
 Iteration Method for Clone Detection Using Abstract

Syntax Suffix Trees
E.Kodhai

Department of Information
Technology

Sri Manakula Vinayagar Engineering
College

Puducherry

kodhaiej@yahoo.co.in

 Dr.S.Kanmani
Department of Information
Technology
 Pondicherry Engineering College

Puducherry

 kanmani@pec.edu

ABSTRACT
Copying a code fragment and reusing it by pasting with or without

minor modifications is a common practice in software

development environments. As a result software systems often

have sections of code that are similar, called software clones or

code clones. Various techniques have been proposed to find

duplicated redundant code.

 Most methods for detecting clones are limited to a

single revision of a program. Current techniques based on abstract

syntax suffix trees find syntactic clones in linear time and space.

The incremental detection technique uses token-based clone

detection and requires less time to detect clones in each revision

separately. But it can only detect the similar clones (type1).

 This paper is a proposal for an iteration method for

clone detection using abstract syntax trees, which detects all types

of clones (1, 2, 3).

Keywords

Software Clones, Suffix Trees, Clone Detection, Abstract Syntax

Trees, Reuse.

1. INTRODUCTION
Clones are identical or similar fragments in a software

system. Clones are usually created by copy-and-paste

programming and extending existing code. Clones of this nature

may be compared on the basis of the program text that has been

copied. We can distinguish the following types of clones:

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

IWRE‟10, Feb 25, 2010, Mysuru, Karnataka, India.

• Type 1 is an exact copy without modifications (except for

whitespace and comments).

• Type 2 is a syntactically identical copy; only variable, type, or

function identifiers have been changed.

• Type 3 is a copy with further modifications; statements have

been changed, added, or removed.

Several techniques have been proposed to find these

types of clones.

Clones seem to have identical or similar logic, thus,

require additional effort from engineers in development. For

example, they have to make sure that multiple clones are modified

in a consistent manner.

Previous research shows that a significant amount of

code (between 7% to 23%) of a software system is cloned code [3,

4, 5, and 6]. While programmers often practice cloning with clear

intent [7] and it is beneficial in certain situations [8], one of the

major difficulties with such duplicated fragments is that if a bug is

detected in a code fragment, all the fragments similar to it should

be investigated to check for same bug [9]. Moreover, when

enhancing or adapting a piece of code, duplicated fragments can

multiply the work to be done [10].

From a program comprehension point of view, clones

carry important domain knowledge and thus studying the clones

in a system can assist in understanding it [10]. Moreover, by

refactoring the clones detected, one can potentially improve

understandability, maintainability and extensibility, and reduce

the complexity of the system [11].

Fortunately, several (semi-automated techniques for

detecting code clones have been proposed. Several studies show

that lightweight text-based techniques can find clones with high

accuracy and confidence, but detected clones often do not

correspond to appropriate syntactic units [12, 13]. Parser-based

syntactic (AST-based) techniques, on the other hand, find

syntactically meaningful clones but tend to be more heavyweight,

requiring a full parser and subtree comparison method. On the

other hand, an Incremental detection technique detects clones in

less time in each revision separately [2]. Moreover, it only detects

the similar clones of type 1.

In this paper, we propose an iteration method for clone

detection using abstract syntax trees. The motivation is based on

the assumption that only a comparatively small amount of files

change per revision, causing a lot of work to be done redundantly

when rerunning every part of clones. Therefore, internal results

are not discarded, but reused and modified according to the files

that changed for the respective revision.

2. BACKGROUND
The analysis based token-suffix trees offers several

advantages over other techniques. It scales very well because of

its linear complexity in both time and space, which makes it very

attractive for large systems. Moreover, no parsing is necessary

and, hence, the code may be even incomplete and syntactically

incorrect. Another advantage for a tool builder is that a token-

based clone detector can be adjusted to a new language in very

short time [14].

As opposed to text-based techniques, this token-based

analysis is independent of layout. Also, token-based analysis may

be more reliable than metrics because the latter are often very

coarse-grained abstractions of a piece of code; furthermore, the

level of granularity of metrics is typically whole functions rather

than individual statements.

Two independent quantitative studies by

Bellon/Koschke [15] and Bailey/Burd [16] have shown that

token-based techniques have a high recall but suffer from many

false positives, whereas Baxter‟s technique has a higher precision

at the cost of a lower recall. In both studies, a human analyst

judged the clone candidates produced by various techniques. One

of the criteria of the analysts was that the clone candidate should

be something that is relatively complete, which is not true for

token-based candidates as they often do not form syntactic units.

Syntactic clones can be found to some extent by token

based techniques if the candidate sequences are split in a post

processing step into ranges where opening and their

corresponding closing tokens are completely contained in a

sequence.

The AST-based technique, on the other hand, yields

syntactic clones. And it was Baxter‟s AST-based technique with

the highest precision in the cited experiment. Moreover, the AST-

based clone detection offers many additional advantages as

already mentioned in the introduction.

Unfortunately, Baxter‟s technique did not match up

with the speed of token-based analysis. Even though partitioning

the subtrees in the first stage helps a lot, the comparison of

subtrees in the same partition is still pairwise and hence requires

quadratic time. Moreover, the AST nodes are visited many times

both in the comparison within a partition and across partitions

because the same node could occur in a subtree subsumed by a

larger clone contained in a different partition.

Another point is that the construction of the AST is

more expensive than the generation of a token stream. And with a

post processing step the token based approach will lead to similar

results in the area of eliminating syntactic incomplete clones. We

assume however that the clone detection is part of a larger system

(a tool chain, a refactoring tool, or an IDE) and the AST is already

available. It would be valuable to have an AST-based technique at

the speed of token-based techniques.

3. ITERATION METHOD

 The First step is to transform the source program into

tokens. Since the tokens stored are reused for the next revision,

instead using a single token table, multiple token tables are used.

i.e for each file a separate token table is created. If a new file is

added or deleted it will be easier to be added or deleted. If a file is

modified then a new token table is created deleting the old token

table.

Before transforming it checks for pervious revision. If

available it uses the previous revision details such as token tables,

ASTs, suffix tree and detected clones. It just gets the details of the

modified files and proceeds further. If not it, records it as the first

visit and starts from the scratch.

3.1 Constructing AST
 The next step is to parse the tokens into ASTs. Then, we

serialize the AST by a preorder traversal. For each visited AST

node N, we emit N as root and associate the number of arguments

(number of AST nodes transitively derived from N) with it (in the

following presented as subscript). Note that we assume that we

traverse the children of a node from left to right according to their

corresponding source locations so that their order corresponds to

the textual order.

These ASTs are also stored as an intermediate result.

The addition and deletion in AST will be the nodes and edges. For

modification it first checks the nodes and edges can be reused or

not. If possible it just reuses it instead of deleting and adding the

new one. If not it then creates the nodes and edges according to

the changes.

3.2 Using Suffix trees
 Next the AST are converted into generalized suffix

trees. The original suffix tree clone detection is based on tokens.

In our application of suffix trees, the AST node type plays the role

of a token. Because we use the AST node type as distinguishing

criterion, the actual value of identifiers and literals (their string

representation) does not matter because they are treated as AST

node attributes and hence are ignored. The actual value of

identifiers and literals becomes relevant in a post processing step

where we make the distinction between type-1 and type-2 clones.

We do not distinguish type-1 and type-2 clones at this stage.

 Finally these AST suffix tree are also stored for next

revision. In the next revision the changes are made as done in

ASTs for the suffix tree.

3.3 Detecting Clones
The previous step has produced a set of clone classes of

maximally long equivalent AST node sequences. These sequences

may or may not be syntactic clones. In the next step these

sequences will be decomposed into syntactic clones.

Procedure is used to report clones based on the

representative. It may filter clones based on various additional

criteria such as length, type of clone, syntactic type (e.g., it may

ignore clones in declarative code), differentiates the clone class

elements into type-1 and type-2 clones, and finally reports all

clones of a class to the user.

These clones are also stored for the next revision. In the

next revision, the results of the previous revision are compared to

the modified files for the clones.

1. Token tables 3. Suffix tree

2. ASTs 4. Detected clones

Figure 1. System Architecture

3.4 Approach
The overall task of this proposal is to develop a

framework for an iteration method for clone detection using

abstract syntax suffix trees that requires less time for clone

detection in multiple revisions of a program than the separate

application of an existing approach. In addition, a mapping

between the clones of every two consecutive revisions must be

generated.

The first part of the task addresses the time tall which is

needed to analyze n revisions of a program‟s source code. The

assumption is, that time can be saved by eliminating unnecessary

calculations resulting from discarding intermediate results. It is

desirable to make tall < n · tsingle true. Instead of starting from the

very beginning, the analysis of a revision should reuse and modify

results of the previous revision. This requires an overview over all

results which are produced during the clone detection process and

assessment of whether they might serve for being reused.

Apart from improving the performance, clones of one

revision are to be mapped to the clones of the previous revision.

In the simplest case, clones remain untouched and no change

happens to any clone. On the other hand, clones can be

introduced, modified, or vanish due to the modification of the

files they are contained in. The different changes that can happen

to a clone must be summarized.

When a file is deleted, the token table for the respective

file can just be dropped after the suffix tree has been updated.

When a file is added, a new token table is created. The location of

a token must therefore be extended to a tuple (file, index) instead

of just having a single index. File selects the token table for the

file in which the token is contained, and index denotes the

position of the token inside that file.

The intermediate results from revisioni are the tokens

stored in token tables, the suffix tree and the clone pairs. These

are given as input together with the files that changed from

revisioni to revisioni+1. Depending on the changes of the source

files, the data structures are modified in order to conform to the

source code of revisioni+1. Again, they are kept in memory in

order to be reused for the next revision.

4. RELATED WORK
Different techniques have been deployed for the

detection of simple clones. They can be broadly categorized based

on the program representation and the matching technique. For

program representation, the different options are plain text

[20][21], tokens[23][22], abstract syntax trees[24], program

dependence graphs [26][27], and metrics for code structures [25].

The different matching techniques include suffix tree based token

matching [23], text fingerprints matching [21], metrics value

comparisons [25], abstract syntax trees comparisons [24],

dynamic pattern matching [25] and neural networks [28].

A novel approach based on abstract syntax trees was

proposed by Baxter et al. in [29], which can produce macros

bodies to eliminate duplication. Due to its internal representation

(ASTs), this tool is strongly language dependent, can be run only

against compliable systems and has higher memory requirements

than our lightweight approach.

Regarding the concern towards validation in terms of

recall and precision of clone detecting tools, Bellon [30]

conducted an experiment, whose main concern was to compare

the quality of the results provided by several tools ([29],

[32],[33], [31] and [34]). As a conclusion to that experiment, the

author stated that there was no absolute winner, every approach

implying both advantages and disadvantages.

5. CONCLUSION
In contrast to conventional clone detection approaches,

Iteration method analyzes multiple revisions of a program. The

benefit compared to separate clone detection for each revision is,

that intermediate data structures can be reused for the analysis of

the next revision. This avoids analyzing parts of the source code

again and again which do not change between revisions. Using

information about the files that changed from the previous to the

current revision, our method modifies the token tables, the

generalized syntax suffix tree and the set of clone pairs to conform

to the current revision. The result produced is a set of clone pairs

for each revision that is analyzed. Moreover, it also detects all the

clone type 1,2 & 3, since it is using the syntax suffix trees

technique.

6. REFERENCES
[1] Nils Gode, Rainer Koschke Incremental Clone Detection –

European Conference on Software Maintenance and

Reengineering – 2009.

[2] Rainer Koschke, Raimar Falke, Pierre Frenzel, Clone

Detection Using Abstract Syntax Suffix Trees– Working

Conference on Reverse Engineering – 2006.

[3] B. Baker. On Finding Duplication and Near-Duplication in

Large Software Systems. In WCRE, pp. 86-95, 1995.

[4] I. Baxter, A. Yahin, L. Moura and M. Anna. Clone Detection

Using Abstract Syntax Trees. In ICSM, pp. 368-377, 1998.

[5] C. Kapser and M. Godfrey. Supporting the Analysis of Clones

in Software Systems: A Case Study. JSME: Research and

Practice,18(2):61-82, 2006

[6] J. Mayrand, C. Leblanc and E. Merlo. Experiment on the

Automatic Detection of Function Clones in a Software System

Using Metrics.In ICSM, pp. 244-253, 1996.

[7] M. Kim and G. Murphy. An Empirical Study of Code Clone

Genealogies.In FSE, pp. 187-196, 2005.

Source

code

Changed

files
Revision i

yes

no

Check

revision

1 2 3 4

1

2

3

4

Iteration

method

clone

detection

Revisioni+1

[8] C. Kapser and M. Godfrey. “Cloning Considered Harmful”

Considered Harmful. In WCRE, pp. 19-28, 2006.

[9] Z. Li, S. Lu, S. Myagmar and Y. Zhou. CP-Miner: Finding

Copy-Paste and Related Bugs in Large-Scale Software Code.

IEEE TSE,32(3):176-192, 2006.

[10] J. Johnson. Visualizing Textual Redundancy in Legacy

Source. In CASCON, pp. 171-183, 1994.

[11] M. Fowler. Refactoring: Improving the Design of Existing

Code.Addison-Wesley, 2000.

[12] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo.

Comparison and Evaluation of Clone Detection Tools. IEEE TSE,

33(9):577-591, 2007.

[13] F.V. Rysselberghe and S. Demeyer. Evaluating Clone

Detection Techniques. In ELISA, 12 pp., 2003.

[14] M. Rieger. Effective Clone Detection Without Language

Barriers. Dissertation, University of Bern, Switzerland,2005.

[15] S. Bellon. Vergleich von Techniken zur Erkennung

duplizierten Quellcodes. Master‟s thesis, University of Stuttgart,

Germany, 2002.

[16] J. Bailey and E. Burd. Evaluating Clone Detection Tools for

Use during Preventative Maintenance. In SCAM, 2002.

[17] E. McCreight. A space-economical suffix tree construction

algorithm. Journal of the ACM, 32(2):262–272, 1976.

[18] E. Ukkonen. On-line construction of suffix trees.

Algorithmica,14(3):249–260, 1995

[19] B. S. Baker. Parameterized Pattern Matching: Algorithms

and Applications. JCSS, 1996.

[20] Ducasse, S, Rieger, M., and Demeyer, S. A language

independent approach for detecting duplicated code. In Proc. Intl.

Conference on Software Maintenance (ICSM ‟99), pp. 109-118.

[21] Johnson, J. H. Substring Matching for Clone Detection and

Change Tracking. In Proc. Intl. Conference on Software

Maintenance (ICSM „94), pages 120–126.

 [22] Baker, B. S. On finding duplication and near-duplication in

large software systems. In Proc. 2nd Working Conference on

Reverse Engineering. 1995, pages 86-95.

[23] Kamiya, T., Kusumoto, S, and Inoue, K. CCFinder: A multi-

linguistic token-based code clone detection system for large scale

source code. IEEE Trans. Software Engineering, vol. 28 no. 7,

July 2002, pp. 654 – 670.

[24] Baxter, I., Yahin, A., Moura, L., and Anna, M. S. Clone

detection using abstract syntax trees. In Proc. Intl. Conference on

Software Maintenance (ICSM ‟98), pp. 368-377.

[25] Kontogiannis, K.A., De Mori, R., Merlo, E., Galler, M., and

Bernstein, M. Pattern Matching for Clone and Concept Detection.

J. Automated Software Eng., vol. 3, pp. 770-108, 1996.

[26] Komondoor, R., and Horwitz, S. Using slicing to identify

duplication in source code. In Proc. 8th International Symposium

on Static Analysis, 2001, pages 40-56.

[27] Krinke, J. Identifying Similar Code with Program

Dependence Graphs. In proceedings of the Eight Working

Conference on Reverse Engineering, Stuttgart, Germany, October

2001, pp. 301-309.

[28] Davey, N., Barson, P., Field, S., Frank, R., and Tansley, D.

The development of a software clone detector. International

Journal of Applied Software Technology, 1(3-4): 219-236, 1995.

[29] Ira Baxter, Andrew Yahin, Leonardo Moura,Marcelo Sant‟

Anna, and Lorraine Bier. Clone Detection Using Abstract Syntax

Trees. In ProceedingsICSM 1998, 1998.

[30] Stefan Bellon. Vergleich von Techniken zur Erkennung

duplizierten Quellcodes. Master‟s thesis, Universit ¨at Stuttgart,

September 2002.

[31] St´ephane Ducasse, Matthias Rieger, and Serge Demeyer.A

language independent approach for detecting duplicated code. In

Hongji Yang and Lee White,editors, Proceedings ICSM ’99

(International Conferenceon Software Maintenance), pages 109–

118.IEEE, September 1999.

[32] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.

CCFinder: A multi-linguistic token-based code clone detection

system for large scale source code. IEEE Transactions on

Software Engineering,28(6):654–670, 2002.

[33] Jens Krinke. Identifying similar code with program

dependence graphs. In Proceedings Eigth WorkingConference on

Reverse Engineering (WCRE’01),pages 301–309. IEEE Computer

Society, October 2001.

[34] Jean Mayrand, Claude Leblanc, and Ettore M.

Merlo.Experiment on the automatic detection of function clones

in a software system using metrics. In International Conference

on Software System Using Metrics, pages 244–253, 1996.

