
An Extended Function Point Approach for Size Estimation
of Object-Oriented Software

A. Chamundeswari
Department of CSE

SSN College of Engineering,
SSN Nagar – 603 110, India

chamundeswaria@ssn.edu.in

Chitra Babu
Department of CSE

SSN College of Engineering
SSN Nagar – 603 110, India

chitra@ssn.edu.in

ABSTRACT
Early and accurate estimation of software size plays a crucial role
in facilitating effort and cost estimation of software systems. One
of the widely used methodologies for software size estimation is
Function Point Analysis (FPA). Several approaches which adapt
this methodology to Object Oriented (OO) Software have been
proposed in the literature. However, these approaches lack clarity
in providing precise directives for the identification of FPA
components. Further, when a particular class is involved in
multiple interactions such as aggregation, association and
inheritance, its complexity calculation is ambiguous. In order to
address these issues, this paper proposes a new and enhanced
approach for OO software size estimation by providing rules that
better guide the practitioners. This paper discusses a sample case
study describing the applicability of the proposed approach. The
developmental size predicted by applying the proposed approach
for a set of sample projects correlates well with the size prediction
obtained through the existing approaches. Thus, the proposed
approach provides simple and unambiguous guidelines for the
identification of FPA components as well as for the calculation of
complexity due to each one of those components, without
adversely affecting the accuracy of software size estimation.

Categories and Subject Descriptors
Software – Software Engineering – Design Tools and Techniques
- Object Oriented design

General Terms
Measurement, Design

Keywords
Function points, OO software, FPA, size estimation, design.

1. INTRODUCTION
Software size estimation for Object Oriented (OO) software is a
challenging activity at the early stage in software developmental
life cycle. In general, the overall software size is the sum of the
size of code developed and the size of the test cases/test drivers.
The former is referred to as the developmental size of the software
and the latter is known as the size of the testing component. One
of the widely used developmental size estimation techniques is
FPA proposed by Albrecht [2]. It estimates the size of the

software based on the functionality specified in requirements
specification, independent of the technology used to build the
software. It contains five components namely External Interface
File (EIF), Internal Logical File (ILF), External Input (EI),
External Output (EO), and External Inquiry (EQ). All these five
components are estimated based on the functionality. Fourteen
Technical Complexity Factors (TCF) are evaluated based on the
non-functional requirements. FPA has been approved by
International Function Point User Group (IFPUG) and it has
become a standard. It is widely accepted in software industry as a
superior metric compared to the naïve lines of code counting for
developmental size estimation.

With the advent of OO software, FPA has been adapted for
developmental size estimation by many researchers. These
adapted approaches estimate the size of the software by mapping
the various key notions of object model to the FPA components.
However, these adapted approaches, have specified widely
varying directives to estimate the size of the OO software, and
lack in setting up precise guidelines for practitioners supporting
the estimation process. Further, when a class has multiple
relationships with other classes, the complexity of that class
increases. In order to address these issues, this paper proposes a
new and enhanced approach for developmental size estimation
based on object model.

The objective of this research work is to provide a new enhanced
approach for developmental size estimation using object model,
adapting the FPA technique. This has been achieved as follows:

• Mapping the object model components to FPA
components during the analysis phase.

• Setting the rules for FPA mapping to determine the
various parameter values based on the dependency
relationships a given class is involved.

• Estimating the developmental size of OO software, in
terms of function points, by applying this FPA mapping.

The remainder of the paper is organized as follows. Section 2
outlines the FPA based software developmental size estimation
techniques available in the literature. In Section 3, the new
developmental size estimation model which applies FPA mapping
on object model is presented. Section 4 discusses the results.
Section 5 concludes and suggests future directions.

2. RELATED WORK
The research work on quantifiable developmental size estimation
has been the focus of many researchers
[2,5,9,10,15,16,17,18,19,23]. It has been dealt during the various
phases of the software development life cycle such as analysis
[4,9,10,11,23], design [4,15,17,23] and coding [14,19,16]. As
FPA technique cannot be directly used for estimating the size of
OO software [4,10,11,15,23], mapping rules were framed, to
adapt FPA.

Harput et al. [11] have applied FPA to OO requirements
specifications. Rules were defined to specify a semi-automatic
transformation from OO requirements model to FPA model.
Ashman [6] applied use case based estimation model for
determining the project effort. This estimation model was applied
in an iterative development process to improve the accuracy of
successive estimates based on repeatable measurements.
Fernandez et al. [9] have applied COSMIC Full FP to estimate the
size of the OO Software at early stages of development. COSMIC
Full FP is a size estimation method sharing the commonalities of
IFPUG and MARK II size estimation methods.

Minkiewicz [14] proposed a size estimation technique in terms of
predictive object points using the design structure. Fetcke et al.
[10] proposed an approach, to estimate the software by applying
Jacobson methodology and by framing appropriate rules. Antoniol
et al. [3,4,5] proposed Object Oriented Function Points (OOFP)
from the user's perspective at analysis phase using the object
model. Four selection approaches were introduced to estimate the
size, such as single class, aggregation, generalization, and mixed
(aggregation and generalization). Identification of components
and FPA mapping rules as defined in IFPUG were applied. Lot of
flexibility was given to the user to choose any one of the selection
approach and apply. Validation procedure was applied to measure
the performance. Several regression techniques were applied to
derive a relationship between the lines of code and OOFP. Based
on this relationship, a predictive accuracy of 0.337 was achieved
using generalization selection method.

Ram et al. [15] proposed Object Oriented Design Function
Point(OODFP) technique, from the designer's perspective at
design phase using the object model for developmental size
estimation. In this work, the single class selection method [5] was
updated with class complexity classification. The class
complexities such as low, average and high was defined with their
weightage, based on data visibility. This complexity table along
with FPA was used to estimate the developmental size. The
complexity due to inheritance, and polymorphism were also taken
into account. Zivkovic et al. [23] proposed an Iterative Estimation
Technique(IET) to improve the accuracy of the estimation with
more data, at three-abstraction levels in the designer’s perspective.
Estimation is done in three stages such as basic, comparative and

final. In final stage, OO to FPA mapping[5] was followed, with
modified complexity table [1] in estimating Transaction
Function(TF) complexity. Effort in terms of size was empirically
evaluated and an error of 9.8% was achieved.

Thus, each method has its own unique way in determining the
developmental size. The formation of ILF remains the same in
OOFP, OODFP, and IET. However, ILF complexity calculation
in OODFP slightly differs from the OOFP method for inheritance
data. The formation of TF in OOFP is not clearly stated. In
OODFP technique, it is clearly stated for each return type,
arguments, function type like virtual, override, etc. IET follows
the same approach as OOFP, but applies the modified complexity
table [1] to determine TF complexity. In all these approaches,
when a given class has multiple interactions with other classes,
the increased ILF complexity of the given class is not directly
accounted for. Instead, this complexity is indirectly evaluated by
the grouping of classes based on aggregation, association and
inheritance. However, there is a lot of ambiguity in deciding the
grouping of classes and this subsequently results in variations in
size estimation depending upon which way the classes were
grouped. Thus, in order to avoid this ambiguity, this paper
proposes a new and enhanced approach for developmental size
estimation of OO software.

3. PROPOSED SIZE ESTIMATION
The main objective of FPA is to determine the size based on
functional requirements of the software application. The various
components in the object model are mapped to FPA components
so that the FPA can be applied for size estimation. Software
comprises of many applications and it is essential to identify the
boundaries of different applications. The boundaries are classified
into two categories: internal and external. An internal boundary in
the object model is the class diagram which contains different
classes to perform different functionalities within the given
application. An external boundary in the object model is a set of
classes which is referenced by the application outside the internal
boundary. Thus, internal boundary is mapped to ILF component
of FPA, while external boundary is mapped to EIF component of
FPA. Methods in the classes are the main transactions and they
are mapped to EI components of FPA. Figure 1 gives a pictorial
overview of the proposed developmental size estimation model.
The complexity due to various ILF, TF and EIF components are
summed up to estimate the developmental size of the software,
OMFP(Object Model Function Point) based on object model.

Developmental size estimation is determined based on the
following steps: The first step is the identification of files and
transactions within the internal boundary. The second step is to
assign weights for the files and transactions. The third step is to
estimate the developmental size of the software. The following
subsection discusses these steps in detail.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1. Size estimation model

3.1 Mapping Object Model to FPA
The classes are the main candidates in the class diagram based on
which the entire size estimation is carried out. The class diagram
has various parameters such as classes, identifiers, methods, and
relationships, which are valuable resources for size estimation. A
class can interact with another through one or more relationships
such as association, aggregation, and inheritance.

3.1.1 Identification and Classification of ILF
Each class in a class diagram performs a different functionality
addressed by the software. A given class can be invoked by other
classes or a given class can invoke the other classes. Thus, a class
plays a vital role through different relationships it has with other
classes. Hence, the complexity of each class needs to be precisely
estimated to predict the size of the entire software to be
developed. All the classes within the internal boundary are
identified and mapped to the ILF component of FPA.

Classification of ILF depends on two parameters, Record Element
Type (RET) and Data Element Type (DET) as referred in IFPUG
[12]. RET represents a user recognizable group of logically
related data. DET represents a simple unique user recognizable,
non-recursive data in RET. The rules for proper classification of
RET and DET in a given class have been formulated as follows:

[1] Simple data types contained in this class such as
integer, string, float, etc. are assigned one DET
each.

[2] Complex data types contained in this class such as
event, object, etc. are assigned one RET each.

[3] If this class is involved in a single association or
simple aggregation relationship with another class,
one DET is assigned.

[4] If the given class is in any one of the following
relationships with another class, such as multiple
association, composite aggregation, simple
aggregation or multiple association with other
class, one RET is assigned for each.

[5] If this class is a base class, one RET is assigned.
[6] If this class is a derived class, one RET is assigned.
[7] If this class is a derived class, one DET is assigned

for each derived simple data type from its base
class.

[8] If this class is a derived class, then one RET is
assigned for each derived complex data type from
its base class.

[9] The given class itself is accounted for one RET.

Once, RET and DET parameters are identified and classified for
each individual class in a class diagram, complexity of the ILF
can be estimated using the ILF complexity table as defined in
IFPUG standard[12].

3.1.2 Identification and Classification of TF
Each class has one or more methods and all the transactions
happen through them. Methods in a given class can be invoked by
other class methods, or these methods invoke methods belonging
to other classes. Only concrete methods are considered and
abstract methods are not considered. Polymorphism is achieved
through method overloading or inheritance. Hence, virtual,
override and overload methods are considered as separate
methods. Thus, these methods that activate transactions are
termed as Transaction Functions (TF). They play a vital tole and
hence they need to be precisely estimated to predict the
developmental size of the software. These TF are identified and
mapped to the EI component of FPA.

Classification of TF depends on two parameters namely File Type
Referenced (FTR) and DET. FTR represents a transaction in EI.
DET represents a unique user recognizable and non-recursive data
in FTR. The rules for proper classification of FTR and DET in a
given TF have been formulated as follows:

[10] If the return type is void, in TF, one DET is
assigned.

[11] If the return type from the TF is a simple data type
such as integer, string, float, etc., one DET is
assigned.

[12] If the return type from the TF is a complex data
type such as objects, events, etc. one FTR is
assigned.

[13] If the argument is void in TF, one DET is assigned.
[14] If the argument is a simple data type in TF, one

DET is assigned for each.
[15] If the argument is a complex data type in TF, one

FTR is assigned for each.
[16] If this TF is involved in multiple association with

another TF, one FTR is assigned.
[17] If this TF is involved in single association with

another TF, one DET is assigned.
[18] The given TF in class diagram is accounted for one

FTR.

Once, FTR and DET parameters are identified and classified for
each individual TF in the class diagram, complexity due to that TF
can be estimated using EI complexity table as defined in IFPUG
standard [12].

3.2 Size Estimation
The size estimation of a software application can be determined
by applying all the above eighteen proposed rules. The proposed
estimation, OMFP, is calculated as shown below:

OMFP = Unadj OMFP * TCF
where

Unadj OMFP = EIF + ILF + TF
EIF = f (RET, DET)
ILF = f (RET, DET)
TF = f (FTR, DET)
TCF = 0.65 + 0.01 * Σ ti

OMFP is determined from four components namely EIF, ILF, TF
and Technical Complexity Factor (TCF). TCF is determined from
fourteen characteristics (ti,) with ‘i’ varying from 1 to 14, as
defined by Albrecht [2]. The following section describes how the
proposed size estimation technique can be applied for a sample
case study.

4. RESULTS AND DISCUSSIONS
Consider a sample case study for which the class diagram is
shown in Figure 2, to validate the proposed estimation model.
Eighteen mapping rules as specified in Sections 3.1.1, 3.1.2, and
the formula in Section 3.2 are applied on this case study. There
are totally 6 classes, 10 methods, and 9 data types. There are three
association relationships, one base class, two derived classes, one
simple aggregation and one complex aggregation. ILF's parameter
values are identified and classified by applying rules 1 to 9 to
determine the values of RET and DET. TF's parameter values are
identified and classified by applying rules 10 to 18. ILF and TF
size for the sample case study is tabulated in Table 1 and Table 2.
TCF for the 14 characteristics is calculated as 1.07.

Unadj OMFP = ILF + TF

 = 45+32 = 77
 OMFP = Unadj OMFP * TCF

 = 77 * 1.07 = 82.39 FP

The proposed size estimation technique, OMFP is also applied on
four different projects developed in software engineering
laboratory. These projects were developed using OO development
process. Developmental size estimation techniques such as OOFP
[5] and UCMfp [7] which adapt FPA during analysis phase were
applied on those projects. The comparison of projects using
UCMfp, OOFP, and OMFP is tabulated in Table 3. The correlation
coefficient obtained through the data sets in Table 3 signifies that

Figure 2. Sample case study.

Table 1. ILF complexity estimation

ILF RET DET Complexity

Item 1 1 7

ItemOrder 2 1 7

Purchase 8 1 10

SalesItem 2 1 7

StockItem1 3 2 7

StockItem2 4 4 7

Total ILF 20 10 45

 Table 2. TF complexity estimation
TF FTR DET Complexity

void orderBy() 2 2 3
integer modify() 2 2 3
void salesLineItem() 4 2 4
virtual void addRow() 4 2 4
void sales(p: Purchase) 2 2 3
integer salesAdd() 1 3 3
override void addRow() 1 2 3
boolean verify() 1 2 3
override void addRow() 1 2 3
void sell 1 2 3

Total TF 19 20 32

the prediction of size estimation at the analysis stage achieved
through the proposed approach compares well with the earlier
approach OOFP that is based on object model and UCM fp that is
based on use case model. The rules that are proposed in OMFP
simplify the identification of FPA components, while retaining the
estimation accuracy of its counterpart approaches. Specifically,
rule 4 ensures that a class that is involved in more number of
interactions will have more complexity compared to a class which
is involved in lesser number of interactions. This eliminates the
need for ambiguous grouping of classes and the consequent
disparity that arises due to the possibility of variations in grouping
choices selected by various estimators.

5. CONCLUSIONS AND FUTURE WORK
A new and enhanced approach for estimating the developmental
size of OO software is proposed by applying FPA on Object
model. This approach involves mapping of object model
components to FPA components. Classes and their various
relationships are considered to estimate the size. Eighteen rules
are proposed to guide the practitioners for identification and
classification of FPA components for size estimation. This
technique is applied on four sample projects and the
corresponding OMFP is estimated. These results are compared
with the function points calculated for the same set of projects by
applying the existing developmental size estimation approach.
The correlation coefficient achieved signifies that the size
estimation using the proposed approach compares well with the
results obtained through the existing approaches. Thus, the
proposed approach removes the ambiguity in identification of

Table 3. Comparison of size estimation techniques

 No. of

Requirements
No. of

Use cases
No. of

Classes
UCMfp OOFP OMFP

Passport automation system 22 10 7 89.88 83.46 86.67
e-book management system 21 8 7 83.46 87.74 88.81
Online photo sharing and indexing 15 10 6 92.02 93.09 97.37
Foreign exchange system 21 10 7 108.07 115.56 118.77
Correlation
 With OOFP
 With UCMfp

1

0.95

FPA components and in the calculation of their complexity,
while maintaining the accuracy in size estimation. Future work
is to empirically validate this size estimation model by applying
it on large scale projects from software industry.

6. REFERENCES
[1] Al-Hajri M A, Ghani A A A, Sulaiman M N, Selamat

M.H, Modification of standard function point complexity
weights system, Journal of Systems and Software, 2005,
pp. 195–206.

[2] Albrecht A, “Measuring application development

productivity”, IBM Application Development Symposium,
1979, pp. 83-92.

[3] Antoniol G, Calzolari F, Cristoforetti L, Fiutem R,

Caldiera G, “Adapting function points to object oriented
information systems”, Lecture notes in computer science,
Advanced Information System Engineering, Vol 1413,
1998, pp. 59-76.

[4] Antoniol G, Fietum R, Lokan C, “Object oriented function

points: An empirical validation”, Journal Empirical
Software Engineering, Vol 8, No 3, Sep 2003, pp. 225-
254.

[5] Antoniol G, Lokan C, Caldiera G, Fiutem R, “A function

point-like measure for object oriented software”,
Empirical Software Engineering, Vol 4, Sep 1999, pp.
263-287.

[6] Ashman R, “Project estimation: A simple use-case based

model”, IT professional, Vol 6, No 4, Jul 2004, pp. 40-44.

[7] Chamundeswari A and Chitra B., “Function point size

estimation for object oriented software based on use case
model”, Third International Conference on Software and
Data Technologies, July 2008, pp. 114–120.

[8] COSMIC-FFP Measurement Manual, Common Software

Measurement International Consortium, Vol 2.2, 2003.

[9] Fernandez N C, Abrahao S, Pastor O, “Towards a

functional size measure for object oriented systems from
requirements specifications”, Proceedings of the Fourth
International Conference on Quality Software, Vol 00,
2004, pp. 94-101.

[10] Fetcke T, Abran A, Nguyen T H, “Mapping the OO-

Jacobson approach into function point analysis”,
Proceedings of IFPUG, 1997 Spring Conference, 1997,
pp. 134-142.

[11] Harput V, Kaindl H, Kramer S, “Extending function point

analysis of object oriented requirements specifications”,
Eleventh IEEE International Software Metrics
Symposium, Vol 00, 2005, pp. 39-49.

[12] IFPUG, Function Point Counting Practices Manual,

Function Point Users Group, Westerville, Ohio, 1999.

[13] MK II Function Point Analysis, Counting Practices

Manual, Version 1.31, United Kingdom Software Metrics
Association, 1998.

[14] Minkiewicz A F, “Measuring object oriented software

with predictive object points”, Proceedings of the
Conference on Applications in Software Measurements,
Oct 1997.

[15] Ram D J, Raju S V G K, “Object oriented design function

points”, Proceedings of the First Asia Pacific Conference
on Quality Software, Hong Kong, 2000, pp. 121-126.

[16] Schooneveldt M, “Measuring the size of object oriented

systems”, Proceedings of the Second Australian
Conference on Software Metrics, Metrics Association,
Nov 1995, pp. 168-177.

[17] Uemura T, Kusumoto S, Inoue K, “Function point

analysis using design specification based on the Unified
Modeling Language”, Journal of Software Maintenance
Evolution-Research Practice, Vol 13, 2001, pp. 223-243.

[18] Uemura T, Kusumoto S, Inoue K, “Function Point

measurement tool for UML design specification”,
Proceedings of the Sixth International Symposium on
Software Metrics, Vol 62, 1999, pp. 62-69.

[19] Whitmire A S, “Applying function points to object

oriented software models”, Software Engineering
Productivity Handbook, Mc Graw-Hill, New York, 1992,
pp. 229-244.

[20] Zivkovic A, Hericko M, “Tips for estimating software size
with FPA method”, Proceedings of the IASTED
International Conference on Software Engineering, Acta
Press, 2004, pp. 515-519.

[21] Zivkovic A, Hericko M, Brumen B, Beloglavec S,

Rozman I, “The impact of details in the class diagram on
software size estimation”, Informatica, Vol 16, No 2,
2005, pp. 1-18.

[22] Zivkovic A, Hericko M, Kralj T, “Empirical assessment of

methods for software size estimation”, Informatica, Vol 4,
2003, pp. 425-432.

[23] Zivkovic A, Rozman I, Hericko M, “Automated software

size estimation based on function points using UML
models”, Journal of Information and Software
Technology, Vol 47, 2005, pp. 881-890.

