
Compliance of Analysis and Design Models in Object-
Oriented Systems: A Metrics Based approach

Sabnam Sengupta
B.P.Poddar Institute of

Management & Technology
137, V.I.P Road, Kolkata 700052

Tel: +919433076680
sabnam_sg@yahoo.com

Ananya Kanjilal
B.P.Poddar Institute of

Management & Technology
137, V.I.P Road, Kolkata 700052

Tel: +919830513854
ag_k@rediffmail.com

Swapan Bhattacharya
National Institute of Technology

Durgapur 713205.
Tel: +919830128721

bswapan2000@yahoo.co.in

ABSTRACT
In an object-oriented environment, it is necessary to ensure that all
the requirements are addressed in the analysis and design phase,
and modeled consistently in UML diagrams, for visual depiction
of the behavioral and structural aspects of the system. Metrics,
which measure the extent of compliance between related models,
will be a powerful tool for developers to have a quantitative
feedback about the correctness of a system. In this paper we
propose a metrics based approach to ensure compliance between
UML analysis models like Activity diagrams and Design models
like Class and State chart diagrams. We have proposed a Design
Compliance Metrics II (DCM-II) to quantitatively measure the
extent of consistency between activity, class and state chart
diagrams implementing the use cases for the same requirement.
The basis of measuring consistency is the relationship between the
artifacts based on the common attributes. It also helps in
measuring progress of a project and thus helps in project
management. DCM-II verifies whether the requirements that have
been covered in design have been consistently realized in activity,
class and state charts. Two case studies have been considered and
calculation of DCM-II has been done for illustration of our
approach.

Categories and Subject Descriptors
D.2.8 [Metrics]: Process Metrics

D.2.10 [Design]: Methodologies

General Terms
Measurement, Design, Verification.

Keywords
Metrics based analysis, Requirement analysis, Design
Compliance, Design Consistency

1. INTRODUCTION
In an object-oriented environment, requirements are modeled as
use cases; use case events are depicted using activity diagrams;
activity/action states along with decision blocks of activity
diagrams and they are implemented as methods of various classes
defined in the class diagram and often cause change of states of
objects. It is necessary to ensure that these UML models used
different phases of software development, are consistent.
However, the process of verifying is very much manual, even
today and there is hardly any way to quantitatively measure the
degree of consistency among different models. Metrics act as
indicators that provide a quantitative feedback to software
developers about various aspects of the software and pinpoint
problem areas in their systems.

In this paper, we have proposed a metrics based methodology to
verify that requirements are consistently implemented in the
analysis models like – statecharts, activity diagrams, class
diagram etc. for a particular use case. We have proposed a new set
of metrics named Design Compliance Metrics-II (DCM-II) and
presented methods to derive the metrics from a given set of
requirements and UML analysis and design models – use case,
activity, statechart and class diagrams. Based on these metrics
values, a quantitative feedback can be provided regarding
consistency of its implementation such that developers can take
steps before coding starts. Since changes are less expensive the
earlier in the development lifecycle they are made, this can save
the project considerable time and money. Observations for DCM-
II on two case studies have been presented to illustrate our work.

2. RELATED WORK
This section presents a review of some of the research work that
has been done in the area of verification of UML designs,
especially related to consistency verification and metrics that
captures certain attributes of the software system based on UML
models.
Kim et al. in [17] proposes a set of metrics applicable for UML
models. They have defined a large set of metrics separately for
model, classes, messages, use case, etc and made a comparison
with the more commonly used CK metrics [21]. The metrics suite
has been developed on the elements used in the UML models and
can be use to predict various characteristics of a project during
early phases of software development. Some works as in [23],
[22] have developed metrics to ensure coverage of requirements.
In [23] High-level requirements expressed formally have been
used to define structural coverage metrics as well generate
requirement based test cases that can be directly traceable to
requirements. In [22], a specification based coverage metrics has
been defined to evaluate test sets.
In [20] a metrics suite is defined to measure the quality of design
at an early development phase. The suite consists of dynamic
complexity and object coupling based on measures from UML
architectural specification diagrams.
Several works have proposed methodologies for verification of
consistency within the UML models. Some like [1], [4], [5], [6],
[7], [9], [10], [11], [12], [13], [14], [15] have used formal
techniques for verification. Formal techniques range from Object-
Z in [7], algebra in [9], attributed graph grammars in [15]
focusing mainly on class diagrams and behavioral diagrams. An
algorithmic approach to a consistency check between UML
Sequence and State diagrams is described in [8] while [10]
proposes a declarative approach using process algebra CSP for
consistency checking between sequence and statecharts. In [2] an
approach for automated consistency checking named

VIEWINTEGRA has been developed and in [3] strategies to
ensure consistency in object-oriented models has been developed
by integrating elements in UML Tool Object Technology
Workbench.
Our work is closely related to some these works as in [6], [14] and
[15]. However, most of these works focus on verifying
consistency whereas our work focuses on quantitative analysis
and measurement of design to indicate the degree of consistency
among the diagrams. This work is an extension of our previous
work [24], where we proposed a set of metrics to measure the
extent of coverage of requirement through use case, sequence and
class diagram. It differs from [17] in the sense that here they have
defined metrics separately for each UML artifact like message,
use case, etc whereas we have defined metrics that consider
related UML models from the perspective of requirement
analysis. Our metrics will be able to measure the degree of
consistency within the design.

3. SCOPE OF WORK
In this paper we have proposed a set of metrics based on
requirements and UML analysis & design models for an object
oriented system which will help in measuring the degree of
compliance and consistency of these models with respect to
requirements. In an object-oriented system, use case diagrams of
UML form the basis of requirements activity, class and statechart
diagrams model the implementation of use cases (requirements)
showing the static and dynamic aspects. We have proposed
DCM-II, which is extension of DCM-I, as proposed in [24] and
will address an important issue-
Measuring the extent of consistency between the activity,
statechart and class diagrams will ensure that the requirements
have been consistently implemented in design.
We have considered an ATM system and a library management
system as our example and our approach has been applied to these
case studies and metrics have been calculated.

4. UML DIAGRAM RELATIONSHIPS
The UML model consists of several diagrams that depict
overlapping aspects of an object-oriented system. In our work we
have considered Use case, activity, statechart and class diagrams
that show the requirements and their implementations within the
analysis and design phase. Use cases model requirements and
ideally one requirement may be mapped to one or more use cases.
Each use case is described textually as the flow of events of a use
case. These textual flows of events are diagrammatically depicted
using activity diagram as action or activity states, decision blocks,
swimlanes and object flow. The states of the objects are depicted
using statechart diagram. The transitions among the different
object states map with the methods. The action or activity states
map with the methods, too. Each method is defined in the Class
diagram that defines the structural aspects of the system.
The relationship between Use case, Activity, Statechart and Class
diagrams are based on the existence of common elements between
the diagrams. This forms the basis of definition of DCM-II
discussed in next section.

5. PROPOSED WORK
Our proposed metrics for analyzing requirements is based on the
design of the system captured in the UML models. We have
formulated the metrics based on the relationships that have been
identified in earlier sections. Metrics are measurements based on
project parameters that serve to give a quantitative measurement
of various aspects. We first define some terms related to DCM-II.

5.1 Definition: Design Compliance
A design is compliant with requirements if the behavioral model
(here activity and statechart diagram) uses methods which are
identically defined (i.e. signatures are same) in the structural
model (here Class diagram) for realization of a set of use cases
modeling a requirement. The Design Compliance Metrics (DCM-
II) is thus a measure of the extent of consistency among activity,
statechart and class diagrams for a use case.

5.2 Notations used
In this section the set of metrics is defined which will be useful in
requirement management as well as project management of
object-oriented software projects.
The following notations are used during metrics definitions:
U – Set of Use cases
UC– Set of Use case diagrams
E – Set of Events
ACT – Set of Activity Diagrams
Ac – Set of Action/Activity States
C – Set of Classes
CL– Set of Class diagrams
STD – Set of Statechart diagrams
ST – Set of States
M – Set of Methods (Methods include name and parameter)
N(S) – Cardinality or Size of a set i.e. number of elements in the
set S.

UR: The set of unique use cases defined in use case diagram
corresponding to a particular requirement
UR = {ui | ui ε U and U ε UC, ui implements ri, ri ε R}
If this set is empty, it indicates that requirements have not been
captured in the use case diagrams of UML.

A use case is described using a flow of events.
EU: The set of unique events describing a particular use case
EU = {ei| ei ε E, ei describes ui , ui ε U}

The textual flow of events for a particular use case is
diagrammatically represented as action or activity states of
activity diagram, along with decision blocks, object flow and
swimlanes. These swimlanes represent the names of the objects. A
single activity diagram or a set of activity diagrams (showing
alternate flow of events) is defined as -

AU: The set of activity diagrams used to represent flow of events
of a particular use case ui in UR, UUC

AU = {aci | aci ε AC, aci represents ei , ei ε EU }
If this set is empty it means that none of the events of use case U
has been implemented and represented in any activity diagrams.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

U: The set of implemented use cases i.e. those use cases that have
at least one corresponding activity diagram for implementation
(i.e. for which AU ≠ φ)

OBJ: The set of unique objects used in all the active
ity diagrams, either as object flow or as swimlane.
OBJ = {obji, sti | obji ε CL and sti ε ST} | { obji | obji ε CL}

ST: The set of states of different objects used to implement and
design all the use cases for a particular requirement.
A statechart diagram is used to depict the different states of an
object and transitions among the states.

STD: The set of all the statechart diagrams used to implement a
particular requirement.

STD= {obji, tri | obji ε CL, tri ε TR, maps with aci, aci ε AC}

TR: The set of all the transitions among different states of all the
objects, whose state transitions are depicted, in designing for a
particular requirement.

TR = {fromSti, mi, toSti | fromSti ε ST, toSti ε ST, mi ε M}

MC: The set of methods defined in a class diagram
MC = {mj | mj ε M, mi ε ci , ci ε C, C ε CL}

5.3 Design Compliance Metrics (DCM-II)
We measure the extent of consistency achieved in the
implementation of a requirement. The DCM value is calculated
which determines whether the requirement is consistently
implemented in the design and measures the extent of consistency
between activity, statechart and class diagrams i.e. between the
structural and behavioral design. This is computed for a particular
use case and only for those use cases where U ≠

A. Usecase-Activity consistency(U-AC)
Euc: Set of Events describing a usecase
Euc = {ei | ei ε U}
Eac: Set of events handled as action/activity states in Activity
Diagram
Eac = {ei | ei ε A}

ED (Event Differential)
The event differential is computed for every events captured in all
the activity diagrams as action or activity states used for
implementing a particular use case. It is defined as –

ED = i – j
(where i = 1 if ei ε Euc, else i = 0
and j = 1 if ej ε Eac, else j = 0)
Here i and j are used as indicators and can assume values 0 and 1.
This simply indicates whether an event is nonexistent or existent
in a use case diagram or an activity diagram respectively.
Therefore for every event E, The event differential is a measure of
existence of a particular event in both the diagrams – structural
and behavioral.

Significance of ED
If ED= 0, events present/absent in both use case and activity
diagrams (consistent events)

If ED=1, events present in use case but, not in activity
(unimplemented events)
If ED=-1, Events present in activity, not in usecase (irrelevant
events)
B. Activity-Class consistency(AC-CL)
Cac: Set of Classes/objects used in all Activity diagrams for a
particular use case/
Cac = {ci | ci ε AC}
Ccl: Set of Classes defined in Class diagram
Ccl = {cj | cj ε CL}

CDAC-CL (Class Differential)
The class differential is computed for every class C of objects
used in all the activity diagrams used for implementing a
particular use case. It is defined as –

CDAC-CL = i – j
(where i = 1 if ci ε Cac, else i = 0
and j = 1 if cj ε Ccl, else j = 0)

Here i and j are used as indicators and can assume values 0 and 1.
This simply indicates whether a class is nonexistent or existent in
an activity diagram or a class diagram respectively. Therefore for
every class C, The class differential is a measure of existence of a
particular class in both the diagrams – structural and behavioral.

Significance of CDAC-CL
If CDAC-CL =0, class is either present in activity as well as class
diagram or else absent in both the diagrams. (consistent classes)
If CDAC-CL =1 then class is used in activity diagram but not
defined in class diagram. (unimplemented classes)
If CDAC-CL =-1 then it means that class is defined in class
diagram but not used in activity diagram. (Unused classes)

Mac: Set of methods/actionstate/decisionBlock used in Activity
diagram which corresponds to activity events.

Mcl: Methods defined in Class diagram

MDAC-CL(Method Differential)
The method differential is computed for every method M
belonging to class C of the system. It is defined as –

MDAC-CL = i – j
(where i = 1 if mi ε Mac, else i = 0
and j = 1 if mj ε Mcl, else j = 0)

Here i and j are used as indicators and can assume values 0 and 1.
This simply indicates whether a method is nonexistent or existent
in an activity diagram or a class diagram. Therefore for every
method m of class C, the method differential is a measure of
existence of a particular method of a class in both the diagrams.

Significance of MDAC-CL
If MDAC-CL=0, method is present is activity as well as class
diagram or absent in both. (consistent methods). This is same as
MA−C where
MA−C: The set of implemented action or activity states in a
activity diagram as well as defined in any class of class diagram.
 i.e. MA−C = {mac | mac ε Ac and mac ε Mcl }

If MDAC-CL =1 then method is used in activity diagram but not
defined in class diagram. (unimplemented method)
If MDAC-CL =-1 then it means that method is defined in class
diagram but not used in activity diagram (unused methods)
C. Statechart-Class consistency(ST-CL)

Cst: Set of Classes/objects used in all statechart diagrams for a
particular use case/
Cst = {ci | ci ε ST}
Ccl: Set of Classes defined in Class diagram
Ccl = {cj | cj ε CL}

CDST-CL (Class Differential)
The class differential is computed for every classes of objects C
used in all the statechart diagrams used for implementing a
particular use case. It is defined as –

CDST-CL = i – j
(where i = 1 if ci ε Cst, else i = 0
and j = 1 if cj ε Ccl, else j = 0)
Here i and j are used as indicators and can assume values 0 and 1.
This simply indicates whether a class is nonexistent or existent in
an statechart diagram or a class diagram respectively. Therefore
for every class C, The class differential is a measure of existence
of a particular class in both the diagrams – structural and
behavioral.

Significance of CDST-CL
If CDST-CL =0, class is either present in statechart as well as class
diagram or else absent in both the diagrams. (Consistent classes)
If CDST-CL =1 then class is used in statechart diagram but not
defined in class diagram. (unimplemented classes)
If CDST-CL =-1 then it means that class is defined in class diagram
but not used in statechart diagram. (Classes not changing states:
steady state classes)

Mst:Set of methods used in statechart diagram as a part of
transition
Mcl: Methods defined in Class diagram

MDST-CL (Method Differential)
The method differential is computed for every method M
belonging to class C of the system. It is defined as –

MDST-CL = i – j
(where i = 1 if mi ε Mst, else i = 0
and j = 1 if mj ε Mcl, else j = 0)
Here i and j are used as indicators and can assume values 0 and 1.
This simply indicates whether a method is nonexistent or existent
in a statechart diagram or a class diagram. Therefore for every
method m of class C, the method differential is a measure of
existence of a particular method of a class in both the diagrams.

Significance of MDST-CL
If MDST-CL =0, method is present is statechart as well as class
diagram or absent in both. (consistent methods)
If MDST-CL =1 then method is used in statechart diagram but not
defined in class diagram. (unimpl. method)
If MDST-CL =-1 then it means that method is defined in class
diagram but not used in statechart diagram. (unused methods)

D. Activity-Statechart consistency(AC-ST)
Cac: Set of Classes of objects defined in activity diagram either as
object flow, or as swimlanes
Cac= {cj | cj ε AC}
Cst: Set of Classes/objects used in all statechart diagrams for a
particular use case/
Cst = {ci | ci ε ST}

CDAC-ST (Class Differential)
The class differential is computed for every classes of objects C
used in all the activity diagrams and statechart diagrams used for
implementing a particular use case. It is defined as –

CDAC-ST = i – j
(where i = 1 if ci ε Cac, else i = 0
and j = 1 if cj ε Cst, else j = 0)
Here i and j are used as indicators and can assume values 0 and 1.
This simply indicates whether a class is nonexistent or existent in
an activity diagram or a statechart. Therefore for every class C,
the class differential is a measure of existence of a particular class
in both the diagrams, both of them are behavioral.

Significance of CDAC-ST
If CDAC-ST =0, class is either present in activity, as well as
statechart or else absent in both the diagrams. (consistent classes)
If CDAC-ST =1 then class is used in activity diagram but not
defined in statechart diagram. (steady state. classes)
If CDAC-ST =-1 then it means that class is defined in statechart
diagram but not used in activity diagram. (unused classes)

However, all objects used in activity may or may not undergo
state changes and hence may not be present in statecharts. The
method differential does not hold any significance as far as
activity and statecharts are concerned.

1) UE (Undefined events)
The undefined event metrics gives a measure of number of events
used in use case diagrams but not defined in activity diagram.
 UE = ∑i (i stands for ith class whose ED = 1)
This is the summation of all the events having positive event
differentials.
2) CE (Consistent events)
The consistent event metrics gives a measure of number of events
used in use case diagrams as well as implemented in activity
diagram.
 CE = ∑i (i stands for ith class whose ED = 0)
This is the summation of all the events having zero class
differentials.

3) ECF (Event Consistency Factor)
This factor gives a measure of consistency of the events used for
describing and depicting a use case.
 ECF = Consistent events / Total events
 CE + UE = Total number of events
Therefore, ECF = CE / (CE+UE)
This factor can be computed for every event used for description
and depiction of a use case.
Significance of ECF
If ECF = 1, it indicates that all the events that have been used in
the use case have been described in activity diagram i.e. UE = 0.
If ECF < 0, it indicates that there are events used in activity
diagrams which are not defined in the use case diagram i.e. UE
>0.
4) UC (Undefined classes)
The undefined class metrics gives a measure of number of classes
used in activity or statechart diagrams but not defined in class
diagram. It is computed by considering CDAC-CL, CDST-CL and
CDAC-ST

 UC = ∑i (i stands for ith class whose CDAC-CL = 1 or
CD ST-CL = 1)

5) HC (Helper class)
This metrics gives a measure of the number of classes defined in
the class diagram but not used in either activity diagram or
statechart diagram for any use case. This may be a possible case
of redundant or unused classes but not necessarily as some of
them may be helper classes useful for the overall system.

HC = ∑i (i stands for ith class whose CDAC-CL = -1 and CDST-CL

= -1)
6) CC (Consistent class)
The consistent class metrics gives a measure of number of classes,
which have been defined in class diagram as well as used in
activity and statechart diagram.

CC = ∑i (i stands for ith class whose CDAC-CL = 0, CD ST-CL =
0 and CDAC-ST = 0)
This is the summation of all the classes having zero class
differentials.
7) CCF (Class Consistency Factor)
This factor gives a measure of consistency of the classes used for
implementation of a use case.
 CCF = Consistent classes / Total Classes used
 Total number of classes used = UC + CC + HC
Therefore, CCF = CC / (UC + CC + HC)
This factor can be computed for every class used for
implementation of a use case i.e. for the set CU.
Significance of CCF
If CCF = 1, it means that UC =0 as well as HC=0

It indicates that all the classes that have been used in the
activity and statechart diagrams have been defined in class
diagram i.e. UC = 0. Moreover there are no classes that are
defined but not used i.e. HC=0.

This indicates that the analysis and design is consistently
compliant with requirements as far as class definition and usage is
concerned
If CCF < 1, it means that

a) UC > 0 i.e. there are objects of certain classes used in
activity and statechart diagrams which are not defined in
the class diagram.

b) HC > 0 i.e. there are some classes that are not used in
activity and statechart diagrams.

Degree of consistency of Requirement Implementation
 If CCF=1 or CCF<1 and UC=0, then this is a case of

consistent implementation of requirements in analysis and
design phase.

 Other values of CCF indicates the level or degree of
consistency achieved in analysis and design

8) UM (Undefined methods – for a class)
The undefined method metrics gives a measure of number of
methods used in activity diagram and/or statechart diagram but
not defined in class diagram. It is computed by considering MAC-

CL, MST-CLand MDAC-ST

 UM = ∑i (i stands for ith method whose MDAC-CL = 1, MDST-

CL=1)
This is the summation of all the methods having positive method
differentials.
9) HM (Helper method –for a class)
This metrics gives a measure of the number of methods defined in
the class diagram but not used activity or statechart diagram for
any use case. This may be a possible case of redundant or unused
methods but not necessarily as some of them may be helper
methods useful for the overall system.

HM = ∑i (i stands for ith method whose MDSQ-CL = -1)
10) CM (Consistent methods –for a class)
The consistent method metrics gives a measure of number of
methods which have been defined in class diagram as well as used
in activity and statechart diagram.

CM = ∑i (i stands for ith method whose MDAC-CL = 0, MDST-

CL= 0)
This is the summation of all the methods having zero class
differentials.
9) MCF (Method Consistency Factor)
This gives a measure of consistency of the methods used of a class
for implementing a use case.

MCF = Consistent methods / Total methods used
 Total number of methods used = UM + CM + HM
Therefore, MCF = CM / (UM + CM + HM)
This factor can be computed for every method in each class used
for implementation of a use case i.e. for the set MU.
Significance of MCF
If MCF = 1, it means that UM =0 as well as HM=0
It indicates that all the methods that have been used in the activity
and statechart diagrams have been defined in class diagram i.e.
UM = 0. Moreover there are no methods that are defined but not
used i.e. HM=0.
This indicates that the analysis and design is consistently
compliant with requirements as far as method definition and usage
is concerned
If MCF < 1, it means that

a) UM > 0 i.e. there are certain methods used in activity
and statechart diagrams which are not defined in the
class diagram.

b) HM > 0 i.e. there are some methods that are not used in
activity diagram.

Degree of consistency of Requirement Implementation
If MCF=1 or MCF<1 and UM=0, then this is a case of consistent
implementation of requirements in analysis and design phase.
Other values of MCF indicates the level or degree of consistency
achieved in analysis and design

By taking average of MCF values for all the classes of the class
diagram,

MCFav =
n

MCFi
where i=1..n are classes used

Design Compliance Metrics II (DCM II)
The design compliance metrics (DCM) is computed from ECF,
CCF and MCF for each use case as follows:

 DCMU=
3

MCFavCCFECF

The value of DCM will be between 0 and 1 and we compute the
average of all DCM’s for all classes used for use case in the set U
(implemented use case).
Finally the DCM for a requirement is calculated as the average of
DCM value for all the use cases used to realize a requirement.

DCM =
n

DCMi
where i=1..n are implemented use cases for

a requirement.
A value of 1 indicates that the requirement has been consistently
implemented in activity, statechart and class diagrams. This
implies that all methods and classes (objects) used in activity and
statechart diagrams are defined in class diagram.

A value less than 1 indicates the level of inconsistency in the
behavioral and structural design.

6. CASE STUDY
We have considered two examples, one of an ATM management
System where a user can deposit to or withdraw from his bank
account and the other one is a library management system, where
the library member can issue and return books. Our metrics is
applied to both and results are presented in the following sub
sections.

A. ATM System
The use case diagram is shown in Fig 1 where each requirement
maps to a use case. The events of the use case “Withdraw” is
shown in Fig 2. The activity diagram corresponding to the basic
flow of event of use case “Issue Book”, and the statechart diagram
of the “Member” object is shown in Fig 3 and Fig 4, respectively.
The class diagram is shown in Fig 5.

Fig 1: Use case Diagram of ATM System

Use Case Name Event ID Event Description

WithdrawCash

01 Customer inserts Card
02 Customer enters PIN
03 Authorization of card done
04 If PIN is invalid, card ejected

05
If PIN is valid, enter amount to
withdraw

06 Check account balance

07
If sufficient balance not
available, display account balance

08
Debit balance by
withdrawAmount

09
Dispense Withdaw Amount as
cash through ATM slot

10 Display account balance
11 Eject card
12 Customer collects card

Fig 2: Basic Flow of Events for “Withdraw Cash” use case

Fig 3: Activity Diagram depicting Flow of Events for “Withdraw
Cash” use case

Fig 4: State chart diagram of “ATM Machine” object

Fig 5: Class Diagram of ATM System

 Requirement-Design Metrics for ATM
In this section we show the results of application of our metrics on
the ATM case study.
Design Compliance Metrics - DCM
This metrics calculates ECF, CCF, MCF and hence DCM for each
Use case. In this case only two use cases have been further
implemented in design and we show the results for one use case
“Withdraw Cash” as an example.
Table-1 shows the computation of Event Differential (ED) and
Event Consistency Factor (ECF) between use case & activity
events. Table 2, 3, 4 show Class & Method differentials between
activity-class, statechart-class and activity statechart diagrams,
respectively.

Use Case Diagram Activity State Diagram
EDUsecaseI

D
EventI

D
Activity Event Class

Withdraw
Cash

01
Customer inserts
Card

Custom
er

0

02
Customer enters
PIN

0

05
If PIN is valid,
enter amount to
withdraw

0

09
Dispense Withdaw
Amount as cash
through ATM slot

0

Use Case Diagram Activity State Diagram
EDUsecaseI

D
EventI

D
Activity Event Class

12
Customer collects
card

0

10
Display account
balance ATM

0

11 Eject card 0

03
Authorization of
card done

Bank

0

06
Check account
balance

0

08
Debit balance by
withdrawAmount

0

04 - - 1

ECF= (CE/(CE+UE)) = 10/11 = 0.90
Table 1: Metrics (Event Differential)

Activity State Diagram Class Diagram
MD

AC-CL
CD

AC-CLActivity
Event

Class Method Class

Insert Card

Customer

Custome

Custo
mer

0

0

Enter PIN Custome 0
Enter

amount
getAcco

unt
0

Take money
from slot

match 0

Take card - 1

Show
balance

ATM
Machine

-

ATM

1

0

Eject card - 1

-
setCusto
merNum

ber
-1

-
selectCu
stomer

-1

-
selectAc

count
-1

-
withdra

w
-1

- deposit -1

- setState -1

Authorize

Bank

readCust
omer

Bank

0

0
Check

account
balance

- 1

Debit
account

withdra
w

0

-

-

deposit

BankA
ccount

-1

-1-
withdra

w
-1

-
getBalan

ce
-1

Table 2: Metrics AC-CL (Class and Method Differential)

Statechart Diagram Class Diagram
MD

ST-CL
CD

ST-CLMethod Class Method Class

checkPin

ATM-
Machine

ATM ()

ATM-
Machi

ne

0

0
Pin-ok - 1

Network-
found

- 1

Power-
off

- 1

Table 3: Metrics ST-CL (Class and Method Differential)

Statechart Diagram Activity Diagram
MD

ST-AC
CD

ST-ACClass Method Class Method

ATM-
Machine

checkPin

ATM-
Machine

- 1

0
Pin-ok - 1

Network-
found

- 1

Power-
off

- 1

Table 4: Metrics ST-AC (Class and Method Differential)
Based on the values of Class and Event Differentials from Table
2, 3 and 4, Class Consistency Factor (CCF) and Method
Consistency Factor (MCF) are calculated as shown in Table 5 and
6, respectively.

Class CDAC-CL CDST-CL Type CCF

Customer 0 - CC

3/4=0.75
ATM-Machine 0 0 CC

Bank 0 0 CC

BankAccount -1 -1 HC

Table 5: Calculation of CCF for LMS
This indicates that for the ATM system, about 75% of the classes
is consistent
Similarly, MCF can be calculated as given below-

Class Method
MD

AC-CL

MD
ST-CL

Type

MCF

CM /
(UM +
CM +
HM)

Custome
r

customer 0 - CM

1getAccount 0 - CM

match 0 - CM

ATM
machine

ATM -1 - HM

0

setCustomerNu
mber -1 0 HM

selectAccount -1 0 HM

selectCustomer -1 0 HM

Withdraw -1 0 HM

Deposit -1 0 HM

setState -1 0 HM

Bank

bank 0 CM

0.25
readCustomer -1 HM

addCustomer -1 HM

findCustomer -1 HM

BankAcc
ount

bankAccount

0
deposit -1 HM

Withdraw -1 HM

getBalance -1 HM

MCFav 0.32

Table 6: Calculation of MCF for ATM
Thus overall Design Compliance Metrics for “Withdraw Cash”
use case,
DCM = (ECF + CCF + MCFav)/3 = (0.9 + 0.75 + 0.32)/3 =
0.656
This value of DCM indicates that the level of consistency of
implementation of “Withdraw Cash” use case is 65.6%.
Likewise DCM for other use cases may be computed.

B. Library Management System
The use case diagram is shown in Fig 6 where each requirement
maps to a use case. The events of the use case “Issue Book” is
shown in Fig 7. The activity diagram corresponding to the basic
flow of event of use case “Issue Book”, and the statechart diagram
of the “Member” object is shown in Fig 8 and Fig 9, respectively.
The class diagram is shown in Fig 10.

Fig 6: Use case Diagram of LMS

Use Case
Name

Event ID Event Description

Issue
Book

01 The librarian enters the member ID

02 Member validation

03 Checking is made if issue limit for the
member has exceeded.

04 The librarian enters book id.

05 Validation of the book takes place.

06 Checking is made if book needs to be
re-issued

Use Case
Name

Event ID Event Description

07 Checking is made to see if any demand
is pending on the book

08 If no demand is pending re-issue done

09 If book is not for re-issue, checking is
made to see if book is available

10 If available, issue book

11 If not available, place demand on book

12 If demand placed, ask for any other
book of the same author/subject

Fig 7: Basic Flow of Events for “Issue Book” use case

Fig 8: Activity Diagram depicting Flow of Events for “Issue
Book” use case

Fig 9: State chart diagram of “Mamber” object of LMS

Fig 10: Class Diagram of LMS

 Requirement-Design Metrics for LMS
In this section we show the results of application of our metrics on
the Library Management case study.
Design Compliance Metrics - DCM
This metrics calculates ECF, CCF, MCF and hence DCM for each
Use case. In this case only two use cases have been further
implemented in design and we show the results for one use case
“Issue Book” as an example.
Table 7 shows the computation of Event Differential (ED) and
Event Consistency Factor (ECF) between use case & activity
events. Table 8, 9, and 10 show Class & Method differentials
between activity-class, statechart-class and activity statechart
diagrams, respectively.

Use Case Diagram Activity State Diagram

EDUse
Case ID

Event
ID

Activity Event Class

Issue
Book

1
Enter Member

ID Interface
Class

0

4 Enter Book ID 0

2
Is Member

valid

Member

0

3
Can member
issue book

0

- - -

5
Is BookID

valid Book
0

9
Is book

available
0

6
Is book for re-

issue
LibTrans

0

11 Place Demand 0
10 Issue Book 0
8 Re-issue book 0

11 Place demand

Book_Details

0

10 Issue Book 0

8 Re-issue book 0

7
Is demand
pending

0

Use Case Diagram Activity State Diagram

EDUse
Case ID

Event
ID

Activity Event Class

Issue
Book

1
Enter Member

ID Interface
Class

0

4 Enter Book ID 0

12 - - 1

ECF = CE/(CE+UE) = 16/17 0.94

Table 7: Metrics (Event Differential)

Activity State
Diagram

Class Diagram
MD

AC-CL
CD

AC-CLActivity
Event

Class Method Class

Enter
Member

ID Interface
Class

-
-

-
1

Enter
Book ID

- -

Is
Member

valid

Member

getMem
berDetai

ls

Mem
ber

0

0

Can
member

issue
book

getMaxI
ssueLimi

t
0

-
bookIssu

e
-1

Is
BookID

valid Book
getBook
Details

Book
0

0
Is book

available
GetStoc

kBal
0

Is book
for re-
issue

LibTrans

-

LibTr
ans

1

0
Place

Demand
addTran

s
0

Issue
Book

addTran
s

0

Re-issue
book

addTran
s

0

Place
demand

Book_D
etails

setStatus

Book
_Deta

ils

0

0

Issue
Book

Issue 0

Re-issue
book

reissue 0

Is
demand
pending

getStatus 0

- - - - -

Table 8: Metrics AC-CL (Class and Method Differential)

Statechart Diagram Class Diagram
MD

ST-CL
CD

ST-CL

Method Class Method Class

issueBoo
k

Member
issueBoo

k
0

issue Book issue
Book

0
0

return return 0

Statechart Diagram Class Diagram
MD

ST-CL
CD

ST-CLMethod Class Method Class

placeDe
mand

placeDe
mand

0

Table 9: Metrics ST-CL (Class and Method Differential)

Statechart Diagram Activity Diagram
MD

ST-AC
CD

ST-ACClass Method Class Method

Member
issueBoo

k
Member

Issue
book

0 0

Book
issue

Book

issue 0

0placeDe
mand

Place
Demand 0

Table 10: Metrics ST-AC (Class and Method Differential)

Based on the values of Class and Event Differentials from Table
7, 8, 9 and 10, Class Consistency Factor (CCF) and Method
Consistency Factor (MCF) are calculated as shown in Table 11
and 12, respectively.

Class CDAC-CL CDST-CL Type CCF

Interface 1 - UC

3/5=0.6

Member 0 0 CC

Book 0 0 CC

Book_details -1 -1 HC

LibTrans 0 0 CC

Table 11: Calculation of CCF for LMS
This indicates that for the Library management system, about 60%
of the classes are consistent and present in activity, class,
statechart diagram.
Similarly, MCF can be calculated as given below-

Class Method
MD

AC-CL

MD
ST-CL

Type

MCF

CM /
(UM +
CM +
HM)

Interface

isMemberValid 1 0 UM

0isBookValid 1 0 UM

IsBookAvl 1 0 UM

Member

getMemberDet
ails 0 0 CM

3/
(3+0+0

) =1

getMaxIssueLi
mit 0 0 CM

IssueBook 0 0 CM

Book

getBookDetails 0 - CM

4 /
(4+0+0

)= 1

getStockBal 0 - CM

Issue 0 0 CM

reissue 0 - CM

LibTrans

getMemberTra
ns 0 0 CM

1
addTrans 0 0 CM

Book_de
tails

getStatus -1 - HM
0

setStatus -1 - HM

MCFav 3/5=0.6

Table 12: Calculation of MCF for LMS
Thus overall Design Compliance Metrics for “Issue Book” use
case,
DCM = (ECF + CCF + MCFav)/3

= (0.94+0.6+0.6)/3 = .713
This value of DCM indicates that the level of consistency of
implementation of “Issue Book” use case is 71.3%.

7. CONCLUSION
The adoption of UML as a standard for modeling design
specifications of object-oriented systems has made modeling
simpler and easy to understand with lots of tools supporting it.
However, UML being a visual language, is semi-formal in nature
and hence verification of design in UML has triggered
challenging opportunities of research in this domain. In this paper
we present a metrics based analysis of requirements. We propose
a new set of metrics based on UML models namely –Design
Compliance Metrics II (DCM - II), which is an extension of our
earlier work to measure extent of coverage of a requirement in
design using class and sequence diagram. DCM-II is a unique
method for studying consistency between activity, statechart and
class diagrams of UML implementing the events of use cases of
use case diagram by providing quantitative feedback on the level
of consistency in design at any point of time. In this paper we
have considered only use case, activity, statechart and class
diagrams and in our future work we intend to extend this concept
further and fine-tune the metrics by including other commonly
used UML diagrams. Application of these metrics on various case
studies would enable us doing a comparative analysis of the
consistency among analysis and design models and take
appropriate actions.

REFRENCES
[1] P. Krishnan, “Consistency checks for UML”, Seventh Asia-

Pacific Software Engineering Conference (APSEC'00),
Singapore, pp 162, December 05 - 08, 2000.

[2] Alexander Egyed, “Scalable Consistency Checking Between
Diagrams-The ViewIntegra Approach”, 16th IEEE
International Conference on Automated Software Engineering
(ASE'01), , San Diego, California, pp 387, November 26 - 29,
2001.

[3] Martin Wolf, Evgeni Ivanov, Rainer Burkhardt and Ilka
Philippow, “UML Tool Support: Utilization of Object-
Oriented Models”, Technology of Object-Oriented Languages
and Systems (TOOLS 34'00), Santa Barbara, California, pp
529, July 30 – August 3, 2000.

[4] Hazem Hamed and Ashraf Salem, “UML-L: An UML Based
Design Description Language”, ACS/IEEE International
Conference on Computer Systems and Applications
(AICCSA'01), Beirut, Lebanon, pp 0438, June 25 - 29, 2001.

[5] Andrea Zisman and Alexander Kozlenkov, ”Knowledge Base
Approach to Consistency Management of UML

Specifications”, 16th IEEE International Conference on
Automated Software Engineering (ASE'01), San Diego,
California, pp 359, November 26 - 29, 2001.

[6] Jing Liu, Zhiming Liu, Jifeng He and Xiaoshan Li, “Linking
UML Models of Design and Requirement”, 2004 Australian
Software Engineering Conference (ASWEC'04) Melbourne,
Australia, pp 329, April 13 - 16, 2004.

[7] Soon-Kyeong Kim and David Carrington, “A Formal Object-
Oriented Approach to defining Consistency Constraints for
UML Models”, 2004 Australian Software Engineering
Conference (ASWEC'04), Melbourne, Australia,pp 87, April
13 - 16, 2004.

[8] Boris Litvak, Shmuel Tyszberowicz and Amiram Yehudai,
“Behavioral Consistency Validation of UML Diagrams”, First
International Conference on Software Engineering and Formal
Methods (SEFM'03), Brisbane, Australia, pp 118, September
22 - 27, 2003.

[9] Pascal André, Annya Romanczuk and Jean-Claude Royer,
“Checking Consistency of UML Class Diagrams using Larch
Prover”, Electronic Workshops in Computing (eWiC),
Rigorous object-oriented Methods, York, UK, 17th Jan, 2000.

[10] Jochen M. Küster and Jan Stehr, “Towards Explicit
Behavioral Consistency Concepts in the UML”, Second
International Workshop on Scenarios and State Machines :
Models, Algorithms and Tools, Portland, Oregon, USA, May
3, 2003.

[11] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel and
Stefan Sauer, “Testing the Consistency of Dynamic UML
diagrams”, Sixth International conference on Integrated Design
and Process Technology, Pasadena, California, June 23-28,
2002.

[12] Tom Mens, Ragnhild, Van der Straeten and Jocelyn
Simmonds, “Maintaining Consistency between UML Models
with Description Logic Tools, Fourth International Workshop
on Object-oriented Reengineering (WOOR2003), Darmstadt,
Germany, July 21, 2003.

[13] Alexander F. Egyed, “Automatically Validating Model
Consistency during Refinement”, 23rd International
Conference on Software Engineering (ICSE 2001), Toronto,
Ontario, Canada, May 12-19, 2001.

[14] Franck Xia and Gautam S. Kane, “Defining the Semantics of
UML Class and Sequence Diagrams for Ensuring the
Consistency and Executability of OO Software Specification”,
First International Workshop on Automated Technology for
Verification and Analysis (ATVA’2003), National Taiwan
University, December 10-13, 2003.

[15] Aliki Tsiolakis and Hartmut Ehrig, “Consistency Analysis of
UML Class and Sequence Diagrams using Attributed Graph
Grammars”, Proc. Of Joint APPLIGRAPH and GETGRATS
workshop on graph transformation systems, pp 77-86, March
25, 2000.

[16] OMG standard, XMI Specification 2.0, http://www.omg.org
[17] Hyoseob Kim and Cornelia Boldyreff, “Developing Software

Metrics Applicable to UML Models”, Proceedings of 6th
ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering, June 11th, 2002.

[18] Holly Parsons-Hann, Kecheng Liu, “Measuring
Requirements Complexity to Increase the Probability of
Project Success”, Proceedings of 7th Intl. Conf. On Enterprise
Information Systems (ICEIS), Miami, Florida, USA, Vol-
III, pp 434-438, May 24-28, 2005.

[19] Hana Chockler , Orna Kupferman , Robert P. Kurshan ,

Moshe Y. Vardi, “A Practical Approach to Coverage in
Model Checking”, Proc. of 13th Intl. Conf. on Computer
Aided Verification, p.66-78, July 18-22, 2001.

[20] Ahmed Hassan, Walid Rabie Abdel Moez, and Hany H.
Ammar , “An Approach to Measure the Quality of Software
Architectures from UML Specifications”, 5th World Multi-
Conference on Systems, Cybernetics and Informatics and the
7th international conference on information systems, analysis
and synthesis ISAS July, 2001.

[21] Chidamber, S, R, Kemerer, C, F, “A Metrics Suite for
Object-Oriented Design”, In IEEE Transactions on Software
Engineering, Vol. 20, No. 6, pp. 476-493, 1994.

[22] Paul Ammann, Paul E. Black, A Specification-Based
Coverage Metric to Evaluate Test Sets, Proc. of 4th IEEE Intl.
Symposium on High-Assurance Systems Engineering, p.239-
248, Nov 17-19, 1999.

[23] Michael W. Whalen, Ajitha Rajan, Mats P.E. Heimdahl,
Steven P. Miller, “Coverage metrics for requirements-based
testing”, Proc. of the 2006 Intl. symposium on Software
testing and analysis, ISSTA’06, Portland, Maine, USA, pp
25-36.

[24] Ananya Kanjilal, Goutam Kanjilal and Swapan Bhattacharya,
“Metrics based analysis of requirements for object-oriented
systems: An empirical approach”, Infocomp Journal of
Computer Science, Vol. 7, No. 2, page 26-35, 2008.

