
Usability of Refactoring Tools for Java Development
Jeffrey Mahmood

Department of Software Engineering
Rochester Institute of Technology

38 Lomb Memorial Drive
Rochester, NY 14623, USA

ph: 001-585-7295385
jim9679@rit.edu

Y. Raghu Reddy
Department of Software Engineering

Rochester Institute of Technology
38 Lomb Memorial Drive

Rochester, NY 14623, USA
ph: 001-585-4757609

raghu@se.rit.edu

ABSTRACT
Refactoring tools can be used by software developers to prevent
human error, and maintain current behavior of the software
system. However surveys have found that refactoring tools are
not used by a majority of developers, rather they prefer to
refactor by hand. Various reasons mentioned by developers for
not using refactoring tools were the lack of user control,
confusing error messages, and the number of steps necessary to
perform a single refactoring. Other studies have noted the lack
of automation and absence of multi-stage integration of
refactoring tools as barriers to their usage and adoption. In this
paper, we present the results of usability evaluation for Java
based refactoring tools IntelliJ IDEA, JBuilder, and RefactorIT
against 34 usability guidelines. The results found that the
refactoring tools have not shown any major improvement in
recent years. We recommend some improvements to existing
refactoring tools.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement - Restructuring, reverse engineering, and
reengineering

General Terms
Design, Measurement, Reliability

Keywords
Refactoring, Usability, IDE

1. INTRODUCTION

Refactoring is a technique for changing existing source code
to improve the design without changing the external system
behavior [7]. At times developers/maintainers may inject
compile time or runtime errors due to carelessness, lack of
understanding, or overly complex code while refactoring.
Refactoring can be a time consuming task and various factors
contribute to the complexity of refactoring. The amount of time
consumed in refactoring mainly depends on the size of the
system, the amount of refactoring, availability of tools, and the
developer’s understanding of the system.
Refactoring tools can be used by developers to prevent errors
and to perform refactoring tasks faster. However, a survey of
programmers at Agile Open Northwest 2007 revealed that
although 90% of the developers had access to refactoring tools,

only 40% used the tools available [4]. The developers cited
being able to refactor by hand faster, too many steps or screens,
complex key sequences, linear menus, code selection, and no
general purpose mechanism for refactoring several pieces of
code at once as some of the reasons for not using any software
refactoring tools. In addition some of the other reasons for not
using software refactoring tools was the lack of automated
support and multi-stage integration [1,2].

Developer’s understanding of the system also played a key
role in using refactoring tools. Sometimes developers are unsure
of a specific refactoring that may need to be applied and lack of
good tool support enhances this problem. Providing tool support
for identification and selection of the refactoring type can
reduce the amount of time a developer spends on refactoring. At
the same time, it is important to characterize the complexity of
the refactoring to be undertaken, and automated tools can aid
developers in prioritizing their efforts [9].

The goal of this study is to evaluate the usability of three
different software refactoring tools, compare the results to other
studies of similar nature, and suggest improvements for tools
that can help reduce the perceived ineffectiveness of software
refactoring tools.

The rest of the paper is organized as follows Section 2
provides background information on usability and refactoring.
Section 3 presents the methodology used for the study and
Section 4 presents the results of the study. Section 5 provides
suggestions for improvements. Section 6 gives a brief overview
of some related work. Section 7 presents conclusions and
provides some insights into future work.

2. BACKGROUND
According to Henry [8], a large software usability gap can

lead users getting confused, frustrated, or panicked, and can
result in the software system being misused or not used at all. A
software system should be easy to use, quick, and pleasant in
order to promote learning and recall for end-user supported
tasks. The consistency of software applications usability has
been shown to reduce user training times by 25% to 50% [8].
The lack of developers/maintainers using software refactoring
tools suggests that they suffer from a large software usability
gap.

Refactoring manually requires developers to validate their
refactorings by updating the affected modules to compensate for
the changes. Li et al. [6] agree that compensating for a
refactoring is a flexible but fault-prone method for validating a
refactoring. The other types of validation for refactoring are
preservation of pre and post-condition. Precondition check is
the method used by most software refactoring tools, and is
defined as preserving all the interactions of the code involved
before allowing the refactoring to take place. A post-condition
check relies on testing the code after a refactoring and does not
apply to refactoring tools since it requires a test suite to verify
the changes [6]. For most refactoring tools, when a pre-
condition is violated the user is notified via an error message.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
IWRE’10, Feb 25, 2010, Mysuru, Karnataka, India

TABLE 1: USABILITY GUIDELINES COMPLIANCE SIGNIFICANT RESULTS

This error message allows the user to identify where the error
was made in order to fix it. It is the failure to produce and
properly display these error messages that have deterred
developers from using software refactoring tools [4, 5].

Automation of refactoring can reduce some of the errors
caused by manual refactoring. The benefit of automated tools
lies in their ability to be customized. For example, users can set
their preferred automation level there by selecting specific
refactorings that can be automated. Three suggested levels of
automation are Assisted, Global, and Severity based [9]. At the
Assisted level code-smells are identified by the IDE and
suggested resolutions are provided to the user. The Global level
implies full-automation where the IDE automatically resolves
any issues found. The Severity based level detects issues the
same as the other levels, but only automates a solution based on
a complexity threshold specified by the user.

The Agile Open Northwest 2007 survey results [4] imply
that the lack of sufficient refactoring tools leads to developers
performing manual refactorings. One of the goals of the IDE
and refactoring tools should be to facilitate the development of
software by providing meaningful tools to minimize defects
injected by the developer. Refactoring tools should allow
developers to perform code refactorings with relative ease from
the syntax level to the component design level to the package
level. Providing refactoring tools with high usability has the
potential to improve overall code quality and maintainability,
and minimize future rework.

This study will use usability guidelines based on Mealy et
al. [2] to evaluate three Java refactoring tools, and compare the
results to that of their previous study to determine if any
improvements have been made.

3. EXPERIMENTAL METHOD
The study used commercial as well as open source tools.

The refactoring tools chosen were two commercial IDE’s and
one open source project which supported Java development.
The commercial IDE’s selected for this study are IntelliJ IDEA
7.0.4 and JBuilder 2008, and the open source refactoring tool is

RefactorIT 2.7beta. In a previous study, Mealy et al. [2] used
the RefactorIT 2.5 plugin version. In our study we use the
standalone version. IntelliJ IDEA is available as a 30 day trial
with all available functionality, and JBuilder 2008 is the free for
download, limited functionality release of JBuilder. There are
currently two commercially available versions of JBuilder that
charge per seat or per license.

TABLE 2: USABILTY COMPLIANCE OF MEALY ET AL. ANALYSIS

For the evaluation of the tools a small scale Master’s level
student project and a considerably larger open source project
was used. The student project was an implementation of a
bowling game simulator that had 24 classes and approximately
2000 lines of code. The open source project used was Google
Web Toolkit, in particular only its /dev/src module was
evaluated and it contained 421 classes and approximately
110,000 lines of code. The bowling alley simulation was used
because of its relative ease in understanding, and the open
source project Google Web Toolkit was chosen because of its
maturity and considerably larger size.

Each software refactoring tool chosen supported more than
20 refactorings, and each one was applied to the two software
systems selected. IntelliJ IDEA supported refactorings for
Rename, Change Signature, Make Static, Convert to Instance
Method, Move, Copy, Safe Delete, Extract Method, Replace
Method Code Duplicates, Invert Boolean, Introduce Variable,
Introduce Field, Introduce Constant, Introduce Parameter,
Extract Interface, Extract Superclass, Use Interface Where
Possible, Pull Members Up, Push Members Down, Replace
Inheritance with Delegation, Inline, Convert Anonymous to
Inner, Encapsulate Field, Replace Temp with Query, Replace
Constructor with Factory Method, Generify, and Migrate.

JBuilder 2008 supported refactorings for Rename, Move,
Change Method Signature, Extract Method, Extract Constant,
Inline, Convert Anonymous Class to Nested, Convert Member
Type to Local, Convert Local Variable to Field, Extract
Superclass, Extract Interface, Use Supertype Where Possible,
Push Down, Pull Up, Introduce Indirection, Introduce Factory,
Introduce Parameter Object, Introduce Parameter, and
Encapsulate Field.

RefactorIT supported refactorings for Undo, Redo, Add
Delegate Methods, Change Method Signature, Clean Imports,
Convert Temp to Field, Create Constructor, Create Factory
Method , Extract Superclass/Interface, Inline, Introduce
Explaining Variable, Minimize access rights, Move,
Override/Implement Methods, Pull Up/Push Down, Rename,
and Use Supertype Where Possible.

The usability guidelines used to evaluate the usability of the
software refactoring tools was comprised of eight categories:
Consistency, Errors, User Experience, Ease of Use, Design for
the User, Information Processing, User Control, and Goal
Assessment. The specific criteria for each category can be seen
in Appendix A. Each criteria is rated on an integer scale from 1
to 5 based on the compliance agreement of the usability
guideline where 1 is strongly disagree, 2 is disagree, 3 is
neutral, 4 is agree, and 5 is strongly agree. Each tool evaluated
is this study is assumed to provide the adequate set of
refactorings necessary for refactoring both applications. So, tool
adequacy has not been considered as a category in the usability
guidelines.

In their work, Mealy et al. were able to conceive 81
usability requirements that they rated based on 34 Usability
guidelines [2]. These usability requirements were not made
available at the time of this particular study. For the basis of the
comparison, the 1 to 5 scale was used in order to add a finer
level of granularity to the assessment of the guidelines in the
absence of the individual requirements.

4. RESULTS
The entire set of the compliance scores relative to the

refactoring tool is tabulated in Appendix B – Full Set of
Compliance Scores.

Table 1 shows the raw data for the most significant usability
guidelines scores. From the Percentage Usability scores in
Table 1 it can be seen that all three tools were similar in their
compliance agreement of the usability guidelines. RefactorIT
scored lower than IntelliJ IDEA and JBuilder because of its
strict precondition validation rules that do not allow the user to
modify the code by means of a built-in text editor. This was
especially bad in instances where new variables needed to be
created to continue a sequence of refactorings, or the
introduction of a new parameter in a method signature could not
be extracted. As a result, the Ease of Use category for
RefactorIT brought down its overall score.

The “strategy for error recovery” row in Table 1 refers to
the error handling capabilities of the refactoring tools. For each
tool the most common way to handle improper use of the
refactoring was an obtuse error message. Clearing the error
message provided no further assistance about the refactoring
and the user is left to empirically figure out what had caused the
error. In more than one instance the refactoring was never
performed and resulted in manual refactoring.

The tools provide a means of reversing actions when a
refactoring is carried out improperly. This is represented in
Table 1 by high marks in the “permit reversal of actions” row.
The tools evaluated allowed reversal of actions by integrating
the refactoring tools’ undo and redo commands with the overall
undo and redo commands of the IDE.

The low scores in the “automate error prone tasks” and
“automate tedious/time consuming tasks” rows of Table 1 is a
reflection of the lack of automation in the refactoring tools in
general.

The User Control rows of Table 1 were derived from the
ability to provide variable, parameter, and class names when
performing refactorings such as Introduce Field, Introduce
Variable, Convert Anonymous to Inner, and Encapsulate Field.
The refactoring tools themselves did not allow customizations,

but IntelliJ provided a set of templates for creating new files and
classes that can be customized.

In Table 2 Mealy et al.’s previous scores can be seen. Again,
the scores of the usability guidelines show that there is little
difference in terms of usability of the software refactoring tools
with the exception of Condenser. A calculation of the
percentage of raw points earned in the Mealy et al. study shows
that the minimum percentage for compliance was 55% and the
maximum was 67%. This is almost the same exact range as the
compliance percentages from the Table 1 which show a
minimum compliance of 55% and maximum compliance of
69%. This shows that there is no discernable difference between
the commercial tools and the open source tools evaluated by
Mealy et al., and there is no discernable difference between the
previous RefactorIT plug-ins and the RefactorIT standalone
version. Since there is no difference between the previous tools
evaluated and the current one, we can state that there has been
no significant improvement in the usability of software
refactoring tools since the previous evaluation. The raw score
numbers confirm that the automation of the tools is still non-
existent and that user control is still lacking.

Since the goal of the study was to evaluate the usability of
the refactoring tools, there was no difference between the
usability of the tools between the student project and open
source project evaluated and therefore the results are presented
as a single table. The two projects proved useful in providing
ample opportunities to attempt all the refactorings offered by
the tools.

5. DISCUSSION
A major issue not discussed in the previous section that

consistently scored low according to the raw data in Table 1
was the Strategy for Error Recovery. In the current state of
software refactoring tools whenever a pre-condition is violated
an error message is displayed to the user. It was the
ineffectiveness of this error message that lead Murphy-Hill and
Black to develop their plug-ins for Eclipse to enhance Extract
Method [3]. Once an error is encountered, the user is notified
and the refactoring is either canceled or allowed to continue
based on the user’s discretion, and it is up to the user to
compensate for any errors injected into the system.

In order to improve the usability of the tool, the tool should
instead analyze the user’s code selection, and based on the
context of the refactoring suggest a set of corrective actions
necessary to complete the refactoring. For instance, in the scope
of an Extract Method, if the user has an incomplete selection
then the refactoring tool should display a corrective actions such
as “Did you mean:” where the display is the suggested block of
highlighted text that would make the refactoring feasible. The
user can then confirm the intended action and the tool can
perform the refactoring as expected. In the instance of a
Change Signature refactoring, if a method variable name
clashes with a parameter name then the tool could suggest
appending the name with “param” or “local” for the appropriate
case where the suggested suffix is presented in an editable text
field. Currently this scenario either brings the user back to the
initial refactoring screen or allows the user to continue and
leaves them to resolve the error post refactoring. By making the
system more tolerant to errors and providing suggestions, the
user will be able to more quickly refactor the code and relate it
with a more enjoyable user experience.

6. RELATED WORK
Murphy-Hill and Black have developed a series of Eclipse

plugins to alleviate problems when performing an Extract
Method refactoring [3]. Their Refactoring Annotations tool

helps developers prevent violation of preconditions when
selecting sections of code to extract using visual cues [3]. This
also aids in minimizing the confusion associated with any error
messages the users may see when performing a refactoring
incorrectly.

Murphy-Hill and Black included two other tools that
provide visual cues in the Eclipse plug-in to alleviate problems
with code selection [3, 5]. The Selection Assist tool and Box
View provides visual cues for selecting blocks of code when
performing Extract Method refactorings. Studies done with
students have shown that Selection Assist, Box View, and
Annotated Refactoring have dramatically reduced the time it
takes to perform an Extract Method as well as dramatically
reduced the number of errors caused by improper code
selection. Using Selection Assist and Box View correct code
selections were shown to increase 16%, and selection time
decreased between 25% and 50% [3]. Refactoring Annotations
was shown to decrease the time spent on an Extract Method
refactoring by almost 75%.

In a previous study Mealy et al. provide a set of usability
guidelines of refactoring tools based on 11 different sources of
usability evaluation criteria and the ISO 9241-11 software
usability guide [2].

In a separate study, Mealy et al. conclude that the tools
evaluated do not support the entire refactoring process, the
differences between tools were not usability based, and the
inspection tools were not yet industrial strength [1]. By not
supporting the refactoring process they mean that the current set
of tools only aid the developer in a single stage of refactoring.
The stages of refactoring that Mealy and Strooper refer to are
the identification of code stage, selection of the refactoring
stage, and lastly the implementation of the refactoring stage [1].
They also note the lack of user control and customization of the
refactoring tools.

7. CONCLUSION AND FUTURE WORK
The results from the comparison of the usability guidelines

found that sufficient improvements have not been made to open
source as well as commercially available refactoring tools
available for Java development. However, in case of Extract
Method, one of the refactorings singled out by Martin Fowler as
being fundamental to refactoring, work has been done to aid
developers in increasing their efficiency with the development
of the Selection Assist, Box View, and Refactoring Annotations
plug-ins available for Eclipse.

Work is currently being done to address the automation and
integration of the entire refactoring process, and applying
additional user control to the proposed automation
improvements. Identification of problem code is an area of
needed improvement, and better identification tools will allow
further automation of refactoring either by mapping from a
code-smell to a transformation or from a single transformation
to numerous source code candidates.

Certain refactorings such as the introduction of constants,
removal of unused code, and even extraction of method can be
done automatically. These types of code-smells require a simple
change and can be carried out automatically. In the case of an
Extract Method, performing this refactoring automatically can
be done by identifying repeated code and encapsulating the
code block into a parameter-constrained method. However such
refactoring requires an explicit pre post-condition check. Any
type of refactoring that requires redesign, such as long methods,
large classes, too many method parameters, or high coupling
can be detected and brought to the user’s attention, but any type
of fix would be at the user’s discretion. These types of
refactorings can still be identified at the Assisted level, but are

most likely to be categorized above the complexity threshold of
a severity level automated refactoring.

Incorporating the use of refactoring tools into the
educational process can give future developers more exposure
to their possibilities. Since the refactorings themselves are
universal to object-oriented systems, and the tools show a high
correlation of the same refactorings being available this would
not be an issue of IDE selection, but rather a lack of exposure to
these types of tools.

Proper usage of software refactoring tools reduces the
chance of compile time and run time errors that are inherent in
manual refactorings. It is the belief of these researchers that a
developer’s time spent refactoring could be dramatically
reduced by removing the barriers of usability for software
refactoring tools.

Further evaluation of refactoring tools for Java needs to be
carried out to provide a comprehensive analysis. This study
focused on tools that had integrated refactoring into their IDE
with the exception of RefactorIT. A study of available plug-ins
for open source systems such as the Eclipse IDE needs to be
conducted to further gauge the current state of the open source
IDE. A plug-in for IntelliJ, RefactorJ, was not available at the
time and could potentially address some issues pointed out in
the study.

8. REFERENCES
[1] E. Mealy and P. Strooper, “Evaluating software refactoring

tool support”, Proceedings of the Australian Software
Engineering Conference (ASWEC ’06), Sydney, Australia,
April 18-21, 2006, pp:331-340.

[2] E. Mealy et al., “Improving Usability of Software
Refactoring Tools”, Proceedings of the Australian
Software Engineering Conference (ASWEC ’07),
Melbourne, Australia, April 10-13, 2007, pp. 307-318.

[3] E. Murphy-Hill, “Improving usability of refactoring tools”,
Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications, Portland, Oregon, USA: ACM, 2006, pp.
746-747.

[4] E. Murphy-Hill, “Activating refactorings faster”,
Companion to the 22nd ACM SIGPLAN conference on
Object oriented programming systems and applications
companion, Montreal, Quebec, Canada: ACM, 2007, pp.
925-926.

[5] E. Murphy-Hill and A.P. Black, “Breaking the barriers to
successful refactoring: observations and tools for extract
method”, Proceedings of the 30th international conference
on Software engineering, Leipzig, Germany: ACM, 2008,
pp. 421-430.

[6] H. Li and S. Thompson, “Tool support for refactoring
functional programs”, Proceedings of the 2008 ACM
SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, San Francisco, California,
USA: ACM, 2008, pp. 199-203.

[7] Martin Fowler, Refactoring: Improving the Design of
Existing Code, The Addison-Wesley object technology
series, Addison-Wesley Professional, 1999, ISBN:978-
0201485677.

[8] P. Henry, User-Centered Information Design for Improved
Software Usability, Norwood, Mass: Artech House, 1998,
ISBN:978-0890069462.

[9] M. Z. Drozdz. “A critical analysis of two refactoring
tools”, Master’s Dissertation, University of Pretoria,
August 19, 2008.

Appendix A: USABILITY GUIDELINES

Consistency (C)
• (C1) Ensure that things that look the same act the same and

things that look different act different.
• (C2) Be consistent with any interface standards (either

explicit or implicit) for the domain/environment.
Errors (E)
• (E1) Assist the user to prevent errors (through feedback,

constrained interface, use of redundancy).
• (E2) Be tolerant of others.
• (E3) Provide understandable, polite, meaningful,

informative error messages.
• (E4) Provide a strategy to recover from errors.
• (E5) Permit reversal of actions/ability to restart.
• (E6) Allow the user to finish their entry/action before

requiring errors to be fixed. Do not interrupt the task being
completed.

• (E7) Automate error-prone tasks/sub-tasks.
User Experience (UX)
• (UX1) Make interface minimal, simple to understand,

organized, without redundancy, socially relevant
(especially for communication) and aesthetically pleasing.

• (UX2) Provide the information, or access to the
information, needed for a decision when/where the
decision is made.

• (UX3) Use the fewest number of steps/screens/actions to
achieve the user’s goals/

Ease of Use (EU)
• (EU1) Make the system flexible.
• (EU2) Make the system simple to use.
• (EU3) Make the system efficient to use.
• (EU4) Make the system enjoyable to use.
• (EU5) Automate tedious/repetitive/time-consuming

tasks/sub-tasks.
Design for the User (DU)
• (DU1) Define the user and match the system to the user.
• (DU2) Use the user’s mental model and language (avoid

codes).
• (DU3) Automate mundane/computable tasks/sub-tasks.
Information Processing (IP)
• (IP1) Assist the user to understand the system.
• (IP2) Minimize memorization (i.e. reduce short-term

memory load), through use of selection rather than entry,
names and not numbers, predictable behavior and access to
required data at decision points.

• (IP3) Make commands and system responses self-
explanatory.

• (IP4) Use abstraction or layered approaches to assist
understanding.

• (IP5) Provide help and documentation, including tutorials
and diagnostic tools.

• (IP6) Assist the user to maintain a mental model of the
structure of the application system/data/task.

• (IP7) Maximize the user’s understanding of the application
system/task/data at the required levels of detail.

User Control (UC)
• (UC1) Adapt to the user’s ability, allow experienced users

to use shortcuts/personalize the system, and use multiple
entry formats or styles.

• (UC2) Put the user in control of the system, ensure that
they feel in control and can achieve what they want to
achieve. Allow users to control level of detail, error
messages and the choice of system style.

Goal Assessment (GA)

• (GA1) Ensure the user always knows what is happening.
Respond quickly, meaningfully, informatively, consistently
and cleanly to user requests and actions.

• (GA2) Make it easy for the user to find out what to do
next.

• (GA3) Make clear the cause of every system action or
response.

• (GA4) Provide an action/response for every possible type
of user input/action.

• (GA5) Provide feedback/assessment/diagnostics to allow
the user to evaluate the application system/data/tasks.

APPENDIX B: FULL SET OF COMPLIANCE

SCORES

 IntelliJ Jbuilder RefactorIT
C
C1 4 4 4
C2 4 4 4
E
E1 3 4 3
E2 4 3 3
E3 3 2 2
E4 1 1 1
E5 5 5 5
E6 4 4 4
E7 1 1 1
UX
UX1 3 3 3
UX2 5 5 2
UX3 4 3 3
EU
EU1 4 4 1
EU2 3 4 1
EU3 4 4 3
EU4 4 4 1
EU5 1 1 1
DU
DU1 5 4 4
DU2 5 5 3
DU3 2 1 1
IP
IP1 4 4 3
IP2 4 4 4
IP3 3 3 3
IP4 4 4 4
IP5 5 3 5
IP6 3 3 3
IP7 3 4 3
UC
UC1 3 3 1
UC2 1 1 1
GA
GA1 5 5 5
GA2 4 4 3
GA3 4 4 3
GA4 4 4 3
GA5 2 2 3
Total 118 114 94
% 69% 67% 55%

	2. BACKGROUND
	3. EXPERIMENTAL METHOD
	4. RESULTS
	5. DISCUSSION
	6. RELATED WORK
	7. CONCLUSION AND FUTURE WORK
	8. References
	Appendix b: Full Set of Compliance Scores

