory; however, there are still many practical challenges that need
to be solved. Let us look at some of the tricky corner cases. Remember that life is not always nice and
round. It does have corners , and it is often these corner cases that make life very difficult. However,
in every adversity lies an opportunity, and most of the time some of the most sophisticated techniques get
developed because of these corner cases. Let us look at some corner cases in the idea of renaming that we
have presented up till now.
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The scheme that we have discussed is fine for a simple processor that renames only one instruction per
cycle. However, for a processor that renames multiple instructions per cycle, there are additional problems.

Consider the following block of code.

add r1 , r2 , r3

sub r4 , r1 , r2

The second instruction uses the destination register of the first instruction as a source register. As a
result, the renaming of the second instruction is dependent on the physical register that is assigned to the
destination of the first register (r1). There is thus a dependence, and we need to wait for the first instruction
to be fully renamed. This however will limit the amount of parallelism that we have in programs and will
heavily restrict the ILP. Thus, there is a need for a better solution.

Now, think about the case where we rename four instructions together (rename width = 4). Here, there
can be many dependences between the instructions. We clearly don’t want to rename the instructions one
after the other. There has to be a faster way of doing it.

4.1.4 Dependence Check Logic

Let us now solve the general renaming problem, where we have k instructions that need to be renamed
together. Let us assume that we have enough free registers such that we can assign a free physical register
to each of the destination registers.

The problem is that we can have a dependence where an earlier instruction writes to a register that is
required by a later instruction as a source. In this case, the later instruction needs to know the id of the
physical register that has been assigned. This is not possible to do (very easily) if they are all being renamed
together. This makes the problem complex.

To solve this problem let us consider an example in Figure 4.6 with four instructions that need to be
renamed together.

1 add r3 , r1 , r2

2 add r5 , r3 , r4

3 add r8 , r6 , r7

4 add r9 , r8 , r8

Figure 4.6: Example for the discussion on RAW dependences

Here, instruction 2 has a RAW dependence with instruction 1. It is necessary to assign a physical register
to r3 before we start renaming instruction 2. Likewise, we have a similar dependence between instructions
3 and 4. In the worst case, it is possible that we have dependences as follows: 1 → 2 → 3 → 4, where
a → b indicates a RAW dependence between instructions a and b. Here, instruction a is the producer and
instruction b is the consumer.

When we have such a dependence 1 → 2 → 3 → 4 between all four instructions, we need to rename the
instructions serially (one after the other) as per the knowledge we have right now. This is clearly suboptimal,
and we are not reaping any advantages of parallelism.

Let us assume that the time it takes to rename one instruction is T nanoseconds (ns). In the best
case when there are no dependences between instructions, we can rename all the four instructions in T
ns. However, if we have dependences between each pair of consecutive instructions, then there is a need to
rename them serially, and the entire process will take 4T ns. We need to search for a better solution that is
closer to T rather than 4T .

It is important to first make certain key observations regarding the renaming process. Let us consider our
running example once again (see Figure 4.6). We can rename instructions 1 and 3 in parallel. Let us now
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consider the case of instructions 2 and 4. For instruction 2, we do not really have to wait for the renaming of
instruction 1 to finish completely. In fact an overlap exists. Let us take a look at Figure 4.7 to understand
why.

1: add r3, r1, r2
 
 

map r1

map r2

Assign a free 
physical reg.
 to r3

map r4

map r3
2: add r5, r3,r4

time

3: add r8, r6, r7

map r6

map r7

map r84: add r9, r8,r8

 

Assign a free 
physical reg.
 to r5

Assign a free 
physical reg.
 to r8

Assign a free 
physical reg.
 to r9

Figure 4.7: Flow of actions for simultaneously renaming four instructions

For instruction 1, we can read the rename table for registers r1 and r2 in parallel. At the same time,
we can also start reading the rename table for register r4, which is a source register for instruction 2. The
dependence exists for register r3. We need to wait for instruction 1 to assign a physical register to r3. This
process can also be initiated in parallel as shown in Figure 4.7. Once we have assigned a physical register,
this value can be forwarded to instruction 2. There is per se no need for instruction 2 to access the rename
table to get a mapping for r3. Akin to forwarding in pipelining, it can directly get the mapping from the
hardware that is processing instruction 1.

We thus observe that it is possible to perform a lot of actions in parallel while renaming. For example,
instruction 2 does not have to wait for instruction 1’s renaming to completely finish. In this case, instruction
2 simply needs to wait for a physical register to be assigned to 1’s destination register.

We can have many more such cases, where for example in a 4-instruction bundle instruction 3 has RAW
dependences with both instructions 1 and 2. In that case the nature of actions will be different. We will have
to wait for both instructions 1 and 2 to assign physical registers to their destination registers. Subsequently,
instruction 3 can quickly use the values that have been forwarded to it by instructions 1 and 2.
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We can clearly see that the space of possibilities is very large. However, our goal is very clear – reduce
the time required for renaming as much as possible.

For this we need to use a trick from our bag of architectural tricks. The specific technique that we
shall use involves doing extra work that might be discarded later. However, we nevertheless need to do the
additional (redundant) work because we might not be in a position to know if we need to do the additional
work or not.

Using Redundant Work to Solve the Problem

Let us look at two of the instructions that we have been considering for renaming once again. We shall use
the following piece of code as a running example.

1 add r3 , r1 , r2

2 add r5 , r3 , r4

We did outline a solution in Figure 4.7, where we try to create an overlap between the process of
assigning physical registers, and accessing the rename table. It is not fully practical. This is because there
is an assumption in this figure that we are already aware of the RAW dependences between the instructions.
This is not the case; hence, we need to create a practical implementation that is conceptually similar to the
flow of actions proposed in Figure 4.7.

Consider the following line of reasoning. The physical register assignment for r3 will be produced by the
renaming process of instruction 1. However, at the outset we have no way of knowing if at all there is a
dependence between instructions 1 and 2. The process of finding whether there is a dependence or not takes
time, and during that time we would like to do useful work. It is possible that there might be a dependence,
or it is alternatively possible that there is no dependence. There is no way of knowing without finding out,
and that takes time.

We thus propose an alternative method of operation keeping our 2-instruction example in mind. Let us
read the mappings for all the source registers from the rename table together. The source registers are r1,
r2, r3, and r4. We will get valid mappings for three registers r1, r2, and r4. We will however not get a valid
mapping for r3 because it is simultaneously updated by instruction 1. Herein, lies the issue.

Let us simultaneously start a process of finding dependences between the instructions. We need to
compare the source registers of instruction 2 with the destination register of instruction 1. In this case, we
compare 3 (from r3) with the numbers 3 (from r3) and 4 (from r4). There are two possibilities. Either
there is no match, or there is a match. The former case is very easy to handle. It basically means that all
the mappings from the rename table that we are simultaneously reading are all correct. However, the latter
case is tricky. It means that some of the mappings that we are simultaneously reading are not correct. Let
us just note down those mappings. In the case of this example, the mapping for r3 that is read from the
rename table is not correct.

To ensure that we do not waste a lot of time, let us in parallel start a process to assign new mappings to
the destinations of instructions 1 and 2. This means that while we are reading the mappings of the sources
from the rename table, we are simultaneously assigning new physical registers to the destinations. The latter
is an independent activity. Let us assign r3 to the physical register p22.

Once, we have figured out the dependences between instructions, we are in a position to know that the
mapping for r3 must come from the physical register assignment unit. It needs to be p22 in this case, and not
the mapping that is contained in the rename table. We thus have a very simple problem on our hands. We
have two options to choose from: a mapping from the previous instruction, and a mapping from the rename
table. We can quickly choose between these options and get the final mapping between the architectural
registers and the corresponding physical registers.

The timing is shown in Figure 4.8. We create an overlap between three actions: reading the rename
table, assigning an unused physical register to an architectural register, and computing RAW dependences.
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1: add r3, r1, r2
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Figure 4.8: Flow of actions in a practical renaming system that tracks dependences

Final Solution for a 2-Issue Processor

Let us now implement this in hardware.
The first piece of hardware that we need is a circuit to choose between two options: mapping read from

the rename table and the physical register assigned to the destination of a previous instruction. We need
to choose one of the options based on whether there is a RAW dependence or not. The hardware structure
that achieves exactly this is a multiplexer (see Figure 4.9).

Mapping from
the rename table

Mapping from a
previous instruction

Physical register

Figure 4.9: Multiplexer to choose between two options for the purpose of renaming

In Figure 4.9 we show a multiplexer with two inputs, one output (final register mapping), and one bit for
selecting the input that is based on the comparison of the source register id and the previous instruction’s
destination register id. Let us now use this multiplexer to design the renaming stage. The logic is now
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complete because it traces RAW dependences between instructions that are being simultaneously renamed.
It is referred to as the dependence check logic.

Instruction 1: 

Instruction 2: 
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assign
I1.dest
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assign

I2.src2 == I1.dest ?

I2.src1 == I1.dest ? Physical
registers

Figure 4.10: The rename stage with dependence check logic

Here is a textual description of our solution (also refer to Figure 4.10).

1: Parallel Activity: starts at t=0 Read the mappings of all the source registers.

2: Parallel Activity: starts at t=0 Assign physical registers to all the destination registers.

3: Parallel Activity: starts at t=0 Find RAW dependences between all the instructions.

4: Final Activity Once when activities (1), (2), and (3), are over → for each source register choose the
right mapping with the help of a multiplexer.

We leave the process of extending our solution to a processor with a larger rename width as an exercise for
the reader. All that we need is a wider multiplexer that takes in more inputs. Assume that we are renaming
a set of instructions in parallel and we need to choose the mapping for a source operand of instruction k.
We need to consider the mapping provided by the rename table and the physical registers assigned to the
destinations of the previous k−1 instructions. Thus, we require a k-input multiplexer. Additionally, we need
the logic to compute the control signals for these multiplexers. For a k-input multiplexer we need dlog2(k)e
bits.

4.1.5 The Free List

The only part that is remaining is how to assign a free physical register to an instruction’s destination
register. For this purpose we use a structure called a free list.
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Definition 20
A free list is a hardware structure that maintains a list of physical registers that are currently free, and
can be assigned to architectural registers.

Let us think of the free list as a black box. It takes in a request for a physical register, and returns the id
of a free physical register. Similarly, we can also return a physical register to the free list. The quintessential
way of designing a free list is by using a circular queue. The circular queue stores a list of registers as shown
in Figure 4.11.

head

 

tail

Physical
registers

Figure 4.11: A circular queue of physical registers

A circular queue is an array of entries, where each entry contains the id of a physical register. When we
add more entries, they wrap around the array and start getting added from the beginning. We maintain two
pointers – head and tail – in hardware. Whenever we add a set of entries to the circular queue we add it to
the tail and increment the tail pointer. Similarly, when we remove entries, we remove them from the side of
the head. We also increment the head pointer.

The increment operation on the head pointer is head = (head + 1)%SIZE. Here, SIZE is the size
of the queue. The reason we perform a ‘%’ (remainder or modulo) operation is because the queue is
supposed to wrap around (notion of a circular queue). Similarly, the corresponding operation for the tail is
tail = (tail + 1)%SIZE.

If the reader at this point is having difficulty, and finding it hard to understand the notion of a circular
queue, then she can consult any of the classic texts on basic data structures and algorithms such as the book
by Cormen et al. [Cormen et al., 2009].

To check if the queue is empty or not, we maintain a simple count of the number of entries currently
present in the queue. When we add entries we increment the count, and when we remove entries we decrement
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the count. If the count becomes zero we can infer emptiness.
Such circular queues are very common structures, which find use in many architectural components.

The free list is one such example, where we can keep track of unused physical registers, and assign them to
architectural registers as and when required. When a free physical register is required we dequeue an entry
from the free list, and similarly when we need to return a register we can add (enqueue) it to the free list.
The benefits of using a circular queue are its simplicity and the ease of adding and deleting an entry.

There is one open question remaining.

Question 1
When do we add physical registers to the free list?

Unfortunately, we will have to wait till we discuss the process of committing instructions (see Section 4.4)
to find the answer to this question. Till that point let us assume that we are never short of physical registers
and we always find enough physical registers to satisfy our requirements.

Now, the set of renamed instructions, which don’t have any false dependences need to be sent to the
execution units.

4.2 Instruction Dispatch, Wakeup, and Select

Now that we have a stream of renamed instructions, we are sure of the following:

• The stream does not have any WAW and WAR dependences; we only have genuine RAW dependences.

• All the instructions access physical registers.

Now, the task at hand is to first provide a place to temporarily buffer the instructions. In this buffer, we
need to find w instructions per cycle to be sent to the execution units. Here, the number w is known as the
issue width. It is typically a number between 1 and 6.

Note that a renamed instruction might not find its input operands immediately. The instruction that
is producing the value of the input operand might be in the temporary buffer awaiting execution. In this
case the instruction needs to wait. In a similar manner many other instructions would be waiting. However,
we will have some instructions whose operands are ready. We can then issue them to the execution units.
The aim is to choose as many instructions as we can – subject to the issue width – and then issue them to
the execution units. Let us define three terms here namely instruction window, dispatch, and issue (refer to
Figure 4.12 and Definition 21). In addition, let the term scheduling encompass the process of dispatching
and issuing an instruction.

Definition 21

• An instruction window is a storage structure that temporarily buffers instructions after they are
renamed. Instructions wait in the instruction window till their source operands are ready and the
execution unit is free.

• The process of sending instructions from the rename table to the instruction window is known as
instruction dispatch.

• The process of sending instructions from the instruction window to the execution units is known
as instruction issue.
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Figure 4.12: Instruction, dispatch, and issue

• The entire process of dispatching the instruction, temporarily buffering it, and then issuing the
instruction to the execution units is known as scheduling.

4.2.1 Instruction Window

Before doing any further processing, let us temporarily buffer the instructions in a queue called the instruction
window. Most hardware implementations of queues use circular queues as we had described in Section 4.1.5.
Recall that such queues use an underlying array of entries; this is implemented in hardware. We have a
head pointer, a tail pointer, and a count of the number of entries. A pointer in this case is an index in the
underlying array.

Let us outline the need for having an instruction window or having a queue in general between pipeline
stages. A queue is used to buffer instructions and provide a sense of rate control. Assume that at a given
point of time, we are renaming four instructions per cycle and we are able to execute only two instructions
per cycle. This situation can happen if we have a lot of RAW dependences between the instructions and we
do not find enough instructions to execute every cycle.

In such cases, it is nice to have a queue that can absorb the excess instructions, albeit temporarily.
Later on, when we can execute more instructions in parallel, the instructions can come from the instruction
window. In other words, a queue can buffer instructions till they are consumed and thus try to reduce
the mismatch between the rate of production and the rate of consumption. It can absorb spikes in excess
production or excess consumption.

The other advantage is that if we are looking at a large set of instructions at a given point of time, the
probability of finding more instructions that have all their inputs ready is higher. We should thus have a
fairly large instruction window such that we can find a lot of instructions to send to the execution units in
parallel.

If the issue width is w, then the best possible situation is when we can issue w instructions per cycle.
However, most of the time, we will not find enough instructions primarily because we will be constrained by
dependences.

Our aim is that in the instruction window we should be able to find all the instructions that can be issued
simultaneously. This has to be an efficient process in terms of both performance and power. Figure 4.13
shows the pipeline of the processor that we have described till this point.
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Figure 4.13: The instruction window

Structure of an Entry

Let us look at the structure of an entry in the instruction window. Its list of fields is shown in Table 4.1. We
consider a 64-bit processor with 16 architectural, and 128 physical registers. Note that we are not showing
all the fields that are typically associated with an instruction. For example, there are other fields in the
instruction packet that will be used later on such as the opcode, id of the destination register, and some
control signals for controlling execution units. We have two options: either we can keep this information in
the instruction window entry, or keep it in a separate location and ensure that the two parts of the instruction
packet move together in the pipeline. A shortcoming of the former strategy is that it makes each entry in
the instruction window very large, and a shortcoming of the latter scheme is that it makes the design of the
pipeline more complicated. Designers typically make such difficult choices after detailed simulation based
studies.

Field Description Width (in bits)
valid validity of the entry 1
ready instruction is ready to be executed 1

First source operand
isreg1 register or immediate 1
ready1 value is present in the register file 1
rs1 id of the first source register 7
imm1 32-bit immediate 32

Second source operand
isreg2 register or immediate 1
ready2 value is present in the register file 1
rs2 id of the second source register 7
imm2 32-bit immediate 32

Destination
isregd destination is a register 1
rd destination register id 7

Table 4.1: List of fields in an instruction window entry

Let us now explain the fields in Table 4.1. Note that we consider instructions with two source operands
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and one destination operand (refer to Appendix A for the details of the ISA). A source operand can be
a register or can be an immediate value calculated in an earlier stage of the pipeline (typically decode).
There of course can be many other kinds of instructions such as branch instructions that need not have any
source operands, or compare instructions that do not have any destination operands. Extending the current
approach to handle such instructions is fairly trivial and is left as an exercise for the reader. Let us now
focus on the broad concepts. The first row is self explanatory. The valid bit indicates if a given entry is valid
or empty. Let us discuss the rest of the rows. We propose a ready bit that indicates whether the instruction
is ready to be executed or not. If all the operands are either immediates or can be found in the register file,
then we set the ready bit to 1. Otherwise, we set the ready bit to 0, and wait for the operands to be ready.

Going back to Table 4.1, let us consider the set of rows labelled as “First source operand”. The field
isreg1 indicates if the first source operand is a register or an immediate. If this field is 1, then the first
source operand is a register. Next, we have the field ready1, which indicates if the operand is ready. If the
operand is an immediate, then ready = 1, otherwise it indicates if the operand can be found in the register
file or not. If the operand is a register, then the id of the register is stored in the field rs1. Finally, the field
imm1 contains the 32-bit value of the immediate if the operand is an immediate. Note that these are all
physical registers. We are not considering architectural registers here.

We use a similar terminology for the second source operand. The corresponding fields are isreg2, ready2,
rs2, and imm2.

Finally, let us consider the last set of rows that correspond to the destination register. The field isregd
indicates if we have a destination register or not, and the field rd is the id of the destination register. Note
that some instructions notably the store instruction do not write to a register, or in other words, do not
have a destination that is a register.

Let us now discuss the rules for populating an entry in the instruction window. After we decode an
instruction we are aware of its type, and its nature of operands. We are also aware of which operand is a
register, and which operand is not. All of this information is a part of the instruction packet that moves
from stage to stage. Hence, while creating an instruction window entry, all this information is available.
Here, we are making an assumption that physical register ids – obtained post renaming – are also a part of
the instruction packet.

The ready1 and ready2 Bits

Let us explain the logic for setting the fields ready1 and ready2. Recall that these fields indicate whether
the operand is ready or not. If the operand is an immediate, then the logic for setting these flags is obvious.
Since we get the value of an immediate at the time of decoding an instruction, the operand is definitely
ready. Hence, let us not consider this trivial case. Let us instead consider the more difficult case where the
operand is a register.

In this case, there are a lot of possibilities. After the instruction enters the instruction window, it needs
to know whether it needs to wait for a source register’s value to be produced by an earlier instruction, or
the instruction can be issued to the functional units. It will then read the value of the source register along
the way from the physical register file. It is important for us to be armed with this information at the time
of entering the instruction window such that we know whether we need to wait, or we can proceed.

Thus, setting the values of the fields ready1 and ready2 is important, and at the moment appears to be
non-trivial. The problem at hand is to make a determination before entering the instruction window with
regards to the value of these fields. The previous stage is the renaming stage. We clearly need to make a
determination in this stage. Let us thus propose a small modification to the rename table.

Let us reconsider the structure of a rename table entry (see Figure 4.14). Let us add an additional bit to
the mapping that indicates whether the value of a given register (at that point of time) exists in the physical
register file or not. If it does not exist, then it means that the value is going to be produced by an earlier
instruction in the pipeline. Let us call this bit the available bit, and represent it with the mnemonic avlbl.
The avlbl bit thus indicates the availability of a source operand in an instruction, which is being renamed.

Assume that an instruction i is being renamed in the 10th cycle, then the avlbl bit for the source operand
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7-bit physical register idavlbl
bit

Figure 4.14: A rename table entry with the avlbl bit
.

will indicate if the instruction expects to find the values of the source registers in the register file or not.
This typically refers to the status of the source registers at the beginning of the 10th cycle. Once instruction
i reads its corresponding avlbl bit it takes this information along with it to the next stage.

If the avlbl bit is 0 for a physical register px, then instruction i needs to wait in the instruction window
for the value of px to get produced. This value will be produced by another instruction that is currently in
the pipeline. However, if the avlbl bit is 1, then the value for px is ready. It can be read from the physical
register file or it can be forwarded by another earlier instruction in the pipeline. Now the question that we
need to answer is, “When do we set the avlbl bit?” This is set when the producer instruction writes the
value of px to the register file. At the same time the producer can set the avlbl bit of px in the rename table.

It is true that adding a bit does solve the problem. However, it brings along a lot of complexity along with
it. Assume that we are renaming and issuing 4 instructions per cycle. If we assume that each instruction
has two sources and one destination, then our rename table requires 8 read ports (reading two sources) and
4 write ports (creating a mapping by reading the free list). Now, we have further burdened the rename table
with the load of maintaining avlbl bits. We need 4 extra write ports such that we can update the available
bits.

A structure with 8 read ports and 8 write ports is to say the least very complicated and difficult to design.
However, we should get some relief from the fact that each entry is only a single bit. Since each entry is a
single bit, we can design fast structures for achieving this. Sadly, at this point we are not in a position to
understand the design issues associated with memory structures. We shall look at such issues in Chapter 7.
Some of the broad approaches that we shall discuss in Chapter 7 include dividing a large array into several
smaller sub-arrays. Each such sub-array will have a much lower number of read/write ports. Furthermore,
we can also use simple flip-flops instead of expensive SRAM (static RAM) arrays. By a combination of such
approaches we can design a fast structure that can be used to store the avlbl bits.

Important Point 5

• The ready field in each instruction window entry is related to ready1 and ready2 as follows:
ready = ready1 ∧ ready2. It is not strictly required because it can be inferred from ready1 and
ready2. We have added it for the sake of simplicity.

• An operand can also be considered to be ready if we can read its value from the forwarding paths.
This is a minor point and will be revisited later. The point to note is that when we say that an
operand is “ready”, its value is either available via a forwarding path or can be read from the
register file.

4.2.2 Broadcast and Wakeup

Now that we have enqueued all the renamed instructions in the instruction window, it is time to execute
them. However, they may not be ready yet. Some of these instructions might be waiting for their source
operands to be ready as we discussed in Section 4.2.1. Once the source operands are ready, the instructions
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can be sent for execution.
The problem that we wish to solve in this section is to create a mechanism to track and resolve dependences

between instructions. There has to be some mechanism by which a producer instruction can let all its
consumer instructions know that the value of its destination register is ready. It basically needs to broadcast
the produced value to the consuming instructions. Furthermore, for this mechanism to work, each consumer
instruction needs to wait for its operands to become ready. Once, all of its operands are ready, it is said to
wakeup 1 Let us thus propose an architecture for the broadcast and wakeup mechanism, where a producer
broadcasts information regarding its completion, and consumer instructions use this information to wakeup.
We shall first discuss the architecture for broadcast (see Figure 4.15).

rs1 ready1 rs2 ready2

Tag bus

Tag bus

Figure 4.15: Instruction window with additional logic for tag broadcast and comparison

Each entry in the instruction window is connected to at least one set of copper wires called a tag bus. A
tag bus is used to broadcast the id of the physical register whose value has been written to the register file.
We alternatively refer to this id as a tag. The producer instruction broadcasts its tag (id of its destination
register) on a tag bus: this is connected to both the source operands 1 and 2. If we have multiple instructions
executing per cycle, then we need multiple tag buses. An instruction writes the id of its destination register
to its corresponding tag bus. Figure 4.15 shows two tag buses: one for each producer instruction.

Let us elaborate. Consider the following code snippet.

1 add r1 , r2 , r3

2 add r4 , r1 , r5

Instruction 1 is the producer instruction. It produces the value for register r1. Assume that register r1 is
mapped to physical register p17. Then 17 is the value of the tag that gets broadcasted on the corresponding
tag bus. Each entry in the instruction window is connected to all the tag buses. For each source operand,
we check to find out if it is equal to any of the broadcasted tags. This is done with the help of comparators
and an OR gate as shown in Figure 4.15. If there is a match, then we get to know that the corresponding
source operand is ready. For example, in the current scenario, instruction 2 is the consumer instruction.

1Note that we shall use the term “wakeup” rather than the regular English words “wake up” or “wake-up”.
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It waits for the value of register r1 (mapped to p17) to be produced and to be subsequently broadcast on
a tag bus. Once there is a match in the comparator for the first source operand of instruction 2, we can
set the corresponding ready bit to 1. This means that we can proceed to read the value corresponding to
architectural register r1 (physical register p17) from the register file.

Every producer instruction broadcasts its destination tag (if it has one) on one of the tag buses. This
allows consumer instructions to see the broadcast and subsequently wakeup. We can further augment this
mechanism to send the broadcast to the rename table. This will update the available bit (avlbl).

The process of waking up is simple. Once we observe the tag on a tag bus, we mark the corresponding
operand as ready, and if all the operands are ready, we proceed to execute the instruction. This is in itself a
multi-step process. We first need to set the ready bit in the instruction window’s entry to indicate that the
instruction is ready for execution. It is possible that multiple instructions might be ready for execution. For
example, it is possible that five add instructions are ready; however, we have only two adders. In this case
we need to choose two among the five instructions for execution. This process is called instruction selection.

4.2.3 Instruction Select

We can conceptually think of two kinds of valid instructions in the instruction window. One set of instruc-
tions have all their operands ready, and the other set of instructions are waiting for their operands to be
ready. Let us consider the former set. Note that in any processor we cannot simultaneously execute all
the instructions which are in the woken up state. It is theoretically possible that one instruction wakes up
100 other instructions. All of these 100 instructions will become immediately ready to execute. Given the
fact that we have a limited number of functional units, we need to choose a subset of instructions that can
execute simultaneously.

For example, if we have two adders and one multiplier, and have five instructions that are ready, we need
to find two add instructions and one multiply instruction out of the five ready instructions. This involves a
certain amount of decision making. The aim is to maximise the ILP.

Let us design a basic select unit that selects only one instruction (see Figure 4.16). Consider a theoretical
version of the problem where we have n entries in the window. Each entry is connected to the select unit. If
the instruction in an entry is ready (woken up), then it sets its request line to 1. However, if it is not ready,
then its request line remains 0. Any subset of these n entries can have their request lines set to 1. The job of
the select unit is to choose one of these n entries, which has a ready instruction. Once that entry is chosen
(or selected), the select unit sets its grant line to 1. This lets the entry know that it is ready to be sent for
execution.

nx1 Select unit
Grant lines
(only one set to 1)

Request
lines

Figure 4.16: A basic select unit

Figure 4.16 basically shows a black box that takes in n 1-bit inputs (request lines), does some processing
(unbeknownst to us at the moment), and then sets one of the grant lines. Let us elaborate.

Tree Based Select Unit

Let us consider one of the simplest designs for the select unit that has a tree-based shape. Please refer to
Figure 4.17. Such a select unit is an n× 1 select unit because we are choosing at most one out of n inputs.

In this example, we have n request lines. At the lowest level (the leaves of the tree) successive pairs of
consecutive request lines are routed to a set of n/2 elements. Each of these elements is a small select unit
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log(n) levels

 

Request lines

choice box

Figure 4.17: A tree based select unit

in its own right. Each such element has two inputs, and out of these, it needs to choose at most one. It is
thus a 2× 1 select unit. Instead of using the cryptic term, 2× 1 select unit, we shall refer to these elements
as choice boxes.

If we again take a look at Figure 4.17, we can make out that the choice boxes are organised in layers.
The first layer of n/2 choice boxes choose a maximum of n/2 inputs for the next layer. In the next layer,
we have n/4 choice boxes. They again choose at most half of the inputs as possible selections, which are
forwarded to the next layer, and so on. Let us now delve into a choice box.

A choice box has two inputs (two request lines) as shown in Figure 4.18. Let us name the inputs i0 and
i1. There are four possibilities. Either both of them are 1 (both interested), or one of them is 1 (two such
possibilities), or none of them are 1. For the first case where both the inputs are 1, we need to make a choice.
Let us at the moment choose one of the inputs arbitrarily. We shall discuss the policies for selection later.
It is important to remember the choice. For this purpose, we can have a small state element (choice) inside
each choice box such as a latch that remembers which input was chosen. For example, if we choose input i0,
then we store 0 in the latch, else we store 1. The choice box also has two grant lines corresponding to each
input: g0 and g1.

Now, for the other two cases where only one input is asserted (set to 1), we choose that input. Sub-
sequently, we set the output request line result to 1 thus indicating that the choice box has an input that
is asserted. The output request line is an input to the next layer of choice boxes. If none of the inputs are
asserted, then we set result to 0. This indicates to the next layer that there are no requests to be made.

Note that in every layer the number of choice boxes decreases by a factor of two (like a binary tree [Cormen
et al., 2009]). We thus have a total of log2(n) levels. The final layer (the root node) has a single choice
box. It chooses between its inputs and in a sense makes the final choice by asserting the corresponding grant
signal for the chosen input. This information needs to propagate back to the original entry. The reverse
path is followed. In each choice box along the way we set the appropriate grant signal.

Figure 4.19 shows the path that is taken by the grant signal for one particular example. In this case,



Smruti R. Sarangi 116

Truth table

i0 i1 choice result

0 0

0 1

1 0

1 1

0

1

1

1

0

1

0

0

Choice
box

i0

i1

result

choice

i0

i1
result

i0

i1
choice

Choice
box

g0

g1

Figure 4.18: A choice box (preference given to i0)
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Figure 4.19: The path of grant requests

when a choice box finds that its input grant signal (coming from the root) is asserted, it finds out which
input it had chosen, and asserts the corresponding grant signal. For example, if a choice box had chosen
input i1, and it subsequently finds that its input grant signal (coming from the root) is asserted, it sets the
grant line associated with input i1 to 1.

In this manner the grant signal propagates to the selected entry in the instruction window. Once an
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entry receives an asserted grant signal, it knows that it has been selected and should immediately proceed
for execution.

n×m Select Units

We have discussed the design of an n× 1 select unit. Let us now discuss the design of general n×m select
units. Note that here m is typically not a very large number. After all, it is limited by the number of
functional units. m is typically 2 or 3.

We have several options for designing an n× 2 select unit.
Option 1: The first option is easier but slower. Here we cascade two n× 1 select units. We first select one
of the inputs. Then we de-assert (set to 0) its input request line, and proceed to select a request out of the
rest of the requests using the second select unit. The schematic is shown in Figure 4.20.

R1
G1

R1

R2
G2

R2

nx1 select unitRequest
lines R3

G3
R3

R4
G4

R4

nx1 select unit

G'1

G'2

G'3

G 4'

Figure 4.20: Two cascaded n× 1 select units

With this design we take twice the time as a normal n × 1 select unit. However, the design is simple,
easy to create and understand. Note that there are issues with scalability. Designing an n× 3 select unit on
similar lines will be fairly slow.

Option 2: Let us now look at a slightly more direct approach. Let us modify a simple n× 1 select unit to
actually choose two instructions. We shall make the modification in each choice box. Each choice box now
will have two 2-bit inputs (or request lines). Each input line will indicate the number of requests that have
been selected in the subtree rooted at the choice box. This number can be either 0, 1, or 2. It is now possible
that a choice box might be presented with four requests. Out of these, it needs to choose at most two and
propagate this information towards the root of the tree. Finally, the root node will choose two requests and
let the corresponding choice boxes know. This information will flow back towards the instruction window
entry.

Refer to Figure 4.21 for a high level view.
Option 3: The select unit in Option 2 is complicated. There is no need to further underscore the fact
that complicated units are also slow units. Let us instead divide the entries in the instruction window into
disjoint sets. Each set can have an associated select unit. For example, we can divide the entries into two
sets: entries at odd indices of the instruction window array and entries at even entries. We can have one
n× 1 select unit for each set. This strategy will ensure that we will never select more than two instructions
and both the select units can act in parallel. However, the flip side is that if two entries at even locations
are ready, and there are no entries at odd locations that are ready, we will only be able to select just one
entry. This will lead to idleness and a consequent loss in performance. In spite of such concerns, having
select entries work on disjoint portions of the instruction window is deemed to be a reasonably good solution
primarily because of its simplicity.

Option 4: We can do slightly better. Let us have two select units, where each select unit is connected to all
the instruction window entries. For each choice box let us refer to one of the inputs as left (i0) and the other
one as right (i1). Let us force the choice boxes in one select unit to always give a preference to their left
inputs whenever there is a choice. Let us similarly force the choice boxes in the other select unit to always
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Figure 4.21: Non-cascaded design of an n× 2 select unit (the grant lines are not shown)

give a preference to their right inputs (whenever there is a choice). Let us now prove that it is never possible
that the same input is chosen by both the select units when we have at least two requests – two instruction
window entries that are ready.

Assume that we order the requests in a linear order from left to right. Consider any two requests R0 and
R1. Furthermore, assume that in this order R1 is to the right of R0 (without loss of generality).

Consider the select unit where each choice box always prefers its right input. It is not possible for this
select unit to choose R0. It will either choose R1 or some other request that is to right of R1. Similarly, we
can prove that the select unit where each choice box always prefers its left input chooses either R0 or some
other request that is to the left of R0. Hence, we prove that both the select units can never choose the same
request.

Important Point 6
There is a trade-off between Options 3 and 4. For the solution in Option 3, we connect half the entries
in the instruction window to the first select unit and the rest half to the other select unit. However, in
the more efficient solution (Option 4), we connect all the entries to both the select units. There is thus
an increase in efficiency at the cost of doubling the number of connections. This is one more example
of a general maxim: there is always a trade-off between efficiency and the number of resources.

Selecting Instructions for Different Types of Functional Units

The traditional solution for this problem is to have different select units for each class of instructions. For
example, if we have adders and multipliers as the only functional units, then we can have one select unit for
adders, and one more for multipliers. The problem of selecting instructions for these two classes of units is
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independent.
This approach is not scalable if we slightly complicate the situation. We can have functional units that

can process instructions belonging to many different classes, or we might have a lot of classes of functional
units. In this case, there is a need to complicate the select logic, where we need to send additional bits along
with each request. We basically need to annotate each request with the type of the instruction. The choice
boxes have to analyse the types of the requests, and make appropriate choices. This will slow down the select
unit. Hence, it is wise to have a few classes of instructions and a set of functional units that can process
only one class of instructions. Again, there are complex trade-offs in this case between the complexity of the
ISA and the complexity of the select unit.

4.2.4 Early Broadcast

Let us begin by asking the question, “When should we broadcast?”. A naive answer would be once we have
finished executing the producer instruction. While writing to the register file, we can in parallel broadcast
the tag. Unfortunately, this will lead to an extremely inefficient implementation.

Let us consider the following piece of code.

1 add r1 , r2 , r3

2 add r4 , r1 , r5

3 add r6 , r4 , r7

Instructions 1, 2, and 3 have RAW dependences between them. We have a RAW dependence between
instructions 1 and 2 because register r1 is written to by instruction 1 and instruction 2 reads it. Similarly,
there is a RAW dependence between instructions 2 and 3 (via register r4).

Now, let us see what happens if these instructions pass through our pipeline. Assume that instruction
1 wakes up in cycle 1. It is possible that multiple instructions might wake up in cycle 1, and we need to
select which instructions shall proceed to execution. This will take one more cycle (cycle 2). Now in cycle
3, instruction 1 will proceed to read its operands from the register file, and in cycle 4 it will move to the
execution units. Assuming it takes 1 cycle to execute the instruction, we will broadcast the tag in cycle 5,
and in cycle 6 the consumer instruction will wake up. Along with broadcasting the tag, we can write the
results to the register file. The chain of events is shown in Figure 4.22.

wakeup select read from
the reg.file

execute
broadcast
reg. file write

1 2 3 4 5

producer

consumer wakeup select

6 7

Figure 4.22: Chain of events between the execution of a producer and a consumer instruction

The main issue is that we have a delay of 5 cycles between executing instructions 1 and 2. In other
words, if instruction 1 executes in cycle 4, then instruction 2 will execute in cycle 9. Let us say that we are
able to find a lot of independent instructions between cycles 4 and 9, then there is no problem: our pipeline
will always be full with instructions.

However, this need not be the case always. Sometimes we might not find enough independent instructions.
In this case, the pipeline will not have any work to do, and our performance will dip. In fact the situation
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is far worse than a simple in-order pipeline where for such execution sequences we would not have stalled.
Clearly, we are not getting any benefit out of an OOO pipeline.

To ensure that we are able to get some gains out of an OOO pipeline we need to ensure that such
instructions with a RAW dependence can execute in consecutive cycles. This will at least ensure that we
are doing as well as an in-order pipeline. The additional benefits of OOO pipelines will accrue when we find
enough independent instructions to fill up the rest of the issue slots. Nevertheless, waiting for 5 cycles to
issue a consumer instruction seems to be a very bad idea. Let us aim for 1 cycle, which is the minimum
(same as an in-order pipeline).

Let us thus summarise our new found objective. It is to execute instructions with a RAW dependence in
consecutive cycles. Let us only confine our attention to regular arithmetic instructions, and keep memory
instructions out of this discussion for the time being. Such kind of an execution, known as back-to-back
execution, is very beneficial and will guarantee us some degree of minimum performance, even in programs
with very little instruction level parallelism (ILP) (see Definition 8).

To ensure back-to-back execution, we need to take a very deep look at three actions namely broadcast,
wakeup, and select. If a producer instruction wakes up in cycle i, then the consumer instruction has to
wakeup in cycle i+ 1. Before getting overly concerned with the exact mechanism, let us start drawing some
diagrams to explain the process. We shall then add some meat to the bones by working on the mechanism.

At the moment, this is what we need to ensure:

wakeup

wakeup

i i + 1

producer

consumer

Now, given the fact that we need to perform a select operation, after an instruction wakes up, we have
two options. Assume that we have slightly optimised our wakeup and select procedures such that they fit in
a single cycle. In this case, the instruction can get selected in the same cycle. Assume it does get selected.
We thus have arrived at the following pipeline diagram.

wakeup

wakeup

i i + 1

select
producer

consumer

Once an instruction is selected, it knows that it is on its way to execution. There are no more roadblocks.
It can proceed to the subsequent stages. In cycle i + 1, it can broadcast the tag corresponding to its
destination register. This is an early broadcast because we are broadcasting the tag before the producer
instruction has computed its result and written it to the register file. We subsequently expect the consumer
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instruction to pick up the broadcasted tag (in the same cycle), and proceed through its wakeup and select
stages. This is thus the final pipeline diagram:

wakeup

wakeup

i i + 1

select
producer

consumer

broadcast

To summarise, for ensuring back-to-back execution, we have had to make significant changes to our
design.

1. We have overlapped the broadcast of the producer instruction with the wake-up/select operations of
consumer instructions. This requires us to ensure that these are very fast operations.

2. We do an early broadcast. This means that before the result of the producer is ready, we wake up the
consumer instructions. They believe the producer, and proceed through the wakeup/select stages. The
producer is expected to forward (or bypass) its result to the consumer instructions such that they can
execute correctly. This is similar to classic forwarding in in-order processors, where the result of the
producer is sent to the consumer. The consumer chooses between the value read from the register file,
and the forwarded value using a multiplexer (see Section 2.1.4). It is important to understand the
forwarding technique in in-order processors before reading this section. We use exactly
the same logic here. In OOO processors forwarding is typically called bypassing.

3. The OOO pipeline from the dispatch stage to the register file write stage is thus as follows:

wakeup

select read from
the reg.file

execute reg. file write

1 2 3 4

broadcast

0

dispatch

4. A question naturally arises: Is there a correctness issue in performing early broadcast? The reader
should first try to answer this question on her own. The answer is given in Point 7.

Important Point 7
We are doing an early broadcast. This means that we are broadcasting the tag before the register has
been written to. Is there a correctness issue?
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Let us try to use the same logic that we used while discussing forwarding in in-order processors
in Section 2.1.4. Let us look at the pipeline diagrams for a producer and consumer instruction issued
back-to-back.

wakeup

select read from
the reg.file

execute reg. file write

1 2 3 4

broadcast

0

dispatch

wakeup

select read from
the reg.file

execute reg. file writebroadcastdispatch

5

producer

consumer

Here, we execute a producer-consumer instruction pair back-to-back, and we do an early broadcast.
There is no problem in correctness, because the consumer instruction can always get the correct values
from the producer. In this case, the consumer needs the producer’s results at the beginning of cycle 4. The
producer’s results are ready by the end of cycle 3, and thus it can forward the results to the consumer.
Similar to classic forwarding in in-order pipelines we require multiplexers.

Execution
unit result

values read
from the 
register file

We know from our study of in-order pipelines that such kind of forwarding (also known as bypassing)
can be done seamlessly (see [Sarangi, 2015] and Section 2.1.4) in most cases. All that we need to ensure
is that when we need the data at the beginning of the execute stage, it is available somewhere in the
pipeline. As long as we can ensure this, early broadcast will not introduce any correctness issues.

Let us now comment about the efficiency of this process. It is true that this method has enabled back-to-
back execution, and thus we are guaranteed to at least get the same IPC as an in-order processor for codes
that have a lot of such dependences. However, such optimisations come at a cost, and the cost is that we
need to perform the broadcast-wakeup-select operations very quickly – all within one cycle (see Figure 4.23).

This might not be possible all the time, particularly when the instruction window has a large size. There
are wire delays involved, and the wake-up/select operations can take more than one clock cycle particularly
in high frequency processors. Hence, it might be a wise idea to forego the notion of back-to-back execution
if we desire a very high frequency processor. We will definitely lose IPC in codes with a lot of dependences;
however for most general purpose programs we will always be able to find enough independent instructions
to execute every cycle. There can be a net gain in performance because of the high frequency. Such kind
of decisions illustrate the trade-off in designing high performance processors, where we cannot get high IPC
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wakeup

wakeup

i i + 1

select
producer

consumer

broadcast

select broadcast

wakeup
consumer's
consumer

select broadcast

i + 1 i + 2

Figure 4.23: Back-to-back execution in an OOO pipeline

and frequency at the same time. Again this also depends on the type of programs that we expect to run. If
we expect that programs will have high ILP, then back-to-back execution is not a necessity, otherwise it is.

4.2.5 Tricky Issues with Early Broadcast

The Load-use Hazard

As we have discussed in Point 7, early broadcast per se is not an issue as long as it is possible to bypass
values from one stage to the other. Of course, there are exceptions as we had discussed in Section 2.1.4 such
as the load-use hazard, where if the producer instruction is a load, back-to-back execution is not possible.
In the case of OOO processors, we have the same problem. The execute stage computes the address and
then we need to perform a memory access, and thus bypassing is not possible. Let us visualise this.

wakeup

select read from
the reg.file

execute reg. file write

1 2 3 4

broadcast

0

dispatch

wakeup

select read from
the reg.file

execute reg. file writebroadcastdispatch

5

load instruction

consumer

read memory

We add an extra stage after the execute stage to access memory. We make the simplistic assumption that
a memory access takes one cycle. Then we try to forward the data. As we show in the diagram this is not
possible. We are moving backwards in time. We need the results at the beginning of the 4th cycle, whereas
they are produced at the end of the 4th cycle. Thus back-to-back execution is not possible. However, we can
still broadcast the tag early, and get some benefits.
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wakeup
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1 2 3 4

broadcast

0

dispatch

wakeup

select read from
the reg.file

execute reg. file writebroadcastdispatch

5

load instruction

consumer

read memory

6

Instead of broadcasting the tag right after instruction select, let us instead broadcast the tag in the 3rd

cycle as shown above. We thus broadcast one cycle later, and the consumer instruction needs to stall for an
additional cycle. The rest of the processing for the consumer instruction remains the same. In this case, we
do not have any correctness issues owing to the fact that the consumer instruction needs the result in the
beginning of the 5th cycle, and it gets it. This is because the load returns with its value at the end of the
4th cycle.

To summarise, the method to handle a load-use hazard is to broadcast two cycles after selection. Let
us generalise this. Let us club the execute and memory access stages into one large execute stage. In the
current example this stage takes 2 cycles (1 for computing the address, and 1 for accessing memory). Assume
it takes k cycles (k ≥ 1). We claim that we need to do a broadcast k cycles after selecting the instruction to
ensure that all the consumer instructions get the result exactly on time.

Let us prove this. Assume that the producer instruction wakes up and gets selected in cycle 1. It will
then proceed to read the values of its register operands in the next cycle. Since the execution takes k cycles,
the execution will finish in cycle k+2. Consider the next instruction. The worst case is that it is a consumer
instruction. The earliest that it can execute is cycle k + 3 (one cycle after the producer). Calculating
backwards the consumer needs to wake up (and get selected) in cycle k + 1 (one register read stage in the
middle). This means that the producer needs to broadcast in cycle k + 1, and that is the earliest. Recall
that the producer had woken up in cycle 1, and we just proved that the earliest it can broadcast the tag is
cycle k + 1 (k cycles later). This proves our claim.

This means that for each class of instructions, we have different times at which we need to broadcast their
tags. If an add instruction takes 1 cycle, then we can broadcast the tag immediately after the instruction
gets selected (in the next cycle). However, if we have a slow divide or memory access operation, then we
need to wait for k cycles. This is typically achieved by using a timer for each selected instruction that counts
down from k to 0.

Setting the avlbl bit with Early Broadcast

We had discussed the avlbl bit in each entry of the rename table (see Figure 4.14). We had said in Section 4.2.1
that this bit indicates if a given source operand can be found in the register file or not. This needs to be
revised in the light of our current discussion.

The avlbl bit should indicate if it is possible to get the value of the operand from either the register file or
the bypass network (network of wires and multiplexers to transfer forwarded values). If it is so, then we can
mark the operand to be ready, and the instruction can be issued if the rest of the operands are also ready.
To summarise, when we say that an operand is available, it means that its value is present somewhere in the
pipeline.

Regarding when we should set the avlbl bit, the answer should be obvious to us now. It should be set
when the tag is being broadcasted on the tag buses. This is when the consuming instructions also get to
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know that the value corresponding to the tag is available (either from the register file or the bypass network).
Along with doing this we can just forward the tags to the rename table, and set the appropriate avlbl bits.

Missing a Broadcast

Consider the following sequence of operations. For instruction I we read the rename table in cycle 1. We find
that physical register p1 (one of the operands) is not available. Then in cycle 2 we dispatch this instruction
to the instruction window. In cycle 2, the producer instruction (for p1) broadcasts the tag on the tag buses.
If instruction I misses this broadcast because it is being simultaneously written to the instruction window,
then there is a problem. The instruction window entry of I will continue to wait for the broadcast for p1,
and this will never happen, because we have already broadcast the value in cycle 2.

Let us look at several ways to fix this problem.

• We write to the instruction window in the first half of the clock cycle, and we broadcast the tags in the
second half of the clock cycle. This means that the instruction that is being dispatched (written to the
instruction window) will not miss a broadcast. By the time that the tag is broadcast, the dispatched
instruction is ready to wake up its operands. This is an easy solution. However, it is very inefficient.
We are artificially reducing the time that we have for a broadcast and the subsequent wakeup. To
accommodate this we need to elongate the duration of a clock cycle, which is not desirable.

• The other option is to store all the tags that were sent in a given cycle in a small buffer. We can
compare these tags with the operands of the dispatched instructions in parallel. The ready bits for
the operands can then be written later – either at the end of the current cycle or at the beginning of
the next cycle – to the instruction window entries. This makes the circuit design complex in the sense
that we need to create a separate structure to store the ready bits; however, in cases like this such
complexities are inevitable.

• One more approach is to broadcast the tags that were missed once again. This will double the number
of tag buses in the worst case. This can be done intelligently by broadcasting only those tags that
have been genuinely missed and are needed to set the appropriate operands to the ready state. In the
worst case, we need to double the number of tag buses, which is not desirable. In most cases, we can
consider an average case; however, this depends on the benchmark, and is hard to predict.

4.3 The Load-Store Queue (LSQ)

We have up till now been discussing the execution of regular arithmetic instructions. Now we have accept-
able solutions for renaming, selecting, and issuing instructions. Next, we need to turn our attention towards
memory instructions. Sadly, we cannot use the mechanisms we have developed to process arithmetic in-
structions in the case of memory instructions. We need additional hardware. The most important structure
that we add is known as the load-store queue (LSQ). Trivially speaking, it contains a list of load and store
operations – arranged in FIFO (first-in first-out) order based on when they were fetched. Note that we shall
use the terms “load-store queue” and “LSQ” interchangeably.

Let us motivate the need for an LSQ. Consider two memory instructions: I1 and I2. We can have many
kinds of dependences between them. Some of these dependences have been covered in previous sections, and
some are new. We have considered dependences via registers in the previous sections. However, now let us
consider dependences via memory. We shall have such kind of dependences, when the addresses of these
instructions are the same.

4.3.1 Memory Dependences

Let us consider four separate cases. Let I1 and I2 be memory instructions that access the same address.
Assume that I1 precedes I2 in program order (I1 → I2). Finally, assume that there are no intervening
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memory instructions between I1 and I2 that access the same address.

load → load dependence: In this case a load instruction (I1) is followed by another load instruction (I2)
from the same address: I1 is the earlier instruction and I2 is the later instruction. We can reorder I1 and I2.
Of course, we shall have an issue when we consider multiprocessors (explained in Chapter 9); however, for
single processors there is no issue. Furthermore, to reduce memory traffic, we need not send two instructions
to memory. We can just send one instruction. For example, we can send I1 to memory first. Then we can
forward the value ready by I1 to instruction I2. This will halve the memory traffic.

load→ store dependence: In this case a load instruction (I1) is followed by another store instruction (I2) –
both access the same address. We cannot reorder I1 and I2. If we do that, then the load will read the wrong
value. It will read the value written by the store I2, which is wrong. As a result these instructions need to
execute in program order. Recall that this is a classic WAR dependence in memory.

store → load dependence: In this case a store instruction (I1) is followed by another load instruction (I2).
This is a classic RAW dependence in memory, where the store instruction is the producer and the load
instruction is the consumer. Here again, it is not possible to reorder the instructions. Otherwise, the load
instruction (I2) will get an older value, which is wrong.

store→ store dependence: In this case a store instruction (I1) is followed by another store instruction (I2)
to the same address (a WAW dependence). Akin to a similar case with registers, we cannot reorder the
memory accesses.

The summary of all of this discussion is that there can be RAW, WAR, and WAW dependences between
memory instructions the same way we have dependences between instructions with register operands. How-
ever, the sad part is that we cannot use the same techniques that we used to get rid of WAR and WAW
hazards for registers in this case. For registers, we used renaming, and built an elaborate mechanism centred
around the rename table. However, renaming memory is far more expensive. We can have thousands
of memory locations, and maintaining such large rename tables is practically not feasible. Moreover, the
memory address is not a 4-bit quantity, it is instead a 32-bit or 64-bit quantity. Thus, a memory renaming
table will require millions of entries, and thus it is not practical.

As a result, whenever we have a dependence of any form that involves a write (WAR, RAW, or WAW),
we need to ensure that the memory requests are sent to the memory system in program order.

This is not all. We sadly have more bad news. Register dependences are clearly visible after decoding
the instruction. We know about the nature of dependences by taking a look at the ids of the source and
destination registers. However, processing memory instructions is a multi-step process. The first step is,
of course, to read the values of the source registers. The second step is to compute the address by adding
the contents of the base address register and the offset. Only after address computation do we get to know
the address of a memory instruction. This address needs to be subsequently used to find dependences
between memory instructions. Unlike decisions that are taken right after the decode stage (such as register
dependences), and that also in program order, the addresses of memory instructions are generated out of
order, and need to be handled in the order in which they are generated. This out-of-order generation of
memory addresses complicates the problem of managing and tracking memory dependences significantly.

Let us first try to solve this problem from a conceptual point of view. Subsequently, we shall propose a
practical realisation of our method.

4.3.2 Conceptually Handling Loads and Stores

It should be noted that a memory instruction has two execution steps. The first step is to compute the
address, and the next is the memory access itself. Insofar as the former step is concerned, it is a regular
arithmetic addition. The memory instruction can happily pass through the dispatch and issue stages for this
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specific part of its processing. Now, consider the second execution step where we need to handle memory
dependences.

Let us imagine a large conceptual first-in first-out queue that contains all the load and store instructions
that are currently in the pipeline; let this be our LSQ (load-store queue). Whenever, we decode a memory
instruction we create an entry for it in the LSQ. At this point, we do not have any knowledge of its memory
address. This will be computed after the corresponding instruction is issued, and we add the contents of the
base register to the offset (embedded in the instruction). Once, the address is generated, we can write it to
the corresponding entry in the LSQ.

This is when the real processing starts. Every entry in the LSQ is marked not ready by default. However,
once its address is generated it is ready to be executed – sent to the memory system. As we shall see in
Section 4.4, stores cannot be sent to the memory system as soon as their address is computed. Otherwise,
we will not be able to guarantee precise exceptions (see Section 2.3.3). Hence, stores are sent when the
instruction is ready to be removed from the pipeline. As we shall see in Section 4.4, this is the point where
the instruction is the oldest in the pipeline.

SLSS L

Earlier entries
Figure 4.24: Example of a sequence of loads and stores (arranged in a queue as per the order in which they
entered the pipeline).

Loads

Let us look at an entry right after its memory address is computed. We are ready to go to the memory
system, if we are not violating any memory dependence as defined in Section 4.3.1. However, whether we do
have dependences or not needs to be ascertained first.

Let us look at Figure 4.24 in detail. Assume that the shaded (or coloured) box in the load queue (load A)
just got its address computed. Let us consider all the stores before it. There is a possibility of a store→ load
dependence. We need to read all the store entries before it and find if there is a store with the same address
or with an unresolved (not computed) address. This means that in Figure 4.24, we need to search all the
stores before the load – proceed in a leftward direction (towards earlier entries). There are three possible
scenarios. Let us consider them in decreasing order of priority.

1. While proceeding towards earlier entries we encounter a store with an unresolved address.
This means that in theory the address could be the same as the load. We cannot take the risk of ignoring
this store instruction. If we ignore it and go ahead, it is possible that we might load the wrong data
if the address of the store comes out to be the same as the address of load A. Hence, we need to wait
for the address of that store to be resolved (computed). The process terminates here, and we do not
check for the rest of the scenarios.

2. Assume that we encounter a store to the same address before encountering an unresolved
store. In this case, we can forward the value of the store to the load instruction. This is known as
load-store forwarding or forwarding in the LSQ. In this case, the load can take the value of the store
and proceed. Note that the store in consideration has not written its value to the memory system
yet. However, since we know the value that it is going to write, we can happily let dependent load
instructions proceed. This is similar to forwarding in an in-order pipeline.
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3. None of the above: This means that we keep searching for previous store instructions; however, we
do not encounter a store with an unresolved address or a store instruction with the same address as
the load instruction. In this case, there is no reason to wait or forward from an earlier store. We can
let the load instruction access the memory system and read its value from there.

To summarise, we need to search all the store entries before the load instruction A (in Figure 4.24). We
need to keep searching till we find the first (latest before the load) store instruction that either stores to the
same address or has an unresolved address. In the former case there is a store → load dependence and in
the latter case there is a possibility of a dependence, and since we do not know, we need to wait. If there is
a dependence, then we can directly forward the store’s value to the load instruction. We are guaranteed to
have the value in the LSQ because in our assumed RISC ISA, store instructions read the value, which is to
be stored, from a register. We further assume that register file reads happen before the address of a store is
computed. Thus, if a store’s address is resolved, its value should also be present in the corresponding LSQ
entry. With such forwarding, the load can continue its execution. This method effectively increases the IPC
because it releases the load instruction as soon as possible and allows it to carry on with its execution. There
will be less stalls in the future.

If there is no waiting or forwarding, then it means that we have searched all the earlier store entries, and
there is no possibility of a memory dependence. The load instruction can be sent to the memory system.

Stores

Let us see what happens in the case of store instructions. Note that here there are two distinct points of
time. The first point of time is when the store instruction is decoded and we create an entry for it in the
LSQ. The second point of time is when we finish computing the address of the store instruction and update
the address in the LSQ entry. We are assuming that at this point we know the value to be stored (contents
of some register) as well. This is because we read the contents of the register that contains the base address
and the contents of the register that holds the store value at the same time. Given that we have finished
computing the address, the store value must also be present with us.

Now that we know the value that needs to be stored, and the address, a naive reader would think that
we are ready to send the store to the memory system. However, as we shall see in Section 4.4, because
of several reasons centred around correctness we can only send a store to the memory system when the
instruction is being removed from the pipeline, and it is the oldest instruction in the pipeline. As long as we
have earlier (older) instructions in the pipeline, we cannot send the store to memory. Since we do not have
earlier instructions when the store instruction is sent to memory, it is guaranteed to be at the head of the
LSQ, and there will be no memory dependences that can stop us from sending the store to memory.

Nevertheless, handling stores is not that simple. Initially, when an entry is created for a store at the time
of decoding an instruction, the store’s address is unresolved. Let us refer to this situation with a question
mark (?) in our figures. Once its address is computed, the store’s address is resolved. We shall use a
tick mark to indicate this situation. Even though we cannot send the store to memory immediately after
computing its address, we still have some work to do. Given that we have a store with a resolved address,
new dependences will be created. The store can forward its value to newer loads as we can see in Figure 4.25.
In this figure all the entries that are shaded (or coloured) have the same address.

When store X in Figure 4.25 is resolved, suddenly loads A and B, which have the same address are eligible
to get the forwarded data. They can take the forwarded value and continue their execution. However, load
C is not eligible to get the forwarded value because it is preceded by the store instruction Y . Y ’s address
has not been resolved, and it is possible that its address might be the same as X’s and C’s address. In that
case, C should get the forwarded value from Y and not X. Since we do not know, load C needs to wait.

The algorithm is thus as follows:

• Search later entries. If we encounter a store to the same address or if a store is unresolved, then stop.

• Otherwise, if there is a load with the same address, forward the value, and then keep scanning later
entries.
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Earlier instructions

X A B Y C

✔ ✔✔ ✔✔ ?✔
✔ address resolved

? address not resolved

Figure 4.25: Forwarding in the LSQ (we cannot forward to C because of Y )

4.3.3 Design of the LSQ

Load queue Store queue

New load entry 

New store entry 

LSQ

Figure 4.26: Design of the LSQ

Most common designs of the LSQ have a separate load queue and a store queue as shown in Figure 4.26.
The queues by themselves are internally designed as circular queues, which as we have been seeing is almost
always the case. Entries are added to the bottom of the corresponding queue (load or store), and they
gradually move up. The logic for having two separate queues is efficiency. We typically need to find all the
earlier stores, or later loads. Having smaller queues helps speed up the process.

Let us summarise the discussion that we had in Section 4.3.2 regarding the search operations that need
to be performed (see Table 4.2) along with the conditions for terminating the search. Whenever we resolve
the address of a load, we search all the stores before it till we find a store to the same address or a store
with an unresolved address. In the former case we forward the value of the store to the load.

Whenever, we resolve the address of a store instruction we search all the loads and stores after it. We
terminate the process when we encounter a store with the same address or an unresolved address. If we
encounter a load to the same address before termination, then we forward the value of the store to the load,
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Type Search direction Action: Condition

Loads Search all stores
before it

1. Terminate and forward value: Store to the same address
2. Terminate: Store with an unresolved address

Stores Search all loads
and stores after
it

1. Terminate: Store to the same address
2. Terminate: Store with an unresolved address
3. Forward value: Load from the same address

Table 4.2: Rules for processing load and store entries after their address is resolved

and mark the load instruction as ready.
The task now is to design basic hardware mechanisms to implement the logic in Table 4.2. Here are the

basic primitives that we need to implement.

1. Search entries before or after a given entry.

2. Find entries with the same address.

3. Find the first (latest) entry before a given entry that satisfies a certain condition, or the first (earliest)
entry after a given entry that satisfies a given condition.

Let us add the following fields to each entry (see Figure 4.27). Along with the address we create two
additional fields: valid and resvd. valid indicates if the entry is valid (as the name suggests) and resvd
indicates if the address has been resolved or not. If resvd = 1 then it means that the address has been
computed (resolved).

address valid resvd

Figure 4.27: An entry in the LSQ

Finding Earlier or Later Loads and Stores

The basic question is, “Given a load or store how do we find the loads and stores before or after it ?” Since
the load and store queues are implemented as circular queues, we have a head and a tail pointer associated
with each queue. Every time we enqueue an entry, we increment the tail pointer (modulo the size of the
queue). Similarly, every time we dequeue an entry, we increment the head pointer (modulo the size of the
queue).

Let us create an abstract version of the problem. Let us consider an array v, which we shall use as a
circular queue with a head and a tail pointer. In addition, we have a size field that indicates the number of
entries in the queue. If size = 0, then it means that the queue is empty, and no processing needs to be done.
Let us proceed with the assumption that size 6= 0. If head = tail, then it means that the queue has just one
entry. If tail < head, then it means that the queue has wrapped around the end of the array. Here, we are
not considering the possibility of overflows: more entries than the maximum size of the queue. Finally, note
that we do not look at the head and tail pointers to decide whether a queue is empty or not, we simply look
at the size field.

To record the relative ordering of loads and stores, we need to create a mechanism. We shall describe
the mechanism for loads in this section. There is an analogous mechanism for stores. For each load entry we
record the value of the tail pointer of the store queue when the load instruction was entered into the load
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queue. Recording the tail pointer of the store queue will help us find all the stores that came after the load,
and the stores that were in the pipeline present before it.

Given an index j, we need to find all the entries that are either before it (towards head) or after it
(towards tail). The assumption is of course that j is a valid index in the circular queue. The most trivial
solution is to start at j and walk the array sequentially. This is a slow operation and is proportional to the
size of the array in the average case. This is not acceptable. We need a parallel implementation.

Let us first fix the format of the output. Since the load queue or store queue typically have less than 64
entries, we can use this fact to significantly speed up operations by using some extra space. Let the output
be a bit vector, where the number of bits is equal to the number of entries in the relevant queue (array v). A
bit is 1, if the entry satisfies the predicate (before or after), otherwise it is 0. To create an efficient hardware
implementation, we can store these bit vectors in registers. Additionally, let us assume that we have the
following bit vectors available in registers: valid and resvd. The valid register contains all the valid bits of
entries in the relevant queue. On similar lines we have a resvd register that contains one bit for each entry
in the queue: 1 if the address is resolved and 0 if it is not.

Let us now show an example of how to compute a bit vector that contains a 1 for all the valid queue
entries that are before a given j. Let the total number of entries in v be N . Let us first create a small N -entry
array, where for a given index i (starts from 0) we store its unary representation using N bits. For example,
when N = 8, we store 00000111 for 3. Basically, for a given number i, we store an N -bit number where the
least significant i digits are 1 and the rest are 0. If i = 17, we store a number whose least significant 17
bits are 1, and the remaining N − 17 bits are 0. We can alternatively say that for each i we store 2i − 1.
Such small arrays that store the precomputed results of functions (unary representations in this case) are
known as lookup tables. These are really fast. In this case, let us represent this lookup table operation by
the function prec.

First, consider the case where j ≥ head (no wraparound). The bit vector representing the elements before
j – represented as before(j) – is given as follows:

before(j) = prec(head) ∧ prec(j) (4.1)

This can also be viewed graphically. The first term captures all those entries that do not precede the
head and the second term captures all those entries that precede entry number j. Note that in this diagram
the least significant bit is the leftmost position and the most significant bit is the rightmost position (we go
from left to right unlike the conventional way: right to left).

head tailj

prec(head) 1 1 0 0 0 0 0 0

prec(j) 1 1 1 1 0 0 0 0

before(j) 0 0 1 1 0 0 0 0

An analogous equation for the case when there is a wraparound (j < head) is as follows.

before(j) = prec(head) ∨ prec(j) (4.2)
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The first part, prec(head), captures all the entries from head till the last (N − 1)th entry of the array.
The second part, prec(j), comprises all the entries that are between the 0th and (j−1)th indices in the array.
The proof of this case is left as an exercise for the reader.

Equations 4.1 and 4.2 are very easy to compute. They require simple logical operations and the bits can
be processed in parallel. We do not have to sequentially scan any array. If we want to find all the resolved
entries that are before a given index j, then we just need to compute before(j) ∧ resvd.

The corresponding equations for the function after are as follows. The reader is encouraged to verify
their correctness.
Case j ≤ tail:

after(j) = prec(j) ∧map(j) ∧ (prec(tail) ∨map(tail)) (4.3)

Here, we use a function map(i), which computes an N -bit bit vector where the ith bit is 1, and the rest
of the bits are 0. Here, the first two terms set all the bits in the range [j + 1, . . . , N − 1] to 1. The last term
(prec(tail) ∨map(tail)) computes a bit vector that has 1s at all the positions in the range [0, . . . , tail]. The
intersection gives us the correct result.
Case j > tail:

after(j) = (prec(j) ∨ prec(tail) ∨map(tail)) ∧map(j) (4.4)

Note: In both the cases we are computing a logical AND operation with map(j) because we want to
remove the jth entry from the result of the after function. The rest of the proof is straightforward.

Finding Entries with the Same Address

To solve this problem, we need to implement the queues using a content addressable (CAM) array. We shall
learn more about CAM arrays in Chapter 7. In such arrays we can access an entry both by its index as well
as by its content. For example, if we designate the content to be the memory address, then we can search
for all the entries that contain a matching address. The output will be an N -bit bit vector, where a value of
1 in the kth position indicates that the address matches with the kth entry in the array.

For small arrays we can get this bit vector in less than a cycle, and this can then be used to compute
functions of the form: find the loads after a given store with a matching address.

Finding the Earliest or Latest Entries Satisfying a Given Property

Now that after we have computed the before and after functions, we can find the set of all the loads and
stores before or after a given entry satisfying a certain property. For example, we can find all the stores after
a certain store whose address is unresolved. We will get a bit vector as an output. As we saw in Table 4.2, it
is often necessary to find the first entry before or after an entry that satisfies a given property. For example,
for a load, we need to find the latest store before the load that has a matching or unresolved address.

Let us generalise this problem, and propose a solution. We have a bit vector where the entries of interest
are set to 1, and the rest are set to 0. This bit vector has been computed after a series of logical operations.
Each entry with a 1 satisfies a given property. Now, if tail ≥ head, then there is no wraparound and we are
fine. However, if tail < head, then we have a wraparound. In this case, let us create a modified bit vector
that contains all the bits from head to tail in sequence. This needs a set of bit shift and copy operations
that can be performed in less than a clock cycle. At the end of this operation our modified bit vector, v′,
will not have a wraparound.

We thus have a bit vector with a set of 0s and 1s. The aim is to find either the position of the leftmost
or rightmost 1. We have seen such problems before. This is similar to an n× 1 select operation, as we have
seen in Section 4.2.3. We program the choice boxes as follows. If we want to choose the leftmost bit that is a
1, then we need to program the choice boxes to always choose their left input if there is a choice (when both
inputs are 1). We can argue by mathematical induction that ultimately the leftmost 1 will be chosen as the
output of the select unit. On similar lines we can find the position of the rightmost 1. Let us visualise this.
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0 1 0 1 0 0 1 0

nx1 select unit

Request

Grant

The request lines carry 1 if the corresponding bit is 1. Only one of the grant lines is set to 1, and this
corresponds to the entry that is the leftmost or rightmost 1. We can thus very easily find the earliest or
latest entries using a modification of the classic select unit that we have studied before.

Putting it all Together

The crucial insight that we can derive from this design is that it is often very expensive to process data one
entry at a time. There is a need for parallel processing, and this requires the use of novel storage structures
and algorithms. We often end up doing extra work; however, in high performance processors it is essential
to do this additional work such that results can be computed in less than 1-2 cycles.

4.4 Instruction Commit

This is the last stage in an instruction’s life. This stage is known as instruction commit, and is even known
as the instruction retirement stage. The instruction is supposed to logically complete in this stage, and
then subsequently leave the pipeline. The issue of an instruction logically completing needs to be further
explained. It is a difficult concept and will require several pages of text before readers can fully appreciate
what exactly this term means. It would be wise to go over Section 2.3.3 on precise exceptions once again
before reading this section.

4.4.1 Notion of Precise Exceptions and In-order Commit

Let us take a second look at this topic (refer to Section 2.3.3). A precise exception was defined as a mechanism
where all the instructions before (in program order) the faulting instruction execute completely, and none of
the instructions after the faulty instruction appear to execute. We argued that having precise exceptions is
vitally important for modern out-of-order processors. Otherwise, programs will appear to execute incorrectly
and we will not be able to reason about them.

A common example that is given in this regard is the case of an instruction that accesses a piece of
data that is not in memory (a page fault defined in Section 7.2). The CPU and the operating system do
the following in response: (1) store the execution state (context) of the program and load the operating
system, (2) execute a small function called an interrupt handler (part of the OS) that will bring the data
into memory, (3) load the execution state of the original program back, and finally, (4) re-execute the faulting
instruction. This process is shown in Figure 4.28. The interrupt handler loads the data into memory and
then the OS restarts the original program. The original program re-executes the faulting instruction once
again. This time it does not encounter a fault because its data is in memory. The entire process needs to
happen seamlessly without the original program perceiving the interruption.
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Program execution

fault

interrupt handler

Resume execution

Figure 4.28: Life cycle of a faulting instruction

Let us look at the finer points. We are making an implicit assumption that before the faulting instruction
all the instructions have fully executed – computed all their results, and written the results to the register
file or memory. We are also assuming that no instruction after the faulting instruction has written its
final result to the register file or memory. Basically, no permanent or visible changes have been made by
instructions after the faulting instruction. We have in a sense cleanly split the execution of the original
program, somehow stored its context (or execution state), executed other programs, and then restarted the
same program magically from the same point. Such exceptions or interruptions in program execution are
known as precise exceptions.

We further argued in Section 2.3.3 that to an outsider, a program should appear to execute in exactly
the same way as if it was running on an in-order processor or a single-cycle processor. In such processors,
precise exceptions are guaranteed because instructions write their results to the register file or main memory
in program order. We can thus stop the program at any point fairly easily, flush the pipeline, and safely
restart from either the faulting instruction (if there is a need) or from the instruction that appears after the
faulting instruction in program order – depending upon the nature of the fault. For an out-of-order pipeline,
to ensure similar behaviour, it will take more work.

Let us complicate the situation by adding a little bit more complexity. Till an instruction completes,
we are not really sure if that instruction has any faults or not. It is possible that it might access an illegal
address, perform some illegal arithmetic operation, have an illegal opcode, or do something else that is not
allowed. Since we do not know sufficiently in advance which instruction will have a fault, it is a good idea
to assume that any instruction might have a fault. This means that at any point in the execution of an
instruction we might encounter an error – we still need to ensure that the notion of precise exceptions is
maintained.

The crux of our discussion is thus as follows: an OOO processor should appear to be executing instructions
in program order to an outsider. This idea can be visualised better in Figure 4.29.

OOO Processor
Instructions
enter in program
order

Instructions appear to update 
the program state (arch. register file + 
memory) in program order

Figure 4.29: View of instruction execution from the point of view of an outsider

If we create a system where instructions are read in program order (this is already the case), and to an
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outsider sitting outside the processor, the instructions appear to complete also in program order, then we
can achieve all our goals. This is shown in Figure 4.29. Within the processor, which we treat as a black
box in the figure, instructions can compute their results and even write results to temporary storage out of
order. However, for a hypothetical entity sitting just outside the processor, all instructions need to appear
to make permanent changes to the register file and memory in program order.

Note that this is a stronger property than precise exceptions. If we can ensure this property, precise
exceptions are automatically guaranteed, because now all instructions appear to in some sense finish or
complete in program order. This model is followed by almost all processors today, and as we shall shortly
see, there are no significant performance penalties.

This mechanism is known as in-order commit, which means that instructions finish and commit (perman-
ently write) their results in program order. Let us try to design a hardware structure that ensures in-order
commit. This is known as a Reorder Buffer. The notion of committing an instruction will become gradually
clear over the next few sections.

4.4.2 The Reorder Buffer (ROB)

The Reorder Buffer or ROB is a queue of instructions. Like all our structures it is also designed as a circular
queue in hardware. After an instruction is decoded, we create an entry for it in the ROB. Since instructions
are decoded in program order, they are also inserted into the ROB in program order. Let us create a very
basic ROB entry that contains the following fields: program counter of the instruction, the next PC, the
type of the instruction, and a finished bit (initialised to 0).

Here, the next PC is either the branch target if the instruction is a branch or is the address of the next
instruction in program order. If the instruction has completed its execution, and has computed its values,
then we can set the finished bit to 1. After this we need to commit (or retire) the instruction, which means
that at this point a hypothetical observer sitting outside the processor should be able to conclude that the
instruction has fully finished its execution in the OOO pipeline and needs to be removed. After committing
an instruction (in program order) we can remove it from the ROB and all other architectural structures.
The claim is that we will be able to ensure precise exceptions with the help of the ROB. We will gradually
realise this.

Definition 22

• Immediately after committing (or retiring) an instruction, a hypothetical observer sitting outside
the processor can conclude that the instruction has fully finished its execution in the OOO pipeline
and needs to be removed. After committing an instruction we can remove it from the ROB and all
other architectural structures.

• We commit instructions in program order such that precise exceptions are guaranteed. Moreover,
to guarantee precise exceptions we need to ensure that no instruction makes permanent changes to
the memory or the architectural register file before committing. Think of the point of committing
an instruction as a point of no-return for that instruction.

• The commit width is defined as the maximum number of instructions that a processor can commit
per cycle.

The process of committing an instruction is very simple (at a high level). Let’s say that we want to
commit (or retire) four instructions in a cycle. This is also referred to as the commit width (defined as the
maximum number of instructions that we can commit per cycle). We take a look at the finished bit of the
earliest instruction (head of the ROB). If its finished bit is 1, then we can commit the instruction, and
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remove it from the ROB. Removing an instruction from the ROB, implies that we remove it from all other
structures like the load-store queue and instruction window. The instruction is deemed to be removed from
the pipeline at this point.

Then we move to the next instruction in the queue, and try to commit it. We stop when we either
find an instruction that is still executing (finished bit set to 0), or when we have successfully committed κ
instructions, where κ is the commit width. Ideally, if we are able to commit κ instructions every cycle, we
have fully saturated the pipeline because the IPC will become equal to κ. However, life is never that ideal.
Because of dependences and misses in memory, most processors typically have an IPC that is much lower
than their commit width.

A ROB typically has anywhere between 100 to 200 entries in a modern OOO processor. If we aggressively
fetch instructions, it is possible that the ROB might fill up. Recall that we can commit an instruction and
remove it from the ROB only if all of its earlier instructions (in program order) have finished. It is thus
possible for one instruction to block a lot of instructions after it. This can happen for many reasons such as a
miss in the L2 or L3 cache. Since we have accepted in-order commit as the paradigm that we shall use, there
is nothing that can be done in such a situation. If the ROB fills up, we should stop fetching instructions,
and wait till there is space created in the ROB. This is thus a method to apply back-pressure on the decode
and fetch stages such that they stop reading and fetching instructions.

We need to ensure that before an instruction commits, its results are not permanent, and after the
instruction commits, its results become permanent. Along with this there are additional things that we need
to do while committing an instruction such as releasing resources and some additional bookkeeping.

Thus there are two aspects to instruction commit – releasing resources and moving computed results to
some form of permanent storage. Once both of these tasks are done, the instruction can be removed from
the pipeline, and simultaneously from all the structures within the processor.

Let us look at releasing resources and doing bookkeeping. Subsequently, we shall look at methods to move
computed results to some form of permanent storage, and restoring state to recover from faults, interrupts,
and exceptions.

4.4.3 Releasing Resources and Bookkeeping

Arithmetic and Logical Instructions

Let us consider an instruction I1 of the form: add r1, r2, r3. Here, r1, r2, and r3 are architectural registers.
Let us map these to physical registers. Assume that the instruction gets converted to add p1, p2, p3, where
r1 is mapped to p1, r2 to p2, and r3 to p3. The question that we had asked in Section 4.1 was, “When do we
release physical registers and add them to the free list?” At that point we did not have an answer; however,
we are in a position to answer this question now.

Let us assume that before instruction I1 was renamed, r1 was mapped to the physical register px. After
instruction I1 got renamed, r1 got mapped to p1. We need to figure out when we can add the physical
register px to the free list. Before answering this question, let us keep the following points in mind.

• Assume that r1 was mapped to px by instruction Ix. At a later point, r1 got mapped to p1 by
instruction I1.

• I1 is overwriting the value of r1 written by Ix.

• All the instructions that use the value of px written by Ix are between Ix and I1 in program order.

• This means that once I1 is ready to commit, all the instructions before it in program order have
committed. It further means that there is no instruction in the pipeline that is going to use the value
of r1 written by Ix. This is because all such instructions are before I1 in program order, and all of
them have committed.

• When we are ready to commit I1, there is no instruction in the pipeline that needs the value of r1
written by Ix (via the physical register px).
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• We can thus release px at this point of time.

This reasoning clearly establishes that when we are committing instruction I1, we can release the register
px. Here “releasing” means that we can return px to the free list such that it can be assigned to another
instruction.

Let us now outline what we need to do to enable this mechanism. Whenever, we are renaming an
instruction such as I1, we are creating a mapping. In this case we are mapping the architectural register r1
to the physical register p1. We need to remember the previous mapping, which is r1 ↔ px. The id of the
physical register px can be stored in the ROB entry for I1. Thus the structure of an ROB entry is as follows.

finished preg

PC nextPC type

The new field preg contains the id of the physical register that was previously mapped to the destination
register. Once, the instruction is ready to commit, we can release the physical register preg and return it to
the free list. This ends the life cycle of the physical register preg.

Important Point 8
A physical register is released (returned to the free list) after the instruction that overwrites its corres-
ponding architectural register is ready to commit.

Branch Instructions

As we discussed in Chapter 3, we predict the direction of branches, and then we start fetching instructions
from the predicted path. There is definitely a possibility of misprediction. The fact that we have mispredicted
the branch will be discovered when we are executing the branch. For example, if it is a conditional branch
we need to compare the value of a register with some value (typically 0). This will be done in the execute
stage and the result of the comparison will indicate if the branch has been mispredicted or not.

If the branch has been predicted correctly, then there is no problem. However, if we discover that the
branch has been mispredicted, then we need to treat this event as a fault. The instructions fetched after
the mispredicted branch are on the wrong path. Their results should not be allowed to corrupt the program
state. This is not different from an exception, where a given instruction leads to an error.

We can thus add another bit in each ROB entry called the exception bit. If a branch is found to be
mispredicted, then we set the exception bit of its ROB entry to 1.

We proceed as usual and keep committing instructions till the mispredicted branch reaches the head of
the ROB. At that point the commit logic will find out that the instruction’s exception bit is set to 1. This
means that all the instructions after it are on the wrong path and should not be executed. The commit
logic needs to discard the branch instruction, and all the instructions after it by flushing the pipeline. In
this case, flushing the pipeline means that all the structures of the pipeline are cleared. This includes the
ROB, instruction window, and LSQ. We can then start execution from the mispredicted branch instruction.
Since we know the direction of the branch, we need not do a prediction once again. Instead, we can use the
direction of the branch to fetch the subsequent instructions and resume normal execution.

Of course, whenever there is a pipeline flush it is necessary to ensure that none of the instructions on
the wrong path have written their results to permanent state. This is a separate issue and will be tackled in
Section 4.4.4.

This mechanism can be used to process other events such as interrupts, exceptions, and system calls 2.
Whenever, we receive an interrupt from a device, we can mark the topmost instruction in the ROB by setting

2A system call is a special instruction that allows the programmer to generate an exception. This mechanism is typically
used to invoke routines within the operating system.
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its exception bit. Then, the processor can flush the pipeline and load the interrupt handler. Similarly, if
there is an exception such as a division by zero or an illegal memory access, then we can mark the instruction
by setting its exception bit. Likewise, for system calls (asking the OS to intervene by suspending the current
program), we can mark the instruction invoking the system call. When these instructions reach the head of
the ROB, the processor will simply flush the pipeline, and then take appropriate action.

In such cases the next PC field of the ROB entry needs to be used. Recall that this field is set as either
the branch target for a branch or the address of the next instruction for a non-branch instruction. We always
keep track of the next PC field of the latest committed instruction. Now, let’s say that the instruction at
the head of the ROB has its exception bit set. Then it means that this instruction should not be committed.
We thus flush the pipeline at this stage and store the “next PC” of the previously committed instruction in
the context of the program.

Load Instructions

In our system, load instructions can get their value from earlier store instructions in the LSQ or can get it
from the memory system. For the purpose of committing the instruction, we can treat a load instruction
as a regular arithmetic or logical instruction with a destination register. Akin to arithmetic and logical
instructions we remember the previous mapping of the destination register. We release the previously
allocated physical register when the load instruction commits.

Store Instructions

Handling store instructions is tricky. This is because they directly make changes in the memory system –
these are permanent changes. Hence, we cannot send a store to the memory system unless it is guaranteed
to commit. We do not know in advance if a store instruction is guaranteed to commit or not. This will only
be known when we are ready to commit a store instruction.

Hence, most processors send a store to memory only at commit time. Once the address of a store is
resolved, they try to forward its value to load instructions that appear later in program order (see Sec-
tion 4.3.2). However, they do not send the store to memory. Once the store instruction reaches the head of
the ROB, it is sent to the memory system.

Let us analyse the pros and cons of this discussion. A clear disadvantage is that we keep a store instruction
in the LSQ even after its address is resolved. We can in principle increase the IPC if we send the store
instruction to the memory system as soon as its address is resolved. However, if we do this it will be
impossible to guarantee precise exceptions.

However, the silver lining in the dark cloud is that we don’t have to wait for the store instruction to
finish the process of writing to the memory system. We just need to hand it over to the memory system.
We shall discuss this issue in great detail in Chapter 9 and figure out when we can just hand over a store
to the memory system, and when we need to wait for it to finish the write. The good news for us is that in
most practical systems, we can simply hand over the store instruction to the memory system and proceed.
This will not cause significant issues in performance.

Way Point 3

The final structure of each ROB entry is as follows.

finished preg

PC nextPC type

exception bit
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With an ROB, the context or the execution state or the program state is defined as the values of all
the architectural registers, the contents of the memory, the PC and the next PC.

4.4.4 Checkpointing and Restoring the Program State

We have discussed the bookkeeping aspect of the commit process. Now, we need to discuss the correctness
aspect. We need to ensure that the relevant program state (next PC, registers, and memory) is updated
in program order. Precise exceptions are a direct consequence of this property. However, this is easier said
than done. Let us consider a branch misprediction. It is possible that we fetch tens of instructions after
we mispredict a branch. It is further possible that most of these instructions go through the renaming and
register write stages before we detect that the branch has been mispredicted in the execute stage. In other
words, when the branch is about to be committed, we shall have a lot of instructions in the wrong path that
have expressed themselves by consuming rename table entries, and by writing to physical registers. This
does not augur well for our aim of ensuring that only committed instructions write to permanent state –
registers and memory.

Recall that we had discussed in Section 4.4.3 that we can stop uncommitted data from going to memory
by allowing store instructions to update the memory system only after they have committed. We did not
create any such mechanism for instructions with register destinations such as ALU instructions and loads;
hence, we have this problem.

Let us clarify that we define the state of a program at any point of time as the state of the program after
the last committed instruction. Let this be defined as the precise state or the committed state. It should
be possible to pause the program, run some other program, and then restart the original program from this
point.

Let us quickly recapitulate what we know and what we need to know.

1. For each instruction we record the current PC and the next PC in its ROB entry. Whenever we flush
the pipeline we always keep a record of the next PC of the latest committed instruction. We resume
the execution of the program at this point.

2. We ensure that only committed stores write their value to memory. This also ensures the notion of a
precise state in memory. This issue will be revisited in Section 7.2. However, for the time being we
can assume that the memory state remains safe in an environment where we switch between multiple
programs by storing and restoring contexts.

3. We need to know the values of all the architectural registers in the precise state. Assume that the last
committed instruction is instruction I. Now, assume that a single-cycle processor was executing the
same program. Then the architectural state of the registers in the precise state (in our OOO processor)
should be the same as that produced by executing the program till instruction I using the single-cycle
processor. We can read the values of all the architectural registers, store them in the program’s context,
execute other programs, and then restore the original program’s context. The original program needs
to see exactly the same values of all the architectural registers.

Important Point 9
At any point of time, we need to only keep track of the contents of the architectural registers, the next PC,
and the contents of the memory if we only consider all the committed instructions. We are assuming that
none of the uncommitted instructions have even begun their execution. Since we have successfully solved
the problem for the next PC and memory, we only need to create a method for architectural registers.
Let us define this as the precise register state.
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Let us look at some of the most common methods for tracking the precise register state at any point of
time.

Retirement Register File (RRF)

Let us create a new structure called a retirement register file (RRF) as shown in Figure 4.30.

ROB RRF
Precise register
statePRF

Recovery: restore the values of architectural registers

RAT

Figure 4.30: A retirement register file (RRF)

We maintain a small register file in the commit stage. It contains as many entries as the number of
architectural registers. The moment an instruction with a register destination commits, we write its result
to the corresponding architectural register in the RRF. As simple as that!

This mechanism ensures that the RRF always contains the precise state or the committed state of the
program for the architectural registers. The RRF does not contain any values generated by uncommitted
instructions. Let us summarise a few more salient points of the mechanism.

1. Each ROB entry needs to be augmented with the following fields: value produced by the instruction
(64 bits), and the id of the destination register (4 bits)

2. Every time an instruction commits, we need to do a register write (to the RRF).

3. Restoring the state involves transferring the entire contents of the RRF to the regular register file
with appropriate changes made to the rename table. Since we are initialising from a clean state, we
can transfer the contents of architectural register ri (in the RRF) to physical register pi and create a
corresponding mapping.

Let us try to do the same thing in another way.

Retirement Register Alias Table (RRAT)

Instead of a retirement register file, let us instead try to do something with the RAT table. Let us have an
additional RAT table (rename table) in the commit stage as shown in Figure 4.31.

In this case, each entry of the RRAT table maintains a mapping between the destination architectural
register, and its mapped physical register for each committing instruction. Let us consider the instruction:
add r1, r2, r3. Assume that the architectural register r1 is mapped to the physical register p1. When
this instruction commits we add the mapping between r1 and p1. If we need to know the contents of the
architectural register file in the committed state at any point of time, then we can just access the RRAT, get
the corresponding physical registers, and access them. The mapping stored in the RRAT stores the precise
register state. The RRAT does not have mappings for instructions, which are not committed. Proving the
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Precise register
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Figure 4.31: A retirement register alias table (RRAT)

correctness of this scheme is left as an exercise for the reader. Bear in mind that the physical registers
pointed to by the RRAT will continue to maintain their values; they will not have been released.

The salient points of this scheme are as follows:

1. We need to maintain additional information in each ROB entry: id of the destination register and its
corresponding physical register id.

2. For every instruction with a register destination we need to update the RRAT at commit time.

3. Restoring the state upon a pipeline flush involves performing N reads from the RRAT, and performing
N writes to the actual RAT. Here, N is the number of architectural registers.

Nevertheless, this is a simple mechanism and has lower storage overheads than the RRF scheme: in this
case, we just store the ids of the mapped physical registers instead of the full 64-bit values.

Checkpointing the RAT: SRAM Array

Instead of making changes to the commit stage, let us instead make changes to the rename stage. In this
case, let us take a checkpoint of the RAT every time we encounter a branch instruction. A checkpoint is
defined as a snapshot (a copy of all the entries, in this case it is a copy of the RAT table). Whenever, there
is a branch misprediction of branch B we restore the RAT table to the checkpoint associated with it. This
process is known as recovery. Every checkpoint captures the current mapping at that point of time. If all the
instructions till instruction B are committed, then the registers mapped to the architectural registers in the
checkpointed RAT table represent the committed state at that point of time. Note that subsequently, the
registers will not be released because a physical register is released only when an instruction that overwrites
the mapped architectural register commits. Since we restore the state when instruction B commits, we are
guaranteed that no instruction after B would have committed. Thus, the physical registers containing the
committed state would not have been released.

Note that other than branch mispredictions regular instructions can also suffer from faults, and we can
receive hardware interrupts any time. In this case we will not have a precise checkpoint to roll back to. A
naive option is to take a checkpoint of the RAT table after every instruction – this is too expensive. The
other option is to rollback the state to the latest branch instruction. However, this introduces additional
complexities in terms of correctness. Hence, let us proceed with the naive assumption that we are only
dealing with branch mispredictions.
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Consider a simple rename table, where we have N entries (N is the number of architectural registers).
This can be constructed using simple static RAM (SRAM) cells (see Chapter 7 and [Sarangi, 2015]). Note
that an SRAM cell is a memory cell consisting of 6 transistors. Each SRAM cell stores a single bit, and
SRAM cells are organised as a matrix of cells (in rows and columns).

In this case, we can organise the SRAM array as follows. We organise each entry as a circular queue,
where we insert new entries at one end and remove older entries at the other end. We always maintain
two pointers: head and tail to the first and last entries respectively. Given that we are dealing with real
hardware here, we can place a limit on the number of entries in the queue, and this should roughly be equal
to the maximum number of branches we expect to have in the pipeline at any point of time. Figure 4.32
shows the design.

Checkpoint

Architectural
registers

tail of the queue head of the queue

Physical registers
Current
mapping

Empty entries in the circular queue

Recovery state

Figure 4.32: Checkpointing the RAT array with an SRAM-based implementation

Whenever, we encounter a branch instruction, we create a new copy of the up to date entries of the RAT
table and push them into the queues associated with the entries. This means that for a given entry, let’s
say architectural register r4, we read its latest mapping (let’s say r4↔ p10), and insert p10 into the queue
associated with the entry for r4. Subsequent instructions (after the branch) are free to update the mapping
of r4. Now, let us assume that this branch (instruction B) gets mispredicted. We wait till instruction B
commits. At that point, the checkpoint for each entry associated with B such as r4↔ p10 is guaranteed to
be at the head of the respective queue. This is because no instruction older than B will be in the pipeline,
and thus its checkpoint will also not be there. This result can also be deduced from the FIFO (first in first
out) property of each queue.

At this point to restore the checkpoint, we just need to discard the rest of the entries, which is very easy
to do. We simply set the head pointer equal to the tail pointer – the rest of the entries get discarded on
their own. This is how we can very easily restore a checkpoint.

The shortcomings of this scheme are as follows:
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1. Every entry of the rename table needs to be organised as a circular queue.

2. We need to take a checkpoint (create a copy of the latest entry in each row) on every branch instruction.
This means that we need to copy 7 bits (assuming there are 128 physical registers) between the tail of
the queue and the memory cells that store the current mapping.

Checkpointing the RAT: CAM Array

A major problem with the previous solution was that we needed to move 7 bits between locations for creating
a checkpoint. Secondly, if there are N entries in each circular queue, we need 7N bits of storage in each row
of the SRAM array. Can we reduce this further such that the process of checkpoint creation becomes very
easy?

Let us design the rename table (RAT table) in another way. Instead of using an SRAM array, let us use
a CAM array (see Chapter 7 and [Sarangi, 2015]). A CAM (content-addressable memory) as discussed in
Section 4.3 can be addressed in two ways: by the row index, and by the content in each row. We can design
the RAT table as a CAM as follows. The content is the architectural register and an additional bit that
indicates if the mapping is valid or not. Let us consider a scenario with 16 architectural registers and 128
physical registers. Instead of a traditional 16-entry table, let us have an 128-entry table. The contents in
each row comprise a 4-bit architectural register id and 1 bit (valid bit). Note that at any point of time, only
16 entries will have their valid bits set. These 16 entries are mapped to each of the 16 architectural registers.
For example, if we need to find the mapping corresponding to register r4, we create a 5-bit bit field: 4 bits
from r4 that are 0100, and 1 as the valid bit. The bit field is thus 01001. We then lookup the CAM for
a row with contents that match 01001. Only one row should match this value, and that row contains the
current mapping for architectural register r4. Let this be row number 37 in the 128-entry RAT table. We
can automatically infer that the physical register that is mapped to r4 is p37. We can use a simple Boolean
encoder in this process.

Note that we made many statements in the previous paragraph without proof. The reader is invited to
prove them. For example, why are we claiming that only 16 out of 128 entries will have their valid bit set
to 1?

The important take-home point is that an array of valid bits contains the current mapping from archi-
tectural registers to physical registers. Now assume that r4 is mapped to p37. One more instruction comes
by later that updates r4. It will be mapped to another physical register – let’s say p10. The only change
that needs to be done is that the valid bit for the 37th entry needs to be unset (set to 0) and for the 10th

entry we need to set the contents to 4 (for r4), and then set the valid bit to 1.
Our design is similar to the checkpointing scheme with an SRAM array. In every row, we have a small

circular queue that in this case stores a single bit per entry (valid bit). Before every branch, we take a
checkpoint of the current mapping (128 valid bits). We do this by inserting the current valid bit of each row
into its circular queue. Whenever, a mispredicted branch commits we remove its checkpoint from the head
of the queue. To restore a checkpoint, and restart from that point we just restore the state of the RAT table
to what it was before renaming the branch instruction. The head of each queue contains this state, and thus
akin to the scheme with an SRAM array we can restore the checkpoint by making the entries at the head of
the queues act as the current mapping. Note that in this scheme only the valid bits are a part of the queue
(not 7-bit physical register ids). Refer to Figure 4.33.

Let us convince ourselves of one more fact. Consider the time at which we are restoring the checkpoint.
At that point of time we wish to say that the architectural state is contained within a set of physical registers.
Now, the entries corresponding to those registers will still be mapped to the same architectural registers,
albeit their valid bits may not be 1 anymore. This is because we might have encountered a subsequent
instruction that writes to the same architectural register. However, the mapping will still be there because
to release the mapping, a later instruction that writes to the same architectural register needs to commit.
Since the branch that owns this checkpoint has not committed, those later instructions would also have
not committed – they would be after the branch. Hence, the mappings between physical and architectural
registers would still be there. We just need to restore the set of valid bits. Recall that at any point of time
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Figure 4.33: Checkpointing the RAT array with a CAM-based implementation

only 16 out of 128 entries will be set to 1. The rest will be set to 0. This is because we shall always have an
one-to-one mapping between the architectural registers and physical registers.

A clear advantage of this scheme is that instead of moving around 7 bits, we move just 1 bit. This
means that taking a checkpoint is far easier, and also the overhead of storing checkpoints is much lower (7
times lower if we have 128 physical registers). However, there are other problems. Let us quickly review the
shortcomings.

1. A CAM is far slower than an SRAM array of equivalent size. In this case, the CAM is expected to
have many more rows than the equivalent SRAM based design. Considering these factors, a regular
access to the RAT table will have a much higher latency.

2. A CAM also consumes more power. This needs to be taken into account when we opt for such designs.

3. We have the same issue of “taking checkpoints only at branches” as we had with the design that used
SRAM arrays. If we want to take more checkpoints we need to increase the size of the circular queues.
Otherwise, we lose the ability to recover at arbitrary points within the program, unless we do some
additional bookkeeping.
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Summary of Register Checkpointing Schemes

RRF
+ Easy to implement. Transferring the checkpoint to the register

file is easy.
- Extra register writes every cycle. More power.
- Need to store the result and destination register in the ROB. More

space.
RRAT
+ Requires less space in the ROB than the RRF.
- Involves a few writes almost every cycle. More power.
- Each entry of the ROB needs to be augmented with the id of the

destination register and its associated physical register.
SRAM based RAT
+ Activity only on a branch.
+ Checkpoint restoration is easier than RRF and RRAT based

schemes.
- Each row of the RAT is wider.
- For every branch instruction we need to add an additional entry

into the circular queue. It is hard to checkpoint and restore the
state at arbitrary points in the program without additional book-
keeping.

CAM based RAT
+ Checkpoint creation is very easy. Insert only 1 bit.
- The CAM per se is a slower structure than an SRAM array. It

has a higher latency, and consumes much more power.

4.5 Summary and Further Reading

4.5.1 Summary

Summary 3

1. To remove WAW and WAR dependences in out-of-order (OOO) pipelines, it is necessary to perform
instruction renaming.

2. The classical method to perform renaming assigns architectural registers to physical registers. We
store a mapping between architectural registers and physical registers in a rename table (RAT
table).

3. It is possible that there might be RAW dependences between different instructions that we are trying
to simultaneously rename. We need to have dependence check logic, and forward the ids of assigned
physical registers between instructions in this set.

4. The list of free (unassigned) physical registers is kept in a structure called a free list. When a
physical register is released we add it to the free list.

5. A physical register is released when a subsequent instruction that writes to the same architectural
register (that the physical register is mapped to) exits the pipeline.
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6. The process of adding renamed instructions to the instruction window is known as instruction dis-
patch. Instructions wait in the instruction window till their operands are ready, and the functional
units that they need are available.

7. Every instruction whose operand is ready waits for the tag to be broadcast on a tag bus. The tag
is the id of the physical register assigned to the operand.

8. Once an instruction sees the tag on a tag bus, the operand is deemed to be ready. Once all the
operands are ready, the instruction wakes up, and is ready to execute.

9. Since multiple instructions can be ready at the same time, we need to select a subset of instructions
that can begin execution in a given cycle. The select unit is typically structured like a tree. The
requests are the leaves, and in every level we discard some requests either based on priority, or
randomly.

10. To ensure back-to-back execution (dependent instructions executing in consecutive cycles) it is
necessary to execute the wakeup and select operations in the same cycle. In addition, we need to
broadcast early (much before the instruction actually executes). In specific, if the instruction takes
k cycles to execute, then we need to broadcast the tag k cycles after the instruction gets selected.
This will ensure that instructions with RAW dependences can execute back to back.

11. To track the dependences between loads and stores, there is a need to create a separate structure
called a load-store queue (LSQ). We create entries in this queue at the time of decoding an in-
struction. When we compute the address (in the execute stage), we update the respective LSQ
entry.

12. At that point of time, the load instruction searches for earlier store instructions. If it finds a store
instruction with a matching address, then it uses the value that it is going to store. Otherwise, if
it finds a store with an unresolved address, then it waits.

13. Similarly, a store instruction searches for later load instructions until it encounters a store in-
struction that is either to the same address or is unresolved. If any of these load instructions have
a matching address, then it forwards the value.

14. The LSQ is implemented as two separate queues: one load queue and one store queue. It uses
parallel Boolean operations to speed up its operation.

15. We use a reorder buffer (ROB) to queue all the instructions that are active in the pipeline. An
instruction commits (retires) when it reaches the head of the ROB. At that point of time it stores
to memory, and its effects are said to be visible to the external world. The process of committing
needs to be in program order to guarantee precise exceptions.

16. Whenever we mispredict a branch, or encounter an exception, we mark the instruction and wait
for it to reach the head of the ROB. Once it does so we flush the pipeline, handle the exceptional
event, and then restart the program from the same point.

17. To restart a program we need to store a checkpoint of the pipeline state – state of the architectural
registers, and the next PC.

18. The state of the architectural registers can be stored in a retirement register file, or their mappings
can be stored in an RRAT (retirement RAT). In addition, it is possible to achieve the same objective
by storing checkpoints of the rename table at different points of interest such as right before a
branch.
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The final pipeline from the rename to commit stages looks as follows.

wakeup

select read from
the reg.file

execute reg. file writebroadcastdispatch commitrename

4.5.2 Further Reading

Some of the earliest papers in the area of out-of-order execution were published by a few groups in the
University of Wisconsin and the University of Illinois. A few of these landmark papers are [Hwu and
Patt, 1987,Smith and Sohi, 1995]. A more detailed circuit level analysis can be found in [Palacharla et al.,
1997]. After these research ideas, many processor vendors started building OOO processors. They published
the details of their design. Some influential papers for industrial designs are descriptions of the Alpha
21264 [Leibholz and Razdan, 1997], Intel Pentium 4 [Hinton et al., 2001] and AMD Opteron [Keltcher et al.,
2003] processors.

Let us now look at some of the promising ideas in the research community. [Brown et al., 2001] discuss
instruction scheduling without the select operation, [Petric et al., 2005] perform standard compiler optim-
isations at the rename stage, and [Akkary et al., 2003] propose to create very large instruction windows.

To learn more about optimised LSQs, the reader should read the paper by Park et al. [Park et al., 2003].
There are two papers that we would like to recommend regarding releasing pipeline resources early: [Mart́ınez
et al., 2002] and [Ergin et al., 2004].

Exercises

Ex. 1 — Design the dependence check logic for a processor with a rename width of 4 (can rename 4
instructions per cycle).

Ex. 2 — Describe in detail how to set the avlbl bit for each entry in the rename table, and how to use it
in the pipeline.

Ex. 3 — Why is the free list typically designed as a circular queue?

Ex. 4 — How do we free entries in the instruction window? Design an efficient scheme.

Ex. 5 — Assume that we want to create a scheme where we try to allocate physical registers uniformly.
How can we modify the free list to support this feature?

Ex. 6 — Describe the wakeup mechanism in detail, particularly, when we are broadcasting multiple tags
every cycle.

Ex. 7 — Do we need bypass and dependence check logic to access the register file? If yes, then provide an
implementation.

Ex. 8 — Why do we need to broadcast the tags twice?

* Ex. 9 — How do we perform an early broadcast if the execution duration is not predictable? Can we do
better if we have a bound on the maximum number of cycles we require to execute an instruction?
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* Ex. 10 — We want to design a high performance OOO processor that has separate pipeline stages for
the wakeup and select operations. Can you suggest modifications to the pipeline with physical registers.
Your answer should address the following issues/points:

•What is the advantage of having separate stages for wakeup and select?

•What complications will it introduce to the simple design discussed in this chapter?

•When do we broadcast?

•What are the other changes that should be done to the rest of the stages in the pipeline?

•How do we take care of the issue of double broadcasts?

* Ex. 11 — Let us design an OOO processor with a speculative select logic. In a regular OOO processor,
an instruction might not necessarily get selected immediately after it wakes up. Assume that there is one
adder, and three add instructions wake up at the same time. Only one of them will be immediately selected.
The rest of the instructions need to wait.
Now let us speculate on this. We assume that the moment an instruction wakes up, it is eligible to be
subsequently selected without any delays. It can thus go ahead and wake up consumer instructions.
Design a scheme that has such a speculative select mechanism. Your answer should address the following
issues (points).

•How do we realise the fact that we have speculatively selected more instructions than the number of
functional units? This will lead to structural hazards unless corrected.

•How do we handle such situations?

•What do we do with instructions that have been speculatively selected?

•How do we reduce the number of misspeculations?

** Ex. 12 — It is very frequently the case that we have single-shot instructions. An instruction i : r1 ←
r2 + r3 is a single-shot instruction if there is only one instruction j that reads the value that i writes to its
destination register r1, and after j executes, the value in r1 is not required. However, we cannot deallocate
this register till a subsequent instruction that writes to r1 commits. This approach decreases the number of
available physical registers in a pipeline because we have many such short-lived registers.
Can we speculate? Can we speculatively release a register before it should be actually released? How will
this mechanism work? Explain in detail.

** Ex. 13 — Assume we have an OOO processor with a PRF (physical register file). Given that we have
128 physical registers, what is the maximum possible size of the instruction window? In such processors, it
is typical to have a large ROB. For example, the ROB in this case (with 128 physical registers) can be sized
to contain 160 entries. Why is this the case?

* Ex. 14 — In an in-order processor, the compare (cmp) instruction is used to compare the values in two
registers. The result is saved in a flags register that is not accessible to software. Subsequent branch
instructions use the value of the flags register to compute their decision. Will the same mechanism work in
an OOO pipeline? If not, then how do we augment it to support this feature of the ISA?

Design Problems

Ex. 15 — Understand the wakeup, select, and broadcast logic in the Tejas simulator TM.

Ex. 16 — Extend the simulator to make the delays of the wakeup, select, and broadcast stages configurable.
They need not be done in the same cycle, and back-to-back execution is not a necessity.


