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Abstract

This work furthers the exploration of meaningful definitions for security of Functional Encryption.
We propose new simulation based definitions for function privacy in addition to data privacy and study
their achievability. In addition, we improve efficiency/ underlying assumptions/ security achieved by
existing inner product Functional Encryption and Property Preserving Encryption schemes, in both the
private and public key setting. Our results can be summarized as follows:

• We present a new simulation based definition, which we call Relax-AD-SIM, that lies between
simulation based (SIM) and indistinguishability based (IND) definitions for data privacy, and
implies the function privacy definition of [BRS13a]. Our definition relaxes the requirements on the
simulator to bypass impossibility of SIM in the standard model. We show that the inner product
FE scheme of [KSW08] enjoys Relax-AD-SIM security for function hiding and the inner product
FE scheme of [LOS+10] enjoys Relax-AD-SIM security for data hiding.

• We study whether known impossibilities for achieving strong SIM based security imply actual real
world attacks. For this, we present a new UC-style SIM based definition of security that captures
both data and function hiding, both public key and symmetric key settings and represents the
“dream” security of FE. While known impossibilities rule out its achievability in the standard
model, we show, surprisingly, that it can be achieved in the generic group model for Inner Product
FE ([KSW08]). This provides evidence that FE implementations may enjoy extremely strong
security against a large class of real world attacks, namely generic attacks. It also implies a program
obfuscator for the inner product functionality in the generic group model, which is related to the
hyperplane-membership obfuscator of [CRV10].

• We provide several improvements to known constructions of Inner Product FE. In the private key
setting, the construction by Shen et al. was based on non-standard assumptions, used composite
order groups, and only achieved selective security. We give the first construction of a symmetric key
inner product FE which is built using prime order groups, and is fully secure under the standard
DLIN assumption. Our scheme is more efficient in the size of key and ciphertext than [SSW09],
when the latter is converted to prime-order groups. We also port the public key inner product
scheme of [KSW08] to prime order groups.

• We give the first standard model construction of a property preserving encryption (PPE) scheme
[PR12] for inner-products. Our scheme is secure under the DLIN assumption and satisfies the
strongest definition of security – Left-or-Right security. Note that previously known constructions
were only known to be secure in the generic group model.
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1 Introduction

In recent times, the area of Functional encryption (FE) [SW05, SW] has enjoyed immense importance in
the field of cryptography. Functional encryption is a generalization of public key encryption which allows
tremendous flexibility and control in learning information from encrypted data. In functional encryption,
a user can be provided with a secret key corresponding to a function f , denoted by SKf . Given SKf and
ciphertext CTx = Encrypt(x), the user may run the decryption procedure to learn f(x). Security of the
system guarantees that nothing beyond f(x) can be learned from CTx and SKf .

Classic results in the area focused on constructing FE for restricted classes of functions. Identity based
encryption (IBE) had already been constructed [Sha84, BF01, Coc01, BW06, GPV08, CHKP10, ABB10a,
ABB10b] although it was not viewed as a special case of FE until later. Sahai and Waters provided the first
construction for threshold functions [SW05] which was followed by rapid succession of ever-more powerful
classes of functions: membership checking [BW07], boolean formulas [GPSW06, BSW07, LOS+10], inner
product functions [KSW08, LOS+10, AFV11] and more recently, even regular languages [Wat12]. More
contemporary constructions of Functional Encryption support general functions: Gurabov et al. [GVW13]
and Garg et al. [GGH+13b] provided the first constructions for an important subclass of FE called “public
index FE” (also known as “attribute based encryption”) for all circuits, Goldwasser et al. [GKP+13b]
constructed succinct simulation-secure single-key FE scheme for all circuits and also constructed FE for
Turing machines [GKP+13a]. In a new breakthrough result, Garg et al. [GGH+13a] have constructed
indistinguishability-secure multi-key FE schemes for all circuits.

Despite massive progress in constructing functional encryption systems for advanced classes of func-
tions, it has remained unclear as to what is the “right” definition of security for FE systems. Security
of FE comprises two orthogonal aspects: hiding the message or data embedded in the ciphertext, and
hiding the function embedded in the key. A definitional framework studying data privacy for general FE
was first proposed by Boneh, Sahai, and Waters [BSW11] and O’Neill [O’N10]. These and subsequent
works elucidated the subtleties involved in defining a security model that captures meaningful real world
data privacy. Despite considerable research [BSW11, O’N10, BO12, BF13, AGVW13, CIJ+13], what is
the strongest, achievable notion for data privacy remains an actively debated open question. Unlike its
counterpart, function privacy for FE has received comparatively less attention, primarily because some
information about the function is inherently leaked by FE functionality in the public key setting. To see
this, note that a holder of SKf can always encrypt messages xi of her choice and learn f(xi), thus learn-
ing information about the function. Recently, Boneh et. al. proposed a candidate security definition for
function privacy [BRS13a] in the public key setting. In the symmetric key setting, function privacy was
studied by Shen et al. [SSW09].

In this work, we revisit the security definitions for both data and function privacy of FE.

Data Privacy. Known definitions of data security for FE may be divided into two broad classes: In-
distinguishability (IND) based or Simulation (SIM) based. Indistinguishability based security stipulates
that it is in feasible to distinguish encryptions of any two messages, without getting a secret key that de-
crypts the ciphertexts to distinct values; simulation-based security stipulates that there exists an efficient
simulator that can simulate the view of the adversary, given only the function evaluated on messages and
keys. Boneh et al and O’Neill [BSW11, O’N10] showed that IND based definitions do not capture scenarios
where it is required that the user learn only the output of the FE function, for e.g., when the function
hides something computationally. To get around this, [BSW11, O’N10] proposed SIM based definitions
that study FE in the “ideal world-real world” paradigm. However it has been shown that SIM based data
security is impossible to achieve [BSW11, BO12], even when the adversary is restricted to pre-challenge
queries [AGVW13]. This state of affairs raises the following questions:

1



1. Is there a relaxation 1 of SIM security for data privacy that is stronger than IND based security but
bypasses impossibilities?

2. What do impossibilities for SIM security mean in practice? Does inability to simulate lead to actual
real world attacks?

Function Privacy. In the symmetric key setting, function privacy was first studied by Shen et al.
[SSW09], who define strong IND based security that captures both data and function privacy. In the
public key setting, the first definition for function privacy was suggested very recently by Boneh et al.
[BRS13a]. Their definition stems from the observation that if an adversary has some a-priori knowledge
that the function comes from a small set, then he can encrypt messages that decrypt to different values
for each candidate function, potentially leading to full recovery of the function embedded inside the key.
They propose an IND style “real-or-random” definition of function privacy, which we call ReOrRandFn,
that stipulates that as long as the function f was chosen from a sufficiently high min-entropy distribution,
the adversary should not be able to distinguish SKf from a uniformly random secret key.

Boneh et al. [BRS13a] also suggest that function privacy for FE can be formalized in a framework
inspired by program obfuscation. However, whereas obfuscation security is usually defined in simulation
style, the definition in [BRS13a] is indistinguishability style. Therefore, the real-or-random definition for
function privacy, while elegant and strong, does not compose well with the main accepted definition (SIM
based) of data security. Thus, it is natural to ask:

Is there a natural simulation based definition for function privacy in FE that is at least as strong as the
real-or-random definition of [BRS13a]? Is such a definition achievable?

1.1 Our Results

In this work, we further explore meaningful definitions for FE security, and study relations with existing
definitions. In addition, we improve efficiency/ underlying assumptions/ security achieved by existing inner
product FE schemes, in both the private and public key setting. Our results can be summarized as follows:

• We present a new simulation based definition, which we call Relax-AD-SIM which captures data
privacy as well as function privacy for FE. For data privacy, it interpolates simulation based (SIM)
and indistinguishability based (IND) definitions, while for function privacy, it is at least as strong as
the real-or-random definition of [BRS13a]. Our definition relaxes the requirement on the simulator
to bypass impossibility of SIM based data security in the standard model. We show that the inner
product FE scheme of [KSW08] enjoys Relax-AD-SIM security for function hiding and the inner
product FE scheme of [LOS+10] enjoys Relax-AD-SIM security for data hiding. as long as the predicate
and data vectors are of constant dimension.

• We study whether known impossibilities [BSW11, BO12, AGVW13] for achieving strong SIM based
security imply actual real world attacks. For this, we examine the unified definition of data and
function privacy above, without the relaxation on the simulator, capturing the “dream” security of
FE. While known impossibilities rule out its achievability in the standard model, we show, surpris-
ingly, that it can be achieved in the generic group model for Inner Product FE ([KSW08]). This
provides evidence that FE implementations enjoy extremely strong security against a large class of
real world attacks, namely generic attacks. It also implies a program obfuscator for the inner product
functionality in the generic group model, which is related to the hyperplane-membership obfuscator
of [CRV10].

1Non-adaptive SIM security has been considered where the attacker is only allowed to request keys before he sees the
challenge. The focus of our work will be full adaptive SIM security
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• We provide several improvements to known constructions of Inner Product FE. In the private key
setting, the construction by Shen et al. [SSW09] was based on non-standard assumptions, used
composite order groups, and only achieved selective security. We give the first construction of a
symmetric key inner product FE which is built using prime order groups, and is fully secure under
the standard DLIN assumption. Our scheme is more efficient in the size of key and ciphertext than
[SSW09], when the latter is converted to prime-order groups. We also port the public key inner
product scheme of [KSW08] to prime order groups.

• We give the first standard model construction of a property preserving encryption (PPE) scheme
[PR12] for inner-products. Our scheme is secure under the DLIN assumption and satisfies the
strongest definition of security for PPE – “Left-or-Right” security. Note that previously known
constructions were only known to be secure in the generic group model.

1.2 Related Work and Comparison

In this section, we provide an overview of related work. Since our work touches upon exploring meaningful
security definitions, analyzing their achievability and improving existing constructions of FE and PPE, we
summarize related work in the same three categories.

Security Models. As stated above, the two existing notions of data privacy for FE are IND and SIM,
both of which can be further classified as follows: [O’N10] described the divide between adaptive (AD)
versus non-adaptive (NA) which captures whether the adversary’s queries to the key derivation oracle may
or may not depend on the challenge ciphertext; and [GVW12] described the divide between one versus
many, which depends on whether the adversary receives a single or multiple challenge ciphertexts. Thus,
existing definitions of security belong to the class {1,many} × {NA,AD} × {IND,SIM}.

The study of simulation (SIM) based security for FE was initiated independently by Boneh et al [BSW11]
and O’Neill [O’N10]. Boneh, et al. [BSW11] showed an impossibility even for the “simple” IBE function-
ality under many-AD-SIM security in the non programmable random oracle model. Bellare and O’Neill
[BO12] put forward simulation-based definitions for Functional Encryption with non-black-box simulators.
They also extended the lower bound for IBE [BSW11] to the setting of efficient, non-black-box simulators,
assuming the existence of collision-resistant hash functions. Agrawal et al. [AGVW13] ruled out general
functional encryption for 1-NA-SIM security. Barbosa and Farshim [BF13] extended O’Neill’s equivalence
between indistinguishability and semantic security to restricted adaptive key extraction attacks and show
that this equivalence holds for a large class of functionalities. Intuitively, restricted adaptive simulation
security restricts the key queries an adversary can make after he sees the challenge ciphertext to functions
that are constant over the support of the message distribution, so as to circumvent the “non-committing
encryption style” impossibility exhibited by [BSW11].

Achievability. While there has been fantastic progress for constructing FE schemes for advanced classes
of functions secure under weaker definitions [GVW13, GGH+13b, GGH+13a], the situation is much less
optimistic for achieving stronger definitions of security even for schemes supporting restricted classes of
functions. The only positive results currently known for adaptive simulation based data privacy for FE are
by Boneh et al.[BSW11] for the IBE functionality in the Random Oracle Model. Note that the situation
is better for non-adaptive simulation based data privacy – O’Neill [O’N10] showed that for certain classes
of functions called preimage samplable functions, many-NA-IND and many-NA-SIM are equivalent. As
mentioned above, Barbosa and Farshim [BF13] extended this equivalence to the restricted-adaptive setting,
which is stronger than non-adaptive. However, even with this weakening of adaptivity, they are unable to
achieve simulation based data privacy for inner product predicate FE; indeed they show that inner product
functionality of [KSW08] can be used to encode a one way function under the Small Integer Solution (SIS)
problem, and hence natural approaches to prove its restricted adaptive simulation security fail in the
standard model. The problem of proving adaptive simulation based data privacy of inner product FE is
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explicitly left open both by [BSW11] and [BF13]. Recently, Caro et al [CIJ+13] provided a “compiler”
that converts IND based data security to SIM based data security for the Circuit-FE functionality.

The question of function privacy for FE has received even lesser attention. In the private key setting,
the notion of function privacy was considered by Shen et al. [SSW09] who provided an indistinguishability
style definition for data and function privacy. In the public key setting, Boneh et al [BRS13a] very recently
provided the first security definition for function privacy of FE and achieved it for IBE [BRS13a] and
subspace membership FE [BRS13b]. Their techniques however do not apply to the case of inner product
FE and they leave open the question of achieving function privacy for the same. As described above,
the function privacy definition of [BRS13a] is IND style, and does not compose well with SIM style data
privacy. Our relaxation of the SIM based definition (which we call Relax-AD-SIM) is inspired from “weak
simulation” definitions in the obfuscation literature [Wee05, CRV10], which allow the simulator to have an
inverse polynomial dependency on the distinguishing probability and also permit the simulator to accept
non black box adversary specific advice.

Constructions. Katz et al. [KSW08] provide a construction of inner product FE in the public key setting
achieving data privacy under an IND based definition. Shen et al. [SSW09] achieved a weaker selective
IND based data and function privacy for the inner product functionality, from non-standard assumptions.
Both [SSW09] and [KSW08] schemes for inner product FE use composite order groups. The conversion of
composite order FE schemes to prime order has been studied by [GKSW10, Fre10, OT08, OT09, LOS+10,
Lew12]. The primitive of property preserving encryption was defined by Pandey and Rouselakis [PR12] who
gave security definitions and also provided constructions. Their construction however is only secure in the
generic group model, and they explicitly left open the problem of providing a standard model construction.

1.3 Bypassing Impossibility.

We briefly examine how our techniques can be used to bypass the impossibility of many-AD-SIM secure
inner product FE [BSW11]. Recall the main idea behind the impossibility of many-AD-SIM secure IBE in
the standard model provided by [BSW11]. At a high level, the argument forced the simulator to commit
to a challenge ciphertext before seeing the adaptive (or more precisely post-challenge) key queries of the
adversary. Thus, the challenge ciphertext could not have been programmed to satisfy the requisite relations
with the post-challenge key queries. By choosing the challenge CT to encrypt random bits and setting the
number of challenge ciphertexts to be greater than the length of the secret key, the successful simulator
is forced to achieve an information theoretic compression of random bits, which is impossible. For more
details we refer the reader to [BSW11].

Our definition for relaxed simulation Relax-AD-SIM bypasses the above problem by allowing the sim-
ulator to make more queries than the adversary. For the case of data hiding, the simulator is allowed to
make not just the queries that the adversary makes in the current run of the experiment, but also all the
extra queries that the adversary could have made with noticeable probability, i.e. queries it might make
for a different outcome of its random coin flips. Due to this, the simulator can program the ciphertext
not just for queries asked by the adversary so far, but also for queries that the adversary is likely to ask
in the future. While this seems like a very weak definition at first, we show, surprisingly, that it implies
the well accepted AD-INDmsg definition for data privacy. This is because any successful IND adversary
can be converted to a self censoring Relax-AD-SIM adversary, who for any sequence of random coins, can
only make queries with nonzero probability that do not allow distinguishing between the IND challenge
messages. Thus, the simulator is allowed to make extra queries to the oracle, but none that allow it to
distinguish between the challenge messages. The formal proof is provided in Section 3.

In the generic group model, impossibility is bypassed because even though the simulator makes exactly
the same queries in the same sequence as the adversary, the challenge CT that he returns is not a group
element but rather handle for a group element. Thus, the simulator retains the power to program depen-
dencies between the challenge CT and keys even *after* the CT has been committed to. We remark that
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the generic group proof needs to handle some tricky issues specific to the generic group setting. An example
is that the adversary who owns some secret keys (via their group handles) can encrypt his own messages
and learn dependencies between these and his secret keys. These dependencies must be programmed by
the simulator, but the simulator does not know what the adversary is doing and must carefully extract
this information from the adversary.

Organization of Paper. In Section 2, we introduce functional encryption and provide known definitions
for data and function privacy, in both the symmetric and public key setting. In Section 3, we introduce our
new notion of relaxed adaptive simulation based security for both data and function hiding, and analyze
its relationship with known definitions. In Section 4, we provide a UC style definition of adaptive simu-
lation based security that combines data and function privacy, public and private key, and represents the
best possible security of FE, albeit impossible to instantiate in the standard model. We believe that this
definition alone captures all possible usage scenarios in which FE may be deployed, and study the class of
adversaries against which this definition can be achieved. In Section 5 we provide constructions of inner
product FE over prime order groups, in both the public and private key setting. In Section 6, we show
that our public key construction achieves both data and function hiding according to our relaxed adaptive
simulation definition, for both data and function privacy. We also show that our public key construction
achieves the UC style best possible simulation based security, for both data and function privacy in the
generic group model. In Section 7, we show that our private key construction achieves IND based security
in the standard model from the standard DLIN assumption, thus improving the result of [SSW09]. In
Section 8, we define the notion of property preserving encryption and provide the first standard model
construction for the inner product functionality.

Notation. We begin by defining some standard notation. We say that a function f : Z+ → R+ is negligible
if f(κ) ∈ κ−ω(1). For two distributions D1 and D2 over some set Ω we define the statistical distance
SD(D1,D2) as

SD(D1,D2) =
1

2

∑
x∈Ω

∣∣Pr
D1

[x]− Pr
D2

[x]
∣∣

We say that two distribution ensembles D1(κ) and D2(κ) are statistically close or statistically indistin-
guishable if SD

(
D1(κ),D2(κ)

)
is a negligible function of κ.

We say that two distribution ensembles D1(κ),D2(κ) are computationally indistinguishable, denoted

by
c
≈, if for all probabilistic polynomial time turing machines A,

|Pr[A(1κ,D1(κ)) = 1]− Pr[A(1κ,D2(κ)) = 1]| = negl(κ)

2 Preliminaries: Functional Encryption

In this section we provide the notation and preliminaries used in the rest of the paper.

2.1 Definition: Functional Encryption

Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N denote ensembles where each Xκ and Yκ is a finite set. Let C =
{
Cκ
}
κ∈N

denote an ensemble where each Cκ is a finite collection of circuits, and each circuit C ∈ Cκ takes as input
a string x ∈ Xκ and outputs C(x) ∈ Yκ.

A functional encryption scheme FE for C consists of four algorithms FE = (Setup,KeyGen, Encrypt,Decrypt)
defined as follows.

• Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the security parameter and
outputs the master public and secret keys (PK,MSK).

5



• KeyGen(MSK, C) is a p.p.t. algorithm that takes as input the master secret key MSK and a circuit
C ∈ Cκ and outputs a corresponding secret key SKC .

• Encrypt(PK, x) is a p.p.t. algorithm that takes as input the master public key PK and an input
message x ∈ Xκ and outputs a ciphertext CT.

• Decrypt(SKC ,CT) is a deterministic algorithm that takes as input the secret key SKC and a ciphertext
CT and outputs C(x).

Definition 2.1 (Correctness). A functional encryption scheme FE is correct if for all C ∈ Cκ and all
x ∈ Xκ,

Pr

[
(PK,MSK)← Setup(1κ);

Decrypt(KeyGen(MSK, C),Encrypt(PK, x)) 6= C(x)

]
= negl(κ)

where the probability is taken over the coins of Setup, KeyGen, and Encrypt.

Remark 1. A functional encryption scheme FE may permit some intentional leakage of information such
as the length of the message |~x| or function |C|, that is leaked in any public key encryption scheme. This
is captured by [BSW11] via the “empty” key, by [AGVW13] by giving this information to the simulator
directly and by [BF13] by restricting to adversaries who do not trivially break the system by issuing
challenges that differ in such leakage. We use the approach of [AGVW13] and pass on any intentionally
leaked information directly to the simulator.

2.2 Data Privacy

In this section we recap known definitions of data privacy for FE.

Indistinguishability Based Data Privacy. In this section we define the standard IND based definition
for data privacy in FE.

Definition 2.2 (NA-IND- and AD-INDmsg-Security). Let FE be a functional encryption scheme for a family
of circuits C. For every p.p.t. adversary A = (A1,A2), consider the following two experiments:

exp
(0)
FE,A(1κ): exp

(1)
FE,A(1κ):

1: (PK,MSK)← Setup(1κ)

2: (x0, x1, st)← AKeyGen(MSK,·)
1 (PK)

3: CT← Encrypt(PK, x0)

4: b← AO(MSK,·)
2 (PK,CT, st)

5: Output b

1: (PK,MSK)← Setup(1κ)

2: (x0, x1, st)← AKeyGen(MSK,·)
1 (PK)

3: CT← Encrypt(PK, x1)

4: b← AO(MSK,·)
2 (PK,CT, st)

5: Output b

Define an admissible adversary A = (A1,A2) as one such that for each oracle query C of A, C(x0) = C(x1).
We distinguish between two cases of the above experiment:

1. The adaptive experiment, where the oracle O(MSK, ·) = KeyGen(MSK, ·): the functional encryption
scheme FE is said to be indistinguishable-secure for one message against adaptive adversaries (1-
AD-INDmsg-secure, for short) if for every admissible p.p.t. admissible adversary A = (A1,A2), the
advantage of A defined as below is negligible in the security parameter κ:

AdvFE,A(κ)
.

=
∣∣Pr[exp

(0)
FE,A(1κ) = 1]− Pr[exp

(1)
FE,A(1κ) = 1]

∣∣
where the probability is over the random coins of the algorithms of the scheme FE and that of A.
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2. The non-adaptive experiment, where the oracle O(MSK, ·) is the “empty oracle” that returns nothing:
the functional encryption scheme FE is said to be indistinguishable-secure for one message against
non-adaptive adversaries (1-NA-IND-secure, for short) if for every admissible p.p.t. adversary A =
(A1,A2), the advantage of A defined as above is negligible in the security parameter κ.

We do not distinguish between one and many message security since this definition composes [GVW12].

Simulation Based Data Privacy. In this section we define the standard notions 1-AD-SIM, 1-NA-SIM)
for simulation based security for data privacy.

Definition 2.3 (Real and Ideal experiments.). Let FE be a functional encryption scheme for a circuit
family C. Consider a p.p.t. adversary A = (A1, A2) and a stateful p.p.t. simulator S.2 Let Ux(·) denote a
universal oracle, such that Ux(C) = C(x). Consider the following two experiments:

expreal msg
FE,A (1κ): expideal msg

FE,S (1κ):

1: (PK,MSK)← Setup(1κ)

2: (x, st) ←AKeyGen(MSK,·)
1 (PK)

3: CT← Encrypt(PK, x)

4: α ← AO(MSK,·)
2 (PK,CT, st)

5: Output (x, α)

1: PK← S(1κ)

2: (x, st)← AS(·)
1 (PK)

3: CT← SUx(·)(1κ, 1|x|)

4: α← AO
′(·)

2 (PK,CT, st)
5: Output (x, α)

Definition 2.4 (Admissible simulator). We call a stateful simulator algorithm S admissible if it makes
exactly the same circuit queries to its oracle Ux(·) as the real world adversary A makes to the key derivation
oracle, and runs in time poly(κ).

Simulation security can be classified into the following two types:

1. The adaptive case which allows both pre-challenge and post-challenge queries, i.e. where :

• the oracle O(MSK, ·) = KeyGen(MSK, ·) and

• the oracle O′(·) is the simulator, namely SUx(·)(·)

2. The non-adaptive case, which only allows pre-challenge queries, i.e. where the oracles O(MSK, ·) and
O′(·) are both the “empty oracles” that return nothing.

Definition 2.5 (1-NA-SIM- and 1-AD-SIM- Security). The functional encryption scheme FE is then said
to be simulation-secure for one message against adaptive (resp. non-adaptive) adversaries (1-AD-SIM(resp.
1-NA-SIM) secure, for short) if there is an admissible stateful p.p.t. simulator S such that for every p.p.t.
adversary A = (A1, A2), the following two distributions above are computationally indistinguishable.{

expreal msg
FE,A (1κ)

}
κ∈N

c
≈
{

expideal msg
FE,S (1κ)

}
κ∈N

Remark 2. Our definition is identical to that provided in [AGVW13] and stronger than that provided in
[BSW11], because in [BSW11], the simulator is allowed to “rewind” the adversary. In the above definition
however, the simulator is forced to commit to the ciphertext before A2 is invoked, thus forcing the simulator
to be “straight-line”. Note that for the adaptive case (where the adversary is allowed to make key queries
post-challenge), composition does not hold, i.e. 1-AD-SIM does not imply many-AD-SIM [GVW12].

2One can replace a stateful simulator by a regular (stateless) simulator that outputs a state sts upon each invocation which
is carried over to its next invocation.
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2.3 Function Privacy

Symmetric Key Setting. Function hiding was first considered by Shen et. al. in the symmetric key
setting [SSW09]. They formalized indistinguishability based security notions for achieving function (and
data) hiding as follows.

Single challenge security: Let FEPrvSC be a private key functional encryption scheme for a family of
circuits C : X → Y. For a p.p.t. adversary A = (A1,A2), consider the following two experiments:

exp
(0)
PrvSC,A(1κ): exp

(1)
PrvSC,A(1κ):

1: SK← Setup(1κ)

2: (t, Y t
0 , Y

t
1 , st)← A

KeyGen(SK,·),Encrypt(SK,·)
1

3: If t=0, chal← Encrypt(SK, Y 0
0 )

4: If t=1, chal← KeyGen(SK, Y 1
0 )

5: b← AKeyGen(SK,·),Encrypt(SK,·)
2 (chal, st)

6: Output b

1: SK← Setup(1κ)

2: (t, Y t
0 , Y

t
1 , st)← A

KeyGen(SK,·),Encrypt(SK,·)
1

3: If t=0, chal← Encrypt(SK, Y 0
1 )

4: If t=1, chal← KeyGen(SK, Y 1
1 )

5: b← AKeyGen(SK,·),Encrypt(SK,·)
2 (chal, st)

6: Output b

Here t ∈ {0, 1} represents ciphertext challenge when set to zero, and key challenge when set to one. We
call an adversary admissible in this setting if for every circuit query C it makes to the oracle, it holds that
C(Y 0

0 ) = C(Y 0
1 ), and for every ciphertext query x, it holds that Y 1

0 (x) = Y 1
1 (x).

Definition 2.6. The private key functional encryption scheme FEPrvSC is said to be single challenge IND
secure if for every admissible p.p.t. adversary A = (A1,A2), the advantage of A defined as below is
negligible in the security parameter κ:

AdvPrvSC,A(κ)
.

=
∣∣Pr[exp

(0)
PrvSC,A(1κ) = 1]− Pr[exp

(1)
PrvSC,A(1κ) = 1]

∣∣,
where the probability is over the random coins of the algorithms of FEPrvSC and that of A.

Full security: We now define a stronger notion of security called full security. Let FEPrvFS be a private
key functional encryption scheme for a family of circuits C : X → Y. For a p.p.t. adversary A, consider
the following two experiments:

exp
(0)
PrvFS,A(1κ): exp

(1)
PrvFS,A(1κ):

1: SK← Setup(1κ)
2: b← AKeyGen0(SK,·,·),Encrypt0(SK,·,·)

3: Output b

1: SK← Setup(1κ)
2: b← AKeyGen1(SK,·,·),Encrypt1(SK,·,·)

3: Output b

where KeyGenb(SK, C0, C1) = KeyGen(SK, Cb) and Encryptb(SK, x0, x1) = Encrypt(SK, xb) for all C0, C1 ∈ C,
x0, x1 ∈ X and b ∈ {0, 1}. In the above experiment, an adversary is said to be admissible if for every pair
of key query (C0, C1) and every pair of ciphertext query (x0, x1), it holds that C0(x0) = C1(x1).

Definition 2.7. The private key functional encryption scheme FEPrvFS is said to be fully secure if for every
admissible p.p.t. adversary A, the advantage of A defined as below is negligible in the security parameter
κ:

AdvPrvFS,A(κ)
.

=
∣∣Pr[exp

(0)
PrvFS,A(1κ) = 1]− Pr[exp

(1)
PrvFS,A(1κ) = 1]

∣∣,
where the probability is over the random coins of the algorithms of FEPrvFS and that of A.
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It is easy to see that full security implies single challenge security. For the case of inner product
predicates, [SSW09] have shown that a single challenge secure scheme can be used to obtain a scheme
that is fully secure (but less efficient). We use their transformation in our construction of a fully secure
inner-product predicate encryption scheme in Section 7.

Public Key Setting. In the public key setting, function privacy is much trickier to formulate since an
adversary possessing a secret key SKC can encrypt any message x of her choice and run the legitimate
decryption procedure to learn C(x).

Recently Boneh et al. put forth a definition for function privacy in the public key setting [BRS13a].
This notion considers adversaries that are given public parameters of the system and can interact with a
real or random function privacy oracle. This oracle takes as input any adversarially-chosen distribution D
with “sufficient” entropy (formalized below) over vectors of functions, and outputs secret keys either for
functions sampled from D or sampled uniformly. Adversaries are allowed to adaptively interact with the
real-or-random oracle, for any polynomial number of queries, as long as the distributions have a certain
amount of min-entropy. At the end of the interaction, adversaries should have only a negligible probability
of distinguishing between the real or random modes of the oracle.

The only requirement on D is that it have “sufficient” entropy, where the notion of sufficient depends
on the underlying functionality of the FE scheme. For example, as observed by [BRS13a], for the case of
IBE, it is sufficient if identities are picked from a distribution with ω(log κ). For inner product FE schemes
however, the vectors need to come from a block source so that every element has entropy given the previous
elements. We will call such distributions feasible entropy distributions.

Definition 2.8 (Real or Random function privacy oracle). The real-or-random function-privacy oracle
ReOrRandFn takes as input triplets of the form (mode,MSK,D), where mode ∈ {real, rand}, MSK is the
master secret key, and D is a circuit representing a feasible distribution over F . If mode = real then the
oracle samples f ← D and if mode = rand then it samples f ← F uniformly. It then invokes the algorithm
KeyGen(MSK, ·) on f for outputting a secret key SKf .

Definition 2.9 (Function Privacy Adversary). A legitimate function privacy adversary A is an algorithm
that is given as input a pair (1κ,PK) and oracle access to ReOrRandFn(mode,MSK, ·) for some mode ∈
{real, rand} and to KeyGen(MSK, ·). It is required that all of A’s queries to ReOrRandFn come from a
feasible entropy distribution.

Definition 2.10 (Function Private Encryption). A public key Functional Encryption scheme FE is ReOrRandFn

function private if for any PPT legitimate adversary A, it holds that the advantage of A defined as below
is negligible in the security parameter κ:

AdvFE,A(κ)
.

=
∣∣∣Pr

[
expreal fn
FE,A (1κ) = 1

]
− Pr

[
exprand fn
FE,A (1κ) = 1

]∣∣∣ ≤ negl

where the probability is over the random coins of the algorithms of the scheme FE and that of A and for
each mode ∈ {real, rand} and κ ∈ N the experiment expreal fn

FE,A (1κ) is defined as follows:

1. (PK,MSK)← Setup(1κ)

2. b← AReOrRandFn(mode,MSK,·),KeyGen(MSK,·)(1κ,PK)

3. Output b

If the above holds for a computationally bounded (resp., unbounded) function privacy adversary making a
polynomial number of queries to the ReOrRandFn oracle, then the scheme is computationally (resp. statis-
tically) ReOrRandFn function private.
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3 Relaxed Simulation Security for Functional Encryption

In light of the strong impossibility results surrounding simulation based security definitions, we propose
a relaxation of simulation security which is achievable in the standard model, for both data and function
privacy. Although our relaxation seems counter-intuitive at first, we will show that this relaxation is
meaningful and implies the IND based definition of data hiding ( Section 2.2) as well as real-or-random
definition for function hiding [BRS13a] (Section 2.3).

3.1 Definition of Data Hiding

The simulation based definition of data hiding is similar to the one presented in Section 2.2 except that we
relax the definition of admissible simulator. We allow the size of the simulator to have an inverse polynomial
dependency on the distinguishing probability. We also allow the simulator to make more queries than the
adversary, as long as it restricts itself to queries made by the adversary with noticeable probability. More
details follow.

The experiments expreal msg
FE,A (1κ) and expideal msg

FE,S (1κ) are defined exactly as in Definition 2.3. To define
our admissible simulator, we will need some notation. Note that the real world adversaries A1,A2 are
randomized, and can make different queries in different runs of the experiment. Also note that A2’s
queries may depend on A1’s queries; in particular, A2 may be restricted from making certain queries that
leak information about x. Such restrictions are encoded in the state variable st that is passed from A1 to
A2. Let Q1 be the set of queries made by adversary A1 in a run of the experiment expideal msg

FE,S (1κ). Let Qε2
be the set of queries that are likely to be made by adversary A2, i.e. the queries that are made by A2 with
probability greater than ε, where probability is taken over the random coins of A2, conditioned on st. Let
QS be the set of queries made by the simulator Sε in the experiment expideal msg

FE,S (1κ).

Definition 3.1 (Admissible simulator). For fixed ε > 0, an admissible Relax-AD-SIMmsg simulator Sε runs
in time poly(κ, 1/ε), makes queries QS where |QS | = poly(κ, 1/ε) and QS ⊆ Q1 ∪ Qε2 and Sε may accept
non black box advice about adversary A2.

It is important to note in particular that if the adversary A2 makes some query with probability less
than ε, then the admissible simulator Sε is disallowed from making that query.

Definition 3.2. The functional encryption scheme FE is then said to be Relax-AD-SIMmsg secure, if for
every p.p.t. adversary A = (A1,A2), every ε > 0, there exists an admissible stateful p.p.t. simulator Sε
such that for all p.p.t distinguishers D,

|Pr
{
D [ expreal msg

FE,A (1κ) ] ⇒ 1
}
− Pr

{
D [ expideal msg

FE,S (1κ) ] ⇒ 1
}
| ≤ ε

3.2 Definition of Function Hiding

We provide a similar simulation based definition for function hiding. The goal of function hiding is to
quantify the amount of information leaked by SKC about the circuit C. The strongest possible goal in this
aspect would be to demand that the algorithm KeyGen essentially provide an obfuscator for the circuit
family Cκ. Due to known impossibility results for obfuscation we propose our approximate notion of
simulation identical in spirit to related works on obfuscation [Wee05, CRV10].

Definition 3.3 (Real and Ideal experiments for function hiding). Let FE be a functional encryption scheme
for a circuit family C. Consider a p.p.t. adversary A = (A1,A2) and a stateful p.p.t. simulator S. Let
WC(·) denote a universal oracle, such that WC(x) = C(x). Consider the following two experiments:
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expreal fn
FE,A (1κ): expideal fn

FE,S (1κ):

1: (PK,MSK)← Setup(1κ)

2: (C, st) ←AKeyGen(MSK,·)
1 (PK)

3: SKC ← KeyGen(PK, C)

4: α ← AO(MSK,·)
2 (PK,SKC , st)

5: Output (C,α)

1: PK← S(1κ)

2: (C, st)← AS(·)
1 (PK)

3: SKC ← SWC(·)(1κ, 1|x|)

4: α← AO
′(·)

2 (PK, SKC , st)
5: Output (C,α)

Definition 3.4 (Admissible simulator). For any ε > 0, the admissible Relax-AD-SIMFn simulator Sε for
function hiding runs in time poly(κ, 1/ε), makes poly(κ, 1/ε) queries to the function oracle WC (without
any restriction on the nature of queries) and may accept non black box advice about adversary A2.

Note that unlike the case of data hiding, the queries of the admissible function hiding simulator are
unrestricted. This is because oracle queries in this case correspond to encryption queries not secret key
queries: since any adversary given SKC can encrypt messages xi of her choice and run the decrypt algorithm
to learn C(xi), the corresponding simulator must be allowed to request function values C(xi) for any xi of
its choice. As in the case of data hiding, Relax-AD-SIMFn security can be classified into the following two
types:

1. The adaptive case which allows both pre-challenge and post-challenge queries, i.e. where :

• the oracle O(MSK, ·) = KeyGen(MSK, ·) and

• the oracle O′(·) is the simulator, namely SWC(·)(·)

2. The non-adaptive case, which only allows pre-challenge queries, i.e. where the oracles O(MSK, ·) and
O′(·) are both the “empty oracles” that return nothing.

Definition 3.5. The functional encryption scheme FE is then said to be Relax-AD-SIMFn secure, if for
every p.p.t. adversary A = (A1,A2), every ε > 0, there exists an admissible stateful p.p.t. simulator Sε
such that for all p.p.t distinguishers D,

|Pr
{
D [ expreal fn

FE,A (1κ) ] ⇒ 1
}
− Pr

{
D [ expideal fn

FE,S (1κ) ] ⇒ 1
}
| ≤ ε

A note on achieving data and function privacy simultaneously. Our relaxed definitions Relax-AD-SIM
for function and data hiding are defined separately and for a single challenge. A natural extension to our
definition which combines both function and hiding, and thus includes multiple functions and messages.
However, along the lines similar to the one presented in [GVW12] the single challenge definition above does
not automatically imply security under such a general definition in the adaptive setting.

Looking ahead however, for the simulator constructions in this work we do achieve adaptive, many-
challenge, relax sim security for both data and function hiding. For more details, please see Section 6.1.

3.3 What does Relax-AD-SIM mean?

Our relaxed simulation based definition Relax-AD-SIM for data and function privacy seems to pop out
of nowhere. In this section, we elucidate its meaning and significance, showing that it is stronger than
the well accepted notions of security for data as well as function hiding. Apart from being an interesting
definition in its own right, we believe it sheds light on the meaning of adaptive IND based data privacy
as well as real-or-random function privacy. Our motivation for considering this definition was twofold –
for data privacy, we wished to find a weakening of adaptive simulation based security that is stronger
than adaptive IND based security (AD-INDmsg), but nevertheless bypasses the impossibilities exhibited by
[BSW11, AGVW13]. For function privacy we wished to find a simulation based definition analogous to
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the accepted SIM based definition of data privacy, which nonetheless implies the real-or-random function
hiding definition of [BRS13a].

First we establish that Relax-AD-SIMmsg implies the widely accepted AD-INDmsg.

Claim 3.6. Relax-AD-SIMmsg ⇒ AD-INDmsg

Proof. We will show that ¬ AD-INDmsg ⇒ ¬ Relax-AD-SIM. Given a successful AD-INDmsg adversary
(A1,A2) (refer Section 2.2 for definition of AD-INDmsg), we will construct a real world Relax-AD-SIM
adversary (B1,B2) as follows: B1 runs A1, receives (x0, x1), flips a bit b and outputs CT(xb) as the challenge
CT. Now B2 receives CT(xb) and runs A2 to learn b. It answers A2’s key queries using its keygen oracle.
B2 makes exactly the same key queries as A2 in order to simulate it. In particular,

Pr
(
B2 queries v∗ s.t.f(x0, v

∗) 6= f(x1, v
∗)
)

= 0

since an admissible A2 cannot make such a query.
Now consider an admissible simulator Sε who must simulate (B1,B2). Sε has oracle access to f(xb, ·)

and can query the oracle for any key v∗ which could have been queried by (B1,B2) with probability ε. Since
Pr(B2 queries v∗ s.t. f(x0, v

∗) 6= f(x1, v
∗)) = 0, Sε cannot make queries that distinguish x0 from x1. Thus,

the simulator does not learn anything about b from the function oracle, hence cannot simulate CT(xb) with
non-negligible advantage.

Next, we establish that Relax-AD-SIMFn implies the Real-or-Random notion of function privacy defined
by [BRS13a]. At a high level, the function privacy definition of [BRS13a, BRS13b] stipulates that as
long as a circuit Creal is chosen with “sufficient” unpredictability, an adversary should not be able to tell
the difference beween SK(Creal) and SK(Crand). Their notion of sufficiently unpredictable, depends on
the underlying circuit family. For IBE, the distribution should be a ω(log κ)- source while for subspace
membership FE, the distribution should be a block source.

We begin by defining the notion of feasible entropy distributions which abstracts the “sufficient unpre-
dictability” property required by [BRS13a, BRS13b]. We define feasible entropy distribution for a single
challenge function but this can be generalized to multiple challenge functions, as in [BRS13a].

Definition 3.7 ( Feasible Entropy Distributions). Let WC(·) denote a universal functional oracle defined
as WC(x) = C(x), let Cκ denote a family of circuits and let D any distribution on Cκ. Then, we say that
D is a feasible entropy distribution, if for all non-uniform polynomial time algorithms S, it holds that:∣∣ Pr

C
$←Cκ

(
SWC (1κ)⇒ 1

)
− Pr
C
D←Cκ

(
SWC (1κ)⇒ 1

)∣∣ ≤ negl(κ)

Thus, a distribution D is called a feasible entropy distribution, if a circuit sampled from D cannot
be differentiated from a uniformly sampled circuit, given just oracle access to the circuit. We observe
that the input distributions defined for the IBE functionality and the subspace product (or inner product)
functionality defined by [BRS13a, BRS13b] satisfy Definition 3.7.

Claim 3.8. Relax-AD-SIMFn ⇒ ReOrRandFn 3 for any functionality with feasible entropy distribution D.

Proof. Assume that there is an admissible ReOrRandFn adversary A = (A1,A2) who distinguishes be-
tween real and random with non-negligible advantage α (see Definition 3.3). We will build a real world
Relax-AD-SIMFn adversary (B1,B2) as follows: B1 runs A1 and receives D. B1 samples a circuit Creal from D
and a circuit Crand uniformly. Next, it flips a bit b ∈ {real, rand} and outputs Cb. Now B2 receives SK(Cb),
runs A2, learns b and outputs b as his view. We assume that (B1,B2) can be simulated by admissible
simulator Sε, where ε is a non-negligible quantity to be set later and arrive at a contradiction.

Consider the following four hybrids.

3see Definitions 2.10 and 3.3
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1. In this game, B2 is given the output of the honest keygen algorithm on a circuit Creal drawn from the
feasible entropy distribution, i.e. SKCreal

= KeyGen(Creal). B2 outputs some View1.

2. In this game, we replace the challenge secret key to be the output of ideal world simulator S who,
given access to the function oracle WCreal

(·), runs in time poly(κ, 1/ε) and outputs some SKCreal
. Now

B2 outputs some View2.

3. In this game we replace the function oracle of S with WCrand
(·), the rest of the game remains the

same. Say that B2 outputs some View3.

4. In this game, B2 is given the output of the honest keygen algorithm on a circuit Crand drawn from
the uniform distribution, i.e. SKCrand

= KeyGen(Crand). B2 outputs some View4.

We merely observe that hybrids 1, 2 are at most ε distance away because of the scheme FE satisfies
Definition 3.3. Hybrids 2, 3 are negligibly close to each other because of the fact that the distribution D
over the circuit family Cκ satisfies the property defined in Definition 3.7. Hybrid 3, 4 are at most ε distance
away by Definition 3.3.

Thus we have that for any ε, Hybrid 1 and Hybrid 4 are separated by at most 2ε (plus some negligible
quantity) distance. However since A = (A1,A2) guesses b correctly with non-negligible advantage α, by
definition we have that the distance between Hybrid 1 and Hybrid 4 is > α. Since ε can be arbitrary, by
setting ε = α

100 we then arrive at a contradiction.

Discussion. Note that our definition allows the adversary to receive pairs of the form (C,SKC) whereas
the definition by [BRS13a] does not allow this: their ReOrRandFn adversary only obtains secret keys,
never the corresponding functions. Our simulator is non black box and its size depends (inversely) on
the distinguishing probability – this relaxation on the simulator seems to weaken the security definition
considerably, so we find it very interesting that it nevertheless implies much stronger-seeming definitions
such as ReOrRandFn function privacy.

4 Wishful Security for Functional Encryption

In this section, we present the dream version security definition for Functional Encryption, which captures
data hiding as well as function hiding in the strongest, most intuitive way via the ideal world-real world
paradigm. This definition extends and generalizes the definition of [BSW11, BF13] to support function
hiding in addition to data hiding (subsuming obfuscation), and encryption key in addition to public key.
In the spirit of multiparty computation, this framework guarantees privacy for inputs of honest parties,
whether messages or functions.

Security of Functional Encryption in practice. While there has been considerable progress in defin-
ing meaningful security models for FE, existing definitions do not capture a number of real world usage
scenarios that will likely arise in practice. Since simulation security for data as well as function hiding are
known to be impossible to achieve, an approach is to restrict the usage scenarios by relaxing the definition
of security. Another approach is to allow arbitrary usage scenarios (see Appendix A for examples) and
understand what class of real world attacks are resisted by the scheme. This is the approach we take in
this section. As we shall see later, this “wishful-thinking” version of FE security is achievable against a
large class of real world attacks, namely generic attacks, for inner product FE.

4.1 UC-style definition capturing Dream Security for FE

We fix the functionality of the system to be Fκ = {f : Xκ → Yκ}. We will refer to ~x ∈ X as “message”
and f ∈ F as “function” or “key”. Our framework consists of an external environment Env who acts as an
interactive distinguisher attempting to distinguish the real and ideal worlds, potentially in an adversarial
manner.
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Ideal-World. Formally, the ideal-world in a functional encryption system consists of the functional
encryption oracle O, the ideal world adversary (or simulator) S, and an environment Z which is used to
model all the parties external to the adversary. The adversary S and the environment Z are modeled as
interactive p.p.t turing machines.

Throughout the interaction, O maintains a two-dimensional table T with rows indexed by messages
~x1, . . . ~xrows and columns indexed by functions f1, . . . , fcols, and the entry corresponding to row ~xi and
column fj is fj(~xi). At a given time, the table contains all the message-key pairs seen in the interactions
with O until then.
O is initialized with a description of the functionality4. The environment Z interacts arbitrarily with

the adversary S. The interaction between the players is described below:

• External ciphertexts and keys:

– Ciphertexts: Z may send O ciphertext commands (CT, ~x) upon which O creates a new row
corresponding to ~x, populates all the newly formed entries f1(~x), . . . , fcols(~x) and returns the
newly populated table entires to S.

– Keys: Z may send O secret key commands (SK, f) upon which O creates a new column
corresponding to f , populates all the newly formed entries f(~x1), . . . , f(~xrows) and returns the
newly populated table entries to S.

• Switch to public key mode: Upon receiving a command (PK mode) from Z, O forwards this
message to S. From this point on, S may query O for the function value corresponding to any
message ~x ∈ X of its choice, and any key in the system. Upon receiving command (~x, keys), O
updates T as follows: it adds a new row corresponding to ~x, computes all the table entries for this
row, and returns the newly populated row entries to S.

At any point in time we allow S to obtain any intentionally leaked information (as defined in Remark
1) about all the messages and keys present in T from O. Note that S may add any message or key of its
choice to the system at any point in time through the adversarial environment Z with which it interacts
arbitrarily. Hence, we omit modeling this option in our ideal world. We define VIEWIDEAL(1κ) to be the
view of Z in the ideal world.

Remark 3. A subtle point that we choose not to model in the definition above is that a real world adversary
given SKf and CTx may choose never to decrypt the two together to learn f(x). In such a case the simulator
need never program this dependency, and indeed does not even need to learn the value f(x) from the oracle.
This can be handled by providing the simulator handles for each ciphertext and key, and having it query the
function oracle using these handles only if the real world adversary chooses to decrypt that ciphertext, key
pair. For ease of notation we do not model this, and assume that an adversary will decrypt all ciphertext,
key pairs that it receives.

Real-World. The real-world consists of an adversary A, a system administrator Sys and external envi-
ronment Z, which encompasses all external key holders and encryptors. The adversary A interacts with
other players in the game through Sys. The environment Z may interact arbitrarily with A. Sys obtains
(PK,EK,MSK) ← Setup(1κ). PK is provided to Z and A. The interaction between the players can be
described as follows:

• External ciphertexts and keys:

– Ciphertexts: Z may send Sys encryption commands of the form (CT, ~x) upon which, Sys
obtains CT~x = Encrypt(EK, ~x) sends CT~x to A.

– Keys: Z may send Sys secret key commands of the form (SK, f) upon which, Sys obtains
SKf = KeyGen(MSK, f) and returns SKf to A.

4For eg., for the inner product functionality O needs to be provided the modulus N
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• Switch to public key mode: Upon receiving a command (PK mode) from Z, Sys sends EK to A.

We define VIEWREAL(1κ) to be the view of Z in the real world.
We say that a functional encryption scheme is strongly simulation secure in this framework, if for every

real world adversary A, there exists a simulator S such that for every environment Z:

{VIEWIDEAL(1κ)}κ∈N
c
≈ {VIEWREAL(1κ)}κ∈N

While simulation based security has been shown impossible to achieve even for data privacy alone, we
will show that the stronger definition presented above can be achieved against a large class of real world
attacks, namely generic attacks. We believe that this provides evidence that FE schemes enjoy far greater
security in practice.

5 Constructions of Inner Product FE

In this section, we provide constructions for Inner Product FE over prime order groups, in both the public
key and private key setting. To begin we define some notation that will be useful to us in the subsequent
constructions.

5.1 Group Notation required by constructions.

Notation for Linear Algebra over groups. When working over the prime order group G, we will find
it convenient to consider tuples of group elements. Let ~v = (v1, · · · , vd) ∈ Zdp for some d ∈ Z+ and g ∈ G.

Then we define g~v
.

= (gv1 , . . . , gvd). For ease of notation, we will refer to (gv1 , . . . , gvd) by (v1, · · · , vd). This
notation allows us to do scalar multiplication and vector addition over tuples of group elements as:

(g~v)a = g(a~v) and g~v · g ~w = g(~v+~w)

Finally we define a new function, ~e which deals with pairings two d-tuples of elements ~v, ~w as:

~e(g~v, g ~w) :=

d∏
i=1

e(gvi , gwi) = e(g, g)~v·~w

where the vector dot product ~v · ~w in the last term is taken modulo p. We represent an element ga ∈ G
using the notation (a) and an element e(g, g)b ∈ GT using the notation [b]. Here g is assumed to be some
fixed generator of G.

Dual Pairing Vector Spaces. We will employ the concept of dual pairing vector spaces from [Lew12,
OT08, OT09]. For a fixed dimension d, Let B = (~b1, . . . ,~bd),B∗ = (~b∗1, . . . ,

~b∗d) be two random bases
(represented as column vectors) for the vector5 space Zdp. Furthermore, they are chosen so that,~b

T
1
...
~bTd

 · (~b∗1 · · · ~b∗d

)
= ψ · Id×d (1)

where Id×d is the identity matrix and ψ
$←− Zp is a uniformly distributed random variable. [Lew12]

describes a standard procedure which allows one to pick such bases.

We use the notation (B,B∗) $←− Dual(Zdp) in the rest of this work to describe the selection of such basis
vectors. Depending on the scheme (Section 5.3 or Section 5.2) we choose the value of d. We now establish

5Here, note that in the vein of Section 5.1, we are referring to vectors of group elements
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further notation using d = 3 below. We use the formal variables

{b1ib2i
b3i

}3

i=1

and

{b∗1ib∗2i
b∗3i

}3

i=1

to

denote the basis vectors of (B,B∗) $←− Dual(Z3
p).

Furthermore, we overload vector notation (the usage will be clear from context) by associating with a
three tuple of formal polynomials (a1, a2, a3), the set of formal polynomials represented as:(a1 a2 a3) ·

b11

b21

b31

 , (a1 a2 a3) ·

b12

b22

b32

 , (a1 a2 a3) ·

b13

b23

b33


and with the tuple (a1, a2, a3)∗, the set of formal polynomials represented as:(a1 a2 a3) ·

b∗11

b∗21

b∗31

 , (a1 a2 a3) ·

b∗12

b∗22

b∗32

 , (a1 a2 a3) ·

b∗13

b∗23

b∗33



5.2 Public Key FE for Inner Products over Prime Order Groups

In this section, we present a new public key functional encryption scheme for inner products in the encryp-
tion key setting from prime order bilinear groups. Our scheme starts from the composite order scheme
for inner product FE presented in [KSW08]. It then applies a series of transformations, as developed in
[GKSW10, Fre10, OT08, OT09, Lew12], to convert it to a scheme over prime order groups. We show
that it enjoys “wishful” security against generic attacks (see Section 4), as well as the relaxed simulation
security (Section 3) for both data and function privacy.

The functionality F : Znp × Znp → {0, 1} is described as F(~x,~v) = 1 iff 〈~x · ~v〉 = 0 mod p, and 0
otherwise. Let GroupGen be a group generation algorithm which takes as input a security parameter κ and
outputs a bilinear group of prime order p with length(p) = κ.

Note that in the description of the scheme and in the proof, we will “work in the exponent” for ease of
notation. Thus, our groups are multiplicative but this becomes addition in the exponent. For more details,
we refer the reader to Section 5.1 above. We now describe our construction.

• Setup(1κ): Let (p,G,GT , e) = GroupGen(1κ). Let n ∈ Z, n > 1 be the dimension of the message space.

Pick (B,B∗) $←− Dual(Z3
p) and let P,Q,R,R0, H1, R1, H2, R2, . . . ,Hn, Rn

$←− Zp. Set,

PK = (p,G,GT , e)

EK =

(
P ·~b1, Q ·~b2 +R0 ·~b3, R ·~b3,

{
Hi ·~b1 +Ri ·~b3

}i=n
i=1

)
MSK =

(
Q, {Hi}i=ni=1 ,

~b1,~b2,~b3,~b
∗
1,
~b∗2,

~b∗3

)

• Encrypt(EK, ~x): Let ~x = (x1, . . . , xn), xi ∈ Zp. Choose random s, α ∈ Zp and random elements
{ri}ni=1 ∈ Zp.

CT~x =

{
C0 = sP ·~b1, Ci =

{
s(Hi ·~b1 +Ri ·~b3) + α · xi · (Q ·~b2 +R0 ·~b3) + ri ·~b3

}i=n
i=1

}

• KeyGen(MSK, ~v): Let ~v = (v1, . . . , vn), vi ∈ Zp. Choose, {δi}i=ni=1 , ζ, Q6, R5
$←− Zp and construct

SK~v = (K0,K1, . . . ,Kn) as,
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K0 =

(
−

n∑
i=1

Hi · δi

)
·~b∗1 +Q6 ·~b∗2 +R5 ·~b∗3

and, {
Ki = δi · P ·~b∗1 +Q · ζ · vi ·~b∗2

}i=n
i=1

• Decrypt(SK~v,CT~x): Compute b = ~e(C0,K0) ·
∏i=n
i=1 ~e(Ci,Ki) and output 1 if b = e(g, g)0 and 0

otherwise.

Intentionally leaked information as defined in Remark 1 for the above scheme is n, the length of the
message and key space. Correctness of the scheme relies on the cancellation properties between the vectors
in B and B∗ as described in Eqn 1. We provide proof of correctness in Appendix B.

5.3 Private Key FE scheme for Inner Products over Prime order groups

In this section, we construct a private-key inner-product functional encryption scheme FEPrv for attributes
and predicates of length n (see Definition 2.6). Without loss of generality, we assume that the first
component of an attribute or predicate is non-zero. Once again, we describe our scheme “in the exponent”
for ease of notation.

• Setup(1κ): Let (p,G,GT , e) = GroupGen(1κ). Pick (B,B∗) $←− Dual(Z5n
p ). Set,

SK = (B,B∗).

• Encrypt(~x, SK): Let ~x = (x1, . . . , xn), where xi ∈ Zp. Also, let B = (~b1,~b2, . . . ,~b5n), where each
~bj ∈ Z5n

p . Choose ω, ϕ1, ϕ2, . . . , ϕn uniformly and independently at random from Zp. The encryption
of ~x is given by

CT~x = ω
n∑
i=1

xi~bi +
n∑
i=1

ϕi~bi+4n.

• KeyGen(~v,SK): Let ~v = (v1, . . . , vn), where vi ∈ Zp. Also, let B∗ = (~b∗1,
~b∗2, . . . ,

~b∗5n), where each
~b∗j ∈ Z5n

p . Choose σ, η1, η2, . . . , ηn uniformly and independently at random from Zp. The key for the
predicate ~v is given by

SK~v = σ
n∑
i=1

vi~b
∗
i +

n∑
i=1

ηi~b
∗
i+3n.

• Decrypt(CT~x, SK~v): Compute b = ~e(CT~x, SK~v) and output 1 if b = e(g, g)0 and 0 otherwise.

It is easy to see that the above scheme is correct with all but negligible probability. If 〈~x · ~v〉 = 0

mod p, then b = ~e(CT~x, SK~v) = e(g, g)ψωσ〈~x·~v〉 = e(g, g)0 (since BTB∗ = ψ · I); otherwise b is a random
group element. We will prove that this scheme is single challenge secure under the DLIN assumption in
Section 7.

6 Security of Public Key Inner Product FE

In this section, we analyze the security of the public key inner product FE scheme provided in Section
5.2. We show that the inner product FE achieves the definition of Relax-AD-SIM security for data and
function hiding in the standard model, as well as the strong “wishful” UC security defined in Section 4 in
the generic group model.
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6.1 Relax-AD-SIM Security in the Standard Model.

In this section, we provide a proof that the inner product FE scheme presented in Section 5.2 satisfies the
Relax-AD-SIM definition of data and function hiding (Definitions 3.2,3.3).

Achieving relaxed simulation security: Function Hiding. Our proof directly uses the construction
and proof of security of the inner product obfuscation scheme presented by Canetti et al. [CRV10].

CRV Obfuscation of Hyperplane Membership: Canetti et al. [CRV10] construct an obfuscator CRV-Obf
for the inner product functionality under a new assumption. Roughly, their assumption can be stated
as follows: given a tuple of group elements (ga1 , ga2 , . . . , gad) where the ai’s are chosen from some joint
distribution, for which polynomials p is gp(a1,...,ad) still indistinguishable from uniform? If the polynomial
p looks linear when restricted to the support of the joint distribution, then certainly gp(a1,...,ad) can be
distinguished from uniform. [CRV10] make the assumption that indistinguishability holds in all other
cases. For the precise formulation, we refer the reader to [CRV10], Assumption 5.

Theorem 6.1. [CRV10] Let ~v ∈ Znp and CRV-Obf~v be the obfuscator for ~v constructed by Canetti et
al. [CRV10]. Then, for fixed ε > 0, there exists a simulator S ′ε who takes non black box advice V about
adversary A, runs in time poly(κ, 1/ε) and outputs a “dummy” obfuscation CRV-Obf ′~v so that

|Pr
(
A(CRV-Obf~v)⇒ 1

)
− Pr

(
A(CRV-Obf ′~v)⇒ 1

)
| ≤ ε

Consider the relaxed simulation based definition of function hiding (Relax-AD-SIMFn). Let CRV-ObfC
be the obfuscation of C as output by the scheme of [CRV10]. We present our proof in two steps. First, we
define a hybrid world which is identical to the real world except that the output of the KeyGen algorithm is
replaced by the output of adversary A2 given CRV-ObfC as input (see Step 3 of Definition 3.3). We claim
that the algorithm KeyGen of Section 5.2 can be rewritten in a way that it produces the correct output
when given input CRV-ObfC instead of C. To see this, recall from Section 5.2, that the keygen algorithm
KeyGen is,

KeyGen(MSK, ~v): Let ~v = (v1, . . . , vn), vi ∈ Zp. Choose, {δi}i=ni=1 , ζ, Q6, R5
$←− Zp and construct SK~v =

(K0,K1, . . . ,Kn) as,

K0 =

(
−

n∑
i=1

Hi · δi

)
·~b∗1 +Q6 ·~b∗2 +R5 ·~b∗3

and, {
Ki = δi · P ·~b∗1 +Q · ζ · vi ·~b∗2

}i=n
i=1

We would also like to observe that the construction of the obfuscator CRV-Obf in our notation is,

CRV-Obf(~v): Let ~v = (v1, . . . , vn), vi ∈ Zp. Choose ζ
$←− Zp and construct CRV-Obf~v = (ζ ·v1, · · · , ζ ·vn).

A2 upon receiving n components from CRV-ObfC directly plugs these into the construction KeyGen as
described above and computes SKC that is identical to the real world.

The transition from the hybrid world to the ideal world is accomplished by invoking the proof of
security of the CRV-obfuscator [CRV10]. By Theorem 6.1, for fixed ε > 0 and obfuscator CRV-ObfC ,
Canetti et al. [CRV10] construct a simulator S ′ε which accepts non black box advice V about adversary
A2, runs in time poly(κ, 1/ε) and makes poly(κ, 1/ε) oracle queries for points in the set V and outputs a
“dummy” obfuscator CRV-Obf ′C . This dummy obfuscator is indistinguishable by adversary A2 from the
real obfuscator CRV-ObfC except with probability ε.

Formally, algorithm Sε, given non black box advice V about adversary A2 works as follows:

1. Sε runs the honest Setup algorithm ensuring that the prime order group G used is identical to the
one instantiated by the obfuscation algorithm CRV-Obf.
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2. Sε uses the honest KeyGen algorithm to answer key requests of adversary A1.

3. Run the CRV simulator S ′ε(V ) and obtain the dummy obfuscator CRV-Obf ′C

4. Run the KeyGen algorithm using CRV-Obf ′C instead of C as input (as outlined above) to compute
the challenge secret key SKC .

5. Run the honest KeyGen algorithm to answer key requests of adversary A2.

By the construction of the CRV simulator, the dummy obfuscator CRV-Obf ′C is indistinguishable to
adversary A2 from the real obfuscator obfuscator CRV-ObfC except with probability ε. Thus, we get that
that our scheme from Section 5.2 achieves Relax-1-AD-SIMFn function privacy.

Achieving relaxed simulation security: Data Hiding. Achieving relax sim security for the case of
data hiding (definition 3.2) is different from the case of function hiding in a subtle but crucial sense. For
the case of function hiding, the simulator did not have any restrictions on the queries it could make to the
function oracle; that is, given access to oracle WC(·), the simulator could query it on any points xi of its
choice, and in particular on all points xi ∈ V . As mentioned above, this is because for the case of function
hiding, oracle queries correspond to encryption queries made by an adversary which are unlimited and
unrestricted in the public key setting. However, in the case of data privacy, oracle queries by the simulator
correspond to secret key queries by the adversary and must be restricted in nature. We will construct an
admissible Relax-AD-SIMmsg simulator Sε for the inner product FE scheme of [LOS+10] and show that the
simulator is successful as long as the scheme is 1-AD-INDmsg secure. Note that 1-AD-INDmsg security for
inner product FE was shown by Lewko et al. [LOS+10].

Recall that our admissible simulator Sε is only permitted to make queries in the set QS where |QS | =
poly(κ, 1/ε) and QS ⊆ Q1 ∪Qε2. We construct Sε as follows:

1. Sε runs the honest Setup algorithm and obtains (PK,MSK).

2. Sε uses the honest KeyGen algorithm to answer the requests of adversary A1. A1 eventually outputs
some x unknown to Sε. Sε gets access to function oracle Ux(·) where Ux(C)

.
= C(x).

3. Sε queries the function oracle Ux for all points Ci ∈ QS and samples a message x′ such that Ci(x
′) =

Ci(x) ∀ Ci ∈ QS . Next, it computes CTx′ = Encrypt(x′) and outputs this as the challenge CT.

4. Sε runs the honest KeyGen algorithm to answer key requests of adversary A2.

5. When A2 outputs some bit α6, Sε outputs the same.

We show that the above simulator succeeds except with probability ε. We will show that if the above
simulation fails then we violate 1-AD-INDmsg of the inner product FE scheme of [LOS+10]. Assume for
the sake of contradiction that ∃(A1,A2) that cannot be simulated by Sε above. We will build an IND
adversary (B1,B2) from (A1,A2) and Sε as described below. Note that a description of the set QS is
provided alongwith Sε.

1. Initializing B1: The public key PK is provided to B1 by the Setup algorithm.

2. Constructing B1: B1 runs A1, answering A1’s queries using its own oracle. A1 eventually outputs
some x. B1 runs Sε, answering its oracle queries Ci by simply computing Ci(x) (since it knows x).
Sε chooses x′ so that Ci(x

′) = Ci(x) ∀ Ci ∈ QS , which is learnt by B1. B1 outputs (x, x′) as the IND
challenge messages.

6Note that A2 is a predicate adversary not a general adversary
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3. Constructing B2: Given CT∗ ∈ {CTx,CTx′}, B2 runs A2(CT∗), answering A2’s queries using its own
oracle. Note that for all queries Ci of A2, it holds that Ci(x) = Ci(x

′) hence B2 is an admissible
adversary. A2 eventually outputs a bit α which is output by B2.

By assumption, A2 and hence B2 can distinguish between CTx and CTx′ with non-negligible advantage.
Thus we built an admissible IND adversary (B1,B2) contradicting the 1-AD-INDmsg security of the inner
product FE scheme.

Remark 4. We remark that for the inner product FE scheme of [LOS+10], 1-AD-INDmsg security and
Relax-AD-SIMmsg security imply one another by the result above and Theorem 3.6.

Achieving many-challenge Relax-AD-SIM security. Since our simulator simply runs the honest Setup
algorithm to generate the public parameters and the honest KeyGen algorithm to answer key queries, a
simple hybrid argument shows that our simulation composes, and we achieve many-challenge key/CT,
adaptive relax sim security.

6.2 Wishful Security in the Generic Group Model.

In this section we show that the scheme presented in Section 5.2 is secure in the generic group model as per
the definition presented in Section 4. Broadly speaking, our simulator will run the adversary and provide
secret keys and ciphertexts to him, as well as simulate the generic group oracle. Our simulator maintains
a table where it associates each group handle that it issues to the adversary with a formal polynomial.
Through its interaction with the generic group oracle (played by S), A may learn relations between the
group handles that it obtains. Whatever dependencies A learns, S programs these using its table. To do
this, it keeps track of what A is doing via its requests to the GG oracle, extracts necessary information
from A cleverly where required and sets up these (formal polynomial) relations, thus ensuring that the real
and ideal world views are indistinguishable. This is tricky in the public key mode, where the adversary
may encrypt messages of its choice (using potentially bad randomness) and attempt to learn relations with
existing keys using arbitrary generic group operations. In this case, the simulator needs to be able to
extract the message from the adversary, obtain the relevant function values from the oracle, and program
the dependencies into the generic group. The detailed proof is provided in Appendix E.

7 Security for Private Key Inner Product FE

In this section, we prove that the private key inner product scheme FEPrv constructed in Section 5.3 is
single challenge secure under the DLIN assumption. Towards this, we construct two intermediate schemes
– FE0 and FE1 – in the public-key setting, and show how the security of these schemes implies that the
scheme FEPrv is secure as well.

Consider a public-key inner-product predicate encryption scheme FE0 obtained by making a small

modification to FEPrv. In the setup phase of FE0, after obtaining (B,B∗) $←− Dual(Z5n
p ), we set the public

key and (master) secret key as follows:

FE0.PK = B̂ = (~b1, . . . ,~bn,~b4n+1, . . . ,~b5n) and FE0.MSK = B̂∗ = (~b∗1, . . . ,
~b∗n,

~b∗3n+1, . . . ,
~b∗4n).

FE0.Encrypt is same as the Encrypt algorithm described above, except that it now receives FE0.PK instead
of SK, which is all it needs anyway. Similarly, FE0.KeyGen is same as KeyGen, except that it now takes
FE0.MSK instead of SK as input. The decryption procedure stays the same and correctness is immediate.
The next lemma shows that FE0 is a secure predicate scheme according to Definition 2.2.

Lemma 7.1 (Security of FE0). The scheme FE0 described above is a 1-AD-INDmsg attribute-hiding public-
key inner-product predicate encryption scheme under the DLIN assumption.
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Okamoto and Takashima [OT12] recently proposed a 1-AD-INDmsg attribute-hiding public-key inner-
product predicate encryption scheme under the DLIN assumption. Our scheme FE0 is similar to the one
they have. The main difference is that our ciphertext and keys have been extended in length so that they
are symmetric to each other (as our primary goal is to construct a scheme that hides both attributes and
predicates in the private key setting). In Appendix C.1, we show how we can modify the security proof of
Okamoto and Takashima to show that FE0 inherits the security properties of their scheme. This proves
Lemma 7.1.

Consider another public-key inner-product encryption scheme FE1 obtained by swapping the public and
private key in FE0, and thus also swapping the encryption and key-generation algorithms. This is possible
because in the case of inner-product, attributes and predicates come from the same space. Specifically, in

the setup phase of FE1, after obtaining (B,B∗) $←− Dual(Z5n
p ), we set the public key and (master) private

key as follows:

FE1.PK = B̂∗ = (~b∗1, . . . ,
~b∗n,

~b∗3n+1, . . . ,
~b∗4n) and FE1.MSK = B̂ = (~b1, . . . ,~bn,~b4n+1, . . . ,~b5n).

Further, FE1.Encrypt = FE0.KeyGen and FE1.KeyGen = FE0.Encrypt. The decryption procedure stays
the same and correctness is straightforward. The security of FE1 follows from the security of FE0 due to
the symmetric nature of FEPrv.

Lemma 7.2 (Security of FE1). The scheme FE1 described above is a 1-AD-INDmsg attribute-hiding public-
key inner-product predicate encryption scheme under the DLIN assumption.

We are now ready to prove the security of FEPrv according to Definition 2.6.

Theorem 7.3. FEPrv is a single challenge IND secure private-key inner-product predicate encryption
scheme for attributes and predicates of length n under the DLIN assumption.

We prove the above theorem in Appendix C.2. In [SSW09] (Appendix A), Shen et al. describe how to
construct a fully secure predicate encryption scheme (see Definition 2.7) supporting inner-products over
vectors of length n from a single challenge secure scheme supporting inner-products over vectors of length
2n. The transformation is simple: an attribute ~x in the former scheme is encrypted using the encryption
algorithm of the latter on ~x concatenated with itself (keys are also generated in a similar fashion). We
adopt the same approach to obtain a fully secure scheme FEFSPrv from the scheme FEPrv. Thus we get:

Theorem 7.4. FEFSPrv is a fully secure private-key inner-product predicate encryption scheme for attributes
and predicates of length n under the DLIN assumption.

8 Property Preserving Encryption

The notion of property preserving encryption (PPE) was introduced in a very recent work by Pandey and
Rouselakis [PR12]. We begin this section by formally defining PPE schemes for binary properties, and
Left-or-Right security for them.

8.1 Definitions

Definition 8.1 (PPE scheme). A property preserving encryption scheme for a binary property P : M×
M→ {0, 1} is a tuple of four p.p.t. algorithms defined as follows:

• Setup(1κ) takes as input the security parameter κ and outputs a secret key SK (and some public
parameters).

• Encrypt(m,SK) takes as input a message m ∈M and outputs a ciphertext CT.

• Decrypt(CT, SK) takes as input a ciphertext CTand outputs a message m ∈M.
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• Test(CT1,CT2) takes as input two ciphertexts CT1 and CT2 and outputs a bit b.

We require that for all messages m,m1,m2 ∈M, the following two conditions hold:

• Decryption: Pr[SK← Setup(1κ);Decrypt(Encrypt(m,SK),SK) 6= m] = negl(κ), and

• Property testing: Pr[SK← Setup(1κ);Test(Encrypt(m1,SK),Encrypt(m2, SK)) 6= P (m1,m2)] = negl(κ),

where the probability is taken over the random choices of the four algorithms.

Security. In [PR12], the authors show that there exists a hierarchy of meaningful indistinguishability
based security notions for PPE, which does not collapse unlike other familiar settings. At the top of
the hierarchy lies Left-or-Right (LoR) security, a notion that is similar to full security in symmetric key
functional encryption.

LoR security. Let ΠP = (Setup,Encrypt,Decrypt,Test) be a PPE scheme for a binary property P . Con-

sider an adversary A in the security game exp
(b)
LoR,A(1κ) described below, for b ∈ {0, 1}. The Setup algorithm

is run to obtain a secret key SK and some public parameters. A is given the parameters, and access to an
oracle Ob(SK, ·, ·), such that Ob(SK,m0,m1) = Encrypt(mb, SK). At the end of the experiment, A produces
an output bit. We call the adversary admissible if for every two (not necessarily distinct) pairs of messages
(m1,m2) and (m′1,m

′
2), P (m1,m

′
1) = P (m2,m

′
2).

Definition 8.2 (LoR security). The scheme ΠP is an LoR secure PPE scheme for a property P if for all
p.p.t. admissible adversaries A, the advantage of A defined as below is negligible in the security parameter
κ:

AdvLoR,A(κ)
.

=
∣∣Pr[exp

(0)
LoR,A(1κ) = 1]− Pr[exp

(1)
LoR,A(1κ) = 1]

∣∣,
where the probability is over the random coins of the algorithms of ΠP and that of A.

8.2 Construction of Property Preserving Encryption

Our goal in this section is to construct a property preserving encryption (PPE) scheme for inner-product
predicates. Towards this, we describe a general procedure to obtain a PPE scheme for a binary property
from a private key scheme for a related class of predicates. Suppose we would like to construct a PPE
scheme ΠP for a property P : M×M → {0, 1}. Let FEF be a private key predicate encryption scheme
over the class of predicates F = {fa | a ∈ M}, where fa : M → {0, 1} is defined as fa(b) = P (a, b) for
all a, b ∈ M. Using FEF , we can construct ΠP as follows. The basic idea is to combine ciphertext and
key of the former scheme in order to obtain a ciphertext for the latter, which allows us to operate on two
ciphertexts. (This idea has been hinted at in [PR12], but not explored.) Details are provided in Appendix
D.1. Next, we show that if we start with a fully secure predicate scheme, we obtain a strongly secure PPE
scheme.

Theorem 8.3. A PPE scheme ΠP for a property P constructed in the manner described above is LoR
secure if FEF is fully secure over the class of predicates F .

We provide the proof in Appendix D.2. Note that LoR (short for left or right) security is the strongest
indistinguishability based security notion proposed by Pandey and Rouselakis [PR12].

In the previous section, we constructed a scheme FEFSPrv for inner-product predicate encryption. We
proved it to be fully secure under the DLIN assumption. Now, we can let FEF = FEFSPrv and apply the

transformation described above to obtain a PPE scheme ΠIP for the inner-product property (P (~a,~b) = 1 iff
〈~a ·~b〉 = 0). To end this section, we have the following corollary whose proof is immediate from Theorem
7.4 and 8.3.

Corollary 8.4. ΠIP is an LoR secure PPE scheme for the inner-product property under the DLIN assump-
tion.
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A Usage Scenarios not captured by previous definitions

In this section, we give examples of some usage scenarios that may arise in practice where FE schemes are
deployed.

• Can we hide the function? Consider the application of keyword searching on encrypted data, where
the keywords being searched for are sensitive and must remain hidden. This scenario is well mo-
tivated in practice; for example the FBI might recruit untrusted server farms to perform searches
on confidential encrypted data, but desire not to reveal the words being searched. Can FE schemes
achieve this?

• Can we limit what the adversary learns to only the function’s output? Intuitively, a functional
encryption scheme should only reveal to a decryptor the function output, and nothing more. For
example, if the function has some computational hiding properties, can we guarantee that the FE
scheme does not leak any additional information beyond the function output?

• Can an adversary break FE schemes where it can ask for keys after receiving ciphertexts? In real
world applications, it is very likely that an adversary can receive authorized decryption keys even
after it obtains the ciphertext that it is trying to break. For example, in searchable encryption, the
decryption key corresponding to a search would only be given out after the encrypted database is
publicly available. Similarly in Identity Based Encryption, a user may receive an email encrypted
with his identity before he obtains the corresponding secret key. Can one guarantee that an attacker
who obtains an arbitrary interleaving of ciphertexts and keys, can learn nothing beyond the legitimate
function values?

None of the existing security definitions for FE [BSW11, O’N10, BO12, BF13, AGVW13] provide compre-
hensive guarantees against all the above usage scenarios.
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B Correctness of Public Key Inner Product Scheme

For any, SK~v,CT~x the pairing evaluations in the decryption part of our scheme proceed as follows. Terms
that are marked (×) are ones that we do not care about:

~e(C0,K) = ~e

(
(sP ·~b1),

(
(−

n∑
i=1

Hi · δi) ·~b∗1 +Q6 ·~b∗2 +R5 ·~b∗3
))

= (−sP
n∑
i=1

Hiδi) · (~bT1 ·~b∗1) + (×)(~bT1 ·~b∗2) + (×)(~bT1 ·~b∗3)

= ψ(−sP
n∑
i=1

Hiδi) (by Equation 1)

~e(Ci,Ki) = ~e(
(
s(Hi ·~b1 +Ri ·~b3) + α · xi · (Q ·~b2 +R0 ·~b3) + ri ·~b3

)
,(

δi · P ·~b∗1 +Q · ζ · vi ·~b∗2
)

)

= (sHiδiP )~bT1
~b∗1 + (αxiQ ·Qζvi)~bT2~b∗2 + (×)(~bT1 ·~b∗2 +~bT2 ·~b∗1 +~bT3 ·~b∗1 +~bT3 ·~b∗2)

= ψ(sHiδiP + αζQ2xivi) (by Equation 1)

Thus, ~e(C0,K) ·
i=n∏
i=1

~e(Ci,Ki)

= ψ(−sP
n∑
i=1

Hiδi) +

n∑
i=1

(
ψ(sHiδiP + αζQ2xivi)

)
= ψQ2αζ(

n∑
i=1

xivi)

When
∑n

i=1 xivi is 0 mod p, the final answer is always the identity element of the target group and

when it is not, the answer evaluates to a random element in the target group (as ψ,Q, α, ζ
$←− Zp).

C Security of Private Key Inner Product Predicate Encryption

C.1 Proof sketch of Lemma 7.1

We first describe our scheme FE0 explicitly here. We do it in a slightly different way so that it is easier
to see the similarity of our scheme to the one proposed by Okamoto and Takashima [OT12]. Once again,
please note that we describe our schemes, and some problems afterwards, ‘in the exponent’.

C.1.1 Scheme

For a square matrix B = (~b1,~b2, . . . ,~bn), where each ~bi ∈ Znp , let (a1, a2, . . . , an)B =
∑n

i=1 ai
~bi, where

ai ∈ Zp. The four algorithms of FE0 are now described as follows.

• Setup(1κ): Let (p,G,GT , e) = GroupGen(1κ). Pick (B,B∗) $←− Dual(Z5n
p ). Let

B̂ = (~b1,~b2, . . . ,~bn,~b4n+1,~b4n+2, . . . ,~b5n), B̂∗ = (~b∗1,
~b∗2, . . . ,

~b∗n,
~b∗3n+1,

~b∗3n+2, . . . ,
~b∗4n).

Set PK = B̂ and SK = B̂∗.
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• Encrypt(~x,PK): Let ~x = (x1, . . . , xn), where xi ∈ Zp. Choose ω, ϕ1, ϕ2, . . . , ϕn uniformly and inde-
pendently at random from Zp. Let ~ϕ denote the vector (ϕ1, ϕ2, . . . , ϕn). The ciphertext for attribute
~x is given by

CT~x = ( ω~x, 02n, 0n, ~ϕ )B.

• KeyGen(~v,SK): Let ~v = (v1, . . . , vn), where vi ∈ Zp. Choose σ, η1, η2, . . . , ηn uniformly and indepen-
dently at random from Zp. Let ~η denote the vector (η1, η2, . . . , ηn). The key for predicate ~v is given
by

SK~v = ( σ~v, 02n, ~η, 0n )B∗ .

• Decrypt(CT~x, SK~v): Compute b = ~e(CT~x,SK~v) and output 1 if b = e(g, g)0 and 0 otherwise.

C.1.2 Proof of Security

In order to prove that their public-key inner product scheme is secure, Okamoto and Takashima construct
a series of hybrids linear in the number of queries made by the adversary. They define two canonical
problems: Problem 1 and Problem 2, and show that the indistinguishability of hybrids can be reduced to
one of these two problems. They further show that the DLIN assumption can be reduced to both problems
1 and 2, establishing the security of their scheme. For details, see Section 4.3.3 in [OT12] (full version).

Now, to prove that our scheme FE0 is 1-AD-INDmsg attribute-hiding, we follow Okamoto and Takashima’s
approach. We construct the same number of hybrids in the same way, the only difference being that our
ciphertexts and keys (both normal and temporal) have some extra elements at the end. Let H′ denote our
collection of hybrids, and Problem 1′ and Problem 2′ our two basic problems. Then, we would like to show
the following:

• The indistinguishability of hybrids in H′ can be reduced to either Problem 1′ or Problem 2′, and

• The DLIN assumption reduces to both the problems.

The proof of the two parts above follows the proof of Okamoto and Takashima very closely because of the
similarity the two schemes possess. We defer the proof of the first part to the full version of the paper.
Here, we show how the DLIN assumption can be reduced to both Problem 1′ and Problem 2′ via Basic
Problem 0 defined in [OT10] (Definition 18 in the full version).

Problem 1′ Let (p,G,GT , e) = GroupGen(1κ). Pick (B,B∗) $←− Dual(Z5n
p ). Let

B̂∗ = (b∗1, . . . , b
∗
n, b
∗
3n+1, . . . , b

∗
5n).

Choose ω, γ1, . . . , γn, z independently and uniformly at random from Zp. Let ~γ denote the vector (γ1, . . . , γn).
Define the following quantities:

~f0,1 = ( ω0n−1, 02n, 0n, ~γ )B,

~f1,1 = ( ω0n−1, z02n−1, 0n, ~γ )B,

~fi = ω~bi, for i = 2, . . . , n.

For a p.p.t. adversary A, consider an experiment exp
(b)
P1,A(1κ) in which A is given (B, B̂∗, ~fb,1, {~fi}i=2,...,n),

and is supposed to guess b. The advantage of A in Problem 1′ is defined as:

AdvP1,A(κ) = |Pr[exp
(0)
P1,A(1κ) = 1]− Pr[exp

(1)
P1,A(1κ) = 1]|.
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Problem 2′ Let (p,G,GT , e) = GroupGen(1κ). Pick (B,B∗) $←− Dual(Z5n
p ). Let

B̂ = (b1, . . . , bn, b2n+1, . . . , b5n).

Choose ω, δ, δ0, τ, σ independently and uniformly at random from Zp. Let ~ei = (0i−1, 1, 0n−i), for i =
1, 2, . . . , n. Define the following quantities for i = 1, 2, . . . , n:

~h∗0,i = ( δ~ei, 0n, 0n, δ0~ei, 0n )B∗ ,

~h∗1,i = ( δ~ei, τ~ei, 0n, δ0~ei, 0n )B∗ ,

~hi = ( ω~ei, σ~ei, 0n, 0n, 0n )B.

For a p.p.t. adversary A, consider an experiment exp
(b)
P2,A(1κ) in which A is given (B̂,B∗, {~h∗b,i,~hi}i=1,...,n),

and is supposed to guess b. The advantage of A in Problem 2′ is defined as:

AdvP2,A(κ) = |Pr[exp
(0)
P2,A(1κ) = 1]− Pr[exp

(1)
P2,A(1κ) = 1]|.

Basic Problem 0. The definition of this problem can be found in the full version of [OT10] (Definition
18). They also show how the DLIN assumption reduces to this problem. Though the problem has been
cast in an additive group, one can view it in a multiplicative group too. In the following, we show how
basic problem 0 reduces to problems 1′ and 2′ defined above, thus proving the security of our scheme under
the DLIN assumption.

For the sake of completeness, and consistency with our notation, we provide a description of Basic
Problem 0 here. Let (p,G,GT , e) = GroupGen(1κ). Let X be a 3 × 3 matrix whose every entry is chosen
independently and uniformly at random from Zp, such that the inverse of X exists. Let χi,j denote the
entry in ith row and jth column of X. Also, let νi,j denote the entry in ith row and jth column of (XT )−1.

For i ∈ {1, 2, 3}, let ~bi = (κχi,1, κχi,2, κχi,3) and ~b∗i = (ξνi,1, ξνi,2, ξνi,3), where κ, ξ ∈ Zp \ {0}. Further,
pick δ, σ, ω at random from Zp, and ρ, τ at random from Zp \ {0}, and set the following:

~y0 = (δ, 0, σ)B∗ ~y1 = (δ, ρ, σ)B∗ ~f = (ω, τ, 0)B.

Finally, let B̂ = (~b1,~b3) and B∗ = (~b∗1,
~b∗2,

~b∗3). For a p.p.t. adversary A, consider an experiment exp
(b)
BP0,A(1κ)

in which A is given (B̂,B∗, ~y∗b , ~f , κ, ξ, δξ), and is supposed to guess b. The advantage of A in Basic Problem
0 is defined as:

AdvBP0,A(κ) = |Pr[exp
(0)
BP0,A(1κ) = 1]− Pr[exp

(1)
BP0,A(1κ) = 1]|.

Reducing Basic Problem 0 to Problem 1′. We show how to produce an instance of Problem 1′ using
an instance of Basic Problem 0. Suppose we have the following instance of problem 0: (B̂,B∗, ~y∗b , ~f , κ, ξ, δξ).
Let W be a 5n× 5n matrix whose every entry is chosen independently and uniformly at random from Zp,
such that the inverse of W exists. Define the matrices D = (~d1, ~d2, . . . , ~d5n) and D∗ = (~d∗1,

~d∗2, . . . ,
~d∗5n) as

follows:
~d1 = W (~b∗1, 0

5n−3), ~dn+1 = W (~b∗2, 0
5n−3) ~d4n+1 = W (~b∗3, 0

5n−3),

~di = W (0i+1, ξ, 05n−i−2) for i = 2, . . . , n,

~di = W (0i, ξ, 05n−i−1) for i = n+ 2, . . . , 4n,

~di = W (0i−1, ξ, 05n−i) for i = 4n+ 2, . . . , 5n,

~d∗1 = (W−1)T (~b1, 0
5n−3), ~d∗n+1 = (W−1)T (~b2, 0

5n−3) ~d∗4n+1 = (W−1)T (~b3, 0
5n−3),
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~d∗i = (W−1)T (0i+1, κ, 05n−i−2) for i = 2, . . . , n,

~d∗i = (W−1)T (0i, κ, 05n−i−1) for i = n+ 2, . . . , 4n,

~d∗i = (W−1)T (0i−1, κ, 05n−i) for i = 4n+ 2, . . . , 5n.

One can verify that D and D∗ are dual orthonormal bases. Let D̂∗ = (~d∗1, . . . ,
~d∗n,

~d∗3n+1, . . . ,
~d∗5n).

Observe that D and D̂∗ can be computed from the knowledge of B̂ and B∗, which are part of the given
instance. Further, choose n− 1 numbers γ2, . . . , γn uniformly at random from Zp and set the following:

~fb,1 = W (~y∗b , 0
4n−2, γ2ξ, . . . , γnξ),

~fi = W (0i+1, δξ, 05n−i−2) for i = 2, . . . , n.

Finally, output an instance of Problem 1′: (D, D̂∗, ~fb,1, {~fi}i=2,...,n). We can see that:

~f0,1 = ( δ0n−1, 02n, 0n, ~γ′ )B,

~f1,1 = ( δ0n−1, ρ02n−1, 0n, ~γ′ )B,

~fi = δ~bi, for i = 2, . . . , n,

where ~γ′ = (σ, γ2, . . . , γn).

Reducing Basic Problem 0 to Problem 2′. We show how to produce an instance of Problem 2′

using an instance of Basic Problem 0. Once again, assume we have the following instance of problem 0:
(B̂,B∗, ~y∗b , ~f , κ, ξ, δξ). Pick W as described above. Define the matrices D = (~d1, ~d2, . . . , ~d5n) and D∗ =

(~d∗1,
~d∗2, . . . ,

~d∗5n) as follows:

~d(j−1)n+i = W (03(i−1),~bj , 0
3(n−i), 02n) for i = 1, . . . , n; j = 1, 2,

~di = W (0n+i−1, κ, 04n−i) for i = 2n+ 1, . . . , 3n

~d3n+i = W (03(i−1),~b3, 0
3(n−i), 02n) for i = 1, . . . , n

~di = W (0i−1, κ, 05n−i) for i = 4n+ 1, . . . , 5n

~d∗(j−1)n+i = (W−1)T (03(i−1),~b∗j , 0
3(n−i), 02n) for i = 1, . . . , n; j = 1, 2

~d∗i = (W−1)T (0n+i−1, ξ, 04n−i) for i = 2n+ 1, . . . , 3n

~d∗3n+i = (W−1)T (03(i−1),~b∗3, 0
3(n−i), 02n) for i = 1, . . . , n

~d∗i = (W−1)T (0i−1, ξ, 05n−i) for i = 4n+ 1, . . . , 5n

One can verify that D and D∗ are dual orthonormal bases. Let D̂ = (~d1, . . . , ~dn, ~d2n+1, . . . , ~d5n). Now,
for i = 1, 2, . . . , n set the following:

~h∗b,i = (W−1)T (03(i−1), ~y∗b , 0
3(n−i), 02n),

~hi = W (03(i−1), ~f , 03(n−i), 02n).

Finally, output an instance of Problem 2′: (D̂,D∗, {~h∗b,i,~hi}i=1,...,n). For i = 1, 2, . . . , n, we can see that:

~h∗0,i = ( δ~ei, 0n, 0n, σ~ei, 0n )D∗ ,

~h∗1,i = ( δ~ei, ρ~ei, 0n, σ~ei, 0n )D∗ ,

~hi = ( ω~ei, τ ~ei, 0n, 0n, 0n )D.

where ~ei = (0i−1, 1, 0n−i).
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C.2 Proof of Theorem 7.3

For the sake of contradiction, assume FEPrv is not single challenge secure. Suppose there exists an adversary
A who gets a non-negligible advantage in the security game described in Definition 2.6. Further, assume
A gets such an advantage in the case of t = 1, i.e., for key challenge. We construct an adversary B for FE1

which gets a non-negligible advantage in the security game described in Definition 2.2.
Adversary B runs A as a black-box. At the start of the game, B receives FE1.PK = B̂∗ from the

challenger. Whenever A requests an encryption on an attribute ~x, B asks the challenger for a key for the
predicate ~x. B receives FE1.KeyGen(~x, B̂) = FE0.Encrypt(~x, B̂) = FEPrv.Encrypt(~x, B̂) from the challenger
and passes it on to A. On the other hand, whenever A requests for a key for a predicate ~v, B encrypts
~v using its public key, obtaining FE1.Encrypt(~v, B̂∗) = FE0.KeyGen(~v, B̂∗) = FEPrv.KeyGen(~v, B̂∗), and
passes it on to A. When A asks the key challenge (1, ~v0, ~v1), B sends ~v0 and ~v1 as challenge attributes to
the challenger. As we have seen before, B obtains FE1.Encrypt (~vb, B̂∗) = FEPrv.KeyGen(~vb, B̂∗) from the
challenger, and sends it to A. Finally, B outputs whatever A does. (If A asks for a ciphertext challenge,
B simply aborts.)

It is easy to see that the view of A is same as in the security game for Definition 2.6. Therefore, if A
succeeds with non-negligible probability in the case of t = 1, so does B, which contradicts the fact that
FE1 is secure. We can similarly show that if an adversary succeeds with non-negligible probability when
asking for a ciphertext challenge, the scheme FE0 is not secure – again a contradiction.

D Security of Property Preserving Encryption

D.1 Constructing PPE from private key predicate encryption

Suppose we would like to construct a PPE scheme ΠP for a property P : M×M → {0, 1}. Let FEF
be a private key predicate encryption scheme over the class of predicates F = {fa | a ∈ M}, where
fa : M → {0, 1} is defined as fa(b) = P (a, b) for all a, b ∈ M. Using FEF , we can construct ΠP as
described below. The basic idea is to combine ciphertext and key of the latter scheme in order to obtain
a ciphertext for the former, which allows us to operate on two ciphertexts.

• ΠP .Setup(1κ): Run FEF .Setup(1κ) to obtain a secret key SK.

• ΠP .Encrypt(m,SK): Output (FEF .Encrypt(m,SK),FEF .KeyGen(m,SK)). Let the output be denoted
by CT∗m = (CTm, SKm).

• ΠP .Test(CT
∗
m1
,CT∗m2

): Output FEF .Decrypt(CTm2 , SKm1).

where m,m1,m2 ∈M. It is easy to see that ΠP is correct:

ΠP .Test(CT
∗
m1
,CT∗m2

) = FEF .Decrypt(CTm2 , SKm1)

= FEF .Decrypt(FEF .Encrypt(m2,SK),FEF .KeyGen(m1, SK)))

= fm1(m2)

= P (m1,m2).

D.2 Proof of Theorem 8.3

Let us say that there exists an adversaryA attacking the scheme ΠP who obtains a non-negligible advantage
in the LoR security game. We construct an adversary B for the fully scheme FEF which runs A as a black-
box. The challenger picks up a random bit b ∈ {0, 1}. Whenever A queries with two messages m1 and m2,
B asks two kinds of queries to the challenger: an (m1,m2) ciphertext query and an (m1,m2) key query. B
receives FEF .Encrypt(mb,SK) and FEF .KeyGen(mb,SK) from the challenger, which it passes on to A as
the encryption of mb. When A produces an output bit β, B outputs the same bit and halts.
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We know that A is a valid adversary if for every two (not necessarily distinct) pairs of messages
(m1,m2) and (m′1,m

′
2), P (m1,m

′
1) = P (m2,m

′
2). This implies that B is an admissible adversary, i.e., for

all ciphertext queries (x1, x2) and key queries (v1, v2), fv1(x1) = fv2(x2). Further, it is easy to see that A’s
view in this game is indistinguishable from its view in the LoR security game. Therefore, if A guesses b
with non-negligible probability over 1/2, so does B. This leads to a contradiction regarding the security of
FEF . Hence, ΠP is LoR secure.

E Proof of dream version data and function hiding in the generic group
model

E.1 Generic Group (GG) Model Overview

The generic group model [Nec94, Sho97] provides a method by which to study the security of algorithms
that act oblivious of particular group representations. All algorithms obtain access to elements of the
group via random “handles” (of sufficient length) and remain unaware of their actual representations. In
our work we will require two groups G,GT (called the source and target group respectively) where G is
equipped with a bilinear map e : G × G → GT . Algorithms with generic access to these may request group
additions and inverses on either group, as well as pairings between elements in the source group.

Given group elements in G,GT an adversary will only be able to perform group exponentiations, multi-
plications, pairings and equality comparisons. Given this restricted way in which an adversary is allowed
to access the groups G,GT , he is only able to compute certain relations between elements which we call
Admissible Relations, as defined below.

Definition E.1 (Admissible Relations). Consider a group G of order p, which supports a bilinear map
e : G × G → GT . Let g and gT be the generators of G and GT respectively. Let {Ai}`i=1, {Bi}mi=1 be
sets of formal variables taking values from Zp, representing the exponents of g and gT respectively. Then

we define admissible relations over the set {Ai} ∪ {Bi} to be all relations of the form
∑

k γkAk
?
= 0 or∑

k γkBk +
∑

i,j γi,jAiAj
?
= 0 where γk, γi,j ∈ Zp.

Admissible relations capture the only relations an adversary can learn given only generic access to
elements in the source and target group, described in the exponent for ease of exposition. Thus, ex-
ponentiation of a group element becomes multiplication in the exponent (eg. (gAk)γk becomes gγkAk) ,
multiplication of two elements in the same group becomes addition in the exponent (

∏
k(g

Ak)γk becomes
g
∑
k γkAk) and pairing between source group elements becomes multiplication in the target group exponent

(e(gAi , gAj ) becomes g
AiAj
T ).

We will also need the Schwartz Zippel lemma.

Theorem E.2 (Schwartz Zippel Lemma). Let g1, g2 be any two different `-variate polynomials with coef-
ficients in field Zp. Let the degree of the polynomial g1 − g2 be t. Then,

Pr
{Xi}`i=1

$←−Zp

[g1(X1, . . . , X`) = g2(X1, . . . , X`)] ≤
t

p

E.2 Proof of Security

Simulator Construction. Formally, the simulator S is specified as follows:

• Initialization: S constructs a table called simulation table to simulate the GG oracle (p,G,GT , e).
A simulation table consists of two parts one each for the source group G and the target group GT
respectively. Each part is a list that contains two columns labeled formal polynomial and group
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handle respectively. Group handles are strings from {0, 1}2κ. A formal polynomial is a multivariate
polynomial defined over Zp. We assume that there is a canonical ordering amongst the variables used
to create the formal polynomial entries and thus each polynomial may be represented by a unique
canonical representation.

• Setup: Upon receiving the public parameters, i.e. function description i.e p from O, S executes the
setup algorithm of the scheme as follows. He generates new group handles corresponding to the iden-
tity elements of G and GT . He associates these with the formal polynomials S0 and T0 respectively.

S picks 18 new formal variables that represent the bases (B,B∗) $←− Dual(Z3
p) as

{(
b1i, b2i, b3i

)> }3

i=1

and
{(
b∗1i, b

∗
2i, b

∗
3i

)> }3

i=1
as well as a new formal variable ψ. Next, S picks new formal variables

P,R,Q,R0, {Hi, Ri}i=ni=1
7. He sets up the encryption key and master secret key by generating new

group handles to represent the formal polynomials: EK =
{

(P, 0, 0), (0, 0, R), (0, Q,R0), {(Hi, 0, Ri)}ni=1

}
and MSK =

{
(0, Q, 0), {(Hi, 0, 0)}i=ni=1 ,

~b1,~b2,~b3,~b
∗
1,
~b∗2,

~b∗3
}

. He stores these associations in the simula-
tion table.

• Running the adversary: S runs the adversary A(1κ) and gives it the public parameters PK =
(p,G,GT , e). This amounts to S providing the adversary with oracle access to G,GT , e and sending
him p.

• Request for Public Key: When S receives the command PK mode from O, he sends the group
handles of EK to A.

• External Ciphertexts and Keys: At any time, S may receive a message of the form MsgIdx~x,
f1(~x), . . . , fcols(~x) from O. In response:

– S follows the outline of the Encrypt algorithm as follows: He picks new formal variables s, α, {xi}ni=1, {ri}ni=1

(all indexed by the particular index MsgIdx~x, dropped here for notational convenience). He then
constructs the formal polynomials associated with the following 3-tuples:

C =
{
C0 = (sP, 0, 0),

{
Ci = (sHi, Qαxi, ri)

}n
i=1

}
(2)

and adds each formal polynomial thus generated in C to the simulation table along with a new
group handle.

– S then programs the generic group to incorporate the function values f1(~x), . . . , fcols(~x) that
were received. To do this, S retrieves the formal polynomials associated with all the keys in the
table {Kj

0 ,K
j
1 , . . . ,K

j
n}j∈[cols]. Then, for each j, he computes the formal polynomials associated

with the decrypt operation between C and Kj , i.e. b = ~e(C0,K
j
0) ·
∏i=n
i=1 ~e(Ci,K

j
i ). If fj(~x) = 0,

he sets the resultant expression to correspond to the group handle for the identity element in
the target group. Else, he generates a new group handle and stores the resultant expression to
correspond to it.

– S then sends the group handles corresponding to C to A.

He acts analogously in the case of a KeyIdxj , fj(~x1), . . . , fj(~xrows) message by following the KeyGen
algorithm to generate formal polynomials corresponding to a new key and programming the decrypt
expressions to correspond to the received function values.

• Generic Group Operations: At any stage, A may request generic group operations from S by
providing the corresponding group handle(s) and specifying the requested operation, such as pairing,
identity, inverse or group operation. In response, S looks up its simulation table for the formal

7Recall that n is part of intentionally leaked information (Remark 1) in our scheme
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polynomial(s) corresponding to the specified group handle(s), computes the operation between the
formal polynomials, simplifies the resultant expression and does a reverse lookup in the table to find
a group handle corresponding to the resultant polynomial. If it finds it, S will return this group
handle to A, otherwise it randomly generates a new group handle, stores it in the simulation table
against the resultant formal polynomial, and returns this to A. For more details, we refer the reader
to Appendix E.3.

Tracking admissible relations learnt by A: If A requests generic group operations to compute
a polynomial involving a term ψQ2expr where expr is an expression containing a term of the form∑n

i=1 civi for some constant ci ∈ Zp, then S considers this as a function evaluation by A on message
that he encrypted himself. He extracts the message ~x = c1, . . . , cn. S then sends the message (~x, keys)
to O. Upon receiving MsgIdx~x, f1(~x), . . . , fcols(~x) from O, S computes the decrypt expressions for the
extracted message with all the keys and programs the linear relations in the generic group oracle as
in the previous step.

Next, we show that the real and ideal worlds are indistinguishable to Z. Formally, we prove the
following theorem:

Theorem E.3. The simulator S constructed in Section E.2 is such that for all adversaries A, for all
Z with auxiliary input z, {VIEWIDEAL(1κ, z)}κ∈Z+,z∈{0,1}∗≈{VIEWREAL(1κ, z)}κ∈Z+,z∈{0,1}∗ in the generic
group model.

High Level Overview of Proof: Intuitively, the only way the environment distinguishes between the
real and ideal world is when he obtains group elements from the GG oracle which differ in satisfying some
admissible relation between the two worlds. We argue that this cannot happen. To do so, we begin by by
enumerating all admissible relations present between the elements of the real world scheme. Then we prove
that our simulator accounted for all these relations. To see how the simulator accounted for all possible
admissible relations, note that whenever an external party sends its ciphertext or key to the adversary,
modeled by Z sending message (CT, ~x) (or (SK, f)) to O, the simulator obtains from O all possible function
evaluations between the newly added message, say ~x∗ and all existing keys in the system. It creates the
required formal variables representing the ciphertext CT∗ of ~x∗, and computes via polynomial arithmetic
the decrypt operation corresponding to CT~x∗ and SKf1 , . . . ,SKfcols . Lets say that fj(~x

∗) = 0 as informed

by O. Then, S sets the decrypt expression ~e(C∗0 ,K
j
0) ·
∏i=n
i=1 ~e(C

∗
i ,K

j
i ) equal to the identity element of the

target group, and returns the group handles for CT∗ to the adversary. S’s job is much more complex in the
public key mode, where A has the encryption key and may perform encryptions of vectors of his choice.
Note that the adversary may use no randomness while performing these encryptions, and may indeed
behave in an obfuscated manner – he can carry out an arbitrarily obfuscated sequence of group operations,
which may implicitly be encrypting and decrypting values. Our simulator keeps track of his operations via
his queries to the generic group oracle, and if S encounters a term of the form ψ ·Q2 ·

∑n
i=1 civi for some

constant ci ∈ Zp, then S extracts the message ~x∗ = c1, . . . , cn, queries O for function values corresponding
to ~x∗ and programs them into the generic group as above. Note that S can also attempt to extract ~x∗ when
A attempts to encrypt it, however it is cleaner to describe this extraction operation during A’s decrypt
attempts. This also makes the simulator more efficient, since it need not program dependencies that A
does not check via computing the decrypt operation. S can handle key updates in a similar fashion.

E.3 Analysis of Real and Ideal worlds

We now provide a proof that S constructed above works correctly. Intuitively, the only way the environment
distinguishes between the real and ideal world is when he obtains group elements from the GG oracle which
differ in satisfying some admissible relation between the two worlds. In this section we will prove that one
cannot discover admissible relations in the prime order scheme presented in Section 5.2 apart from the
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ones that are accounted for by our simulator S. At a high level, we do this by enumerating all admissible
relations present between the elements of the real world scheme and then proving that our simulator
programmed all these relations.

Recall that our scheme is based on the composite order scheme of [KSW08], but unlike in [KSW08]
our scheme is based on prime order bilinear groups and thus our proof is more involved. We proceed to
enumerate all possible admissible relations in two phases.

First, we show that if there are any admissible relations between individual group elements of our
scheme, then certain relations are satisfied over Z3

p.

Theorem E.4. (Translation of Admissible Relations) Let A ⊆ Z3
p be any set. Let (B,B∗)← Dual(Zp)

be a random dual orthonormal basis represented by formal variables satisfying Eqn 1. Define C
.

= {x~b1 +
y~b2 +z~b3|(x, y, z) ∈ A}∪{x~b∗1 +y~b∗2 +z~b∗3|(x, y, z) ∈ A}. Then any admissible relation amongst the elements
of C results in an admissible relation (with the same coefficients) amongst corresponding elements of A.

Proof. Recall from our notation that the vector of elements x~b1 + y~b2 + z~b3 is just the three elements
denoted by the row vector,(x y z)

b11

b21

b31

 , (x y z)

b12

b22

b32

 , (x y z)

b13

b23

b33


Denote the column vectors of the basis matrix by,

{
~gi =

(
b1i
b2i
b3i

)}3

i=1

and

{
~g∗i =

(
b∗1i
b∗2i
b∗3i

)}
We have that the new group elements added to C due to the element ~aT = (x y z) are aT · ~g1, a

T ·
~g2, a

T · ~g3 and aT · ~g∗1, aT · ~g∗2, aT · ~g∗3.

Relations in the source group. Consider any admissible relation in the source group of the form
∑
αi~a

T
i ~g1+∑

βi~c
T
i ~g
∗
1 · · · +

∑
ηi~t

T
i ~g3 +

∑
γi~d

T
i ~g
∗
3 = 0. Since the above equation is 0 as a formal expression and the

variables ~g1, ~g
∗
1, . . . , ~g3, ~g

∗
3 are different we have that each of the independent components sum up to 0.

Thus,
∑
αia

T
i = 0, etc. yielding a corresponding relation between elements in A.

Relations in the target group. Next consider admissible relations that involve pairings and are thus in the
target group. Recall that from the choice of the vectors ~b1,~b2,~b3,~b

∗
1,
~b∗2,

~b∗3, the only admissible relations
that they satisfy are of the form, ~bT1~bT2

~bT3

 · (~b∗1 ~b∗2
~b∗3

)
=

ψ 0 0
0 ψ 0
0 0 ψ

 (3)

And rewriting the matrices with the column vectors ~g1 etc. we have that

(
~g1 ~g2 ~g3

)
·

~g∗T1

~g∗T2

~g∗T3

 =

i=3∑
i=1

~gi~g
∗T
i =

i=3∑
i=1

~g∗i ~g
T
i =

ψ 0 0
0 ψ 0
0 0 ψ

 (4)

Consider an arbitrary admissible relationship in the target group of the form∑
αi(a

T
i · ~g1)(cTi · ~g2) +

∑
βi(d

T
i · ~g1)(tTi · ~g∗1) · · ·+

∑
γi(h

T
i · ~g3)(`Ti · ~g∗3) = 0

where the relation (w.l.o.g) has a summation with every possible pair ~g1~g2, ~g1~g
∗
1, ~g1~g1 etc. (a total of 36

such terms for every possible combination). Rearranging terms inside each summation and looking at some
arbitrary pair, say ~g1, ~g2, we have that,

35



∑
αi(a

T
i · ~g1)(cTi · ~g2) =

∑
αi(a

T
i · ~g1)(~gT2 · ci)

=
∑

αi(a
T
i ) · (~g1 · ~gT2 ) · ci

and similarly for other terms as well. ~g1~g
T
2 is a 3 × 3 matrix. We focus only on the terms in its main

diagonal. It consists of the following three quadratic polynomials: b11b12, b21b22, b31b32. These terms will
not appear elsewhere in any other term except for (~g1~g

T
2 )T = ~g2~g

T
1 and when it does appear in ~g2~g

T
1 it

appears in the main diagonal as well. The coefficients on the diagonal are a1c1, a2c2, a3c3 respectively.
Since this summation is 0 as a formal polynomial, we have that each individual coefficient of b11b12, b21b22, b31b32

must be 0. Thus we have that
∑
αi(a

T
i ci) = 0 yielding a relation in A.

However we are not done, since some of the vectors, say ~g1, ~g
∗
1 etc., satisfy a relationship namely Eqn

4. We handle this case by the following analysis.
Suppose we have that ∑

αia
T
i (~g1~g

∗T
1 )ci + · · ·

∑
βit

T
i (~g3~g

∗T
3 )di = 0

From Equation 4, we may write ~g1~g
∗T
1 = ψ · I3×3 −

∑3
i=2 ~gi~g

∗T
i . Since the equation is identically 0 and the

formal variable ψ does not appear anywhere else, we get that its coefficient
∑
αia

T
i ci = 0. Similarly we

obtain
∑
βit

T
i di =

∑
αia

T
i ci = 0 and so on. Thus, we get

∑
αia

T
i ci + · · ·+

∑
βit

T
i di = 0. This concludes

the proof that any admissible relation over the elements of C results in an identical admissible relation
over corresponding elements of A.

Next, we have the following theorem that enumerates all admissible relations between elements in the
real world.

Theorem E.5. (Admissible Relations in Our Scheme.) In the real world, A sees the following
admissible relations:

1. Before EK is given: In this case, the only admissible relations present in the system are relations
corresponding to Decrypt(MsgIdxi,KeyIdxj) for messages and keys such that T [MsgIdxi,KeyIdxj ] = 0
and any linear combinations of such expressions.

2. After EK is given: In this case, in addition to the above relations, additional admissible relations exist
for any message ~m = (m1, . . . ,mn) ∈ Znp such that T [~m,KeyIdxj ] = 0 for some key corresponding to
KeyIdxj and any linear combinations of such expressions.

Proof. Our proof handles each case separately.
Case 1: Before EK is given. Suppose that A requests a total of mk keys and mc cipher texts. Then,
the group elements that A has can be summarized using 3-tuples as follows.
The secret keys:{

SKj =
{
Kj =

( n∑
i=1

(−Hi · δji ), Q
j
6, R

j
5

)
, {Kj

i = (Pδji , Qf
jvji , 0)}ni=1

}}mk
j=1

(5)

The ciphertexts: {
Cj =

{
Cj0 = (sjP, 0, 0),

{
Cji = (sjHi, Qα

jxji , r
j
i )
}n
i=1

}}mc
j=1

(6)

Note that here, for ease of notation, we have collapsed the component sjRji + rji +R0α
jxji to just rji since

this is a formal polynomial of which rji is a fresh new formal variable. This would suffice for us in the
proof. In what follows we will use the character ∗ to denote “anything”, i.e. whenever it is irrelevant what
the exact value of the element is. For example 0× ∗ = 0.

Now let us look at possible admissible relations in the source group containing the 3-tuples corresponding
to keys. Note that:
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1. Linear relations containing an element (
∑n

i=1(−Hiδ
j
i ), Q

j
6, R

j
5) cannot exist because Rj5 is not present

in any of the other elements in Eqns 5 and 6. Thus it would never get canceled unless the coefficient
of the above element is 0.

2. Linear relations containing any of the elements (Pδji , Qf
jvji , 0) cannot exist because for each i the

variable δji occurs only in the element (
∑n

i=1(−Hiδ
j
i ), Q

j
6, R

j
5) whose coefficient is 0 as seen above,

and does not exist in any of the other elements in Eqns 5 and 6. Thus any linear relation cannot
contain this term with nonzero coefficient.

Next consider possible admissible relations in the source group containing the 3-tuples corresponding
to ciphertexts. Note that:

1. Linear relations containing any of the elements Cji = (sjHi, Qα
jxji , r

j
i ) cannot exist because rji is not

present in any of the other elements in Eqns 5 and 6. Thus it would never get canceled unless the
coefficient of the above element is 0.

2. Linear relations containing Cj0 do not exist as the variable sj appears only in the elements Cji whose
coefficients are all 0.

Thus there are no dependencies in the source group involving key or ciphertext elements. Next we
enumerate the list of elements in the target group and study dependencies between them.

1. First, we claim that any linear relation containing the product of the element (
∑n

i=1(−Hiδ
j
i ), Q

j
6, R

j
5)

has to be with some element of the form (skP , 0 , 0). We proceed to rule out all other cases
below. First, note that the element cannot be multiplied with itself as no other multiplication will
generate (Rj5)2. Also, it cannot be multiplied with any of the other elements of SKj since : 1) it

cannot be multiplied with (Pδji , ∗, 0) as the first component will then contain some term of the form

PHi ·(δji )2 and this term cannot be canceled : all other ways to generate (δji )
2 involve multiplying two

elements with (Pδji , ∗, 0) would produce a P 2 term and thus be unsuitable. 2) it cannot be multiplied

with (Pδjk, ∗, ∗) for k 6= i, n > 1, since the first term
∑n

i=1(−Hiδ
j
i ) · Pδ

j
k cannot be constructed

otherwise.Using the same reasoning as above, it cannot also be multiplied with key elements of
other secret keys SKk for k 6= j. It cannot be multiplied with ciphertext elements of the form
(skHi, Qα

kxki , r
k
i ) since the third component of the multiplication – rki R

j
5 cannot be constructed

otherwise.

2. Linear relations containing a multiplication of the element (Pδji , ∗, 0) cannot exist unless it is multi-
plied with a term of the form (skHi, ∗, ∗) because: 1) Multiplying it with itself or other key elements
of the form (Pδba, ∗, 0) produces terms containing (P 2 · δji δba, ∗, 0) which cannot be canceled. 2) Mul-

tiplying it with (
∑n

i=1(−Hiδ
j
i ), Q

j
6, R

j
5) is ruled out by previous analysis 3) Multiplying it with any

term (skH`, ∗, ∗) for ` 6= i cannot work because the term δjiH` only occurs again in some element

(PδjiH`s
k′ , ∗, ∗) with a different multiplier sk

′
. Thus, multiplying it with any term which is not

(skHi, ∗, ∗) produces terms that cannot be canceled.

Thus, we have shown that the only feasible multiplications which contribute to linear relations are
those which multiply the first key component K0 with the first ciphertext component C0 and the ith

key component with the ith ciphertext component for i = 1, . . . n.

Now, next observe that if the first key component Kj
0 multiplied with the first ciphertext component

Ck0 we get the term −
∑

iHiδ
j
i s
kP in the Gp component which can only be obtained by multiplying

Kj
i with Cki for i ∈ [n] and adding them up. This constitutes the legitimate decryption procedure

and would also appear in the ideal world. Suppose we ignore K0 and C0 terms and multiply just the
ith components for various ciphertext-key pairs, we get terms of the form Hiδ

j
i which do not appear
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anywhere except K0 and hence cannot get canceled. Also note that every legitimate decryption
expression has a unique key-ciphertext identifier f jαj the second component, and hence this cannot
be combined with any other legitimate decryption expression.

Next, we consider the linear relations that involve ciphertext elements. Note that by the above analysis
we have already ruled out linear relations involving key elements so it suffices to restrict our attention to
linear relations that involve only ciphertext group elements. Recall what the ciphertext group elements
look like: {

Cj0 = (sjP, 0, 0),
{
Cji = (sjHi, Qα

jxji , r
j
i )
}i=n
i=1

}mc
j=1

Next we look at possible admissible relations in the target group.

1. Consider elements of the form Cji for any i, j. Such elements can only be multiplied with elements

whose third component is 0 in order to cancel out the formal variable rji . Hence these elements can

only be multiplied with an element of the form Ck0 for some k. Consider multiplications of Cji with
elements of the form Ck0 for any k. Such a multiplication gives rise to the term PsksjHi. Note that
this term does appear when we multiply Cj0 with Cki ! However such multiplications have no term in
the second component and hence always hold regardless of the message. Recall that we do not care
about such relations.

2. Linear dependencies involving multiplying the element Cj0 with elements Cki were analyzed above.

Multiplying Cj0 with Ck0 yields the term sjsk in the first component which cannot be obtained in any
other way.

Case 2: After EK is given. Apart from the key and ciphertext elements listed above, we would also like
to consider admissible relations between elements of EK. The reason we would like to do this is because in
the PK mode the simulator S is constructed in a manner as to send EK to the A.

Recall that as 3-tuples,

EK =
{

(P, 0, 0), (0, Q,R0), {(Hi, 0, Ri)}i=ni=1

}
We only need to consider admissible relations in the target group. Multiplication of any element with
the terms {(Hi, 0, Ri)}ni=1, (P, 0, 0) are irrelevant as they are independent of the message or key vectors.

Multiplication of the term (0, Q,R0) with the term Cji is not useful as the unique term R0r
j
i produced in

such a product can never be produced by any other multiplication.
We are only left with multiplications of the form (0, Q,R0) · Kj

i . These multiplications are allowed

and produce elements of the form (∗, Q2f jvji , 0). The adversary may compute any linear combination of
any number of such multiplications, and thus these are valid admissible relations. Call these relations L.
Looking ahead we observe that these relations are set correctly by the simulator S as they merely mimic
the Decrypt operation where the adversary used bad randomness i.e set s = 0, α = 1 which are anyway
valid computations for an adversary possessing the encryption key.

Our scheme may have other admissible relations present but these do not involve any message or key
vectors, but S is constructed to satisfy all such dependencies since it mimics the real world.

Generic Group Operations Whenever A requests the GG oracle for group operations corresponding
G,GT or the pairing operation e, S does the following:

1. Request for Identity: When A requests for the identity element of the group G, S looks up the
simulation table for the formal polynomial 0 in the part that corresponds to G and returns the group
handle corresponding to it to the adversary. He acts analogously with request for the identity of GT .
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2. Request for Inverses: When A requests the inverse of a group handle h in G, S looks up the formal
polynomial associated with h from the simulation table, denoted by ĥ. He computes the polynomial
(−1)ĥ and looks for it in the simulation table. If he finds an associated group handle, he returns
it to A. If not, he generates a new group handle and adds the association between (−1)ĥ and the
generated handle. He returns the newly generated handle to A. He acts analogously for requests
involving handles in GT .

3. Request for group operation: When A requests a group operation on two group elements h, ` ∈ G,
S looks them both up in the simulation table and obtains their corresponding formal polynomials
ĥ and ˆ̀. He computes the formal polynomial q̂ = ĥ + ˆ̀. S then does a look up in the simulation
table for the polynomial q̂ and if it finds an associated group handle, returns it to A. If it doesn’t
find a group handle corresponding to q̂, it generates a new group handle and adds this association to
the simulation table and returns the newly generated handle to A. It acts analogously for requests
involving handles in GT .

4. Request for Pairing operation: When A requests a pairing operation on two group elements
h, ` ∈ G, S looks them both up in the simulation table obtains their corresponding formal polynomials
ĥ and ˆ̀. He computes the formal polynomial q̂ = ĥ× ˆ̀, where × denotes polynomial multiplication.
S then does a look up in the simulation table for the polynomial q̂ and if it finds an associated group
handle, returns it to A. If it doesn’t find a group handle corresponding to q̂, it generates a new group
handle and adds this association to the simulation table and returns the newly generated handle to
A.

Simplifying expressions occurring in generic group computations We describe here the Simplify
step.
Simplify: Let ˆ̀be the formal polynomial computed by S in any generic group operation. We first handle the
9 constraints satisfied by ~b1,~b

∗
1, · · · ,~b3,~b∗3 as per Eqn 1. Consider the relation b11b

∗
11 +b12b

∗
12 +b13b

∗
13 = ψ. S

writes ˆ̀= Ab11b
∗
11+Bb12b

∗
12+Cb13b

∗
13+D where D has no monomials divisible by b11b

∗
11 or b12b

∗
12 or b13b

∗
13,

breaking ties (if any) arbitrarily. Then he writes ˆ̀ = Aψ + (B − A)b12b
∗
12 + (C − A)b13b

∗
13 + D using the

above constraint.
Next, S writes ˆ̀ as ˆ̀ = ψQ2ζjAj + B where where ζ[KeyIdxj ] (denoted hence forth by just ζj) is the

formal variable corresponding to KeyIdxj from O, and B has no monomials that are divisible by ψQ2ζj . It
then behaves differently in the following two cases:

1. EK was not sent to A (Encryption Key setting): For the ciphertext corresponding MsgIdxk, let
α[MsgIdxk] (henceforth denoted by αk) be the corresponding formal variable used by S when generat-
ing the ciphertext. S writes Aj = αk ·

∑n
i=1 θix

k
i f

j
i +D where D has no monomials divisible by αkx

k
i f

j
i

for any i. If each θi is not zero, then S rewritesAj = αkθ1·
(∑n

i=1 x
k
i f

j
i

)
+αk

(∑n
i=2(θi − θ1)xki f

j
i

)
+D.

If f(MsgIdxk,KeyIdxj). If the output is 0, he sets this portion of Aj to 0 else, he does not change the
expression. He repeats this procedure for all ciphertexts that he issued to A.

2. EK was issued to A (Public Key setting): In the case when EK was issued, S first does all of the
operations mentioned in the previous case. In addition to these, S writes Aj as Aj =

∑i=n
i=1 mif

j
i +D

where mi, possibly 0, is in Zp and D contains no monomials of the form θf ji for any i and any
θ ∈ Zp. If at least one mi is not zero, then S constructs the message m = (m1, . . . ,mn). S records
this message in a table along with the KeyIdxj . This table contains two columns, one with message,
index pairs and the second column contains a formal variable. For each message prevj in this list
corresponding to KeyIdxj , S queries the oracle for the function value of T [prevj −m,KeyIdxj ]. If any
of the return values is 0, S replaces the expression above in Aj by the corresponding formal variable
found in this secondary table. If not, he generates a new formal variable Ω, adds this entry to the
secondary table and rewrites Aj as Ω +D.
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We are now ready to prove our main theorem. Recall that our goal was to prove that the Simulator
constructed in Section E.2 is secure. We now proceed to do this formally.

Theorem E.6. The simulator S constructed in Section E.2 is such that for all adversaries A, for all Z
with auxiliary input z, {VIEWIDEAL(1κ, z)}κ∈Z+,z∈{0,1}∗

c
≈ {VIEWREAL(1κ, z)}κ∈Z+,z∈{0,1}∗

Proof. The proof follows the following broad outline. According to our definition Z outputs an arbitrary
PPT function of its view in both the real and ideal worlds. In the Ideal-World, S sets up the adversary and
communicates on his behalf with Z merely transmitting messages back and forth, hence the interaction
of Z and A in the Real-World is identical to that between Z and S in the Ideal-World. The interactions
of Z with O in the Ideal-World and with Sys in the Real-World are also identical by definition. In the
real world, Sys sends A GG elements corresponding to keys and ciphertexts of external players. In the
Ideal-World these are sent to A by S. We now need to argue that the GG handles that S provides to the
A and the GG handles that A receives in the Real-World are indistinguishable. We do so by constructing
a sequence of hybrids. The first hybrid is the real world in which Sys sends GG elements to A, and in
subsequent hybrids, the elements returned to the adversary are one by one changed to those sent by S.
We then argue that an environment who can tell the difference was able to find an admissible relation
satisfied in one game but not the other. This is a contradiction because all admissible relations identified
in Theorem E.5 were programmed by S.

Denote by q the total number of GG queries made by the adversary. Let t be maximum degree of any
admissible relation evaluated by A over key and ciphertext elements from scheme. t is a constant.

1. Hybrid 1: The first hybrid is the Real-World.

2. Hybrid 2: Replace the GG oracle and Sys by algorithms which perform the following operations.
With every group element that is randomly chosen, associate a new formal variable. With every
random parameter chosen in Zp associate a new formal variable. All arithmetic done by the GG
oracle or Sys on these parameters are now done via polynomial arithmetic. Return to the adversary,
random group handles that are associated with the polynomials that he requests for.

Hybrid 2 associates with each different formal polynomial a distinct random handle, whereas in
Hybrid 1, these polynomials were evaluated by setting the formal variables to random values in Zp
and the resultant evaluations were assigned random group handles. The only way to distinguish
between these two hybrids is if two different polynomials evaluated to the same value but were given
different handles. The probability that Hybrid 1 and Hybrid 2 are distinguishable is ≤ q2t/p by
Theorem E.2 where t is the maximum degree of a polynomial.

3. Hybrid 2 + i for i ∈ [q]: O sets up the PK, MSK and EK and shares them with Sys. S and Sys
simultaneously compute all the messages that they need to send to the adversary. However, S sends
all the replies to A until the i-th GG query made by the adversary. Starting from the i+ 1-th query
of the adversary Sys replies to the oracle queries. Thus, the only place where Hybrid 2 + i− 1 differs
from 2 + i is that in the former, the i-th query is answered by Sys whereas in the latter it is answered
by S.

Recall that all of the GG operations in these hybrids are still done over formal polynomials. Consider
the admissible relation evaluated by A in Hybrid 2+(i−1) in the i-th query. If it involves no message
or key vectors, they are satisfied automatically in Hybrid 2+i by the construction of S. If they involve
any message or key vectors, consider the party that issued the i-th message. If it is a part of a key
or a ciphertext update, then it is constructed in an identical manner by both S and Sys. If it is a
group operation then the only way in which the two hybrids can be distinguished is if the relations
are different as formal polynomials. We noted in Theorem E.5 that the only possible relations that
occur in the game are those corresponding to decryption operations. However by construction of the
simulator E.2, all such relations are tracked and set correctly by S. Hence there do not occur any
relations that differ as formal polynomials. Thus Hybrid 2 + i is identically distributed to Hybrid
2 + (i− 1).
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4. Hybrid (2 + q): This is the ideal world.

This completes the proof. We also observe that although the theorem calls for only computational
indistinguishability between the real and ideal worlds, we obtain statistical indistinguishability.

E.4 Concrete parameters and analysis of our scheme

In the full proof from Appendix E.3 we observe that the only case for distinguishability between real and
ideal worlds is the hybrid where we move from Generic Group elements to polynomials in formal variables.

Thus, we have that if the adversary receives q group elements in total from the groups G,GT , then the
probability that he would be able to distinguish between the real and ideal worlds is,

q
(q − 1)

2

t

p

where t is the maximum degree of any formal variable polynomial that could be constructed in our
cryptosystem. It is a maximum of 3 for each element in the source group for our FE scheme and thus t =
6 considering possible pairings. p is the order of the group.

E.5 Practical considerations

We observe that every pairing in our scheme is between some element of the ciphertext and an element of
the key. Thus suppose G1,G2,GT , e : G1 × G2 → GT be a set of groups with an asymmetric bilinear map.
Then it is easy to see that our scheme extends to this setting by choosing the ciphertext elements from G1

and the key elements from G2. Furthermore, our security proof also extends to this setting, as a generic
group adversary is now further restricted in the set of queries he could make. This allows for a scheme in
the faster setting of asymmetric bilinear maps.

We also note that our scheme is shown to be secure against generic attacks and that non-generic attacks
do exist in all known bilinear groups. However a long list of previous research focuses on constructing
elliptic curves where the complexity of any non-generic attack is worse than generic attacks [FST10, Fre06,
AFCK+13, Cos12, BF01] making our work relevant and meaningful. These constructions are practical as
well.

41


	Introduction
	Our Results
	Related Work and Comparison
	Bypassing Impossibility.

	Preliminaries: Functional Encryption
	Definition: Functional Encryption
	Data Privacy
	Function Privacy

	Relaxed Simulation Security for Functional Encryption
	Definition of Data Hiding
	Definition of Function Hiding
	What does Relax-AD-SIM mean?

	Wishful Security for Functional Encryption
	UC-style definition capturing Dream Security for FE

	Constructions of Inner Product FE
	Group Notation required by constructions.
	Public Key FE for Inner Products over Prime Order Groups
	Private Key FE scheme for Inner Products over Prime order groups

	Security of Public Key Inner Product FE
	Relax-AD-SIM Security in the Standard Model.
	Wishful Security in the Generic Group Model.

	Security for Private Key Inner Product FE
	Property Preserving Encryption
	Definitions
	Construction of Property Preserving Encryption

	Usage Scenarios not captured by previous definitions
	Correctness of Public Key Inner Product Scheme
	Security of Private Key Inner Product Predicate Encryption
	Proof sketch of Lemma 7.1
	Scheme
	Proof of Security

	Proof of Theorem 7.3

	Security of Property Preserving Encryption
	Constructing PPE from private key predicate encryption
	Proof of Theorem 8.3

	Proof of dream version data and function hiding in the generic group model
	Generic Group (GG) Model Overview
	Proof of Security
	Analysis of Real and Ideal worlds
	Concrete parameters and analysis of our scheme
	Practical considerations


