An Extended Function Point Approach for Size Estimation
of Object-Oriented Software

A. Chamundeswari
Department of CSE
SSN College of Engineering,
SSN Nagar — 603 110, India

chamundeswaria@ssn.edu.in

ABSTRACT

Early and accurate estimation of software sizegpkagrucial role
in facilitating effort and cost estimation of soétve systems. One
of the widely used methodologies for software sgémation is
Function Point Analysis (FPA). Several approacheghvadapt
this methodology to Object Oriented (OO) Softwaeeeéh been
proposed in the literature. However, these appremtick clarity
in providing precise directives for the identificat of FPA
components. Further, when a particular class iohmd in
multiple interactions such as aggregation, associatand
inheritance, its complexity calculation is ambigsoin order to
address these issues, this paper proposes a newndyathced
approach for OO software size estimation by pragdiules that
better guide the practitioners. This paper dis@isseample case
study describing the applicability of the proposgzproach. The
developmental size predicted by applying the predaspproach
for a set of sample projects correlates well with $ize prediction
obtained through the existing approaches. Thus, ptleposed
approach provides simple and unambiguous guidelfoeghe
identification of FPA components as well as for tia¢culation of
complexity due to each one of those componentshowit
adversely affecting the accuracy of software sstemation.

Categoriesand Subject Descriptors
Software — Software Engineering — Design Tools @echniques
- Object Oriented design

General Terms
Measurement, Design

Keywords
Function points, OO software, FPA, size estimatdesign

1. INTRODUCTION

Software size estimation for Object Oriented (OOffvgare is a
challenging activity at the early stage in softwdevelopmental
life cycle. In general, the overall software sigethe sum of the
size of code developed and the size of the tessfiast drivers.
The former is referred to as the developmental sizhe software
and the latter is known as the size of the testmmgponent. One
of the widely used developmental size estimatiahneues is
FPA proposed by Albrecht [2]. It estimates the sifethe

Chitra Babu
Department of CSE
SSN College of Engineering
SSN Nagar — 603 110, India

chitra@ssn.edu.in

software based on the functionality specified imuieements
specification, independent of the technology usedouild the

software. It contains five components namely Exkinterface
File (EIF), Internal Logical File (ILF), Externalnput (EI),

External Output (EO), and External Inquiry (EQ)I Alese five
components are estimated based on the function&idyrteen
Technical Complexity Factors (TCF) are evaluatesedaon the
non-functional requirements. FPA has been approvsd
International Function Point User Group (IFPUG) aihchas

become a standard. It is widely accepted in sofvimdustry as a
superior metric compared to the naive lines of coalenting for
developmental size estimation.

With the advent of OO software, FPA has been adajpte
developmental size estimation by many researchétsese
adapted approaches estimate the size of the seftwamapping
the various key notions of object model to the Féa#nponents.
However, these adapted approaches, have specifieélyw
varying directives to estimate the size of the Qifivare, and
lack in setting up precise guidelines for practigocs supporting
the estimation process. Further, when a class hakipha
relationships with other classes, the complexity tlvéit class
increases. In order to address these issues, dpisr proposes a
new and enhanced approach for developmental simmati®n
based on object model.

The objective of this research work is to provideesv enhanced
approach for developmental size estimation usingabbmodel,
adapting the FPA technique. This has been achiasédllows:

e Mapping the object model components to FPA
components during the analysis phase.

e Setting the rules for FPA mapping to determine the
various parameter values based on the dependency
relationships a given class is involved.

« Estimating the developmental size of OO softwane, i
terms of function points, by applying this FPA magp

The remainder of the paper is organized as folld®exction 2
outlines the FPA based software developmental e&enation
techniques available in the literature. In Secti®nthe new
developmental size estimation model which applieé fapping
on object model is presented. Section 4 discussesrdsults.
Section 5 concludes and suggests future directions.

2. RELATED WORK

The research work on quantifiable developmenta sigtimation
has been the focus of many
[2,5,9,10,15,16,17,18,19,23]. It has been dealinduthe various
phases of the software development life cycle sashanalysis
[4,9,10,11,23], design [4,15,17,23] and coding IB416]. As
FPA technigue cannot be directly used for estingathe size of
OO software [4,10,11,15,23], mapping rules werenéd, to
adapt FPA.

Harput et al. [11] have applied FPA to OO requiretee
specifications. Rules were defined to specify aismrtomatic
transformation from OO requirements model to FPAdeio
Ashman [6] applied use case based estimation mdaiel
determining the project effort. This estimation rebdas applied
in an iterative development process to improve abeuracy of
successive estimates based on
Fernandez et al. [9] have applied COSMIC Full Fegdtimate the
size of the OO Software at early stages of devetopnrCOSMIC
Full FP is a size estimation method sharing themomalities of
IFPUG and MARK Il size estimation methods.

Minkiewicz [14] proposed a size estimation techeidgu terms of
predictive object points using the design structiietcke et al.
[10] proposed an approach, to estimate the softwarapplying

Jacobson methodology and by framing appropriagsrintoniol

et al. [3,4,5] proposed Object Oriented Functiorino(OOFP)
from the user's perspective at analysis phase usiagobject
model. Four selection approaches were introducestimate the
size, such as single class, aggregation, generatizand mixed
(aggregation and generalization). Identification aafmponents
and FPA mapping rules as defined in IFPUG wereiappLot of

flexibility was given to the user to choose any ofi¢he selection
approach and apply. Validation procedure was agpbeneasure
the performance. Several regression techniques agpéied to
derive a relationship between the lines of code @ad-P. Based
on this relationship, a predictive accuracy of 0.3&s achieved
using generalization selection method.

Ram et al. [15] proposed Object Oriented Design ckan

Point(OODFP) technique, from the designer's petsmecat

design phase using the object model for developahesize
estimation. In this work, the single class selettizethod [5] was
updated with class complexity classification. Thdass
complexities such as low, average and high wasie@fwith their
weightage, based on data visibility. This complexéble along
with FPA was used to estimate the developmentad. sihe
complexity due to inheritance, and polymorphismenaiso taken
into account. Zivkovic et al. [23] proposed an dtére Estimation
Technique(IET) to improve the accuracy of the eation with

more data, at three-abstraction levels in the desig perspective.
Estimation is done in three stages such as bawicparative and

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oe finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

Conference’04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

researchers

repeatable meastsemen

final. In final stage, OO to FPA mapping[5] wasldoved, with
modified complexity table [1] in estimating Trantan
Function(TF) complexity. Effort in terms of size svampirically
evaluated and an error of 9.8% was achieved.

Thus, each method has its own unique way in deténgithe
developmental size. The formation of ILF remaine #ame in
OOFP, OODFP, and IET. However, ILF complexity cédtion

in OODFP slightly differs from the OOFP method fieheritance
data. The formation of TF in OOFP is not clearlatst. In
OODFP technique, it is clearly stated for each rrettype,

arguments, function type like virtual, overridec.etET follows

the same approach as OOFP, but applies the modifieglexity
table [1] to determine TF complexity. In all theapproaches,
when a given class has multiple interactions witheo classes,
the increased ILF complexity of the given classn@ directly
accounted for. Instead, this complexity is indikeevaluated by
the grouping of classes based on aggregation, iaisoc and
inheritance. However, there is a lot of ambiguitydieciding the
grouping of classes and this subsequently resultaiiations in
size estimation depending upon which way the ctassere
grouped. Thus, in order to avoid this ambiguityis tipaper
proposes a new and enhanced approach for develtgnstre
estimation of OO software.

3. PROPOSED SIZE ESTIMATION

The main objective of FPA is to determine the diesed on
functional requirements of the software applicatidhe various
components in the object model are mapped to FRpoaents
so that the FPA can be applied for size estimat®oftware
comprises of many applications and it is essemiatientify the
boundaries of different applications. The boundaske classified
into two categories: internal and external. Aniing boundary in
the object model is the class diagram which costalifferent
classes to perform different functionalities withthe given
application. An external boundary in the object #lad a set of
classes which is referenced by the applicationideithe internal
boundary. Thus, internal boundary is mapped to édbmponent
of FPA, while external boundary is mapped to EImponent of
FPA. Methods in the classes are the main transec@émd they
are mapped to ElI components of FPA. Figure 1 gavegctorial
overview of the proposed developmental size eskimatodel.
The complexity due to various ILF, TF and EIF comgots are
summed up to estimate the developmental size ofdffigvare,
OMFP(Object Model Function Point) based on objeatiet.

Developmental size estimation is determined based the
following steps: The first step is the identificati of files and
transactions within the internal boundary. The secstep is to
assign weights for the files and transactions. il step is to
estimate the developmental size of the software fitlowing
subsection discusses these steps in detail.

F | e |WF OMFP size
Estimation
TF oW TF

/é

Figure 1. Size estimation model
3.1 Mapping Object Model to FPA

The classes are the main candidates in the clagsadn based on
which the entire size estimation is carried oute Efass diagram
has various parameters such as classes, identifiethods, and
relationships, which are valuable resources fog sigtimation. A
class can interact with another through one or melaionships
such as association, aggregation, and inheritance.

3.1.1 Identification and Classification of ILF

Each class in a class diagram performs a diffef@mttionality
addressed by the software. A given class can heked by other
classes or a given class can invoke the othereda3#us, a class
plays a vital role through different relationshipsias with other
classes. Hence, the complexity of each class rtedols precisely
estimated to predict the size of the entire sofwap be
developed. All the classes within the internal bdany are
identified and mapped to the ILF component of FPA.

Classification of ILF depends on two parameters;dre Element
Type (RET) and Data Element Type (DET) as refemeldFPUG
[12]. RET represents a user recognizable group ogicélly
related data. DET represents a simple unique smgnizable,
non-recursive data in RET. The rules for propessifecation of
RET and DET in a given class have been formulasefdliows:

[1] Simple data types contained in this class such as
integer, string, float, etc. are assigned one DET
each.

Complex data types contained in this class such as
event, object, etc. are assigned one RET each.

If this class is involved in a single associatian o
simple aggregation relationship with another class,
one DET is assigned.

If the given class is in any one of the following
relationships with another class, such as multiple
association, composite aggregation, simple
aggregation or multiple association with other
class, one RET is assigned for each.

If this class is a base class, one RET is assigned.

If this class is a derived class, one RET is agsign

If this class is a derived class, one DET is aggign
for each derived simple data type from its base
class.

If this class is a derived class, then one RET is
assigned for each derived complex data type from
its base class.

(2]
(3]

[4]

[5]

[6]
[7]

(8]

[9] The given class itself is accounted for one RET.

Once, RET and DET parameters are identified anskified for
each individual class in a class diagram, compjeaftthe ILF
can be estimated using the ILF complexity tabledaBned in
IFPUG standard[12].

3.1.2 Identification and Classification of TF

Each class has one or more methods and all thsattons
happen through them. Methods in a given class eanumked by
other class methods, or these methods invoke metheldnging
to other classes. Only concrete methods are caesidand
abstract methods are not considered. Polymorphssachieved
through method overloading or inheritance. Hencefual,

override and overload methods are considered asratep
methods. Thus, these methods that activate traosaciare
termed as Transaction Functions (TF). They playtal tole and
hence they need to be precisely estimated to preitie

developmental size of the software. These TF agatified and
mapped to the El component of FPA.

Classification of TF depends on two parameters haFie Type
Referenced (FTR) and DET. FTR represents a traogaict El.
DET represents a unique user recognizable and emmsive data
in FTR. The rules for proper classification of F&Rd DET in a
given TF have been formulated as follows:

[10] If the return type is void, in TF, one DET is
assigned.

[11] If the return type from the TF is a simple dataetyp
such as integer, string, float, etc., one DET is
assigned.

[12] If the return type from the TF is a complex data
type such as objects, events, etc. one FTR is
assigned.

[13] If the argument is void in TF, one DET is assigned.

[14] If the argument is a simple data type in TF, one
DET is assigned for each.

[15] If the argument is a complex data type in TF, one
FTR is assigned for each.

[16] If this TF is involved in multiple association with
another TF, one FTR is assigned.

[17] If this TF is involved in single association with
another TF, one DET is assigned.

[18] The given TF in class diagram is accounted for one

FTR.

Once, FTR and DET parameters are identified anssified for
each individual TF in the class diagram, compleditg to that TF
can be estimated using EI complexity table as ddfim IFPUG
standard [12].

3.2 SizeEstimation

The size estimation of a software application candbtermined
by applying all the above eighteen proposed rules proposed
estimation, OMFP, is calculated as shown below:

OMFP = Unadj OMFP * TCF
where

Unadj OMFP = EIF + ILF + TF
EIF = f (RET, DET)

ILF = f (RET, DET)

TF = f (FTR, DET)
TCF=0.65+0.01*T't,

OMFP is determined from four components nanili, ILF, TF
and Technical Complexity Factor (TCH)CF is determined from
fourteen characteristics;,Jt with ‘i’ varying from 1 to 14, as
defined by Albrecht [2]. The following section debes how the
proposed size estimation technique can be apptiec fsample
case study.

4. RESULTSAND DISCUSSIONS

Consider a sample case study for which the claagrain is

shown in Figure 2, to validate the proposed estomatodel.

Eighteen mapping rules as specified in Sectionsl33.1.2, and
the formula in Section 3.2 are applied on this csisely. There
are totally 6 classes, 10 methods, and 9 data tjjpese are three
association relationships, one base class, twoeatkdlasses, one
simple aggregation and one complex aggregatioris [h&rameter
values are identified and classified by applyingesul to 9 to

determine the values of RET and DET. TF's parametieres are
identified and classified by applying rules 10 ®. 1LF and TF

size for the sample case study is tabulated ineTatdnd Table 2.
TCF for the 14 characteristics is calculated a3.1.0

Unadj OMFP =ILF + TF

=45+32 =77

= Unadj OMFP * TCF
=77*1.07=8239 FP

OMFP

The proposed size estimation technique, OMFP & aplied on
four different projects developed in software emegirng

laboratory. These projects were developed usingd®@lopment
process. Developmental size estimation techniquels as OOFP

[5] and UCM, [7] which adapt FPA during analysis phase were

applied on those projects. The comparison of ptejacsing
UCMg,, OOFP, and OMFP is tabulated in Table 3. The tatios
coefficient obtained through the data sets in T&8Begnifies that

ftems

wpid sell(s : String)

Furchase

RtemOrder Salesitem

b1 itemOrder

L BRlNCT [cost foat : Integer

b {5t ltemOrder : Integer

void orderBy(b1: Purchase)
integer modifytp : tems)

woid sales(p : Purchase)

void salesLineltern(a - Integer) e

vitual void addR o

Stockiternt Stockitern2

identifier : String expiration : date
number : Integer
type : String

Mydel evistk : Event

override void addRow)

bonlean verify(s : Sting)
override void addRow)

Figure 2. Sample case study.

Table 1. ILF complexity estimation

ILF RET DET Complexity

Item 1 1 7

ItemOrder 2 1 7

Purchase 8 1 10

Salesltem 2 1 7

Stockltem1 3 2

Stockltem?2 4 4 7

Total ILF 20 10 45
Table 2. TF complexity estimation
TF FTR | DET | Complexity
void orderBy() 2 2 3
integer modify() 2 2 3
void salesLineltem() 4 2 4
virtual void addRow() 4 2 4
void sales(p: Purchase) 2 2 3
integer salesAdd() 1 3 3
override void addRow() 1 2 3
boolean verify() 1 2 3
override void addRow() 1 2 3
void sell 1 2 3
Total TF 19 20 32

the prediction of size estimation at the analysa&ge achieved
through the proposed approach compares well with earlier
approach OOFP that is based on object model antUtBat is
based on use case model. The rules that are papo@MFP
simplify the identification of FPA components, whiletaining the
estimation accuracy of its counterpart approaclEgcifically,
rule 4 ensures that a class that is involved inemmumber of
interactions will have more complexity comparedatolass which
is involved in lesser number of interactions. Taigninates the
need for ambiguous grouping of classes and the ecpent
disparity that arises due to the possibility ofiatons in grouping
choices selected by various estimators.

5. CONCLUSIONS AND FUTURE WORK

A new and enhanced approach for estimating theloevental
size of OO software is proposed by applying FPA Q@ipject
model. This approach involves mapping of object ehod
components to FPA components. Classes and theiougar
relationships are considered to estimate the &ighteen rules
are proposed to guide the practitioners for idaaiion and
classification of FPA components for size estinmatiorhis
technique is applied on four sample projects anck th
corresponding OMFP is estimated. These resultscanepared
with the function points calculated for the samederojects by
applying the existing developmental size estimatapproach.
The correlation coefficient achieved signifies thtite size
estimation using the proposed approach compardswital the
results obtained through the existing approachesus,T the
proposed approach removes the ambiguity in ideatifin of

Table 3. Comparison of size estimation techniques

No. of No. of No. of
Requirements | Usecases Classes UCMyp OOFP OMFP

Passport automation system 22 10 7 89.88 83.46 786.4
e-book management system 21 8 7 83.46 87.74 88.41
Online photo sharing and indexin 15 10 6 92.02 093. 97.37
Foreign exchange system 21 10 7 108.07| 115.56 118.F
Correlation

With OOFP 1

With UCM 0.95

FPA components and in the calculation of their clexipy,
while maintaining the accuracy in size estimatiBature work
is to empirically validate this size estimation rabty applying
it on large scale projects from software industry.

6. REFERENCES

[1] Al-Hajri M A, Ghani A A A, Sulaiman M N, Selamat
M.H, Modification of standard function point compity
weights system, Journal of Systems and Softwar@5,20
pp. 195-206.

[2] Albrecht A, “Measuring application development
productivity”, IBM Application Development Symposiy
1979, pp. 83-92.

[3] Antoniol G, Calzolari F, Cristoforetti L, Fiutem R,
Caldiera G, “Adapting function points to objectemied
information systems”, Lecture notes in computeesce,
Advanced Information System Engineering, Vol 1413,
1998, pp. 59-76.

[4] Antoniol G, Fietum R, Lokan C, “Object oriented @tion
points: An empirical validation”, Journal Empirical
Software Engineering, Vol 8, No 3, Sep 2003, pp5-22
254,

[5] Antoniol G, Lokan C, Caldiera G, Fiutem R, “A fuiart
point-like measure for object oriented software”,
Empirical Software Engineering, Vol 4, Sep 1999, pp
263-287.

[6] Ashman R, “Project estimation: A simple use-casseda
model”, IT professional, Vol 6, No 4, Jul 2004, gf-44.

[7] Chamundeswari A and Chitra B., “Function point size
estimation for object oriented software based o case
model”, Third International Conference on Softwared
Data Technologies, July 2008, pp. 114-120.

[8] COSMIC-FFP Measurement Manual, Common Software
Measurement International Consortium, Vol 2.2, 2003

[9] Fernandez N C, Abrahao S, Pastor O, “Towards a
functional size measure for object oriented systénms
requirements specifications”, Proceedings of therffo
International Conference on Quality Software, Vdl, 0
2004, pp. 94-101.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Fetcke T, Abran A, Nguyen T H, “Mapping the OO-

Jacobson approach into function point analysis”,
Proceedings of IFPUG, 1997 Spring Conference, 1997,
pp. 134-142.

Harput V, Kaindl H, Kramer S, “Extending functiowipt
analysis of object oriented requirements specificat,
Eleventh IEEE International Software Metrics
Symposium, Vol 00, 2005, pp. 39-49.

IFPUG, Function Point Counting Practices Manual,
Function Point Users Group, Westerville, Ohio, 1999

MK 1l Function Point Analysis, Counting Practices
Manual, Version 1.31, United Kingdom Software Meri
Association, 1998.

Minkiewicz A F, “Measuring object oriented software
with predictive object points”, Proceedings of the
Conference on Applications in Software Measurements
Oct 1997.

Ram D J, Raju S V G K, “Object oriented design fiorc
points”, Proceedings of the First Asia Pacific Gaahce
on Quality Software, Hong Kong, 2000, pp. 121-126.

Schooneveldt M, “Measuring the size of object daeen
systems”, Proceedings of the Second Australian
Conference on Software Metrics, Metrics Association
Nov 1995, pp. 168-177.

Uemura T, Kusumoto S, Inoue K, “Function point
analysis using design specification based on thiiddn
Modeling Language”, Journal of Software Maintenance
Evolution-Research Practice, Vol 13, 2001, pp. 223-

Uemura T, Kusumoto S, Inoue K, “Function Point
measurement tool for UML design specification”,
Proceedings of the Sixth International Symposium on
Software Metrics, Vol 62, 1999, pp. 62-69.

Whitmire A S, “Applying function points to object
oriented software models”, Software Engineering
Productivity Handbook, Mc Graw-Hill, New York, 1992
pp. 229-244.

[20] Zivkovic A, Hericko M, “Tips for estimating softwarsize
with FPA method”, Proceedings of the IASTED
International Conference on Software EngineeringtaA
Press, 2004, pp. 515-519.

[21] zivkovic A, Hericko M, Brumen B, Beloglavec S,
Rozman I, “The impact of details in the class diagron
software size estimation”, Informatica, Vol 16, Nb
2005, pp. 1-18.

[22] Zivkovic A, Hericko M, Kralj T, “Empirical assessmeof
methods for software size estimation”, Informatica) 4,
2003, pp. 425-432.

[23] zivkovic A, Rozman I, Hericko M, “Automated softwear
size estimation based on function points using UML
models”, Journal of Information and Software
Technology, Vol 47, 2005, pp. 881-890.

