
5
Alternative Approaches to Issue and Commit

In Chapter 4 we learnt about the basic structure of an OOO pipeline. We further realised that a modern
OOO machine is a very complex piece of hardware. To ensure performance without sacrificing on correctness,
we need to add many additional hardware structures and do a lot of book keeping. The processor that was
designed in Chapter 4 is very suitable for high performance implementations.

However, given that people have been designing processors for the last fifty years, there are many other
designs of processors out there. Some of these techniques are for smaller embedded processors, some tech-
niques are very power efficient at the cost of performance, and some techniques export the complexity to
software. The aim of this chapter is to discuss all those additional techniques. Note that this chapter should
be viewed as a sequel to Chapter 4. Unlike Chapter 4, this chapter discusses an assorted set of techniques,
which are mostly unrelated to each other. Nevertheless, we have made a modest effort to classify these areas
into the following categories:

Support for Aggressive Speculation and Replay Most OOO processors make guesses based on beha-
viours observed in the past for predicting different parameters such as the latency of memory operations
– this information is used to optimistically assume that a given memory access always finds its value in
the L1 cache. This is known as speculation. However, sometimes these guesses turn out to be wrong,
then it is necessary to go back and fix the state. Some of the instructions, which might have potentially
got wrong data, need to be replayed.

Simpler Designs of OOO Pipelines It is not necessary to have large physical register files, free lists, and
separate ROBs in OOO pipelines. Depending on the workloads, we can merge some of these structures,
and end up with a simpler and more power efficient design.

Software based Techniques It is not necessary to export all the complexity to hardware. It is possible to
increase the ILP of the code by applying compiler based transformations. These software approaches
are extremely useful and are an integral part of today’s compiler tool chain. Some software based
approaches require details of the underlying hardware, whereas, some others are generic.

EPIC Processors Most compiler based approaches are useful for generic OOO pipelines. However, there
is a school of thought that advocates making the hardware significantly simpler and exporting the
entire complexity to software. It is the software’s job to sequence and schedule the instructions.
Simpler hardware translates to area and power efficiency. Such EPIC (Explicitly Parallel Instruction

149

Smruti R. Sarangi 150

Computing) processors often require complex compiler infrastructure with some specialised hardware
support to implement the directives produced by the compiler.

5.0.1 Organisation of this Chapter

At the outset, we shall discuss some more methods to increase the ILP in modern processors by aggressively
speculating on load latencies, addresses, and values. We shall discuss some of the most common techniques
in this space in Section 5.1. Recall that whenever we have speculation, there is always the possibility of an
error. There is thus a need to replay some of the instructions, which might have been erroneously issued
with wrong data (see Section 5.2).

Then, we shall proceed to discuss alternative designs of OOO pipelines in Section 5.3 that are less
complicated. Instead of designing simpler hardware structures, we can also move some of the complexity
to software. We will focus on compiler driven approaches to increase ILP in Section 5.4. As an extreme
case, it is possible to keep hardware ultra-simple, and instead do all the scheduling, instruction sequencing,
and renaming in software (by the compiler). We shall discuss such approaches in Section 5.5. Finally, in
Section 5.6 we shall the discuss the design of the Intel R© Itanium R© processor, which is an EPIC processor.

5.1 Load Speculation

5.1.1 Introduction

Let us start out with making the design of the processor – introduced in Chapter 4 – more complicated and
more realistic. Let us begin by taking into cognisance that one of the primary sources of non-determinism in
execution is the memory system. A memory access such as a load or a store is a multi-step process. We first
compute the memory address, and then we check for dependences in the load-store queue (see Section 4.3).
We either forward a value from a store to a load or we send the requests to the memory system. The memory
system is in itself a very complicated network of components. We have a hierarchy of caches, and then finally
the main memory. A request can be serviced at any level in the memory system. Thus, the duration of a
memory request is fundamentally non-deterministic in nature. It is very hard to predict if, for example, a
load instruction will get its value from another store instruction, or from which level in the cache hierarchy.
As we shall see, instead of adopting a very conservative stance where we wait for a step to fully complete
before starting the next step, it is often wiser to speculate and go forward.

Speculation is a very common technique in computer architecture. Almost all kinds of speculation involve
the following steps: make a prediction regarding the value of an input, use it to compute the output, and
forward the output to other dependent instructions. Such predictions help us execute instructions sooner.
However, the flip side is that it is possible that sometimes these predictions might be wrong. In that case
we need to locate all the instructions that might have potentially received a wrong value, and cancel them.
Then these instructions need to be re-executed with the correct values.

Speculation has many advantages. It helps break dependences. For example, consider a load-use depend-
ence, where a load instruction L supplies its value to a consumer instruction I. If we can predict the value
read by instruction L reliably, and give it to instruction I, we can execute L and I in parallel. This will break
dependence chains, increase ILP, and tremendously increase performance. The crux of this mechanism lies
in designing an accurate predictor, and to a lesser extent, we need to also have a fast method of recovering
from the ill effects of a misprediction.

Definition 23
Speculation is a very common technique in computer architecture where we predict something and proceed
on the basis of the prediction. Consider the steps involved while predicting the input of an instruction.

1. We predict the value of an input.

151 Smruti R. Sarangi

2. The input is used to proceed with the execution of an instruction.

3. The instruction using the predicted input can forward its result to other instructions.

4. At a later point of time, the prediction is verified, and if we find that the prediction is incorrect,
then all the influenced instructions are cancelled.

5. This technique breaks dependences between instructions and thus increases the available ILP. This
leads to an increased IPC.

Speculation is not limited to predicting the inputs of instructions, we can also predict the output of
an instruction, or its duration.

Let us try to apply speculative techniques to load instructions. Before the astute reader asks, “Why load
instructions?”, let us answer this question. Load instructions typically have non-deterministic latencies and
this can cause a lot of dependent instructions to get queued in the instruction window. This is also known
as the convoy effect because the situation is similar to a road where a car breakdown can cause a huge traffic
jam. Furthermore, these convoys of instructions can be fairly long because a load can take 100s of cycles if
it needs to fetch its data from main memory.

Here are the primary methods for speculation with regards to load instructions.

Address Speculation Based on historical values, we try to predict the address of load instructions. If
we know the address early, we can try to get forwarded values in the load-store queue, or fetch the
value from the memory system in advance. This will save us valuable cycles, because we are in effect
executing the load instruction and its dependent instructions early.

Load-Store Dependence Speculation We try to predict the dependence between loads and stores in the
load-store queue. Based on predicted dependences, we can take decisions to forward values, wait for
unresolved stores, or send requests to memory.

Latency Speculation We predict if a load hits in the L1 cache or not, and consequently the latency if it
is a hit. If we predict a hit, we can wakeup dependent instructions early such that they can execute as
early as possible (see Section 4.2 for a detailed discussion on instruction wakeup).

Value Prediction Finally, we can predict the value that a load instruction is expected to read. This can
then be passed on to dependent instructions.

We shall present different methods of prediction in this section, and methods to replay instructions in
Section 5.2.

5.1.2 Address Speculation

The aim here is to design a method to predict the address of a load instruction. The only information in
our arsenal is the program counter (PC) of the load. Let us discuss two fairly straightforward solutions that
work in most common cases. These solutions are similar to branch predictors. In fact, we shall see that
most predictors used to predict a host of different things are similar to our branch predictors presented in
Chapter 3.

Predict Last Address

We maintain a table that is indexed by the least significant n bits of the PC address. In each entry, we store
the memory address computed by the memory instruction the last time it was invoked.

Smruti R. Sarangi 152

PC
n LSB
bits

2n entries

Load address

Figure 5.1: Load address predictor (based on the last computed address for this PC)

As we can see in Figure 5.1, we use n bits from the PC address to index a 2n entry table. Every time
the memory address of a load is computed, we store it in this table. This is later on used for prediction.

We can use standard techniques that we had learnt in Chapter 3 to increase the accuracy of this process.
For example, to avoid the effects of aliasing, we can keep some bits of the PC address in each entry. We will
use the entry only if these bits match with the corresponding bits of the PC address. In addition, we can use
a 2-bit saturating counter. The state 00 indicates that with a strong probability the address that we read is
wrong. Likewise, the state 11 indicates that with a high probability, the address is correct. This shall work
in exactly the same way. Every time the prediction is correct, we increment the counter, and every time
the prediction is wrong, we decrement the counter. Depending upon our appetite for risk (captured by the
saturating counters), we can use the predicted address accordingly.

Stride based Prediction

Let us now discuss a more sophisticated idea. Let us consider one of the most common scenarios where array
accesses are used. One such example is a simple for loop used to iterate through all the elements of an array.

Consider the following piece of code (C code and equivalent assembly code).

C code

int sum = 0, arr [10];

for (i=0; i < 10; i++){

sum += arr[i];

}

Assembly code

// Let us assume that the base address of arr is in r0

mov r1 , 0 // i = 0

mov r2 , 0 // sum = 0

.loop: cmp r1 , 10 // compare i with 10

beq .exit // if (r1 == 10) exit

ld r3, [r0] // load arr[i] to r3

add r2 , r2 , r3 // sum += arr[i]

add r0 , r0 , 4 // increment the memory address

add r1 , r1 , 1 // increment the loop index

b .loop

153 Smruti R. Sarangi

In this case the load associated with accessing the array, arr, is called repeatedly. Every time the array
index stored in register r1 increases by 1, the memory address gets incremented by 4 bytes (assuming the
size of an integer is 4 bytes). Let’s say, we want to predict the address of the single load instruction. In this
case we shall perceive the address increasing by 4 every iteration. The address is thus predictable. There
is a pattern, and if we are able to decipher the pattern, then we can successfully predict the address of the
load for most of the iterations of the loop.

Whenever a given variable increases by a fixed value every iteration, this value is known as a stride. In
this case we need to figure out the stride, and the fact that the memory access pattern is based on strides.
Strides are a very common access pattern particularly when arrays are involved, and there are standard
methods of handling them. Mathematically, we need a minimum of three iterations to identify a stride based
access pattern.

We create a table with 2n entries that can be accessed using the least significant n bits of the PC. In
each entry, we need to store the following information: memory address that was computed the last time the
load instruction was executed (A), the value of the stride (S), and a bit indicating if a stride based access
pattern is followed or not (P). For a prediction, we simply predict A + S if the access pattern is based on
strides.

At a later point of time, when we compute the address of this load to be A′. We need to verify that we
are following a stride based access pattern. We compute S′ = A′ − A. We compare this with the previous
stride, S, stored in the entry. If the strides match, then we can conclude that we are following a stride based
access pattern; we set P = 1 (stride access pattern bit set to 1). Otherwise, we set P = 0: do not make a
prediction using strides. In either case, we set A = A′ and S = S′.

5.1.3 Load-Store Dependence Speculation

Let us look at another potential source of performance improvement. In Section 4.3, we indicated that a load
cannot be sent to the memory system as long as it has an unresolved (address not computed) store before it
in the load-store queue. This means that the load needs to wait for such stores. Let us assume that we have
ten load instructions whose address has been computed. However, there is one store instruction before them
whose address is yet to be computed. In this case, the ten load instructions have to wait. Later on if we find
out that the address of the store does not conflict with the addresses of any of these load instructions, we
would realise that we have waited in vain. This situation would represent a complete waste of time and ILP.

To handle all such situations, modern computer architectures typically speculate. For example, if in this
case we can confidently predict if the store instruction will conflict with any of the resolved load instructions
or not, then we can speculate. If the prediction is false, which means that the store is not expected to conflict,
then we can send all the load instructions to the memory system before the store’s address is resolved. Note
that here we are making a guess. However, this is an intelligent guess because we have a mechanism to
predict load-store dependences effectively. If there is a high probability of the prediction being correct, then
we shall gain a lot of performance with this technique. A load will not wait for unresolved stores before
it in program order, unless our load-store dependence predictor predicts a dependence. Such aggressive
speculation mechanisms are indeed extremely helpful. However, there is a flip side to every good idea. Here
again, we can have the problem of occasional mispredictions.

We use the solution described in a later section (Section 5.1), where we rely on a replay mechanism that
identifies the instructions that have possibly read wrong values, nullifies them, and reissues them with the
correct value. Let us now proceed to describe the design of such load-store dependence predictors.

Design of a Load-Store Dependence Predictor: Collision-based Predictor

Let us start with showing the design of a predictor that predicts if a given load collides (has the same
address) with any of the preceding stores or not (see Yoaz et al. [Yoaz et al., 1999]). If a load is predicted
to not collide with any of the preceding stores, then we can immediately execute the load.

Smruti R. Sarangi 154

The main insight here is that loads display roughly consistent and predictable behaviour. This means
that if a given load is non-colliding in nature, it continues to remain so for some time. We can thus have a
collision history table (CHT). The simplest design of a CHT is like a branch predictor. Here, we have a table
of 2n entries, which is addressed using the last n bits of the PC. In each location, we store the prediction: 0 or
1. We can further augment this table by having a saturating counter instead of a single bit. This will create
some degree of hysteresis as we had done in the case of a branch predictor and also indicate the confidence
of the prediction. For example, if a given load has been historically non-colliding, then one collision should
not be able to change its behaviour. As we can observe, the saturating counter based predictor is a generic
mechanism that can be reused in almost all cases where we need a binary prediction, as was done in this
case.

The overall scheme is thus as follows.

1. When a load is either scheduled, or when its input operands are ready, we access the CHT. If we predict
the load to be non-colliding, then as soon as the memory address is ready, the load instruction can be
sent to the memory system.

2. However, if we predict the load to be colliding, then the load needs to wait in the LSQ till all the
preceding stores are resolved.

3. Once we have computed the addresses of all the previous store instructions, we are in a position to
determine if the load collided with any stores or not. We can then update the CHT accordingly with
the correct value.

This mechanism is simple and works well in practice. However, it is possible to improve it even further.
Let us consider a common access pattern: saving and restoring registers while calling functions. In this case,
we store a register’s value in memory before entering a function, and then restore its value from memory
when the called function exits. Let us consider the loads that restore the state of the registers. The colliding
stores for these loads are the stores that spill the registers to memory. If the behaviour of the function
is roughly consistent and predictable, then we roughly know the distance between a conflicting load and
store in terms of regular instructions or memory instructions. For example, if there are typically 10 memory
instructions between the store that saves the value of a register, and the corresponding load that restores
the value, then the distance between the load-store pair is 10 memory instructions. We can make use of
this fact very effectively. When the load’s address is computed, we can make it wait till there are less than
10 instructions before it in the LSQ. By this time if it has not gotten a forwarded value, then the load is
ready to be sent to memory. This is because the chances of it colliding with a store are very little – we
have predicted with high confidence that the distance between the load and store is 10 intervening memory
instructions. This condition does not hold if there are less than 10 instructions preceding the load in the
LSQ (refer to Figure 5.2).

S L

Distance (d)

Conceptual view of the LSQ
CHT entry

Saturating
counter

Distance

Figure 5.2: Load-store distance based prediction

We need to make a minor modification to the CHT. In each entry, we additionally store the distance
between the load and store instruction. Whenever, we forward a value from a store to a load, we compute
the distance between them in the LSQ (number of intervening entries), and store this in the CHT entry.

The prediction algorithm is thus as follows:

155 Smruti R. Sarangi

1. Either at the time of instruction dispatch, or at the time of computing the load’s memory address, we
access the CHT. If the load is not predictable as indicated by the saturating counter, then we make it
wait till all prior stores are resolved. Subsequently, the load is sent to the memory system. Otherwise,
we do the following.

2. If a load is predictable, we wait till there are less than N preceding entries in the LSQ. The value of
N is stored in the CHT’s entry, and denotes the predicted load-store distance.

3. If we get a forwarded value from a store, we use it and move forward.

4. Else, if there are less than N entries in the LSQ, then we send the load to the memory system.

This algorithm simply makes the load wait for some time in the hope of getting a forwarded value in
the LSQ from an earlier store. However, loads do not wait forever. They wait till the number of preceding
entries is below a threshold, and then the load is sent to the memory system. The main advantage of this
improved scheme is that we reduce the number of replays

Load-Store Dependence Predictor: Store Sets

Now, that we have discussed methods to find if a load collides with other stores or not, let us move one step
further. Let us also focus on stores, and see if we can predict load-store pairs that are expected to collide.
If we can design such a predictor, then we can do two things:

1. We can delay a load from being sent to the memory system, if the predicted store is present in the
LSQ or in the instruction window and precedes the load. This will reduce the number of replays and
mispredictions.

2. Once the address of a store in a predicted load-store pair is resolved, we can forward the value from
the store to the load if the addresses are the same. If there are no such stores, we can send the load
instruction to memory at this stage.

As compared to the previous approach that predicted just on the basis of the PCs of loads, this approach
uses more information. It takes the PCs of both loads and stores, and makes the predictions on the basis of
load-store pairs. Whenever, we use more information, we expect the prediction to in general be better. Let
us show the design of one such predictor that uses the concept of store sets [Chrysos and Emer, 1998]. Note
that we always assume that a given load or store will behave the same way in the near future as it has been
doing in the recent past.

Ld/St
PC n LSB

bits

2n entries

store set id

SSIT LFST Last fetched store
in this store set
(instruction number)

Figure 5.3: A predictor that uses store sets

Smruti R. Sarangi 156

For every load we associate a store set, which is the set of stores that have forwarded a value to the given
load in the recent past. The exact mechanism is as follows. We have two tables: SSIT (Store Set Identifier
Table), and LFST (Last Fetched Store Table).

The SSIT as shown in Figure 5.3 is a table that is indexed by either a load PC or a store PC. As usual,
we consider the last n bits of the PC address, and access the SSIT table. Each entry of the SSIT table
contains a store set identifier. It is a unique identifier that is assigned to each and every store set. If a load
instruction accesses the SSIT, it reads the identifier of the store set that is associated with it. Similarly, if
a store accesses the SSIT, it reads the identifier of the store set that it is a part of. There are two things to
note. In both the cases (for a store and load), it is possible to read an invalid identifier. This means that the
given load or store is not associated with a valid store set. Furthermore, to keep things simple, we can decide
to make a store a part of only one store set. Otherwise, in each entry in the SSIT, we need to maintain
multiple store set ids. This is a source of additional complexity. Note that later works [Moshovos et al.,
1997, Moshovos and Sohi, 1999] did explore associating multiple store sets with a given store. However, let
us explain the basic idea, where we assume that a store can only be a part of only one store set at a time.

Once we have read the id of the store set, we can use this id (if it is valid) to access the LFST. The
corresponding entry in the LFST contains the instruction number of the store that was last fetched in the
store set. The term instruction number is a unique identifier of an instruction in the pipeline. When an
instruction enters the pipeline, we assign it a unique id, and it keeps this id till its retirement. Note that at
any point of time, we cannot have two instructions in the pipeline with the same instruction number.

Let us now use the SSIT and LFST to create an algorithm that uses store sets. Consider the case of a
load (L) first. After it is decoded, we access the SSIT with the PC of the load. There are two cases: either
we get a valid store set id, or we do not. If we get a valid store set id, then we use it to access the LFST,
otherwise we do not do anything. In the LFST (indexed by the store set id), we get the instruction number
of the last fetched store in the load’s store set. Let us refer to this store as S. Now, this means that there
is a high probability that this store might supply its value to the load. Again, at this point, we are not sure
because the address of the load has not been computed. Still there is a probability, and we should be aware
of that. We thus add the instruction number of the store to the load’s instruction packet.

Now, let us consider the case when a store (S) gets decoded. Similar to the case of the load, we lookup
the address of the store in the SSIT. Recall that the SSIT has entries for both loads and stores. If the
corresponding entry in the SSIT has a valid store set id, then we use it, otherwise we simply move ahead.
If a valid id is found, we use it to access the LFST and write the instruction number of the current store
to the entry in the LFST indexed by the store set id. This tells the LFST that the current store (S) is the
most recent store in the store set.

There are several ways in which we can enforce a dependence. For example, we can proceed to find
the instruction window entry of the store S, and then wait for S to be issued first. To find the instruction
window entry we need a separate storage structure that maps the instruction number to the instruction
window entry. By ensuring that there is an order in issuing the instructions, we can ensure that S is issued
first, and then load L is issued. After the store is issued, we read the value it is going to write to the memory
system from the register file. Since, we have predicted a load-store dependence, this value can be directly
given to the load instruction. The load instruction can thus start early, albeit speculatively, and broadcast
its result to instructions that are waiting for it. Another way of enforcing the dependence is to search in the
LSQ for store S once load L is resolved. If S is present before L then we wait for it to get resolved before
sending L to memory.

What did we gain in this process? We were able to significantly cut down on the latency of the load
instruction. We did not have to send it to memory, nor wait for any value to be forwarded in the LSQ. We
predicted a dependence with a store, and directly used the value that it is going to store. We were then able
to wakeup the consumers of the load.

To enable this mechanism in the instruction window, wakeup and broadcast mechanisms have to be
modified slightly. Any store with a valid store set id, can broadcast its instruction number. Any load
waiting on that instruction number can wakeup and then get the value that the store is writing.

Recall that after the address for the store is computed, we do not send it to the memory system (Sec-

157 Smruti R. Sarangi

tion 4.4), we rather wait for it to retire. This store will thus remain in the LSQ. Let us see what happens
after we compute the address of the store. Since it has an entry in the LSQ, we can use it to forward values
to any subsequent loads that come. Even if the address of the load is not computed, we can still speculatively
forward the data if the store instruction is the latest instruction in the store set of the load. Upon retirement,
we need to invalidate the LFST entry for the store, if it still points to it.

The last piece of the puzzle is the creation of an entry in the SSIT. There are several ways to do this,
and there are different trade-offs associated with them. Let us discuss a simple scheme. Whenever we detect
a dependence between a store S and a subsequent load L in the LSQ, we need to see if we need to create an
SSIT entry or not. We first check the SSIT entry for S. If there is a valid entry then we do not do anything,
otherwise we check the SSIT for L. If it is associated with a store set whose id is i then we set the store set
of S to i. We write the instruction number of S to the ith entry of the LFST. Otherwise, if L does not have
an associated store set entry we need to create a new store set id for both L and S and then populate the
LFST.

Finally, let us discuss the issue of the instruction number. We chose to have a 7 or 8 bit instruction
number as opposed to identifying a store by its 64-bit PC. This was done to reduce the required storage and
the resources required to broadcast the id of the store. If there are 160 entries in the ROB, then we can
simply create an 8-bit counter that is incremented (modulo 256) every time a new instruction is decoded.
The instruction number of an instruction will be the value of this count; we are guaranteed to never have
two instructions in the pipeline with the same instruction number.

5.1.4 Latency Speculation

Let us consider a simple system with a pipeline, an L1 cache, and an L2 cache. An access can either be a
hit in the L1 cache or a miss. If it misses in the L1 cache, then it goes down the memory system, and it
can either get its data from the L2 cache, or somewhere from deep within the memory system such as main
memory or the swap space in the hard disk. The latency of a cache miss is not very predictable, and thus it
is unwise to assume anything about the latency of a miss in a cache. However, we can assume that a very
large percentage of our memory accesses will hit in the L1 cache. Furthermore, the latency of a hit in the
L1 cache is almost always a constant. It is a very small number – typically between 1 to 3 cycles.

We have two options here. The first option is very conservative. Here, we wait for the load to read
its data, before we wake up consumer instructions. In this case, we need to wait for the load instruction
to hit or miss in the cache. The problem here is that it is not possible to ensure back-to-back execution
(see Section 4.2.4) of a load instruction, and a subsequent instruction that uses the value read by the load.
Instead, once we get the status from the cache (might take 1-2 cycles), we send a wakeup signal to the
consumer instructions in the instruction window. This is an inefficient process because this ensures that
instructions consuming the result of load instructions are ready to be executed after a delay of several cycles.

Instead, if we assume that every load instruction hits in the L1 cache, we might do much better. This is
because most programs have a L1 hit rate of roughly 85-90% or more. This means that most of the time,
our loads have a deterministic latency, and thus we can wakeup instructions such that they are ready just
in time to consume the value read by the load (via the bypass network), and continue execution. This will
allow us to significantly reduce the delay between issuing a load instruction and issuing the instructions that
consume its value.

This is shown in Figure 5.4. For the pipeline shown in Figure 5.4, we have been able to save 2 cycles, in
other words, we have been able to execute the consumer instruction 2 cycles early.

As of today, load latency speculation is a standard feature in almost all high performance OOO processors,
particularly, in caches with multi-cycle hit times. We can gain a lot of performance by issuing consumer
instructions early – before we determine if the load has had a hit or miss in the cache.

What about the remaining instructions (roughly 10%) that miss in the L1 cache? If we speculate on the
latency of loads, we end up issuing dependent instructions before ascertaining if the load has hit in the L1
cache or not. Since these instructions are issued, they will try to pick up a value from the bypass network or
the register file, and proceed. If the load has not completed, these instructions will pick up junk values and

Smruti R. Sarangi 158

wakeup

select

read from
the reg.file

compute
memory
address

reg. file write

broadcast

access
memory

wakeup

select

read from
the reg.file

compute
memory
address

reg. file write

broadcast

access
memory

wakeup
consumer

select

read from
the reg.file

execute

wakeup
consumer

select

read from
the reg.file

execute

Figure 5.4: Load latency speculation

continue in the pipeline. There is a need to dynamically cancel these instructions, and reissue them once
the correct value is read by the load instruction from the memory system. In this case, the load instruction
will read its value from the lower levels of the memory system – L2 and beyond. This requires a replay
mechanism (will be discussed in Section 5.2). Before that, let us discuss methods to optimise load latency
speculation, and also discuss other forms of speculation in this space.

Hit-Miss Predictor

Let us discuss a basic hit-miss predictor (refer to [Yoaz et al., 1999]). Designing this is easy given all the
designs that we have already seen. We need to take inspiration from the branch predictors that we had
designed in Chapter 3. This is again a case of binary prediction, where we need to predict a hit (1), or a
miss (0).

The simplest implementation of this predictor uses a 2n entry table, where we index it using the last n
bits of the PC of the load instruction. The assumption in all such cases is that the historic behaviour of a
load instruction will continue to be predictive of the future, at least the near future. We can either use a
simple 1-bit predictor, or a predictor that uses saturating counters. All the optimisations that we used in
the case of branch predictors can be used here such as storing the tags for reducing aliasing.

In general having only one hit-miss predictor for the L1 cache is considered to be sufficient. We can in
theory have more predictors for other caches such as the L2 and L3 caches. However, in such cases prediction
accuracies are not known to be that great, and also the latency of a cache access at such levels is not very
predictable. As we shall see in Chapter 7, an L2 or L3 cache is a fairly complex entity, and does not have a
fixed latency.

5.1.5 Value Prediction

The idea here is to predict the value that the load instruction will read. Let us first list some of the main
sources of value predictability. Some of the early studies in this area were performed by Lipasti et al. [Lipasti

159 Smruti R. Sarangi

et al., 1996].

• Input Sets: In most programs, the inputs exhibit a tremendous amount of predictability. Assume we
have an application that processes HTML files. A lot of the values, particularly, towards the beginning
and end of the file (HTML tags) are expected to be the same. Moreover, two web pages from the same
organisation will also have a lot of data in common.

• Constants in the program: Most programs rely on a lot of read-only data or data that is computed
once and reused many times. These values are very predictable.

• Base addresses: Most of the time the base addresses of arrays, functions, and objects tend to remain
the same throughout the execution of a program. When we load these addresses we can leverage the
advantages of value prediction.

• Virtual functions: Programs in object oriented languages such as C++ often use a virtual function
table that stores the addresses of the starting addresses of functions. Loads to read this table return
very predictable values because this table typically does not change.

• Register spilling: Recall that when we run out of registers, or when we call a function, we need to
write the values of some registers to memory. Their values are loaded later on. Many of these values
remain constant, and are thus highly predictable.

Value Prediction Techniques

By this time most readers would have figured out the general pattern. We create a 2n entry table that is
indexed by n bits from the load instruction’s PC. In this table we can store the predicted value, and then
use the same optimisations that we have been using up till now. Lipasti et al. refer to this table as the
LVPT (load value prediction table).

In some cases, we can leverage stride based patterns [Wang and Franklin, 1997] as we had studied in
Section 5.1.2. Here, the value stored in a memory address changes by a fixed increment every time we
issue the load instruction. There are fundamental reasons why such stride based patterns are more relevant
for predicting memory addresses (see Section 5.1.2) as opposed to memory values. This is because most
compilers try their best to put all the variables into registers. If a variable is getting regularly incremented,
most likely the updates will remain confined to the register file. The updates will reach memory when the
register is spilled either because of a function call or because we run out of registers. Most of the time such
writes do not have a fixed and regular pattern. Hence, if we are predicting the values of memory values, we
might not see a lot of benefits with stride-based prediction.

A promising set of techniques use some compiler support [Gabbay and Mendelson, 1997]. We add code
to write the values of memory addresses to a file (this method is called profiling). Subsequently, we inspect
these files to find the predictability of values. Predictability can be of two types: last value reuse and stride
based. When the last value is reused we can use the LVPT based prediction scheme that uses the last value
as the current prediction, whereas for a minority of cases we observe a stride based pattern. Here, we can
use a regular stride based predictor as described in Section 5.1.2.

5.2 Replay Mechanisms

As we saw in Section 5.1, there are many ways of speculating. The common feature of all of these methods
is to speculate on the basis of predictions. Note that the predictions are never 100% accurate. It is possible
to have mispredictions. In this case, we need to dynamically locate all those instructions that have possibly
gotten a wrong value, and squash (cancel or nullify) those instructions. For example, if we falsely predict
the value returned by a load instruction, then all the instructions that have consumed the wrong value have
to be squashed. This set of instructions is also known as the forward slice. Formally, the forward slice of an

Smruti R. Sarangi 160

instruction I is defined as all the instructions that are data dependent either directly or indirectly (via other
instructions) on the value produced by instruction I. It also includes instruction I.

Consider the following dependences (→ indicates a RAW dependence): I0 → I1, I1 → I2 and I1 → I3.
In this case the forward slice of I0 contains I0, I1, I2, and I3. If the result produced by I0 is wrong, then its
entire forward slice (I0, I1, I2, I3) also needs to be squashed.

Definition 24
The act of dynamically nullifying or cancelling an instruction in the pipeline is known as instruction
squashing or just squashing.

What about control instructions? It is possible that the value returned by a load instruction might have
influenced the direction of a branch. In this case, the branch will execute on the wrong path. However,
in a modern OOO pipeline this will not happen. This is because we predict the outcome of branches at
fetch time. We verify whether they were correctly predicted or not at commit time. This means that by
this time all the instructions before the branch need to have fully executed, and written their results to the
architectural state. All speculative loads before the branch would have completed, and their results would
have been verified. We decide the outcome of a branch at commit time only on the basis of non-speculative
data (data that is fully verified). Thus, there is no chance of a branch getting mispredicted because of load
speculation.

Hence, we restrict our discussion to forward slices that are only created via data dependences.

Definition 25
The forward slice of instruction I0 is defined as the set of instructions that are data-dependent on the
value produced by instruction I0 either directly or indirectly. An indirect dependence is established by a
chain of direct data dependences between a pair of instructions. Refer to the following figure.

I0

I1 I2

I3 I4

I5 I6

Forward slice

161 Smruti R. Sarangi

The main aim of the replay mechanism is to ensure that instructions in the forward slice of a misspeculated
instruction are squashed and then re-executed..

5.2.1 Pipeline Flushing

The simplest method to fix the state of the pipeline is to flush the pipeline. Whenever we mispredict the
outcome of an instruction, we mark it in the ROB. This marking is similar to marking mispredicted branches.
Whenever the instruction with the mark reaches the head of the ROB, we do not allow the instruction to
commit. We instead flush the pipeline, and restart execution from the instruction whose outcome was
incorrectly predicted. Akin to the case of branch misprediction, we can fix the state of the pipeline and
ensure that no misspeculated data gets written to the architectural state.

This method will no doubt work. It is a proven method, and does work wonderfully in the case of branch
mispredictions. However, if we expect frequent mispredictions, then the overheads of this method are large.
Note that flushing a pipeline is a very expensive operation. There might be 50 instructions fetched after a
misspeculated instruction is fetched. All of these 50 instructions will be discarded if we flush the pipeline.
This means that we will lose a lot of work that has been done. As a result, flushing the pipeline is not
necessarily a good solution, even though it is very simple.

Typically forward slices of instructions are fairly small. Flushing the pipeline for cleaning up the effects
of misspeculation is metaphorically like killing a mosquito with a cannon ball. We have to look for methods
that can do the same with a significantly lower overhead. Let us look at a set of schemes originally proposed
by Kim and Lipasti [Kim and Lipasti, 2004] in the rest of this section. Please note that we shall describe
simplified adaptations.

5.2.2 Non-Selective Replay

This is a more efficient scheme as compared to a full pipeline flush. However, it is still not what we exactly
want in the sense that it does not locate the exact forward slice and squash it. However, it is an important
step in that direction. It chooses a superset of the forward slice. If we invalidate this set, then we are
guaranteed to also have invalidated the forward slice. Then, we can reissue these instructions. Since we
expect misspeculation events to be rare, we can afford a replay scheme with higher overheads.

Let us define the window of vulnerability (WV). Assume that a speculative load instruction broadcasts
its tag in cycle 1. The nature of speculation can be diverse: speculating on the latency of the load or on its
value. Now, assume that we shall get to know in the N th cycle if the speculation is correct or not. Thus, it is
possible that any instruction that marks any of its operands as ready between cycles 1 to N can be affected
by the speculated load. Since we do an early broadcast, the consumers of the load instruction might get
woken up, and they might subsequently wakeup their consumer instructions and so on. If in the N th cycle,
we realise that the speculation is wrong, the entire forward slice has to be squashed. Since we do not
explicitly keep track of the forward slice, we need to squash any instruction that has marked
an operand as ready in the WV (cycles: 1 to N). Note that a squashed instruction may either have
already been issued, or may still be in the instruction window waiting to wake up or get selected.

The hardware support that is required is as follows. Along with every operand, which is not present in
the register file, we associate a counter that is initialised to 0. This counter is set to N when we receive a
broadcast for the tag associated with the operand. The counter thus starts the moment we see its tag on
the tag bus, and then decrements itself by 1 every cycle till it reaches 0. Now, if the counter becomes 0, and
we do not receive bad news (notification of a misspeculation), we can successfully conclude that the operand
was read correctly. This scheme works on the principle that if there is a problem, instructions in the WV
(window of vulnerability) will be informed, otherwise, all is well.

However, if there is a problem (misspeculation), then all the instructions in the WV (some operand has
a non-zero counter) need to be squashed, and re-executed (replayed).

Let us explain with an example. Consider the following piece of assembly code.

Smruti R. Sarangi 162

1 ld r1 , [r2]

2 add r4 , r1 , r3

3 add r5 , r6 , r7

4 add r8 , r9 , r10

Assume that instruction 1, which is a load instruction, is sent speculatively to the memory system. We
predict that the value that it reads to be 7. Let’s say we wait for 3 cycles and at the end of 3 cycles, we
find out that the prediction was wrong. Let us further assume that instructions 2, 3, and 4 have been issued
during that time frame because one of their operands was marked as ready. We then need to squash these
three instructions: 2, 3, and 4. Subsequently, we need to reissue instructions 1-4. This is a non-selective
replay mechanism because we decided to replay all the instructions in the window of vulnerability. Only
instruction 2 is dependent on the result of the load. However, we are not selective, in the sense that we do
not track dependences between instructions.

Let us look at the pros and cons of this scheme. The biggest advantage is that the scheme is simple.
We do not have to track dependences between instructions. However, on the other hand, it can also be
inefficient, particularly if N (size of the window of vulnerability) is high. In this case, we unnecessarily have
to squash many instructions, even though the size of the forward slice may be really small. Of course, to
choose a given replay mechanism we need to factor in many more things like the accuracy of the predictors,
the number of instructions that are actually replayed, and the size of the replay hardware (as a fraction of
the size of the rest of the hardware). Let us elaborate.

Dynamically Squashing Instructions

Tag

Ready bit

Timer

Kill wire

Set to N if the
tag matches

Tag
bus

1 if the timer
is non-zero, else 0

Figure 5.5: Structure of an instruction window entry with non-selective replay (only one tag bus is shown
for the sake of simplicity)

Whenever, we mark an operand as ready (because of a broadcast), we need to set a timer for that operand
to N . The timer decrements every cycle (refer to Figure 5.5). Once the timer becomes 0, we are sure that
this operand was read correctly. It is better to assume by default that things are all well, instead of the
other way, because most of the time we expect the speculation to be correct.

Let us see what happens when we detect a misspeculation. Whenever we have such an event, we assert
the kill wire (refer to Figure 5.5). Observe that the kill wire is connected to every entry of the instruction
window. Here is the key idea: squash all the entries whose count for any operand is non-zero. These

163 Smruti R. Sarangi

instructions are in the WV. For all such operands with a non-zero counter, we set their ready bits to 0, and
their counts to 0 as well. These instructions may have already been issued. In this case, they need to be
replayed – re-executed with the correct values. If they have not been issued, then they need to wait till the
tag is broadcasted again (corresponding to the correct value). Now, note that in Figure 5.5 we use a NAND
gate that has two inputs: the kill wire and a bit that indicates if the timer’s count is zero or non-zero. If
both are 1 then the output of the NAND gate is a 0. This resets the ready bit and the timer. However, if the
output of the NAND gate is 1, then no action is taken because in this case either the kill wire is deasserted
or the timer’s count is zero.

Let us look at the methods of re-execution, or in other words methods to replay the instructions.

5.2.3 Methods to Replay Instructions

Now, that we have dynamically squashed the instructions that might possibly have gotten a wrong value, it
is time to re-execute or replay them. There are two ways of doing this.

Approach 1: Keep in the Instruction Window

The first approach is to keep instructions that have issued in the instruction window. We do not remove
them after they are issued. Instead, we wait till the instructions get verified (all the predictions are correct).
This means that the pipeline looks something like the one shown in Figure 5.6. Subsequently, when the
instructions are verified, they are removed from the instruction window. Before discussing about what
happens when instructions need to be replayed, let us delve into the details of the verification process.

IW
Instruction

window

Pipeline stages Verify

Verification status

Remove from the
instruction window
after verification

Figure 5.6: Instruction replay strategy: verify and remove

An instruction is said to be verified, when it is issued, and the counters of all of its operands reach 0.
This means that even if we assert the kill wire in the future, the current instruction will stay unaffected. At
this point it can be removed from the instruction window.

However, if the instruction needs to be squashed, then we need to reset its state as described in Sec-
tion 5.2.2. This becomes a fresh instruction, which needs to be woken up and issued once again. Note that
the second time it will not get squashed because of the same speculative instruction. This is because for the
same instruction we do not speculate twice. For example, if we predict the value of a load instruction, and
then the prediction turns out to be incorrect, we do not predict once again. Instead, we wait for the right
value to come from the memory system. Thus, it will never happen that the speculate-replay process will
continue indefinitely with no progress.

Once the right value comes from the memory system the misspeculated load instruction can re-execute,
collect the right value from the memory system, and thus execute correctly. It can simultaneously broadcast
the tag corresponding to its destination register to its consumer instructions that have also been squashed.
They can wake up if the rest of their operands are available. In the next cycle, these consumer interactions

Smruti R. Sarangi 164

can further wake up their consumers and so on. If the rest of the speculation is correct, this time the
forward slice will execute correctly. Note that multiple misspeculations can happen concurrently, and thus
a single instruction might get replayed multiple times if it is in the forward slice of multiple misspeculated
instructions. However, the same instruction will suffer a misspeculation only once. We do not predict twice.

Approach 2: Create a Separate Replay Queue

If we keep all instructions in the instruction window till they are verified, it will create an otherwise complex
instruction window even more complex. Furthermore, if there is very little speculation, then this mechanism
simply adds to the overheads and is counterproductive. If the instruction window needs 100 entries, and
because of the replay process, if we need to extend its size to let’s say 150, it will unnecessarily become very
slow.

Let us thus keep the size of the instruction window the same. We instead add a separate queue called
the replay queue as shown in Figure 5.7.

`

IW

Instruction
window

Pipeline stages

Replay queue

Verify

Verification status

Remove from the
replay queue after
verification

Figure 5.7: Instruction replay using the replay queue

After issuing an instruction, we move it to the replay queue. Thus, we do not need to increase the size
of the instruction window unnecessarily. An instruction remains in the replay queue till it is verified. Once
it is verified it can be removed from the replay queue. The rest of the logic remains the same.

Orphan Instructions

Let us summarise the situation that we have described till now. After we detect a misspeculation, we squash
all the instructions that might have received a wrong value. We have looked at a simple method of creating
this set of instructions using the non-selective replay approach. There are more sophisticated methods of
creating this set, also known as the squashed set. Nevertheless, let us describe the basic principles that
govern the correctness of the replay techniques.

If the squashed set is simply the forward slice of an instruction, then this situation is very easy to handle.
We simply restart the instruction that was misspeculated with the correct value, and the entire forward slice
shall get the right values through the broadcast-wakeup mechanism (over multiple cycles). Since we already
guarantee that all instructions in the forward slice are squashed, we shall never miss an instruction, and the
execution will be correct.

However, a problem arises when we squash a superset of the forward slice. Let us consider the following
code fragment.

165 Smruti R. Sarangi

1 ld r1 , 8[r2]

2 sub r4 , r1 , r3

3 mul r5 , r6 , r7

Assume that we try to predict the latency of instruction 1 and speculate. Instruction 2 is dependent on
1, and thus it is in its forward slice. However, instruction 3 is independent and not a part of its forward
slice. Now assume that we have a misprediction while speculating on the latency of instruction 1, and after
asserting the kill signal, we squash all three instructions: 1, 2 ,and 3. In this case, we need to replay all three
instructions. Replaying instructions 1 and 2 is easy. Instruction 1 gets replayed because we had mispredicted
its latency. Once the load value is available we can broadcast the tag corresponding to register r1. This will
wake up instruction 2, and this time it will get the correct value of r1. However, there is nobody to wakeup
instruction 3!

Instruction 3 was unfortunately squashed because it was in the window of vulnerability (WV). Its only
crime was that one or more of its operands became ready within the WV of instruction 1. The producers
of its operands r6 and r7 have long retired. We thus have a deadlock. No instruction is going to broadcast
the tags corresponding to the physical registers mapped to r6 and r7, and thus instruction 3 will remain in
the instruction window forever. Let us call such instructions as orphan instructions.

We can consider re-broadcasting the tags for instruction 3. However, to do that we need to keep track
of all the operands of all the instructions that have been squashed. We then need to keep track of the tags
that have already been broadcast, and the ones that have not been broadcast yet. This is complicated, and
requires fairly elaborate hardware. Here is a simple solution. Wait till instruction 3 reaches the head of
the ROB. At that point of time all of its operands, should have gotten their correct values. This is because
there will be no instruction in the pipeline that is earlier than instruction 3. All such instructions would
have executed correctly, written their values to the register file, and left the pipeline. Thus, at this point if
instruction 3 is still waiting for some broadcasts, we can force it to execute with the values that are currently
there in the register file. The result will be correct, because the values of the operands are correct. Let us
extend this idea a little further.

5.2.4 Delayed Selective Replay

There are several disadvantages of non-selective replay. The forward slice can be a small portion of the
squashed set. We might end up doing a lot of wasted work. Secondly, as we saw in Section 5.2.3, we can
end up with orphan instructions.

Let us try to extend this scheme to solve some of these problems. Let us keep non-selective replay as the
baseline scheme and make some enhancements.

Poison Bit

The first concept that we need to introduce is the poison bit. The aim is to keep track of the forward slice
very accurately. We augment every register file entry, the instruction packet and the bypass network with an
additional bit called the poison bit. Now, as an example, let us assume that we mispredict the value of a load
instruction that writes to the physical register p1. It is possible that due to the early broadcast mechanism,
other instructions in the pipeline will nevertheless read p1 because they have been eagerly issued. Let us
thus attach a poison bit to the value stored in p1 and set it to 1. This means that regardless of how we
get the value of p1 – via the register file or the bypass network – we always read the associated poison bit
to be 1. All consuming instructions including those that have been issued because of the early broadcast
mechanism will read this poison bit. If an instruction reads a source operand with its poison bit set, then it
also sets the poison bit of its destination register.

This is how the poison bit propagates through the forward slice and thus we can dynamically mark an
instruction’s forward slice. Keep in mind that the poison bit propagates when we read a value either from the
register file or the bypass network. It is not propagated while broadcasting tags or waking up instructions.

Smruti R. Sarangi 166

Now, when we misspeculate an instruction, we need to do two things:

1. Set the poison bit of the instruction packet and the destination register (physical register) to 1.

2. Set the kill wire and invalidate all the instructions in the window of vulnerability (non-selective replay
scheme).

Basic Protocol

When an instruction finishes its execution, we do the following:

1. We check if the poison bit of the instruction is set. If it is, we squash the instruction by not allowing
it to proceed further to the ROB. We however, set the poison bit in the physical register file for the
destination register. Additionally, we also attach a poison bit along with the corresponding value on
the bypass network.

2. If the poison bit is not set, then this means that this instruction has not received a speculative value.
However, it is possible that this instruction might have been squashed because it is in the WV of a
misspeculated instruction.

3. Let us make the instruction proceed towards the commit stage, and write its result to the register file.
We also send its value on the bypass network to consumer instructions. Let us now proceed to handle
such kind of corner cases.

Understanding of the Corner Cases

Let us first outline the problems associated with a window of vulnerability based replay scheme: it is false
dependences. A false dependence arises when an instruction in the WV is squashed even though it is
independent of the misspeculated instruction. Consider two instructions I and J. I is misspeculated and J is
in the WV of I, even though it is not a part of I ’s forward slice. Assume that J is a safe instruction, which
is not in the forward slice of any other misspeculated instruction. In this case there is a false dependence
between I and J.

In the non-selective replay scheme such false dependences led to orphan instructions. In our current
scheme – delayed selective replay – we have introduced a basic protocol that propagates the poison bit in
the forward slice of the misspeculated instruction. Let us see what it achieves.

Assume that instruction J has been issued; it will pass through the execution units. Its poison bit will
be 0. Since the instruction is safe, we need to let the replay queue know that the entry for J can be removed
(similar logic for replay with the instruction window). This can be achieved by broadcasting the tag to all
the elements in the replay queue. The entry for instruction J can mark itself to be free.

Now consider the tricky corner case when J has not been issued and we have ended up invalidating one of
its ready operands. It is thus an orphan now. Similar to the case in Section 5.2.3 (for non-selective replay)
there is no instruction to wake it up.

Dealing with Orphan Instructions

The fact that instruction J is an orphan basically means that when the kill wire for instruction I was asserted,
one of J’s operands was ready and its associated timer was non-zero. This operand’s ready bit got unset.
Now, there is nobody to set the operand’s ready bit back to 1. Let us understand this process in some more
detail. The fact that J’s operand was ready means that some other instruction K must have set it to ready.

Let us now augment our design by adding a completion bus. It is similar to a tag bus that allows
an instruction to broadcast its tag to all the entries in the instruction window. Now, assume that every
instruction broadcasts its tag (id of its destination register) on the completion bus if it executes successfully
without getting its poison bit set or getting misspeculated. This is done exactly N cycles after it has

167 Smruti R. Sarangi

broadcasted its destination tag: there are two broadcasts in this scheme – the first is a regular broadcast
for waking up consumers and the second broadcast is on the completion bus after the instruction’s status
is known. Assume that all the results of speculation are available within this time frame – within N cycles
of broadcasting the tag (first broadcast). Finally, assume that the value of the timer associated with each
source operand is set to N when the operand is woken up.

Consider the following timeline. Assume that in the N th cycle, one of J’s operands was ready, its counter
was non-zero, and in this cycle instruction I asserted the kill wire. Since J was not issued yet, it got
orphaned. This means that I must have broadcasted the tag any time t where t ≥ 1 because it asserted the
kill wire when t = N . Additionally, given that instruction K woke up the same operand, it must have also
broadcasted its tag any time after t ≥ 1 because at t = N the timer of the operand was still non-zero.

Let instruction K signal its completion at any time t ≥ N + 1. At this point of time, instruction J can
read the tag off the completion bus and set the ready bit of the operand once again (see Figure 5.8).

Inst. I broadcasts

N

Misspeculation for Inst. I
Assert the kill wire

Inst. K broadcasts

Inst. K broadcasts
on the completion bus

Figure 5.8: An example scenario that produces an orphan instruction

The summary of this discussion is that if an instruction has been orphaned because of a false dependence,
then the instruction that had originally woken up the operand is going to again come back in the future to
rescue it. In this case instruction K rescues instruction J. The completion bus is the additional overhead of
this scheme.

5.2.5 Token based Replay

Let us now create a system that truly buffers the forward slice and no other instruction. As we have been
observing, there is a trade-off between tracking dependences and the replay complexity. The more we track
dependences, the easier it is to perform replays. If we are able to precisely mark the forward slice, performing
a replay is easy – there are no false dependences. In token based replay the main idea is that for a load that
is predicted to miss, we mark it, and propagate the mark to instructions in the forward slice (similar to a
poison bit). With these marks it is very easy to identify the instructions that are there in the forward slice
of a load.

Before proceeding, let us note a common pattern found in most programs. Let us consider the latency of
loads in the data cache. Most of the time in such cases, the 90/10 thumb rule is found to operate. This is a
thumb rule that basically says that 90% of the misses are accounted for by 10% of the instructions and 10%
of the misses are accounted for by 90% of the instructions. A word of caution is due. This is not a hard and
fast rule, it is a thumb rule. This means that we typically observe similar patterns in real programs. It has
to do with the way that we write programs. Since most of the code executes within loops, we have a fair
amount of temporal and spatial locality. As a result, we typically do not have a lot of misses in such phases.
Moreover, for regular accesses such as walking through an array, we can very easily prefetch data, and this

Smruti R. Sarangi 168

further reduces misses. Most of the misses happen when we access irregular data structures such as linked
lists and execute portions of code that are rarely accessed.

Now, given this rule, let us try to leverage it. Given a load PC, let us try to predict if it will lead to a
miss. We can use the hit-miss predictor described in Section 5.1.4. We can get a good accuracy, if our code
uses data structures such as arrays. Let us create two sets of load instructions: S1 and S2. Instructions in
S1 are predicted to most likely miss in the L1 data cache, and instructions in S2 are predicted to most likely
hit in the L1 data cache.

At the time of decoding the instruction, we run the hit-miss predictor, and if an instruction is predicted
to miss (part of S1), then we proceed as follows.

Tokens and Token Vectors

Let us add a vector of tokens to the instruction packet of each instruction, each rename table entry, and
to each source operand in an instruction window entry. This is a vector of k bits, where the bit at the ith

position indicates the presence of token i. If the bit is 1, then it means that the given instruction or entry
holds the token, and if the bit is 0, then it means that the token is not held. We will be using the token as
a proxy for the forward slice. We have a total of k tokens.

Token Generation: When we predict an instruction to be in set S1 in the decode stage, we collect a free
token from a token allocator. Assume we get token i. Then we set the ith bit in the token vector of the
instruction packet to 1. This instruction is said to be the token head for token i. We then proceed to the
rename stage.

We add two additional fields to an entry in the rename table: tokenId and a token vector tokenV ec. Let
us explain with an example. Assume an instruction: ld r1, 8[r4]. In this case the destination register is r1.
Assume it is mapped to the physical register p1. In the rename table entry of p1, we save the id of the token
that the instruction owns in the field tokenId.

The logic for setting the field tokenV ec is more elaborate.

Token Propagation:

Conceptual Idea
Now that we have a way to generate tokens, we need to design a method to propagate tokens along the
forward slice of an instruction. We can easily deduce that a producer needs to propagate its tokens to its
consumers, and the consumers in turn need to propagate the tokens that they hold to their consumers. In
this manner tokens need to propagate along the forward slice of an instruction. Note that we are using the
word “tokens” in its plural form. This is because an instruction can be a part of the forward slices of many
different load instructions. It will thus hold multiple tokens – one each for each load in S1.

Let us consider our example instruction again. It was ld r1, 8[r4]. In this case register r1 was mapped
to the physical register p1. We generated a token for this instruction and added it to its instruction packet
as well as the tokenId field of its destination register p1 in the rename table.

Now consider the tokenV ec field. It is supposed to contain a list of all the forward slices that the
instruction is a part of. We use a token as a proxy for a forward slice and thus with each instruction and its
destination register in the rename table we maintain a vector of tokens – tokenV ec.

Implementation
Let us assume that the token vectors held by the source operands are T1 . . . Tn. Let t′ refer to the token
generated by the instruction. If the instruction does not generate a token then t′ = φ. Then the token vector
for the instruction and its destination register in the rename table is given by Equation 5.1. Let us refer to
the final vector of tokens as Tf .

Tf = T1 ∪ . . . ∪ Tn ∪ t′ (5.1)

169 Smruti R. Sarangi

The process is shown graphically in Figure 5.9. We are essentially merging all the information – computing
a union of all the token vectors. This is because now the current instruction is in the forward slice of many
instructions – one forward slice per token. This computation can be done in the rename stage and then the
computed token vector Tf can be used to set the token vector of the instruction and the tokenV ec field of
the rename table entry of the destination register. In this case T1 . . . Tn correspond to the token vectors of
each source register in the rename table.

<opcode> dest, src1, src2

Generate token

Figure 5.9: Token propagation (a coloured circle represents a token)

Subsequently, the instruction enters the instruction window. Let us keep two token vectors in each
instruction window entry – one for each source operand. We can read these token vectors in the rename
stage and populate the corresponding fields in the instruction window entry in the dispatch stage. If we have
a replay queue then its entries will also be augmented with this information.

Verifying and Squashing Instructions

Let us continue our discussion. Note that we are only discussing instructions in set S1 (predicted to suffer
from a misspeculation).

Depending upon the type of speculation, we will have different methods of verifying the speculation. For
example, if we are speculating on the latency of the load, then once a load completes, we can check if it took
extra (more than its predicted value) cycles or not. If we are trying to predict a load-store dependence, we
can always check whether this dependence exists or not, once the addresses of the corresponding loads and
stores have been resolved. We can thus conclude that at a future point of time, we can expect a Boolean
answer from the verification logic: True (speculation is correct) or False (speculation is false).

Speculation is Correct: In this case, we need to broadcast the token id that the load owns to all the
entries in the rename table, the instruction window, and replay queue (if it exists). We need to set the bit
corresponding to the token id in the token vectors to 0. This basically means that the respective token is
being freed and removed from the system.

Broadcasting a token id to the entries in the rename table and instruction window requires some changes to
the hardware. We need to create a new bus called the token bus that is connected to each entry. Furthermore,
it is very well possible that multiple tokens might need to be released in each cycle. The simplest solution is
to augment each entry with an AND gate. In each cycle we compute a logical AND operation between the
tokenV ec of each entry and the value that is broadcast on the token bus. Let us assume that the token bus
is as wide as the number of tokens in circulation. It transmits a mask that we shall refer to as tokenMask,
and a single bit that indicates if we are freeing a token, or initiating a squash (referred to as the squashBit).
Assume that we can have 8 tokens (numbered 1 to 8) in circulation and tokens 1, 2, and 4 are getting
released. In this case, we will set the mask as 00001011 (counting from the right starting from 1). The logic
is that if the ith token is being released we set the ith bit to 1, otherwise we set it to 0. After an AND

Smruti R. Sarangi 170

operation between the bitwise complement of the token mask with the token vector tokenV ec, the ith bit in
tokenV ec will become 0. The respective token will thus get released.

We thus compute:

tokenV ec = tokenV ec ∧ tokenMask (5.2)

In this case the squashBit = 0 – the speculation is correct.

Speculation is Incorrect: In this case, we need to initiate a replay. The load that has had a misspeculation
needs to be a token head (because it is a part of set S1). Let it be the owner of token with id j. We need to
broadcast j to all the entries in the instruction window and replay queue. We can use the same token bus
mechanism with the squash bit set to 1. We can also support replays due to multiple misspeculations. Let
us explain with an example.

Assume that in a system with 8 tokens, we have misspeculations for tokens 3 and 5. With squashBit = 1,
we transmit the following tokenMask: 00010100. To find out if a given operand needs to be invalidated or
not, we need to find if any of the tokens associated with the operand correspond to misspeculated instructions
or not. This is possible by computing the result of the following equation.

result = tokenV ec ∧ tokenMask (5.3)

In this case, if any bit of result is equal to 1, then it means that the given operand is a part of the
forward slice of a squashed instruction. We thus need to squash that instruction. In this case, all that needs
to be done is that we need to reset the ready bits and reissue these instructions when the operand becomes
available again (similar to non-speculative replay).

Avoiding Orphan Instructions: It is easy to avoid orphan instructions in this scheme. We only invalidate
those operands and instructions that are part of a misspeculated forward slice. We do not have false
dependences in this scheme.

Instructions in Set S2

Let us now consider instructions in set S2. Instructions in this set are not expected to suffer from a
misspeculation. Note that these instructions do not generate any tokens.

If they do not suffer from a misspeculation, then there is no problem. We continue as is. However, if they
have a misspeculation, then we use a sledge hammer like approach as we had proposed in Section 5.2.1. We
simply wait till the instruction reaches the head of the ROB, and then we flush the pipeline. This solution
has a high overhead, yet is simple.

5.3 Simpler OOO Processor without a Register File

Let us now simplify things. We have invested a lot of silicon real estate in creating a high performance
processor. However, since this chapter is about alternative designs, let us look at OOO processors that
are less complex, and not necessarily very inefficient. Let us look at one of the most popular alternative
designs that uses the ROB also as the physical register file (PRF)1. It leads to a simpler implementation.
We need not have the paraphernalia associated with a physical register file. Even recovering from a branch
misprediction is also much easier.

Let us first try to motivate this design by first taking a look at some aspects of the pipeline presented in
Chapter 2, which are amenable to simplification. Here were the big sources of complexity.

1The terms physical register file and PRF will be used interchangeably

171 Smruti R. Sarangi

Physical Register File To support large instruction window sizes, and remove all hazards, we needed
large physical register files. To keep track of physical register file allocation it was necessary to have
additional structures such as a free list. In addition, the logic for freeing a physical register is non-trivial.
We need to wait for another instruction writing to the same architectural register to commit.

Maintaining Precise State Maintaining the correct architectural state (see Section 4.4) was difficult. We
had to introduce many schemes to remember the mapping between physical registers and architectural
registers at various points in the program. This was a slow and complicated mechanism. We would
love to at least make this part simpler.

Recovery from Branch Mispredictions This point extends the previous point, where we discussed the
complexity of maintaining architectural state. Recovery from a branch misprediction is also fairly
involved in the scheme with physical register files. We need to restore a checkpoint, which can be a
set of saved register values, or a set of mappings between architectural registers and physical registers.
This process requires time and additional hardware.

Let us try to propose a new scheme that avoids the physical register file altogether and makes it easy to
recover from branch mispredictions.

5.3.1 Overview of the Design

Main Insights

Let us ask the basic question: Why did we use a physical register file in the first place? We used it to avoid
WAR and WAW hazards. This is not the only way of avoiding such hazards. Here is an alternative idea.

Instead of using the temporary storage provided by the physical register file, let us instead use an ROB
entry to additionally play the role of a physical register. We can thus achieve both our aims with the same
structure. It is true that this will increase the number of ROB accesses and make it a bottleneck. Let us
entertain such considerations later. Let us first present the design.

Design of the Pipeline

Decode Rename

ARF

ROB

IW

Instruction
window

Register
write

Committed state

Temporary
state

Write back results

Wakeup/
select
logic

ALUs

Figure 5.10: Overview of a simplified pipeline

Figure 5.10 provides an overview of our simplified pipeline. Instead of having a large physical register
file, we have a smaller architectural register file (ARF). The number of entries in the ARF is the same as the
number of architectural registers. Furthermore, the ARF also contains the precise architectural (committed)
state. There is thus no need to create periodic checkpoints and restore them if there is a need. The ARF
contains the committed state. The crucial assumption here is that committed values stay in the ARF and

Smruti R. Sarangi 172

temporary (not committed) values reside in the ROB. Henceforth, we shall refer to the pipeline introduced in
Chapter 4 as the PRF based pipeline, and the pipeline introduced in this section as the ARF based pipeline.

The crux of the idea is to change the renaming stage. Given an architectural register, the renaming
stage needs to point out a location at which the value is available. Since there is no physical register file,
the renaming stage in this case points to either the architectural register file (ARF) or the ROB (Reorder
buffer). If the value that we want to read is a part of the committed state, then we need to read it from the
ARF. However, if the instruction that has written the value to an architectural register has not committed
yet, then we need to read its value from the ROB. The rename table points to the right location.

It is to be noted that once an instruction retires, we need to update the committed state. We write to the
destination register in the ARF upon instruction retirement. The rest of the pipeline is roughly the same.
The key difference is that in the PRF based design we read the register values after issuing the instruction.
In this case, we read the operand values either from the ARF or ROB before the instruction enters the
instruction window (IW).

5.3.2 Detailed Design

Rename Stage

Given that we have seen the overview of the design in Figure 5.10, let us look at the rename stage in some
more detail. The structure of each entry in the rename table is as follows.

As before, the number of rows in the rename table is equal to the number of architectural registers.
Let us assume that the architectural register that we want to rename is r1. The value of this architectural
register can either be present in the ROB or ARF if it has already been computed. We thus add a bit in
each entry of the rename table called inARF , which indicates if the value for the register r1 is in the ARF
(inARF = 1) or in the ROB (inARF = 0). If the value is present in the ARF, then we can directly read
the architectural register in the next cycle.

However, if the value is not present in the ARF, then we need to read the subsequent field robEntry.
This is the number of the ROB entry that contains the value of the register. It contains the current value
of the architectural register r1. Note that we are augmenting every ROB entry to contain additional data –
result produced by the instruction.

Operand Read Stage

The major difference in this pipeline is that we read the values first and carry the values along with us in the
pipeline. This is quite unlike the PRF based design, where we read the values from the register file or the
bypass network just before execution. Here we try to read the values right after renaming the instruction
and carry it through the processes of dispatch and issue. This is no doubt a source of inefficiency because a
7-bit PRF tag (assuming a 128-entry physical register file) is far easier to carry along as compared to a fat
64-bit value. However, if this is a 16-bit processor, where every value is 16 bits wide, then this idea does not
look that bad.

Now, if the rename stage indicates that the value can be found in the ARF, we read the ARF, otherwise,
we access the ROB.

Let us consider the case when the rename table indicates that the value of the operand (register r1) is
present in the ROB. Each entry of the ROB contains the following fields: avlbl and val. avlbl is a 1-bit
Boolean field that indicates if the instruction corresponding to the ROB entry has produced its result or
not. The field val contains the result of the instruction after the completion of its execution.

There are two cases that we need to consider. If avlbl = 1, then it means that the ROB entry pointed
to by the field robEntry in the rename table contains the value of r1; however if avlbl = 0 then this means
that the value is not ready yet. Instead we need to wait in the instruction window for the value of r1 to be
generated. Recall that we had relied on a broadcast-wakeup based mechanism in the PRF based pipeline.
In that case we were broadcasting the PRF register id. This was also referred to as the tag. In this case,
the tag is the index of the ROB entry that produces the value for r1, which is robEntry. We have to thus

173 Smruti R. Sarangi

wait for the id of the ROB entry along with the value of the operand to be broadcasted. Subsequently, we
can proceed for execution, if we have the values of the rest of the operands.

Dispatch Stage

In this stage, the instruction enters the instruction window. The only difference in this case is that an
instruction enters the instruction window along with the values of operands. The structure of an entry in
the instruction window is shown in Table 5.1. We assume that we have 128 entries in the ROB.

Field Description Width (in bits)
valid validity of the entry 1
ready instruction is ready to be executed 1

First source operand
ready1 value is present 1
tag1 tag of the first source register 7
val1 value of the first operand 64

Second source operand
ready2 value is present 1
tag2 tag of the second source register 7
val2 value of the second operand 64

Destination
isregd destination is a register 1
robTag ROB entry of instruction 7

Table 5.1: List of fields in an instruction window entry

We have two additional fields in an instruction window entry: val1 and val2. These are the values of
the two source operands. If each value is 64 bits, then we are adding 128 bits to each instruction window
entry. This is expensive; however, carrying the values along simplifies things to a great deal. It reduces
dependences. Instead of waiting to read other structures such as the register file, we can directly execute
the instruction if all the values have been read earlier, or can be obtained through the bypass network.

The bypass network also needs to change. The tag in this case is the index of the ROB entry that
produces the value of the operand. The rest of the tag matching logic and wakeup logic remain the same.
There is one more significant change as well. Along with broadcasting the tag, we also need to broadcast
the value of the operand. Previously, this was not required because we could always read the value from
the register file. This kept the bypass network relatively lean, and did not add a lot of wires and buffers.
However, now we do not get a chance to read the register file after the instruction enters the instruction
window. Hence, we need to broadcast the value also.

After an instruction picks up all of its operand values, it wakes up, is selected, and proceeds for execution.

Speculative Broadcast

Recall that in Section 4.2.4, we were broadcasting the tag in advance to ensure that instructions did not
have to unnecessarily wait longer. They could pick up the values of operands on the way (from the bypass
network). This enabled back-to-back execution.

Here also we can do the same. We can issue instructions early as long as they are guaranteed to get their
operand values later in the pipeline. This aspect of the pipeline does not change.

Smruti R. Sarangi 174

Write-back Stage

After an instruction has executed, it is time to write its value back. We need to write this value to its ROB
entry. The ROB entry buffers this value till the instruction is committed. We need to set avlbl = 1 in the
ROB entry. This indicates that the value has been computed and can be read. Recall that by default we set
inARF to be 0 while creating an entry in the rename table; this means that by default we access the ROB
unless instructed otherwise.

Commit Stage

This is the last stage. In this stage, we need to update the architectural state. For each instruction that is
being committed, we write its result (stored in its ROB entry) to the ARF. This thus updates the architectural
state.

Simultaneously, we need to update the inARF bit in the rename table. However, this is easier said than
done. Let us explain with an example. Assume a committing instruction I of the form add r1, r2, r3. In
this case, the destination register is r1, which contains the result of the instruction. Let us first assume that
after this instruction was renamed, no other instruction has passed through the rename stage with r1 as the
destination register. In this case once instruction I commits, the value of r1 needs to be transferred from
the ROB to the ARF, and in addition the rename table needs to be updated. We need to set the inARF
bit to 1 because now the value can be found in the ARF.

Let us now consider the other situation. In this situation, just after instruction I gets renamed, another
instruction I ′ passes through the pipeline. It also writes to r1. In this case, the rename table entry for r1
gets updated – it points to the ROB entry for I ′. When instruction I commits, it cannot set the inARF bit
to 1 for r1 in the rename table. This is because the latest value will be produced by instruction I ′ or a later
instruction.

Let us thus summarise the logic. We need to compare the robEntry field of the rename table’s entry for
r1 with the id of the ROB entry for instruction I. If they are equal, then it means that no instruction that
also writes to r1 has been renamed after I. We can thus set inARF in the rename table entry to 1. However,
if they are not equal, then we can infer that there is another instruction in the pipeline that overwrites r1,
and thus inARF needs to remain 0. To summarise, an additional comparator is required here. It needs
to compare the robEntry field in the rename table entry with the id of the ROB entry of the committing
instruction.

Historical Note 1
It is not necessary to have one unified instruction window. Indeed one of the earliest proposals for design-
ing an OOO processor by Robert Tomasulo in 1967 envisioned multiple instruction windows. The rest
of the design was conceptually similar to the ARF based OOO processor. He proposed mini-instruction
windows attached to each functional unit. Such instruction windows were known as reservation stations.
Each entry in a reservation station was similar to an entry in the instruction window in our ARF based
processor. All the reservation stations were connected to a common data bus (CDB) where the tags
and values were broadcasted. The reservation stations compared the tags and upon a match buffered the
value.

Modern designs often have different instruction windows for different classes of instructions. For
example, if the integer and floating point register set is completely disjoint, then separate instruction
windows can be used for each class of functional units. We can also have such a separation between
regular integer/floating point instructions, and vector based SIMD instructions (instructions that perform
arithmetic instructions on multiple operands at a time). Having such a separation is desirable because
small instruction windows are faster and more power efficient. However, having a unified window is also
sometimes advantageous because it helps balance out the unevenness of the load between different classes
of functional units.

175 Smruti R. Sarangi

5.3.3 Comparison

Let us now compare the PRF and ARF based designs by listing out their pros and cons (refer to Table 5.2).
Note that IW refers to the instruction window in the table.

Attribute PRF based design ARF based design
Values reside in only a
single location

Only in the PRF Multiple locations: ARF,
IW, ROB

Size of an entry in the IW small large (contains operand
values)

Restoring state after a
misprediction

hard very easy

Need for a free list yes no
Write ports in the ROB decode width decode width + is-

sue width
Read ports in the ROB commit width commit width + 2 * is-

sue width

Table 5.2: Comparison between the ARF and PRF based designs

The main drawbacks of the ARF based design are the size and complexity of the ROB. We write to the
ROB twice – while creating an entry in the decode stage and while writing the results of an instruction. In
the worst case, the number of ports required for writing the results can be equal to the issue width.

We can always optimise this by populating the ROB entry lazily. We can write most of the contents to
the ROB entry at the time of writing the results. The ROB entry itself can be split across two sub-arrays of
memory cells (will be described in more detail in Chapter 7). Since the ROB also acts as a register file, in
the worst case, we would need to read 〈2× issue width〉 number of operands. In addition, we need to read
the ROB while committing instructions. The number of simultaneous reads (for committing instructions) is
equal to the commit width.

Note that even in the PRF based design we needed to update the ROB after the successful execution
of each instruction. We needed to update a bit in each ROB entry to indicate that the instruction has
completed successfully. To optimise, we can have a separate structure to store these bits. Moreover, since
the size of each entry is a single bit, we can even have an array of flip-flops instead of an SRAM array. Hence,
we have not added this source of overheads to Table 5.2.

Given that the ROB can be a bottleneck, and we need comparators with each rename table entry, this
design will have significant performance overheads. It is simple, yet not expected to be as efficient as the
PRF based designs particularly for large 64-bit server processors.

5.4 Compiler Based Techniques

We have looked at a lot of hardware starting from the basic in-order processor to an aggressive out-of-order
processor with value prediction and token based replay. Adding such sophisticated features is no doubt a
good thing. They ensure significant gains in performance. However, there is a flip side to everything. Adding
extra hardware always has negative implications in terms of power consumption and complexity.

We did take a sharp turn towards simplicity in Section 5.3. We dismantled the physical register file,
added more bits to the ROB, and simplified the processor. However, such processors have fairly large
instruction window entries, a complex multi-ported ROB, and they move fat 64-bit values around. These
are not particularly performance enhancing optimisations.

These are examples, where simplicity can give you some advantages, yet take some other advantages
away. Let us now discuss a set of compiler based approaches that need not necessarily have a negative effect

Smruti R. Sarangi 176

on performance.
Let us look at the compiler – something that we have been ignoring up till now. The role of a compiler

is not just limited to converting a high level program to machine code, it is actually much more than that.
Modern compilers spend most of their time in optimising code. This does increase the compilation time;
however, at the same time it makes the code run efficiently on modern processors. The IPC increases, and
in a lot of cases, the number of instructions also decreases. The only trade-off is the size, complexity, and
time of execution of the compiler. These are not significant issues as of today.

Given the amount of physical memory we have, we don’t mind if a compiler takes a couple of megabytes
of more memory to do a good job in compilation. Same holds true for complexity and execution time. We
need to run the compiler only once to produce a binary; however, we run the binary many times. Hence,
the compilation speed per se does not matter. For example, at the moment, your author is typing this book
using the gvim editor. The editor is really fast and allows the authors to achieve many complex tasks very
quickly. It does not matter if it took 2 minutes to compile the source code of the editor or 2 hours.

We are definitely in a position to afford a very complex compiler that might possibly take a very long
time to compile a given program. However, at the end, the compiler must do a very good job in creating
a binary that has a lot of ILP, and in reducing the number and complexity of instructions. Let us look at
some of the basic techniques that compilers use to produce efficient code.

5.4.1 Data Flow Optimisations

The main idea here is to optimise the process of data propagation between instructions, and see that we
are able to reduce the number of instructions as well as their complexity. Recall that different instructions
have different latencies, or in other words they take different amounts of time to execute. As a result, we are
better off having simpler instructions such as add and subtract instead of more complex instructions such
as multiply and divide.

Constant Folding

This is one of the simplest optimisations in our arsenal, yet is extremely effective. Consider the following
piece of C code.

int a = 4 + 6;

int b = a * 2;

int c = b * b;

A naive compiler will first add 4 and 6, then store the result in a, and then execute the rest of the
statements in order. Is this required? The answer is absolutely not. A smart compiler can figure out at
compile time that the value of a is a constant, and this constant is equal to 10. Similarly, it can also figure
out that the values of b and c are also constants, and we can directly compute their values and update the
registers that correspond to them. This saves us a lot of computation, and also decreases the number of
instructions, which directly leads to an increase in performance.

Strength Reduction

Now that we have folded away our constants, let us look at operators. We need to understand that different
arithmetic operations have different latencies. In particular multiplication and division are slow, with division
being the slowest. It is best to replace such instructions with faster variants wherever possible. The faster
instructions are add, subtract, and shift (left/right) instructions. Recall that shifting a value to the left by k
places, is equivalent to multiplying it by 2k. Similarly shifting a value to the right by k places, is equivalent
to dividing it by 2k.

Let us now consider an example.

177 Smruti R. Sarangi

int b = a * 8;

int d = c / 4;

int e = b * 12;

We have two multiplication operations and one division operation here. These are expensive operations
in terms of both power and time. Hence, it is highly advisable to replace these operations with simpler
variants, if we have an option. In this case we do, because we can leverage the fact that the numbers 8, 4,
and 12 are either powers of 2, or can be expressed as a sum of powers of 2. We can thus use shift operations
here. Let us rewrite the code snippet to produce a more optimised variant.

int b = a << 3;

int d = c >> 2;

int e = b << 2 + b << 3;

In this case, we have used far simpler shift operations, which can often be implemented in a single cycle
and are far more power efficient.

What we see here is that we were able to replace multiply and divide operators with equivalent shift left
and shift right operators. This strength reduction operation will lead to performance gains because of the
lower latency of the shift instructions.

Common Subexpression Elimination

Consider the following snippet of C code.

int c = (a + b) * 10;

int d = (a + b) * (a + b);

An unoptimised compiler will generate code to perform all the additions and multiplications. However,
this is not required. We can alternately transform this code to a more optimised version.

int t1 = a + b;

int c = t1 * 10;

int d = t1 * t1;

Instead of 3 additions and 2 multiplications, we are now doing 1 addition and 2 multiplications. We have
definitely saved on 2 additions by a simple trick. Instead of computing the common subexpression a + b
again and again, we have computed it just once and saved it in a local variable t1, which can be mapped to
a register. Subsequently, we use t1 to act as a substitute for a+ b in all subsequent instructions.

Compilers use this technique to reduce the number of instructions wherever possible. They try to compute
the values of subexpressions before hand, and then they save it in registers. These values are then used over
and over again in subsequent instructions. Since we decrease the number of instructions, we have a definite
performance gain.

Smruti R. Sarangi 178

Dead Code Elimination

Consider the following program.

int main (){

int a=0, b=1, c;

int vals [4];

printf ("Hello World\n");

c = a + b;

vals [1] = c;

}

Is there a need to perform the last addition, c = a+ b and then set vals[1] to c? There is no statement
that is using the value of c and the array vals. These values are not influencing the output of the program,
which is what most users care about. Unless, we explicitly want to run these instructions to measure the
performance of the program with these instructions, in an overwhelming majority of the cases, we do not
need these instructions.

We can thus label such instructions as dead code. This is code that does not have any purpose, and does
not influence the output. Most compilers these days are fairly good at identifying and removing dead code.
Other that the obvious advantage of reducing the number of instructions, another major advantage is that
we can efficiently pack the useful instructions into instruction cache (i-cache) blocks. There is no wastage of
space in the i-cache. Note that we do not want to waste valuable i-cache bandwidth in fetching instruction
bytes that are not required.

Definition 26
Lines of code that do not influence the final output are referred to as dead code.

Silent Stores

Let us now increase the degree of sophistication. Consider the following piece of code.

int arr[5], a, b, c;

arr[1] = 3;

a = 29;

b = a * arr [0];

arr[1] = 3; /* Not required */

printf ("%d \n", (arr [1] + b));

Consider the second store to arr[1]. It is not required. It writes exactly the same value as the first store,
even though it is not really dead code. However, the second store is a silent store, because it has no effect.
It writes a value to a memory location, which is already present there. In that sense, it does not write a
new value. Hence, we can happily get rid of the second store instruction to arr[1]. This is called silent store
elimination.

179 Smruti R. Sarangi

Definition 27
Assume that a memory location at a given point of time contains the value v. If at that point of time,
a store writes value v to that memory location, then it is called a silent store.

Such kind of data flow analyses can become increasingly sophisticated, and we can find a lot of redundancy
in the program, which can be successfully eliminated. To understand how exactly these mechanisms work,
the reader needs to take an advanced course on compilers.

5.4.2 Loop Optimisations

Most of the programs that we write use loops, and also most of the execution of a program is within loops.
These are the repetitive structures that most often take up more than 90% of the execution time. Thus,
optimising loops is essential. Even if we make a small change in the code of the loop, the benefits have the
potential to multiply.

Loop Invariant based Code Motion

A variable or property that does not change across the iterations of a loop is known as a loop invariant.
Assume that in every iteration we set the same variable to the same value, then that variable is a loop
invariant. There is in fact no reason for it to be repeatedly updated to the same value within the body of
the loop. The update statement can be moved outside the loop. Let us explain with an example.

for (i=0; i<N; i++){

val = 5;

A[i] = val;

}

There is no reason for the variable val to be updated within the loop. This update instruction can very
well be moved by a smart compiler to a point before the loop. We will save a lot of dynamic instructions
(N instructions in N iterations) by making this change. The code after moving the loop invariant to before
the loop looks like this:

val = 5;

for (i=0; i<N; i++){

A[i] = val;

}

This is a much faster implementation because we reduce the number of dynamic instructions.

Definition 28
A variable or property that does not change across the iterations of a loop is known as a loop invariant.

Smruti R. Sarangi 180

Induction Variable-based Optimisation

Let us now climb up the ladder of complexity. Consider the following for loop.

for (i=0; i<N; i++){

j = 6*i;

A[i] = B[j] + C[j];

}

This piece of code uses a loop variable i that gets incremented every cycle. However, let us concentrate
our attention on the variable j. It is a multiple of i, and sadly we need to perform a multiplication to set
j once every iteration. Is it possible to remove this multiplication? It turns out that the answer is yes.
Consider the following piece of optimised code.

j = 0;

for (i=0; i<N; i++){

A[i] = B[j] + C[j];

j = j + 6;

}

The important observation that we need to make is that in every iteration we are incrementing the value
of j by 6 because i is getting incremented by 1. We can thus replace a multiplication by an addition. In
every iteration, we increment j by 6, which is mathematically the same thing. However, when we translate
this to gains in performance, it can be significant, particularly if there is a large difference in the latencies of
add and multiply instructions. For example, if a multiplication requires 4 cycles, and an addition requires 1
cycle, we can execute 4 times as many addition instructions as multiplication instructions in the same time.

Such analyses can be extended to nested loops with multiple induction variables and multiple constraints.
We need to understand that most modern compilers are today constrained by the amount of information
that is available to them at the time of compilation. This is because we do not know the values (or range of
values) of all variables at compile time.

Loop Fusion

Let us now look at a slightly more complicated optimisation. Consider the following piece of code. In the
next few examples we shall show assembly code written in the SimpleRisc assembly language (described in
Appendix A).

C code

for (i=0; i<N; i++) /* Loop 1 */

A[i] = 0;

for (i=0; i<N; i++) /* Loop 2 */

B[i] = 0;

Assembly code

/* r0 and r1 contain the base addresses of A and B

i is mapped to r2

N is contained in r3 */

mov r10 , 0 /* store 0 in r10 */

mov r2 , 0 /* i = 0 */

181 Smruti R. Sarangi

.loop1:

cmp r2 , r3 /* compare i with N */

beq .exit1 /* go to exit1 if i==N */

lsl r4 , r2 , 2 /* r4 = i * 4, size of int is 4 bytes */

add r5 , r0 , r4 /* address of A[i] */

st r10 , [r5] /* A[i] = 0 */

add r2 , r2 , 1 /* i = i + 1 */

b .loop1 /* Jump to the beginning of loop1 */

.exit1:

mov r2 , 0 /* i = 0 */

.loop2:

cmp r2 , r3 /* compare i with N */

beq .exit2 /* go to exit2 if i==N */

lsl r4 , r2 , 2 /* r4 = i * 4, size of int is 4 bytes */

add r5 , r1 , r4 /* address of B[i] */

st r10 , [r5] /* B[i] = 0 */

add r2 , r2 , 1 /* i = i + 1 */

b .loop2 /* Jump to the beginning of loop2 */

.exit2:

This is a very standard piece of code where we initialise arrays. This pattern of writing code is also very
common among programmers, particularly novice programmers. However, there are sub-optimal decisions
in this code. We have two loops: loop1 and loop2.

Notice that the only difference in the bodies of these loops is that we are updating different arrays.
Otherwise, the code is identical. Instead of executing so many extra instructions, we can fuse loops 1 and
2, and create a larger loop. This will ensure that we execute as few extra instructions as possible. Most of
the code to update the loop variable i and to check for loop termination can be shared. Let us thus try to
rewrite the code.

C code

for (i=0; i<N; i++){ /* Loop 1 */

A[i] = 0;

B[i] = 0;

}

Assembly code

/* r0 and r1 contain the base addresses of A and B

i is mapped to r2

N is contained in r3 */

mov r10 , 0

mov r2 , 0 /* i = 0 */

.loop1:

cmp r2 , r3 /* compare i with N */

beq .exit1 /* go to exit1 if i==N */

lsl r4 , r2 , 2 /* r4 = i * 4, size of int is 4 bytes */

add r5 , r0 , r4 /* address of A[i] */

st r10 , [r5] /* A[i] = 0 */

add r5 , r1 , r4 /* address of B[i] */

st r10 , [r5] /* B[i] = 0 */

Smruti R. Sarangi 182

add r2 , r2 , 1 /* i = i + 1 */

b .loop1 /* Jump to the beginning of loop1 */

.exit1:

Let us see what we have achieved. In our original code, the body of loops 1 and 2 had 7 instructions
each. Since each loop has N iterations, we shall execute 7N instructions per loop. In total, we shall execute
14N instructions.

However, now we execute far less instructions. Our loop body has just 9 instructions. We thus execute
only 9N instructions. For large N , we save 36% of instructions, which can lead to a commensurate gain
in performance. Note that we are ignoring instructions that initialise variables and instructions in the last
iteration of the loop where we exit the loop (small constants).

Loop Unrolling

This is by far one of the most popular optimisations in this area. It has a very wide scope of applicability
and is supported by almost all modern compilers.

The idea is as follows. Consider a loop with N iterations. We have multiple branch statements in the
body of a loop. There are several ill effects of having these branch instructions. The first is that these are
extra instructions in their own right. Executing them in the pipeline requires time. Additionally, they take
up slots in the instruction window and ROB. If we can to a certain extent get rid of these additional branch
instructions, we will be able to decrease the number of dynamic instructions appreciably.

The second effect is that every branch needs to be predicted and there is a finite chance of a misprediction.
The number of mispredictions increases with the number of branches. A misprediction is very expensive in
terms of time because we need to flush the pipeline. Hence, eliminating as many branches as possible is a
good strategy.

To motivate the discussion, let us consider the following piece of C code.

C code

for (i=0; i<10; i++){

sum = sum + i;

}

Assembly code

mov r0 , 0 /* sum = 0 */

mov r1 , 0 /* i = 0 */

.loop:

cmp r1 , 10

beq .exit /* if (i == 10) exit */

add r0 , r0 , r1 /* sum = sum + i */

add r1 , r1 , 1 /* i = i + 1 */

b .loop /* next iteration */

.exit:

In this code, in each loop iteration we have 5 assembly instructions. Three of them are only for maintaining
proper control flow within the loop and only the add instruction is for the data flow. It is pretty much the
only instruction that is doing any real work.

This seems to be a rather inefficient use of the instructions in a typical loop. Most of the instructions in
the body of the loop are just for ensuring that the loop’s control flow is correct. However, we are not doing a
lot of work inside the loop. Only 1 out of the 5 instructions is doing the useful work. Given that we already
know that the number of iterations in the loop (i.e., 10), we should make an effort to do more useful work.

183 Smruti R. Sarangi

Hence, let us try to reduce the number of branches, and increase the amount of useful work done per
iteration. Let us unroll the loop. This basically means that we need to fuse multiple iterations of a loop into
a single iteration. Let us show the equivalent C code and assembly code.

C code

for (i=0; i<10; i+=2){

sum = sum + i + (i+1);

}

Assembly code

mov r0 , 0 /* sum = 0 */

mov r1 , 0 /* i = 0 */

.loop:

cmp r1 , 10

beq .exit /* if (i == 10) exit */

add r0 , r0 , r1 /* sum = sum + i */

add r1 , r1 , 1 /* i = i + 1 */

add r0 , r0 , r1 /* sum = sum + i */

add r1 , r1 , 1 /* i = i + 1 */

b .loop /* next iteration */

.exit:

We have basically fused two consecutive iterations into one single iteration. Let us now work out the
math in terms of the number of instructions. To keep the maths elegant let us only count the 10 successful
iterations, and not the one in which we don’t enter the body of the loop because the comparison is successful.
Before unrolling we executed 50 instructions (5 instructions in the body of the loop). However, now we
execute 35 instructions because we have 5 iterations, and there are 7 instructions in the body of the loop.
There is thus a savings of 30%, which is significant by all means.

Can we unroll further? Well, yes. We can fuse 4 or 8 iterations into one. However, this does not mean
that we can unroll indefinitely. Otherwise, we will replace the entire loop with one large piece of unrolled
code. There definitely are limits to unrolling. If we unroll too much, the code size will become very large,
it will not fit in the instruction cache (small instruction memory), and we will simply have too many cache
misses. If we have multiple programs resident in memory then we might also run out of memory. However,
within limits, unrolling is a very effective technique.

5.4.3 Software Pipelining

Let us now come to one of the most difficult optimisations. Note that till now, we have not concerned
ourselves with the details of the pipeline; however, this optimisation is very important in the context of
modern pipelines. It takes into account instruction latencies and also the nature of hazards in a pipeline.

The key insight used in software pipelining is as follows. Loop iterations often execute inefficiently because
of slow instructions. For example, if we have a load and a consumer instruction that uses its value, we have
the possibility of a load-use hazard (see Section 2.1.4). Particularly, with a slow cache, waiting for a load
instruction to return its value is a very expensive proposition. We would love to do useful work in the time
being. However, we often might not have enough instructions in the loop iteration to execute between a
load and its consumer. The key insight is to bring instructions from other iterations to fill this void. This
will ensure that we waste as few cycles as possible. In addition, it is possible to optimise this technique to
enable greater ILP, and make it possible to parallelise code with loops on multi-issue processors.

Smruti R. Sarangi 184

Let us consider the following piece of code.

C code

int A[300], B[300];

...

for(i=0; i <300; i++){

A[i] = B[i];

}

Assembly code

1 /* Assume the base address of A is in r0

2 and B is in r1 */

3 mov r2 , 0 /* i = 0 */

4 mov r10 , 0 /* offset = 0 */

5

6 .loop:

7 cmp r2 , 300 /* termination check */

8 beq .exit

9

10 add r3 , r1 , r10 /* r3 = addr(B) + offset */

11 ld r5 , 0[r3] /* r5 = B[i] */

12

13 add r4 , r0 , r10 /* r4 = addr(A) + offset */

14 st r5 , 0[r4] /* A[i] = r5 (= B[i]) */

15

16 add r2 , r2 , 1 /* i = i + 1 */

17 lsl r10 , r2 , 2 /* offset = i * 4 */

18

19 b .loop

20

21 .exit:

We show the code of a simple loop that does an element wise copy from array B to array A. Note that
we introduced the offset variable stored in r10 for the sake of readability. We could have incremented r2
by 4 in each iteration instead.

Other than the statements that manage the loop and compare the loop variable i with 300, we can divide
the statements into three blocks.

Block Lines Statements Role
L (load) 10 - 11 add r3, r1, r10 Read B[i]

ld r5, 0[r3]
S (store) 13 - 14 add r4, r0, r10 Write to A[i]

st r5, 0[r4]
I (increment) 16 - 17 add r2, r2, 1 Increment i

lsl r10, r2, 2

There are dependences between these blocks: L → S
a→ I. Here “→” denotes a RAW dependence and

a→ denotes an anti or WAR dependence. Let us now introduce some new notation here. Let block Lk denote
the load block in iteration k. Let the superscript represent the iteration number (starting from 0).

For such codes, we have a problem. In an in-order machine if we have a slow L1 cache that takes 3
cycles, we unnecessarily have to stall for one cycle between the load and store instructions. If we have an
even slower L1 cache, we need to stall for more cycles. In an OOO machine, things can be slightly better.
An OOO machine can automatically resolve WAR dependences. The only real dependence is the chain of

185 Smruti R. Sarangi

increments to the loop variable. Let us make a very important observation here. If we know the value of
the loop variable for each iteration before hand, we can execute the iterations in parallel. It
turns out we can do something in the compiler to expose more instruction level parallelism.

Now, let us write all of these blocks in a linear (column wise fashion), and try to find a pattern. See
Figure 5.11.

L

S

I

Iterations

0 1 2 3 0

Iterations

4
L

S

I

L

S

I

L

S

I

L

S

I

L

S

I

L

S

I

L

S

I

L

S

I

L

S

I

1

2

3

4
rows

i

Figure 5.11: Overview of software pipelining

Let us explain Figure 5.11 very carefully. We first show 5 iterations of the loop. In each iteration, we
show the value of the loop iterator, i, which increases from 0 to 4. In each iteration, we execute the three
blocks of statements: L, S, and I. In the typical scheme of things, we first execute iteration 0, then iteration
1, and so on.

Let us change the order of execution of instructions. Let us execute instructions in the following order:
L0 → S0 → L1 → I0 → S1 → L2 → I1 This method of execution is referred to as software pipelining.
We will very soon explain its connection with real pipelining as we have studied in Chapter 2. Let us
understand the way we are proposing to execute these statements. Refer to Figure 5.12, where we show a
graphical view of the order of execution.

Let us first convince ourselves that we execute exactly the same set of blocks in Figure 5.12 and Fig-
ure 5.11. It is just that the order of evaluation is different. Now, how is this related to pipelining? Let us
look at the diagram deeply. In a normal execution we proceed column-wise (iteration by iteration). However,
in this case we proceed row-wise. This is the crux of the idea.

Consider iteration 2. The diagram looks as if iteration 2 is going from one stage (row) to the next. Let
us see why. First we execute L2. The we move to the next row, which we can consider to be a stage. In this
stage we execute S2. Then we move to the next row (or stage), where we execute I2. Given that an iteration
is logically seen to move between rows, we draw an analogy with pipelining, and refer to such coding styles
as software pipelining. We treat each row in the figure as a pipeline stage.

Let us now look at correctness issues. Recall that there is a single loop variable i and the variable offset
(stored in r10) that is derived from i. If we are executing I0, then S1, and then L2, we have a problem. I0

will increment i from 0 to 1. S1 will see the right value of i and offset. However, L2 needs to see i = 2 and
offset = 8; it will however see i = 1 and offset = 4. This is a loop-carried dependence, where one iteration

Smruti R. Sarangi 186

0
IterationsL

S

I

L

S

I

L

S

I

L

S

I

L

S

I

1

2

3

4
rows

Figure 5.12: Flow of execution

of a loop is dependent on the values (in this case it is i and offset) computed by another iteration of the
loop. Thus, this execution style will be incorrect, unless we do something.

Definition 29
A loop-carried dependence is defined as a dependence between two statements within a loop, where
the latter statement depends on a value that has been computed by the former statement in a previous
iteration of the loop.

To solve this problem, let us create three loop variables, instead of one (i.e., i). Let us save them in
registers r6, r7, and r8. Let us assign r6 (initialised to 0) to iteration 0, r7 (initialised to 1) to iteration 1,
and r8 (initialised to 2) to iteration 2. Let their corresponding offsets be stored in the registers r10, r11, and
r12. Now, there is no problem. There is no dependence between the instructions in the row that contains
I0, S1, and L2. Let us now move to the next row. It contains I1, S2, and L3. I1 and S2 have their versions
of the loop variable – in registers r7 and r8 respectively. What about iteration 3? Let us assume that it
uses the same loop variable as iteration 0. Since iteration 0 is over, L3 can use its loop variable, which is
stored in register r6. This means that at this point r6 should contain 3 and the corresponding offset should
be 12. We can indeed ensure this by modifying I0. Instead of adding 1 to the loop variable stored in r6, it
needs to add 3. In other words, we use three different loop variables stored in registers r6, r7, and r8 and
corresponding offsets in registers r10, r11, and r12. When we increment the loop variable in the last block
(I), instead of adding 1, we add 3. This value is then used by a subsequent iteration. For example, iteration
3 uses the loop variable of iteration 0, iteration 4 uses the loop variable of iteration 1, and so on. Note that
in all cases the corresponding offsets get computed correctly because we just perform a left shift on the loop
variable to compute the offset. Figure 5.13 shows this graphically. Note that since the loop variable and

187 Smruti R. Sarangi

offset are intertwined we will not mention both of them all the time. Whenever, we mention loop variables,
it should be inferred that we are also referring to the corresponding offset in the same context.

0
L

S

I

L

S

I

L

S

I

L

S

I

L

S

I

1

2

3

4

r6

r7

r8

r6

r7

Figure 5.13: Updating the loop variables and corresponding offsets

The three loop variables for iterations 0, 1, and 2 are stored in registers r6, r7, and r8 respectively. When
the first block of iteration 3 runs, it needs to see the loop variable equal to 3. It uses r6, which has already
been incremented by block I0 to 3. Likewise, iteration 4, needs to see the loop variable (stored in r7) equal
to 4. Block I1 increments r7 (initialised to 1) by 3 to contain 4.

Before writing the code, we need to understand that we have one more constraint. All the iterations of a
loop need to have the same code. We thus cannot make each row of Figure 5.13 an iteration of the loop. It
does not have the same content. Let us thus unroll the loop and fuse three iterations into one. The content
of each fused iteration (three rows) is as follows (also see Figure 5.14):

/* First Row */

add r6 , r6 , 3 /* I0 */

lsl r10 , r6 , 2

add r4 , r0 , r11 /* S1 */

st r5, 0[r4]

add r3 , r1 , r12 /* L2 */

ld r5, 0[r3]

/* Second Row */

add r7 , r7 , 3 /* I1 */

lsl r11 , r7 , 2

add r4 , r0 , r12 /* S2 */

st r5, 0[r4]

Smruti R. Sarangi 188

add r3 , r1 , r10 /* L3 */

ld r5, 0[r3]

/* Third Row */

add r8 , r8 , 3 /* I2 */

lsl r12 , r8 , 2

add r4 , r0 , r10 /* S3 */

st r5, 0[r4]

add r3 , r1 , r11 /* L4 */

ld r5, 0[r3]

0
L

S

I

L

S

I

L

S

I

L

S

I

L

S

I

1

2

3

4

r6

r7

r8

r6

r7
Fuse 3 rows
into one
iteration.

Prologue

Epilogue

Figure 5.14: Fusing three iterations into one

Please take a look at the code in great detail and try to appreciate the fact that we are simply executing
one row after the other. There is a dependence between instructions in the same iteration (same column);
however, there is no dependence across instructions in the same row because we use three separate loop
variables in registers r6, r7, and r8 respectively. Furthermore, in the same iteration r5 contains the value
that is loaded, and subsequently stored in a different array. Between Lk and Sk, r5 is not overwritten by
instructions from another iteration.

Let us discuss correctness by focusing on a row that has three entries. The ideal sequence of execution is
Lk → Sk → Ik. However, now we execute Lk → Ik−1 → Sk → Lk+1 → Ik. We are basically executing extra
instructions from other iterations in between two blocks of instructions in an iteration. This does not cause
an issue because there are no dependences between Lk and Ik−1, or Ik−1 and Sk. Similarly, the sequence
Sk → Lk+1 → Ik does not violate any dependences primarily because we use different loop variables for
different iterations. Since no dependences are violated, there is no difference between an execution without
software pipelining and an execution with software pipelining. They are identical as far as correctness is
concerned.

Let us now consider some corner cases. If a loop has a lot of iterations, we can unroll it by a factor of 3,
and execute it in this fashion. However, there are some instructions that are not a part of this code. Look

189 Smruti R. Sarangi

at the top of Figure 5.14. Instructions L0, S0, and L1 are not a part of the fused loop. They need to be
executed before the main loop starts. This piece of code is known as the prologue. Similarly, instructions
I3, S4, and I4 are a part of the epilogue that needs to execute separately, and in the correct sequence. In
terms of correctness nothing changes; however in terms of overhead this is a minor overhead because we do
not get the benefits of software pipelining for these codes. Nevertheless, when the number of iterations is
large, this overhead is negligible. There is a rich theory of software pipelining to cater to the general case
where we can have all kinds of dependences between instructions. The reader should refer to the work of
Bob Rau [Rau, 1994] and Monica Lam [Lam, 1988].

We can do slightly better if we have more registers. There is a dependence between the L and S blocks
even between different iterations because they use the same register r5. This precludes us from executing
S1 and L2 in parallel. If we have a multi-issue in-order pipeline then we would want to execute S1 and L2

simultaneously. Let us try to do some renaming in software to take care of such issues. Similar to hardware
renaming, the natural solution in this case will be to create three versions of r5 (one for each iteration).

Let us give ourselves some more room by considering a system that has 32 registers instead of the 16
that we have. For the 0th iteration let us use r20, and for the 1st and 2nd iterations let us use r21 and r22
respectively. The code thus looks as follows.

/* First Row */

add r6 , r6 , 3 /* I0 */

lsl r10 , r6 , 2

add r4 , r0 , r11 /* S1 */

st r21 , 0[r4]

add r3 , r1 , r12 /* L2 */

ld r22 , 0[r3]

/* Second Row */

add r7 , r7 , 3 /* I1 */

lsl r11 , r7 , 2

add r4 , r0 , r12 /* S2 */

st r22 , 0[r4]

add r3 , r1 , r10 /* L3 */

ld r20 , 0[r3]

/* Third Row */

add r8 , r8 , 3 /* I2 */

lsl r12 , r8 , 2

add r4 , r0 , r10 /* S3 */

st r20 , 0[r4]

add r3 , r1 , r11 /* L4 */

ld r21 , 0[r3]

Now, there are no dependences between the S, I, and L blocks. They can be executed in parallel.
However, we cannot arbitrarily keep on doing this for larger loops because we will run out of registers. There
is thus a trade-off between the number of registers and the degree of software pipelining. More are the
registers in our code, less are the dependences, and more is the ILP.

Smruti R. Sarangi 190

Advantages of Software Pipelining:

Let us list out the advantages:

1. Between a load and its use there are 3 instructions, as opposed to 1 earlier. Thus, we can tolerate a
slower L1 cache, and we do not have to introduce any pipeline bubbles in an in-order pipeline. This
can be further increased by increasing the level of software pipelining (create rows of 6 instructions for
example). Note that this is one of the biggest advantages of software pipelining in in-order machines.
Instead of compulsorily introducing stalls in the case of load-use hazards, we can insert instructions
from other loop iterations. This crucial insight allows us to get rid of the penalty associated with
load-use hazards almost entirely.

2. By using more registers we can make the three blocks, I, S, and L, independent of each other. They
can be executed in parallel on a machine that allows us to issue more than one instruction per cycle.

3. Assume that the original loop had N iterations. There was a chain of N RAW dependences between
consecutive updates to the loop variable (0 → 1 → 2 → . . . → (N − 1)). In the case of software
pipelining, this chain of dependences (critical path) got compressed to roughly a third: 0 → 3 →
6bN/3c. Shorter dependence chains imply higher ILP, because it means that we can issue more
instructions in parallel.

Software Pipelining Without Loop Unrolling

Note that loop unrolling is not a necessary feature of software pipelining. Even though most of the time
both the optimisations are used together, we can have software pipelining that does not use loop unrolling.
The main reason that we used loop unrolling is because when we brought together instructions from three
different iterations, we needed three separate loop variables. We kept them in three separate registers.

Instead of keeping different variables for each iteration, we can instead exploit the relationship
between them. Let us explain with the same example. To make things simple, let us modify the ori-
ginal C code such that each line corresponds to a block of 1-2 assembly instructions in a typical RISC ISA.
In each block we never have two memory accesses.

Original C code

int A[300], B[300];

for(i=0; i <300; i++){

A[i] = B[i];

}

Simpler C code

int A[300], B[300];

int i = 0;

.loop: if (i <300){

t = B[i]; /* L */

A[i] = t; /* S */

i++; /* I */

goto .loop;

}

In a typical software pipelined execution the ordering is I0 → S1 → L2 → I1 → S2 → L3. Let us try to
change the code such that we overlap instructions of different iterations but we do not unroll the loop. Let
us just write the body of the loop.

Body of the loop

i++; /* I */

A[i] = t; /* S */

t = B[i+1]; /* L */

goto .loop;

191 Smruti R. Sarangi

Let us analyse the sequence of operations when i = 10: i=11 → A[11] = t → t = B[12] → i = 12 →

A[12] = t → t = B[13] → Consider the operation A[12] = B[12]. In between them the only operation

is i = i + 1, which sets i to 12. However, this does not induce any problems in correctness because the I
block does not modify t. Similarly, for the loop variable, i, we increment it by 1 every cycle, and thus this
is also correct. The only disadvantage is that we need an additional increment operation to compute the
address B[i+ 1]. We need to add 1 to i, and then add that to the register that contains the base address of
B.

This code snippet is short and tricky. As we have more instructions, forming such loops can get very
complicated. There is essentially a trade-off between keeping loop variables in registers (earlier approach),
and using an arithmetic relationship between them to compute the array indices (this approach).

Alternative Method of Doing Software Pipelining

Consider the following example that uses an alternative method. We have deliberately written the C code
in a way such that each line corresponds to roughly 1-2 lines of assembly code. There is only one memory
operation per line.

C code

int A[300], B[300];

for(i=0; i <300; i++){

t1 = B[i];

t2 = t1 * 5;

A[i] = t2;

}

SW pipelined version

int A[300], B[300];

for(i=0; i <300; i+= 3){

t1 = B[i];

t2 = B[i+1];

t3 = B[i+2];

t11 = t1 * 5;

t12 = t2 * 5;

t13 = t3 * 5;

A[i] = t11;

A[i+1] = t12;

A[i+2] = t13;

}

In this piece of code, we unroll the loop by a factor of 3, and then mix the instructions from the three
iterations.

5.5 EPIC Processors

Can we do renaming at the level of the compiler and then schedule instructions in software akin to an OOO
processor? If the compiler does renaming, it needs to be aware of the details of the hardware at a level
that is lower than the instruction set. This further means that a compiled program (a binary) will not
be able to run on a different machine (with a slightly different internal organisation). Indeed, there are
processors of this type. They are known as EPIC machines (Explicitly Parallel Instruction Computing). A
classic example of an EPIC processor was the Intel R© Itanium R© processor [Sharangpani and Arora, 2000]. It
required sophisticated compilers to compile regular C code to Itanium compatible binaries. The compilers
were aware of the details of the architecture.

Without going into the specific details of the Itanium architecture, let us highlight some of the advantages
and disadvantages of such architectures. The advantage is based on the maxim – keep the hardware simple
and move the complexity to software. This means that we don’t need to have circuitry for taking care of
stalls and our entire scheduling mechanism – dispatch, broadcast, wakeup, and select. Simpler hardware
implies faster and more power efficient hardware.

Smruti R. Sarangi 192

5.5.1 Pros and Cons of EPIC and VLIW Processors

Even though this appears to be a worthy goal, there are problems. The first is that the compiler is not
always aware of the dependences in a piece of code. Typical code is littered with if statements, for loops,
and function calls. As a result, predicting all the dependences in advance and creating optimised code is
difficult. Let us elaborate. Most EPIC processors follow the VLIW (Very Long Instruction Word) philosophy,
where multiple instructions are packed together in a single bundle and the bundle is stored as a sequence of
contiguous memory words 2. The advantage of this approach is that we can fetch a bundle of instructions in
one go and execute all the constituent instructions in parallel. Conceptually, this is similar to multi-issue in-
order pipelines that we studied in Section 2.2.2. For now let us consider EPIC processors to be an advanced
avatar of VLIW processors. We will explain the exact differences later.

Instructions in a bundle are fetched, decoded, and executed together (in parallel). However, creating
such a bundle is difficult if there are branch instructions and memory instructions. Assume that we create
a bundle of four instructions and the third instruction is a branch. Now at runtime if the branch is taken,
then some of the instructions in the bundle will become invalid. It is thus necessary to have a mechanism
to mark instructions as invalid, and either kill them or let them pass through the pipeline in the invalid
state. In the latter case, when they are allowed to pass through the pipeline, such instructions will not be
able to write to memory, the register file, or forward (bypass) values. This is called predicated execution. It
simplifies the pipeline. We can just let instructions in the wrong path flow through the pipeline along with
the correct instructions. The invalid instructions will not be processed by the functional units.

Now, let us consider the case of having multiple memory instructions in a bundle. For most memory
instructions, we do not have an idea about their addresses at compile time. The addresses are computed at
run time. There is always a possibility of a memory dependence (reads/writes to the same address) between
different instructions in a bundle, or between instructions across bundles. We need elaborate hardware to
take care of memory dependences, forward values between instructions if necessary, and also break a bundle
if it is not possible to execute instructions together. Let us consider the following two-instruction bundle.

1 st r1 , 8[r2]

2 ld r3 , 8[r4]

In this case if instructions 1 and 2 have the same address then we cannot execute the load and store
together. The store has to happen first, and the load later. The only issue is that it is not possible to figure
out such dependences at compile time because we don’t know the values that r2 and r4 will take. However,
at runtime such issues will emerge, and dealing with each and every corner case requires extra hardware and
extra power.

Along with performance and correctness issues, there are issues regarding the portability of the processor.
By exposing details – beyond the instruction set – to the compiler, we are unnecessarily constraining the
usability of compiled code. Code compiled for one processor might not work on another processor of the same
family. Even if additional measures are taken to ensure mutual compatibility, there might be performance
issues. As a result, the industry has by and large not adopted this solution. They have instead tried to do
renaming and scheduling in hardware. Of course, this increases the complexity of the hardware, introduces
concomitant power issues, and makes it hard to design a processor. Nevertheless, at least as of 2020 for
general purpose programs, the benefits outweigh the costs.

Even though EPIC and VLIW processors are not used in modern laptops, desktops, and servers, they
are still useful in certain situations. For example, such processors are still very common in the embedded
domain particularly in digital signal processors [Eyre and Bier, 2000] and multimedia processors [Rathnam
and Slavenburg, 1996]. In such cases, the code is fairly predictable, and thus it is possible to come up with
good designs. Furthermore, reducing the power consumption of hardware is an important goal, and thus the
EPIC and VLIW paradigms naturally fit in.

2A memory word is the minimum number of bytes that we can read or write in one go; it is typically 4 or 8 bytes.

193 Smruti R. Sarangi

Before proceeding further, let us describe the difference between the terms VLIW and EPIC. They are
often confused. Note that till now we have pretty much only mentioned that EPIC processors are modern
avatars of VLIW processors: they have many features in common such as packing multiple independent
instructions in a long memory word.

5.5.2 Difference between VLIW and EPIC Processors

The idea of moving all the complexity to software has been a very captivating idea for a long time. Way back
in the mid eighties two important startups in this space came up: Cydrome and Multiflow. The main aim
of these startups was to create a VLIW processor with very sophisticated compilers. There are some natural
reasons for this thought to have come up. By the mid eighties, software had already attained a certain
level of sophistication, the field of compilers had matured, and modern languages such as C and Pascal had
arrived. However, hardware was slow. Intel’s 386 processor had a 1µm feature size and could at best run
at roughly 30 MHz. Coupled with a very low amount of memory, the hardware of those days was orders
of magnitude slower than today’s smart phones. Hence, increasing their performance using sophisticated
compilers seemed to be a very worthy idea.

As we saw with software pipelining (Section 5.4.3), it is indeed possible to improve the available ILP
significantly using compiler based techniques. Hence, early programmers logically extended the micro-
programming paradigm. In this paradigm, we create a very long encoding of an instruction such that it
need not be decoded, and furthermore micro-code can directly control the behaviour of different hardware
units. With micro-programming, we need to know the details of the hardware including the interfaces of all
of its components like the ALU and register file. We can create custom instructions by being able to directly
program these components. Exposing such low-level hardware details is unthinkable as of today. It would
be a very serious security risk.

However, in the good old days, this was considered acceptable. In continuation of this trend, the VLIW
community proposed compilers that create large instruction words, which are similar to micro-programs,
and have good visibility into the hardware. Components of the instruction’s word (binary encoding) direct
different functional units to perform different tasks. From packing a set of micro-instructions in a single
memory word, this paradigm gradually evolved to co-locating multiple RISC instructions in the same group
of memory words (referred to as a bundle). This entire bundle was sent down the pipeline. The obvious
benefit was higher ILP, and the obvious shortcoming was the behaviour of branches and memory instructions
in a bundle. Compilers were conservative and introduced nops (dummy instructions that don’t do anything)
to avoid stalls and interlocks. This strategy is alright for DSPs (digital signal processors) because their
control flow and data flow are both predictable to a large extent.

However, for running general purpose programs, we need to make certain modifications to the basic VLIW
design – it will be too inefficient otherwise. We thus arrived at EPIC processors, which are safe by design.
This means that even if there are dependences within instructions in a bundle, or across two bundles, the
processor handles them using a combination of stalls, speculation, and interlocks. VLIW processors unlike
EPIC processors are not necessarily safe and correct by design. EPIC processors thus provide a virtual
interface to programs, and internally also do a lot of virtualisation and translation. This ensures that a
given program compiled for another EPIC processor with the same ISA but a different version, still runs
correctly.

Definition 30

• In a VLIW processor we create bundles of instructions that can either be regular RISC instructions
or micro-instructions. The entire bundle of instructions is issued to the pipeline as an atomic unit,
and then parallel execution units execute the constituent instructions. For programs that have a
lot of ILP such as digital signal processing routines, this approach is very beneficial because we can

Smruti R. Sarangi 194

achieve very high ILP. However, VLIW programs often rely on the compiler for correctness, and
typically have limited portability.

• EPIC processors are modern versions of VLIW processors, which are correct by design. In other
words, it is not possible to incorrectly execute a program. The hardware assures correctness some-
times at the cost of performance. In addition, programs compiled for one EPIC machine can often
execute on other machines of the same processor family that have a different internal organisa-
tion. The designers of EPIC machines provide a virtual interface to software such that it is easy
for compilers to generate code. The hardware internally tries to execute the code as efficiently as
possible without compromising on correctness.

5.6 Design of the Intel Itanium Processor

Let us now discuss the reference design of an EPIC processor – the Intel Itanium Processor. Intel and HP R©

together decided to work on a new EPIC processor and released the Itanium in 2001. Note that designing
a VLIW processor would not have been the best thing to do because we never want to compromise on
correctness. We need to ensure that irrespective of the compiler, the code always works correctly. Hence,
creating an EPIC processor that works correctly in the face of nondeterminism due to branch misprediction,
cache misses, and interrupts/exceptions, is the best way to go forward. Subsequently, Itanium 2 was released
in 2002. However, since our aim is to describe the core concepts underlying an EPIC architecture, we shall
mostly describe the architecture of the basic Itanium processor. We source most of the details from the
paper by Sharangpani and Arora [Sharangpani and Arora, 2000]

Note that we take some creative liberties in this section particularly for the assembly code. Instead
of showing proper Itanium assembly code, we have shown equivalent code in SimpleRisc for the sake of
readability, and easier explanation. In addition, we try to generalise the architecture and describe multiple
competing mechanisms wherever they exist.

5.6.1 Overview of the Constraints

Let us now start with some basic questions with regards to an EPIC architecture. What does a compiler do
for us? It can find the dependences between instructions, and schedule them if it is aware of the latencies
of execution units. We still need a branch predictor to sustain a high fetch bandwidth. Compilers cannot
predict branches with 100% accuracy because the outcomes of branches depend on values obtained at run
time. We need the decode unit as well because instructions have to be parsed, checked for errors, and
converted into an internal representation that is easy to process. In fact, we conceptually need the rename
stage as well. This is required because we still need to get rid of WAR and WAW hazards.

The unit that we can get rid off is the scheduler: instruction window, wakeup, broadcast, and select.
Since we are supposed to know about the instructions in the pipeline (at compile time), we can schedule
them such that all RAW dependences are taken care of. However, this is easier said than done because we
have to very accurately take structural hazards into account.

Moreover, we do need the register file access stage and definitely the execution units. Figure 5.15 shows
an overview of the Itanium architecture. It is necessary to keep referring to this figure throughout this
section.

5.6.2 Fetch Stage

The design philosophy of the Itanium processor was to create a very high performance server processor. In
line with this philosophy, the designers created a processor that could fetch up to six instructions per cycle.

195 Smruti R. Sarangi

I-cache and fetch engine

Decoupling
buffer

Instruction dispersal logic

Decode unit

Register remapping

Branch
Predictor

Branch and
predicate unit

Branch
units

128 integer
registers

128 FP
registers

Integer
ALUs

L1 cache

ALAT

FP ALUs
and SIMD
units

Memory system: L2/L3 caches,and the bus controller

Scoreboard,
Predicated execution
Exception handler

Figure 5.15: The Itanium processor (c©[2000]IEEE. Reprinted, with permission, from [Sharangpani and
Arora, 2000]).

This requires two pieces of sophisticated hardware: a high bandwidth i-cache, and a very accurate branch
predictor.

The key to having a high fetch bandwidth is to have an i-cache that supports a high throughput. The
Itanium thus has a 16 KB 4-way set associative i-cache that can provide 32 bytes per cycle. In these 32
bytes, we can fit six instructions, which are grouped into bundles of three instructions each. There is a
possibility of a rate mismatch between the fetch engine and subsequent stages of the pipeline. In such a
case, it is advisable to have a buffer to store instructions that have been fetched, yet are not able to enter
the pipeline. Itanium uses a decoupling buffer that can store up to 8 such bundles. Note that a bundle is an
important concept in an EPIC architecture. We typically treat a bundle as an indivisible unit. The compiler
creates bundles very carefully. In addition, the three instructions in a bundle should not have any mutual

Smruti R. Sarangi 196

dependences between them.

Subsequently, a highly accurate branch predictor is required. This is because the branch misprediction
penalty is nine cycles in Itanium. Given that the compiler has a significant involvement in such architectures,
we can send a lot of compile time information to the branch predictors. Let us briefly outline the various
strategies followed by the designers of the Itanium processor.

Compiler Directed Since the compiler plays a very active role in such architectures, we spend much
more time analysing the nature of loops particularly in numerically intensive code. In such codes,
the behaviour of loops is often very predictable. We have four special registers called target address
registers (TARs). It is the compiler’s job to enter the branch targets into these registers via special
instructions called hints. The hints contain the PC of the branch and the target address. Whenever
the next program counter matches the PC contained in any of the TAR registers, we automatically
predict taken, and extract the branch target from the corresponding TAR register. Thus, the entire
process is very fast, and very energy efficient as well. We can easily accomplish this series of tasks
within one cycle. How can the compiler be so sure? In most scientific codes, we exactly know the value
of the loop index and the target addresses; hence, the compiler can easily analyse such loops and let
the hardware know about the loop continuation and termination information.

Traditional Branch Prediction Not all branches are that well behaved. We thus do need high perform-
ance branch predictors. Itanium has a large PAp branch predictor that can predict branches very
well.

Multi-way Branches Note that Itanium instructions are stored in 3-instruction bundles. Typically com-
pilers ensure that the last instruction in a bundle is a branch. This means that just in case it is
mispredicted, the earlier instructions in the bundle are still on the correct path. However, this is not
always possible. Just in case there are multiple branches within a bundle, we need a method to handle
this situation. Note that in this case, if we consider a bundle as a whole, it is a multi-way branch
statement. It has many possible targets depending on the behaviour of the branches contained within
it. Such a set of branches is also referred to as a multi-way branch.

We need to predict the first taken branch within a bundle. This means that if a bundle has three
instructions, we have four possible choices for the first instruction that succeeds the current bundle:
default, target of the first instruction, target of the second instruction, or the target of the third
instruction. Itanium uses a history based predictor for each bundle. This predicts the first instruction
that is most likely a taken branch. Once we predict this instruction, we can get its target from the
branch target cache.

Itanium has other traditional modules such as the return address stack. They were already discussed
in Chapter 3.

Loop Exit Prediction After we decode the instructions, we get to know of the opcodes of all the instruc-
tions including the branches within a bundle. At this stage Itanium uses a perfect loop-exit predictor,
which can override earlier predictions. We need to initialise this predictor with the iteration count of
the loop. The compiler marks the loop-branch (branch that takes us to the beginning of the loop)
with a special instruction. The loop exit predictor keeps decrementing the loop count, every time we
encounter this instruction. It can thus figure out the last iteration, and we can avoid mispredicting
the last branch in a loop. This is not a very effective optimisation for large loops (large number of
iterations). However, for small loops, this is a very good optimisation; it avoids a lot of mispredictions.

The last stage of the fetch unit also has the role of processing software initiated prefetch instructions.
Itanium’s compiler plays a fairly aggressive role in prefetching instructions.

197 Smruti R. Sarangi

5.6.3 Instruction Dispersal Stage

After fetching all our instructions, we keep the instruction bundles in the decoupling buffer. Having such
buffers reduces the mismatch between the rate of fetching instructions and the rate of executing them.

Let us now look at instruction dispersal or instruction delivery – providing instructions to the execution
units. Our explicit aim was to avoid the use of schedulers. Hence, we need to find a way to avoid data
and structural hazards without using expensive hardware such as an instruction window, wakeup, select and
broadcast hardware. We disperse (synonym of dispatch in the current context) two bundles of instructions
(6 instructions) at a time via the issue ports. The Itanium processor has 9 issue ports: 2 for memory, 2 for
integer, 2 for floating point, and 3 for branch instructions. Within each bundle, we disperse the instructions
from the earlier to the later. For dispersing instructions, we need to respect both data as well as control
dependences. Let us elaborate on how these are handled.

Data Hazards

Ideally, the compiler should find three instructions that are absolutely independent and place them in a
bundle. However, this is not always possible. In such cases, we do have the option of putting nop instructions
in the bundle; however, here again there are associated performance penalties because of wasted issue slots.
Hence, it is sometimes wiser to have instructions within a bundle with data dependences between them – we
get more performance than using nops. There are two features in the IA-64 ISA (Itanium’s ISA) that make
this easier.

1. It is possible to have a compare instruction and a conditional branch that is dependent on its outcome
in the same bundle. Itanium can internally forward the result of the comparison to the branch.

2. In the worst case, it is necessary to use stop bits in instructions. Let us consider the instructions in
the order from the earliest instruction to the latest. Some instructions will have their stop bits set
to 1, and the rest of the instructions will have their stop bits set to 0. The instructions between two
instructions with their stop bits set to 1, are independent of each other. As a result, we do not need
sophisticated hardware to check and mark dependences between instructions. Instructions between two
stop bits are also referred to as an instruction group. Within an instruction group we have parallelism,
and the instructions can be issued simultaneously. Instructions that are not marked by the compiler
as independent, need to execute in program order.

Structural Hazards

Instead of using sophisticated decoding logic, Itanium has a very simple way of figuring out the resource
requirements of instructions. It uses a 4-bit template field in each bundle. This indicates the type of
instructions in a bundle: M (memory), I (integer), F (floating point) and B (branch). With these 8 bits (4
bits for each bundle), the processor can very quickly find the resource requirements of all the instructions,
and schedule the issue ports accordingly.

5.6.4 Register Remapping Stage

We unfortunately do need register remapping (sophisticated form of renaming) here also. It would have been
the best if we could have avoided this stage since with advanced compiler analyses it is possible to analyse the
structure of dependences in a program very well. However, as we shall see, Itanium has extended the concept
of register renaming and in fact the term that is used in the paper by Sharangpani and Arora [Sharangpani
and Arora, 2000] is “register remapping”, which is much more than renaming.

If we think about it, we would still need renaming in some form. This is because we need to get rid
of false dependences. One approach is that the compiler is aware of the physical register file, and directly
assigns architectural registers to physical registers while generating the binary itself. This approach limits
portability and introduces dependences between instructions using the same physical register. This is because

Smruti R. Sarangi 198

the compiler cannot predict with 100% accuracy, and moreover there are several sources of nondeterminism
in the execution of modern programs: branch misprediction, and misses in the memory system. Let us look
at what Itanium does.

Virtual Registers

Itanium solves this problem by using virtual registers. The software assumes that the hardware has a large
number of virtual registers, and thus the software simply maps variables to virtual registers. This keeps the
software simple and also the code remains portable. The hardware maps the virtual registers to physical
registers. The Itanium architecture has a large 128-entry register file. These 128 entries are partitioned into
two sets [Settle et al., 2003]: 32 static registers that are visible to all functions and 96 stacked registers that
have limited visibility.

Specifically, Itanium optimises for two kinds of scenarios: argument passing to function calls and software
pipelining. When we are making function calls, we often need to write the values of registers to memory.
This is because the called function may overwrite the registers. Hence, it is a good idea to store the values
of the registers in memory, and later restore them once the function returns. Assume that the function foo
is calling the function bar. Now, there are two schemes: caller saved and callee saved. In the caller saved
scheme, the code in the function foo is assigned the responsibility of saving and later restoring the registers
that might possibly get overwritten. If we hand over this responsibility to the function bar, where it needs
to save and restore the registers that might possibly get overwritten, then we have the callee saved scheme.
Both of these schemes are expensive in terms of memory reads and writes.

Itanium solves this problem by allocating a different set of virtual registers to each function. This ensures
that there is no possibility of different functions overwriting each other’s registers unless there is an explicit
intent to do so. We sometimes deliberately create an overlap between the register sets, when we want to
pass arguments and return values between functions. If there is an overlap between the virtual register sets
used by the caller (foo) and callee (bar) functions, then we can pass arguments and return values via virtual
registers.

Let us explain with an example. In Figure 5.16, we show the example of a function call. Function foo calls
the function bar. In Itanium it is possible to specify the virtual registers that contain the input arguments
(in), the local variables (local), and the values to be sent to callee functions (out). In this case, let us assume
that for the function foo, virtual registers 32 and 33 contain the input arguments, registers 34-39 contain
the local variables, and register 40 contains the value that needs to be an input argument to the function
bar. For the function bar we can create a different mapping. For example, we can assume that register 32
contains the input argument, and registers 33-36 contain the local variables. In this case, there is a need to
map register 40 of function foo to register 32 of the function bar to pass the argument. This can be done by
the hardware very easily. We just need to map these virtual registers to the same physical registers. Then
unbeknownst to the functions foo and bar, arguments can be passed very easily between the functions. The
need for saving and restoring registers is not there because the registers that are used by different function
invocations are different. We only create an overlap in the register sets while passing parameters, otherwise,
because the register sets are separate there is no need to spill registers to memory. This decreases the number
of loads and stores.

Register Stack Frame

We allocate a register stack frame for each function based on a special instruction added by the compiler
called the alloc instruction. In the stack frame we store three kinds of registers: in, local, and out. There
is a fourth optional kind called rot, which we shall discuss shortly. However, let us consider the first three
kinds of registers first. The in and local registers are preserved across function calls. The out registers are
meant to be accessed by callee functions and thus do not need to be preserved.

Once a function returns, the register stack frame for that function is destroyed. This is similar to a
regular stack in programs that is stored in memory. Recall that a conventional stack stores the arguments

199 Smruti R. Sarangi

foo bar

32

33

34

39

40

32

33

36

in

out

local
local

in

Mapped to the
same register

Figure 5.16: Using virtual registers for parameter passing

and local variables of a function. It is destroyed once the function returns. Something very similar needs to
be done here. We need to automatically destroy the stack frame after a return.

To summarise, we need to create a stack frame based on the number of virtual registers that the function
requires (specified via the alloc instruction) when the function is invoked, and then destroy it once the
function returns. This process of automatically managing registers across function calls reduces the work of
the compiler significantly, and also reduces the unnecessary memory accesses that were happening because
of saving and restoring registers.

Communicating Return Values

The last piece of the register remapping stage is communicating return values. The return value is typically
communicated via a static register: r8. The main advantage of doing this is tail recursion elimination.
Consider the following piece of code for the binary search routine.

int bin_search(int arr[], int left , int right , int val){

/* exit conditions */

int mid;

if (right < left) return -1;

mid = (left + right) / 2;

if(val == arr[mid])

return mid;

/* recursive conditions */

if(val < arr[mid])

return bin_search(arr , left , mid - 1, val);

else

return bin_search(arr , mid + 1, right , val);

}

int main(){

...

result = bin_search (...);

next:

Smruti R. Sarangi 200

printf("%d", result);

...

}

Here, we show a traditional binary search routine. All the parts of the code that are not relevant have
been replaced with three dots (. . .). Let us consider the sequence of function calls. main calls bin search,
which is called recursively over and over again. The final answer is computed in the last call to bin search,
and then this answer is propagated to main via a sequence of return calls. This pattern is known as tail
recursion, where the statement that produces the result is the last statement in the function. One way of
optimising such patterns is to store the final answer at a known location, and return directly to the label
that is after the call to bin search in the main function (label next in the code). This will help us eliminate
the overheads of tens of return calls. Most compilers are able to recognise such patterns very easily, and
they directly replace a sequence of returns with a direct jump to the line after the first call to the recursive
function (label next in this case). In such cases, it makes sense to store the return value in a fixed place
that is outside the register stack. This is exactly what is done, and that’s why we save the return value in a
static register.

Support for Software Pipelining

Itanium has special support for software pipelining. Recall that in Section 5.4.3 we needed different sets of
registers for different iterations of a software pipelined loop. Specifically, to store the loop variable we needed
different registers, otherwise, there would have been a correctness issue. In fact one of the major limiting
factors while doing software pipelining is that we run out of registers. The designers of the Itanium processor
have very nicely solved this issue. They have created a rotating register set for storing the loop variable.
There is a method to keep track of the iteration of a loop. For every iteration, the hardware automatically
assigns new loop variables in a set of virtual registers. This ensures that we can seamlessly implement software
pipelining without bothering about manually assigning different loop variables to different iterations. This
also significantly simplifies the process of code generation.

Overflows

Let us now consider the case when we run out of registers. Recall that we only have 128 registers, and if we
call a lot of functions, or have large loops, we will clearly run out of registers. The only option that we have
is to store the registers in memory, and later on restore them. This is known as register spilling. Itanium
thankfully has an automatic mechanism for doing this.

Definition 31
The process of saving registers in memory, when we run out of registers, is known as spilling (or register
spilling). These spilled registers are later on restored when they are required.

Itanium has a dedicated Register Stack Engine (RSE). It keeps track of the number of registers we are
using, and whenever there is an overflow it comes into action. It silently spills registers at the bottom of the
register stack to a dedicated region in memory. When these registers are required, they are restored from
memory back again. The programmer and compiler are blissfully unaware of this process. Unbeknownst to
them, the RSE performs the task of saving and restoring registers. There is a performance penalty though.
While this is happening, the pipeline is stalled for a couple of cycles, and this interferes with the execution
of the current program.

201 Smruti R. Sarangi

5.6.5 High Performance Execution Engine

Ensuring high performance in such processors is the joint responsibility of the hardware, compiler, and
the programmer. In EPIC processors, the compiler has a disproportionate role. Now, to create a high
performance execution engine, the first and foremost requirement is to have a large array of functional units.
At the same time, we need to ensure that control and data dependences do not get violated.

The Itanium processor uses a scoreboard based strategy to enforce dependences. Scoreboarding is a very
old technique and has been around since the sixties. The first known use of scoreboarding was by the CDC
6600 machine way back in 1965. Let us look at different aspects of a modern scoreboard.

Scoreboarding

Scoreboarding [Thornton, 2000, Budde et al., 1990] is a technique that stalls instruction execution till it is
guaranteed that the instructions will get the correct values for their operands. It explicitly takes WAW,
WAR, and RAW hazards into account, and ensures that correctness is never compromised with. The exact
design of the Itanium Scoreboard is not available in the public domain. Let us thus try to create our own
scoreboard.

Let us create a matrix (table in hardware), where the rows are the instructions listed in program order
(see Figure 5.17). The columns are finished (single bit), source register 1 (rs1), source register 2 (rs2), the
destination register (rd), and the functional unit number (fu).

finished rs1 rs2 rd fu

Instructions

Figure 5.17: A simple scoreboard

Using this matrix, here is how we detect different hazards. We assume that this table is a content
addressable array (refer to Chapter 7) that can be addressed by the content of a specific field of an entry.
Furthermore, we use the same method to detect earlier instructions as in the load-store queue.

Let us introduce the terminology. For an instruction I, let the fields I.finished, I.rs1, I.rs2, I.rd, and
I.fu indicate the status of the instruction, ids of the source registers (1 and 2), id of the destination register,
and the id of the functional unit respectively. Given a table entry E, let us use the same terminology for it
as well. For example, the destination register of the instruction associated with the entry E is E.rd.

Now, given an instruction I, we need to create custom logic to ensure the following conditions are never
violated.

WAW Hazards: Check all the earlier entries in the table. For each earlier entry E, the following expression
should evaluate to false: (E.finished = 0) ∧ (E.rd = I.rd)). Otherwise, there is a potential WAW
hazard.

WAR Hazards Similar to the earlier case, for each earlier entry E, the following expression should be false:
(E.finished = 0) ∧ ((E.rs1 = I.rd) ∨ (E.rs2 = I.rd)).

Smruti R. Sarangi 202

RAW Hazards Here is the corresponding expression that should always evaluate to false: (E.finished =
0) ∧ ((E.rd = I.rs1) ∨ (E.rd = I.rs2)).

Structural Hazards The corresponding expression is (E.finished = 0) ∧ (E.fu = I.fu).

The basic insight is that an unfinished earlier instruction can potentially conflict with the current in-
struction. Evaluating these expressions is not difficult. We need to access the matrix using different keys
– destination register, source register, and functional unit number. Then we evaluate the aforementioned
conditions, and if any of these conditions is true, then we stall the current instruction.

We can slightly optimise the scoreboard by avoiding costly CAM accesses for detecting RAW and WAW
hazards. We can keep an array called dest that is indexed by the register id. Instruction I sets dest[rd] = I
after getting decoded. This array is thus accessed in program order. Before issuing an instruction we read the
arrays and get the instruction ids that will generate values for the source registers, and the latest instruction
that writes to the destination register. An instruction thus depends on at the most three other instructions:
two instructions that write to the source registers, and one that writes to the destination register. We wait
for all of them to get finished. We thus automatically take care of RAW and WAW hazards in this process.

Important Point 10
Why do we need to use a CAM array for detecting WAR hazards? Why can’t we use the same trick that
we used for detecting WAW and RAW hazards?

Answer: We need to write to a register in program order. Hence, there is a strict order between all the
instructions that write to the same register. Thus, it suffices to remember just one instruction for let’s
say source 1 of instruction I. This will be the instruction that generates the value for source register 1
(rs1); it is also the most recent instruction that writes to rs1 (out of all the instructions fetched before
I). We stored this information in the dest array and thus we created a very efficient technique to detect
RAW and WAW hazards. However, this mechanism cannot be used for WAR hazards.

For a WAR hazard, we need to find if there is any instruction in the pipeline fetched before the
current instruction I that is unfinished, and reads from the register I.rd. This information is not stored
in the dest array. Thus it cannot be used in this case. Instead, we need to access every single entry in
the CAM array and check if there is a WAR hazard.

Predication

By now, we know that branch prediction is a very sensitive operation. Even a very tiny increase in the
misprediction rate can severely degrade the performance. As a result a lot of processor companies spend
a disproportionate amount of time designing branch predictors, and this is often one of their biggest trade
secrets. Let us look at mechanisms that do not use branch prediction at all.

Consider a piece of code with a lot of loops, where the number of iterations is known in advance. Itanium
has elaborate loop counters that ensure that we shall never have mispredictions in such loops. Now, consider
(hypothetically) that we have a small piece of code within a very well behaved loop, which looks like this:

if(rand()%2 == 0)

x = y;

else

x = z;

We generate a random number. If it is even, we set x equal to y, and if it is odd, we set x equal to
z. This branch is genuinely hard to predict because it is based on a random number, and thus finding a

203 Smruti R. Sarangi

pattern is very difficult. In traditional OOO hardware, we still have to predict the direction, and statistically
we will mispredict 50% of the time. Every misprediction will lead to a pipeline flush, which is a massive
performance penalty. Furthermore, this is very unfair to the rest of the code, which is very well behaved.
Maybe such kind of code is embedded inside a library, which is not visible to the programmer. In this case,
the programmer in most cases will not even know the reason for poor performance.

We clearly need to do something to handle such cases. Flushing the pipeline is like burning down the
house to kill just one mosquito inside it! Let us instead work on creating a different paradigm.

Here is the idea. Let us fully or partially execute a few more instructions in the pipeline than required. If
by executing a few additional instructions, we can avoid a costly pipeline flush, which will cost us more than
20-30 cycles, it is well worth the effort. Also, the IPC for most programs is not equal to the issue width.
For example, in the case of Itanium, the IPC will not be 6 most of the time because of limited ILP. We can
thus find additional fetch, decode, and issue slots to send in a few more instructions for a large fraction of
the time. To explain the idea, let us look at the corresponding SimpleRisc assembly code of an Itanium like
EPIC processor.

1 /* mappings: x <-> r1 , y <-> r2 , z <-> r3 */

2

3 mod r0 , r0 , 2 /* assume r0 contains the output of rand(),

4 compute the remainder when dividing it by 2 */

5

6 cmp r0 , 0 /* compare */

7 beq .even

8 mov r1 , r3 /* odd case */

9 b. exit

10 .even:

11 mov r1 , r2 /* even case */

12

13 .exit:

From a cursory examination of this code, it does not look like that we can do anything. However, let us
now introduce some additional hardware to open up an avenue of opportunity. Assume that the compare
instruction sets two bits po and pe called the predicate bits corresponding to the result of the comparison. If
pe = 1 we execute the even path (Line 11), and if po = 1, we execute the odd path (Lines 8 and 9).

Furthermore, let us augment each instruction in the even and odd paths with the predicate bits that
need to be set to 1 for it to execute. The code thus looks as follows:

1 /* mappings: x <-> r1 , y <-> r2 , z <-> r3 */

2

3 mod r0 , r0 , 2 /* assume r0 contains the output of rand()

4 compute the remainder when dividing it by 2 */

5

6 po ,pe = cmp r0 , 0 /* compare and set the predicates */

7 [po] mov r1 , r3 /* odd case */

8 [pe] mov r1 , r2 /* even case */

In Line 6, we set the predicate bits po and pe. Then, we use these bits for the subsequent instructions. We
expect the compare instruction to be ordered before the execution of the instructions that use the predicates
generated by it. Subsequently, in Line 7 and Line 8 we execute the instructions in the odd path and even
path respectively.

How is this different? Note that we do not have any branch instructions. All the conditional and
unconditional branch instructions have been removed. If there are no branch instructions, it implies that
there are no mispredictions. The code is linear albeit for the fact that we have predicates. We fetch, decode,
and issue the predicated move instructions as regular instructions. We even allow both of them to read the
register file. However, the key difference lies in the execution stage. Instead of executing an instruction on

Smruti R. Sarangi 204

the wrong path (predicate bit is 0) we nullify it. In no case, should we allow an instruction on the wrong
path to update the register file or write to memory.

Thus, predication is a simple mechanism. It removes branches, and basically converts control dependences
into data dependences. We simply need to read the values of the corresponding predicate registers and figure
out if the instruction should execute and write back its result or not. For an instruction to do so, it needs
to be on the correct branch path, and this will only happen if the values of all the predicates that the
instruction depends on are 1. We thus need to compute a logical AND of all the predicate bits. In line with
this argument, Itanium adds a high throughput 64-entry predicate register file, where each entry is 1 bit.

Predication sometimes is a very good mechanism, and can do wonders to the performance, particularly
for cases that we have looked at. However, note that there are costs associated with this mechanism as
well. It increases the number of instructions that need to be fetched, decoded, renamed, and issued. This
decreases the effective throughput because a lot of these instructions might potentially be on the wrong
path. Furthermore, we need a mechanism of generating and keeping track of predicates. This requires good
compiler support.

5.6.6 Support for Aggressive Speculation

In Section 5.1, we introduced the notion of aggressive load speculation in OOO processors. Recall that we
executed load instructions much before we were aware of their addresses and dependences. We claimed that
if we could design accurate predictors, this approach would lead to large performance gains, and indeed this
is so in most cases. Let us try to create a similar mechanism for EPIC processors.

Itanium has the notion of load boosting. Here, a load and a subset of its forward slice (dependent
instructions) can be placed (boosted) at a point that is much before their actual position in the code; this
is done by the compiler. This will increase the number of instructions between the load and the instructions
that use its value. This means that even if the load misses in the L1 cache, and we need to go to the L2
cache or beyond, most of this delay will get hidden. By the time we encounter the use of the load, its value
will mostly likely be in the L1 cache.

This mechanism can very effectively reduce the stalls associated with a read miss. However, there are
several correctness issues. Assume that the load instruction encounters an exception. Maybe it accesses
an illegal address. To maintain the notion of precise exceptions we need to remember this, and flag the
exception only when we reach the original position of the load in the code.

Second, there might be stores between the original position of the load and the hoisted position that have
the same address. In this case we will have a RAW dependence violation. Thus, we need to keep a record of
all the stores between the two positions, and check for an address match. If we find such a match, the latest
such store needs to forward its value to the load.

The summary of this entire discussion is that since Itanium does not have a load-store queue and we are
still desirous of performing load dependence speculation, we need to implement the functionality of the LSQ
using a combined software-hardware technique. Let us elaborate.

Itanium defines a hardware structure called an Advanced Load Address Table (ALAT). It contains the
addresses of all the loads that have been boosted. EPIC processors such as Itanium need to define two
instructions for loads: one for a normal load and one for a boosted load. Whenever the hardware encounters
an instruction for a boosted load, it enters the load address into the ALAT. Subsequently, each store checks
the entries of the ALAT for a match. If there is a match, then we can infer that there is a dependence
violation. Thus we mark the ALAT entry as invalid.

At the original point of the load in the code, Itanium embeds a load check (ld.c) instruction. This
checks the validity of the load in the ALAT. If the load is still valid, then it means that the speculation was
successful, and nothing needs to be done. However, if the load is invalid, then we need to get the data from
the latest store with a matching address. We thus need to reissue the load. This is exactly what is done.
In such cases, the chances of getting the store data in the L1 cache itself is very high given the recency of
the update. If the load had encountered an exception, then that also can be recorded in the ALAT, and the
exception can be handled when the load check instruction is issued.

205 Smruti R. Sarangi

5.7 Summary and Further Reading

5.7.1 Summary

Summary 4

1. To further increase the performance of an out-of-order machine, we can perform four types of
aggressive speculation.

(a) Try to predict the address of a load instruction (address speculation).

(b) Try to predict dependences between load-store instruction pairs (dependence speculation).

(c) Try to predict the latency of a load instruction (latency speculation).

(d) Try to predict the value returned by a load instruction (value speculation).

2. The standard approaches to make a prediction are:

(a) Predict the last value if the prediction has a high confidence, otherwise do not predict at all.

(b) If the value increases by a fixed increment every time it is predicted, then it follows a stride
based access pattern. If we detect such an access pattern, then the next prediction is equal to
the current value plus the stride.

3. Whenever there is a misspeculation (misprediction), we need to replay the instructions that have
received wrong values.

4. There are three methods of performing a replay:

(a) In non-selective replay we squash (kill or nullify) all instructions that have read an operand
within W cycles of the faulting instruction being issued. Here, W is the duration of the
window of vulnerability.

(b) In delayed selective replay, we associate a poison bit with all the values that are computed
by the forward slice of the misspeculated load instruction. For all the instructions that have
a poison bit set for one of their operands, we squash them, otherwise we let the instruction
successfully complete. In this scheme, dealing with orphan instructions is tricky.

(c) This is solved by the token based replay scheme, where we associate one token for each spec-
ulated load. At the cost of additional hardware complexity, this is the most elegant out of our
three schemes.

5. It is possible to design a fundamentally simpler OOO pipeline by avoiding the physical register
file altogether. Instead, we can use the ROB to store uncommitted values. In this pipeline we do
not need to store checkpoints. It is stored within the architectural register file, which is updated at
commit time. The disadvantage of this pipeline is that we need to store values at multiple locations,
and the ROB becomes very large and slow.

6. Instead of putting the onus on the hardware to increase performance, we can do a lot of analyses at
the level of the compiler such that the branch prediction performance and register usage improves.

7. The most complicated optimisation in this space is software pipelining. Here, we create an overlap
between instructions of different loop iterations, and execute them in a manner such that it is not
necessary to stall the pipeline for multi-cycle RAW dependences.

Smruti R. Sarangi 206

8. The epitome of compiler assisted execution is an EPIC processor. It relies on the compiler for
generating and scheduling code. This keeps the hardware simple and power efficient.

9. The Intel Itanium processor is a classic EPIC processor that moves most of the work to the com-
piler. Some of its prominent features include compiler directed branch prediction, virtual registers
with register windows for functions, hardware support for software pipelining, predicated execution,
and support for latency speculation.

5.7.2 Further Reading

For aggressive speculation, the reader can consult some highly cited papers in this area: survey of load
speculation [Calder and Reinman, 2000], speculative memory cloaking and dynamic speculation [Moshovos
and Sohi, 1999,Moshovos et al., 1997], and selective value prediction [Calder et al., 1999].

Over the years, researchers have proposed many novel methods for implementing processors; one of the
most notable examples is the Transmeta Crusoe processor [Klaiber et al., 2000], whose core engine is a VLIW
processor. It has a software layer that converts x86 instructions to the native VLIW instructions.

In the area of compiler optimisation, the best books are by Aho and Ulmann [Aho and Ullman, 1977,Aho,
2003], and the book on advanced compiler techniques by Muchnick [Muchnick et al., 1997]. For software
pipelining, the two classic papers by Rau [Rau, 1994] and Lam [Lam, 1988] provide a very good introduction.
Specifically, the paper by Bob Rau proposes modulo scheduling, which is one of the most efficient methods
for software pipelining.

Rau’s paper [Rau, 1993] on dynamic scheduling in VLIW processors tries to add features of regular
pipelined processors such as scoreboarding and interlocks to VLIW processors. For a practical perspective,
the paper on the iWarp processor [Peterson et al., 1991] is a good reference.

For EPIC processors, the best references are the papers [Sharangpani and Arora, 2000, Settle et al.,
2003,McNairy and Soltis, 2003] on the design of the Itanium and Itanium 2 processors.

Exercises

Ex. 1 — Does aggressive speculation increase the IPC all the time?

* Ex. 2 — In load latency speculation, how do we know that we have predicted the latency correctly or
not. In which stage is this logic required?

Ex. 3 — Design a stride predictor with saturating counters that has some hysteresis. This means that if
just one access does not fit the stride based pattern, we have a means of ignoring it.

Ex. 4 — Extend the design of the predictor that uses store sets such that one store can be associated with
multiple store sets. What are the pros and cons of doing so?

Ex. 5 — Why are values predictable in programs?

Ex. 6 — How will you use a profiling based approach to improve the value prediction hit rates in programs?
In a profiling based approach, we first do a dry run of the benchmark, and collect some run time information.
This information is subsequently used to improve the performance of the regular run of the benchmark.

Ex. 7 — Assume a program, where we have many variables whose value alternates between two integer
values across read operations. How do we design a value predictor to take care of this case?

207 Smruti R. Sarangi

Ex. 8 — Compare the advantages and disadvantages of the three replay schemes: non-selective replay,
deferred selective replay, and token based replay.

Ex. 9 — What are the trade-offs between keeping instructions in the instruction window versus keeping
them in a separate replay queue?

Ex. 10 — How do we deal with orphan instructions in the non-selective and delayed selective replay
schemes?

Ex. 11 — Why do we need a kill wire when we already have the mechanism of poison bits in the delayed
selective replay scheme?

Ex. 12 — Design an efficient scheme to separate instructions into predictable and non-predictable sets for
the token based replay scheme. Use insights from the chapter on branch predictors.

* Ex. 13 — The replay schemes are all about collecting the forward slice. Let us consider the backward
slice, which is defined as the set of instructions that determine the value of the destination(result) of an
instruction. It consists of the instruction itself, the producers of its source operands, the producers of the
source operands of those instructions, and so on. Consider an example.

1: add r1, r2, r3

2: sub r4, r5, r6

3: add r7, r1, r0

4: ld r8, 4[r7]

5: add r9, r8, r10

6: add r10 , r4, r3

The backward slice of instruction 5 comprises instructions 5, 4, 3, and 1. The backward slice of instruction
6 comprises instructions 6 and 2.
Let’s say that we need to compute the backward slice of a given instruction in a window of the last κ
instructions. Suggest an efficient method to do this given κ. This approach should be fully hardware based.

* Ex. 14 — Can a backward slice be defined in terms of forward slices?

Ex. 15 — What is the problem in accessing registers after the instruction is dispatched in the ARF based
design?

Ex. 16 — In programs with high ILP, is a scheme with a unified instruction window or a scheme with
reservation stations expected to perform better? What about for programs with low ILP?

Ex. 17 — Consider the ARF based design. How many read and write ports do we need in the ROB?
Provide an efficient implementation of the ROB.

* Ex. 18 — Outline a scheme to perform strength reduction in hardware. Note that the first task is to
identify those instructions where a multiplication or division operation can be replaced with a sequence of
shift operations.

* Ex. 19 — How do we create a loop detector in hardware with possible compiler support? What can it
be used for?

* Ex. 20 — In software pipelining, is the degree of loop unrolling related to the latency of operations?

Ex. 21 — What is the function of the ALAT?

** Ex. 22 — Provide the outline of a compiler algorithm to insert stop bits.

Ex. 23 — How does Itanium avoid structural hazards?

Smruti R. Sarangi 208

Ex. 24 — What is the advantage of tail recursion elimination?

Ex. 25 — Is scoreboarding an efficient technique? Should it be used in regular OOO pipelines?

** Ex. 26 — Under what conditions can a load be hoisted in Itanium?

Design Problems

Ex. 27 — Design a stride predictor using Logisim or Verilog/VHDL. Create a circuit to predict if the
access pattern is based on strides, calculate the stride, and use it for different types of prediction.

Ex. 28 — Implement the replay based techniques (deferred selective and token based) in the Tejas archi-
tectural simulator. Compare and analyse the results.

Ex. 29 — Implement a load-store dependence predictor in the Tejas simulator.

