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Abstract 
 

LogicFence is a framework that is embedded in the 
runtime environment of applications to enable 
seamless and automatic global constraints 
implementation. LogicFence does not require the 
applications to follow a specific messaging abstraction. 
The applications may not be aware themselves of 
being monitored by LogicFence. LogicFence monitors 
the application objects directly and controls their 
activity. Using LogicFence global constraints are 
specified as a plug-in in the environment. Applications 
may be executing in their own ways, but LogicFence 
takes care of their execution by enforcing global 
constraints and preventing them from entering into 
states which makes the overall system state unsafe. 
This paper carries forward the concept of LogicFence, 
first discussed in [1],  describes some modifications, 
and then goes on to discuss possible implementations 
of this automatic seamless execution monitoring 
mechanism for interactive systems.  

 
 
 
 
Introduction: 
 
Any large information system (IS) can be viewed as having two broad concerns: services 
that deals with application logic providing services to users and coordination that 
maintains system wide integrity. There exists a degree of autonomy between services and 
coordination. Application or service logic may be written in several different forms while 
bound by the same set of coordination rules. Similarly the coordination logic may be 
changed due to changes in policy without affecting the service logic. Coordination 
requirements of an IS are usually modeled using coordination language. Some of the 



early approaches to coordination were actually communication abstractions. Later 
approaches like CSDL[4] and Manifold[2,9] separate communication and coordination 
logic. The framework Logic Fence discussed in [1] acts at a layer below the application. 
It is embedded in the virtual machine or at the runtime environment of application 
process. It enforces coordination constraints by reasoning on the states of application 
objects. Applications need not be aware that they are being monitored and coordinated by 
an underlying layer. Constraints are enforced using states among set of applications. A 
change in state occurs when the application affects the external world by performing an 
output which is like a commit operation. Along with that, the deployer may use the 
names of some variables in the application program which determine the state of the 
application. Inputs can also cause a change in state to denote that the application has 
accepted it from an external entity. Logic Fence is presently implemented as a prototype 
in Java which implies that constraint implementation is currently possible only on Java 
codes. Compiled class files have to be first run through Logic Fence and then deployed 
and executed under the JVM.  
  
 
Initial approaches 
 
One particular approach for runtime monitoring is insertion of codes in the application 
program to check state variables and their states. For Java applications, As the source 
codes for the application programs are not available, the codes to be inserted for 
monitoring purpose should also be written in the form of byte codes. However, writing 
codes in the byte code format directly is quite cumbersome as they are almost illegible 
resembling machine codes. Hence the procedure needs some round about way to write 
the monitoring codes in byte code format. 
Initially we tried to make changes in the Java compiler itself such that while compiling 
the compiler will insert the necessary codes for the purpose of monitoring the execution. 
The compiler will read the constraint file given in the form of a plug-in during the 
process of compilation and insert monitoring codes accordingly. At the time Sun JDK 
being not open source software, we started experimenting with IBM Research Virtual 
Machine (RVM). However, the sheer size of the code, accompanied by lack of enough 
documentation, made any modification of the virtual machine less feasible. Another 
compiler called Kafé also had similar kind of problems.  
A secondary significant approach is to use a disassembler to convert the byte codes into 
readable assembly form, insert the monitoring codes therein and assemble it back to byte 
code format. javap –c which comes with JDK though disassembles java byte codes, yet it 
does not have a corresponding assembler with it that can reconvert the assembly code 
back to byte code format. In fact the assembly format produced by javap –c has some 
limitations that do not allow it to be assembled into byte code format. Hence the idea of 
disassembling the byte codes using javap –c was not of any use. Jasper was found to be 
another disassembler which converts the byte codes into assembly format almost similar 
to that produced by javap –c with the exception that one assembler called Jasmin can read 
assembly files produced by Jasper and can convert them back to byte code format. Thus 
using Jasper and Jasmin the modification of the code to enable it to receive execution 
monitoring commands from LogicFence was made simple.  
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Fig 1 depicts the overall architecture of LogicFence. The compiled Java class files are 
modified to receive execution monitoring commands from LogicFence, and the main 
body of the execution monitor is generated from the interaction schema[1]  specified by 
the LogicFence deployer. Applications then run in an environment under the constraints 
specified by the interaction schema, and enforced by LogicFence. 
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Fig 2 describes the process of deployment of an application using LogicFence. The 
compiled class files, (the byte code) is first modified to be able to receive execution 
monitoring directives from LogicFence. These modifications enable the execution 
monitor to keep a watch on the applications execution states. Then a main body of 
execution monitor is generated from constraints specified in the interaction schema which 
tracks the applications execution states and prevents it from entering into an invalid one. 
The modified application then runs on JVM, while its activities are constantly monitored 
by the execution monitor thereby assuring that the application does not violate any 
constraints, as specified by the interaction schema. 
 
 
Interaction Schema 
 
As discussed in [1] an interaction space defines the dependencies across applications. The 
interaction space is characterized by coordination across applications. Applications can 
move in their state space as long as the coordination constraints among them are not 
violated. The interaction schema(first proposed in [12]) describes this coordination 
paradigm in a formal way. The schema is specified through building blocks called 
contracts[1]. A contract can be formally defined as C = (S,ψ ). S denotes the states of the 
shared interaction space across applications. ψ  denotes the set of coordination 
constraints across the interaction state space. The transitions across the shared interaction 
space states are defined by the application logic. The coordination constraints can be 
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expressed in the form of State Modality Rules(SMR). Though the application logic drives 
the application through shared state space, the application itself is unaware of the global 
rules or coordination constraints across the interaction state space. The application has 
only partial control over its environment. It is unaware of the coordination and interaction 
rules it must follow during its transitions in the global state space.  LogicFence monitors 
the applications and does not allow them to enter an invalid state. It is worthy of mention 
that the applications need not be aware of the presence of LogicFence at all.  
An application instance executing a contract is called a channel[1] and the modality rules 
take the following form: conf a -> M(conf b), where M may be O, P or F, i.e. obligated, 
permitted or forbidden. A configuration is a state or a conjunction of states with 
associated predicates. 
 
Rule Interpretation 
s1  P[s2] If a channel or an application is in state s1, 

then another application or channel can 
enter state s2. 

s1  F[s2] A channel is forbidden to enter state s2 as 
long as there is a channel in state s1. 

s1  O[s2] The presence of a channel in state s2 is 
obligated(required) for a channel in state s1 
if it wants to leave its current state. 

 
 
A rule like s1  F[s2] applies to new channels trying to come to enter s2 but does not 
affect existing channels in state s2. 
 
The negation of modalities are as: ¬O => P, ¬P => F, ¬F => P. Also all the modalities 
are idempotent, i.e. O  O => O, P ∧ ∧  P => P and F ∧  F => F. For two or more 
incoming modalities on a particular configuration, the resultant modality becomes a 
conjunction of all the incoming modalities. The priority of the modalities is as follows: P 
< F and P < O. This is because in LogicFence safety is considered as more important than 
liveness. Hence P  F => F and P ∧ ∧  O => O. There cannot be two incoming modalities 
with O and F on a particular configuration since it makes the interaction schema invalid. 
 
In the current implementation of LogicFence, an application can by default move to any 
interaction space state unless specific constraints prevent it from doing so. Such kinds of 
systems are termed maximal systems. 
 
Predicate support in LogicFence 
 
In the implementation, the constraints are provided in a more generalized manner with 
associated predicates. A forbidden constraint is associated with some predicate that 
depicts a condition which forbids some application from entering a specific state. 
Similarly a permitted constraint is associated with some condition(s) in the form of 
predicates that allow an application to enter a state only if the conditions specified by the 
predicates are satisfied. The predicates have been implemented in the form of auxiliary 



functions and hence arbitrary predicates can be added and used to specify constraints. 
The set of auxiliary functions in the latest version of LogicFence are as follows: 
 

1. boolean filled(“state_name”): This function checks the presence of applications 
other than the calling application in the state state_name. The calling application 
is not considered since the validity of the P, F or O constraints, as defined in the 
previous section, depends on the presence of applications other than the one 
making the transition. 

 
2. int count(“state_name”): This function returns the number of applications in the 

specified state including the calling application, i.e. the application trying to make 
the transition. 

 
3. int numberOf(“state_name”, “property_conditions”): This function returns the 

number of applications in the state state_name with the specified conditions of the 
properties. Here is an example: numberOf("b1", "test_color>=4"). Here the 
function returns the number of applications in state b1 with value of property 
color being greater than or equal to 4. 

 
4. boolean getVal(“property_conditions”): This function checks if the specified 

property conditions hold for the application trying to make a transition. 
 
Below are some example configurations: 
Constraint statement Representation in configuration.xml 
An application with a property color=red in 
class car is forbidden from entering state s2 
if some other application is in state s1. (It 
implicitly means that all applications with 
non-red color are always permitted to enter 
s2). Stated otherwise, a configuration with 
an application in state s2 with property 
color=red is forbidden if some other 
application is in s1. 

(filled(“s1”) && 
getval(“car_color=red”))    
-> F -> s2 

An application with a property color=red in 
class car is forbidden from entering state s2 
if some other application is in state s1. 
However, applications with non-red color 
are always forbidden from entering s2. 

(!filled(“s1”) && 
getval(“car_color=red”))    -> P -> 
s2 

 
A configuration with an application in state 
s2 with property color=red is permitted if 
some other application is in s1. (It 
implicitly means that all applications with 
non-red color are always forbidden from 
entering s2.). 
 

(filled(“s1”) && 
getval(“car_color=red”))    -> P -> 
s2 



An application with a property color=red in 
class car is permitted to enter state s2 if 
some other application is in state s1. 
However, applications with non-red color 
can always enter s2. 

(!filled(“s1”) && 
getval(“car_color=red”))    -> F -> 
s2 

An application with a property color=red in 
class car can leave state s2 only if some 
other application is in state s1. (It implicitly 
means that all applications with non-red 
color are never allowed to leave s2). 

s2 -> O -> (filled(“s1”) && 
getval(“car_color=red”)) 

An application with a property color=red in 
class car can leave state s2 if some other 
application is in state s1. However, 
applications with non-red color can always 
leave s2. 

s2 -> O -> ((filled(“s1”) && 
getval(“car_color=red”)) || 
(getval(“car_color<>red”))) 

Entry in a narrow bridge (state s1) is 
forbidden if (property) direction of the 
entering car (application) is different from 
the cars (applications) already present on 
the bridge. 

(filled(“s1”) && 
appl_s1[0].direction != 
car_direction) -> F -> s1 

Two applications, one in state s1 and 
another in state s3 are required to forbid an 
application from entering state s2. 

(filled(“s1”) && filled(“s3”)) -> F 
-> s2 

An application is allowed to leave state b1 
only if i) there are more than 1 application 
in state b1 (the one that is trying to leave 
b1 can also be considered) with property 
number, defined in  state test, greater than 
or equal to 4 and ii) the test value of the 
application trying to make the transition 
should be greater than 2. 

b1 -> O -> (numberOf("b1", 
"test_number>=4")>1 && 
getval("test_number>2")) 

 
Here is an example of configuration.xml file that contains all the configurations for the 
system running in LogicFence framework. 
 
<db_host_ip>localhost</db_host_ip> 
<state_properties>int test_color;boolean test_wheels</state_properties> 
<config><state_used>b1</state_used>b1 -> O -> (numberOf("b1", 
"test_color>=4")>1 && getval("test_color>2"))</config> 
<config><state_used>b1</state_used>(filled("b2")) -> F -> b2</config> 
<config><state_used>b1</state_used>(filled("b1") || filled("b3")) -> P 
-> b2</config> 
<config><state_used>b1</state_used>b3 -> O -> (filled("b2"))</config> 
 
Here color and wheels are properties defined in test class of the application program. 
These properties also need to be defined in the file properties.xml. 
 
 



LogicFence Constraint Enforcement 
 
Coordination constraints are enforced by preventing applications from entering an illegal 
state. An application’s path of execution (i.e. which all states it transits through) is 
determined at runtime by various factors, primarily the inputs from other applications and 
the environment. During the lifetime of an application, it performs various outputs 
affecting the external environment and hence causes a change in state as an output is 
equivalent to a commit operation. Also various inputs and computations cause changes in 
the internal variables of the application. The change of state of an application is reflected 
in the changes of values of some of these internal variables. Change in state can also be 
specified in terms of inputs accepted by the application. Thus when an external entity like 
an execution monitor wants to keep track of the various states of an application, it can do 
so by watching the outputs and inputs performed by the application and those specific 
variables which reflect changes in the applications state.  
  
Consequently, for deploying an application in a monitored environment, it is necessary to 
know the names of those variables in the application, which reflect the state of the 
application’s execution.   
  
In LogicFence, the interaction schema designer is expected to know the inputs and 
outputs performed by the application. Thus the schema designer specifies the current 
state of the application and the inputs and the outputs that cause a transition to the future 
state. The exact input and output need not be required to be specified by the schema 
designer. The schema designer can specify the input or the output in the form of regular 
expressions as recognized by Java. The transitions caused by outputs are specified by the 
schema designer in the outputStateDefs file. In the current implementation, this is an 
XML file. LogicFence keeps track of the current state and the next state is defined based 
on the current state and the specific input. An example outputStateDefs file looks as 
follows: 
 
<states> 
 <State> 
    <current>s0</current> 
  <output type=yes>0</output> 
  <future>b2</future> 
 </State> 
</states> 
 
Similarly the schema designer should also specify the state transitions corresponding to 
inputs. The transitions caused by inputs are specified by the schema designer in the 
inputStateDefs file. An example inputStateDefs file looks as follows: 
 
<states> 
 <State> 
    <current>b2</current> 
  <input type=yes>1</input> 
  <future>b1</future> 
  </State> 
 <State> 



    <current>b1</current> 
  <input type=yes>hello</input> 
  <future>s4</future> 
  </State> 
</states> 
 
The attribute ‘type’ may be of the following types: yes, no, yes_db and no_db. The 
description of each of them is as follows: 
i)  yes: This denotes the presence of the regex in the output or input. 
ii)  no: This denotes the absence of the regex in the output or input. 
iii)  yes_db: This denotes the presence of the regex in the output or input provided the 
output is a database output like create, insert, update, delete statements etc. 
iii)  no_db: This denotes the absence of the regex in the output or input provided the 
output is a database output like create, insert, update, delete statements etc. 
The database IO is different from other types of IO as the IO strings are matched in a case 
insensitive manner and hence requires different attributes. Between the <State> and 
</State> tags one can specify multiple input tags. A conjunction will be formed among 
the different inputs or outputs. Let us illustrate with the following example of the 
inputStateDefs.xml file. 
 
 <State> 
    <current>b1</current> 
  <input type=yes>.{5}</input> 
  <input type=yes>.*[a-c]{2}.*</input> 
  <input type=no>.b</input> 
  <future>b2</future> 
  </State> 
It denotes that if the current state of the application is ‘b1’ and if the input has a length of 
5 characters with at least two contiguous characters from ‘a’, ’b’, ’c’ with ‘b’ not being 
followed by any character, then the future state is ‘b2’. 
 
The interaction schema designer is also expected to know the names of the variables to be 
watched. In this literature, we refer to those variables (which reflect changes in an 
application’s state) as State variables. Thus the schema designer specifies the names of 
the state variables in the StateVariablesDefinitions file. In the current implementation, 
this is an XML file, which lists down all the state variables in the application which will 
be deployed under LogicFence. LogicFence watches these variables to determine current 
state, and state changes in the application.  
  
 
An example StateVariablesDefinitions file is as follows: 
 
 

<StateVarDef> 
<State> 
 <Variable> 
  <class>  Account </class> 
  <Type>long</Type> 
  <Name>balance</Name> 



 </Variable> 
 <Variable> 
  <class>Account</class> 
  <Type>long</Type> 
  <Name>Amount_withdrawn</Name> 
 </Variable> 
</State> 
</StateVarDef> 

 
 
The schema designer also defines a StateDefinitions file. In the current implementation, 
this also, is an XML file, which lists the various states of the application in terms of the 
values of the state variables. 

 
<states> 
 
<State> 
<name> Offer_premium_services </name> 
<varused> Account_balance </varused> 
<condition> Account_balance > 50000 </condition> 
</State> 
 
<State> 
<name> impose_fine </name> 
<varused> Account_balance </varused> 
<condition> Account_balance < 500 &&   
            Account_balance > 0   
</condition> 
</State> 
 
<State> 
<name> Overdraft </name> 
<varused> Account_balance </varused> 
<condition> Account_balance < 0 &&  </condition> 
</State> 
 
</states> 

 
LogicFence keeps track of the application by looking at the state variables and the 
outputs and inputs performed by the application and determines the states as described in 
these state definition files. The steps involved in tracking the execution steps of the 
applications are as follows:  
 
The third party compiled Java file is received along with the state variable definition 
files. Below is an example of the output of a simple disassembled Java file. 
 
The compiled Java file is disassembled using Java disassembler ‘Jasper’. 



 
The original Java file: 
 
 
public class HelloWorld{ 
 int x; 
 int y; 
 
 public static void main(String args[]) 
 { 
  HelloWorld h1 = new HelloWorld(); 
  try{ 
  BufferedReader br=new BufferedReader(new 
InputStreamReader(System.in)); 
  System.out.println("Enter x: "); 
  String ip=br.readLine(); 
  h1.x=Integer.parseInt(ip); 
  System.out.println("Enter y: "); 
  ip=br.readLine(); 
  h1.y=Integer.parseInt(ip); 
   
 } catch(Exception e){ 
 } 
 
 } 
} 
 
 
The disassembled form using Jasper: 
 
 
.source                  HelloWorld.java 
.class                   public HelloWorld 
.super                   java/lang/Object 
 
.field                   x I 
.field                   y I 
 
.method                  public <init>()V 
   .limit stack          1 
   .limit locals         1 
   .line                 15 
   aload_0                
   invokespecial         java/lang/Object/<init>()V 
   return                 
.end method               
 



.method                  public static main([Ljava/lang/String;)V 
   .limit stack          5 
   .limit locals         4 
   .line                 21 
   new                   HelloWorld 
   dup                    
   invokespecial         HelloWorld/<init>()V 
   astore_1               
   .line                 23 
LABEL0x8: 
   new                   java/io/BufferedReader 
   dup                    
   new                   java/io/InputStreamReader 
   dup                    
   getstatic             java/lang/System/in Ljava/io/InputStream; 
   invokespecial         java/io/InputStreamReader/<init>(Ljava/io/InputStream;)V 
   invokespecial         java/io/BufferedReader/<init>(Ljava/io/Reader;)V 
   astore_2               
   .line                 24 
   getstatic             java/lang/System/out Ljava/io/PrintStream; 
   ldc                   "Enter x: " 
   invokevirtual         java/io/PrintStream/println(Ljava/lang/String;)V 
   .line                 25 
   aload_2                
   invokevirtual         java/io/BufferedReader/readLine()Ljava/lang/String; 
   astore_3               
   .line                 26 
   aload_1                
   aload_3                
   invokestatic          java/lang/Integer/parseInt(Ljava/lang/String;)I 
   putfield              HelloWorld/x I 
   .line                 27 
   getstatic             java/lang/System/out Ljava/io/PrintStream; 
   ldc                   "Enter y: " 
   invokevirtual         java/io/PrintStream/println(Ljava/lang/String;)V 
   .line                 28 
   aload_2                
   invokevirtual         java/io/BufferedReader/readLine()Ljava/lang/String; 
   astore_3               
   .line                 29 
   aload_1                
   aload_3                
   invokestatic          java/lang/Integer/parseInt(Ljava/lang/String;)I 
   putfield              HelloWorld/y I 
   .line                 32 
LABEL0x44: 
   goto                  LABEL0x48 



   .line                 31 
LABEL0x47: 
   astore_2               
   .line                 34 
LABEL0x48: 
   return                 
   .catch                java/lang/Exception from LABEL0x8 to LABEL0x44 using 
LABEL0x47 
.end method               
 
 
Portions of the disassembled code, where there are output statements, call to the 
execution monitor function checkTransitionOnOutput() is inserted before the output 
statement. The call to the execution monitor function is as follows:  
  
   …..  
   …..  
 
   .line                 24 
   getstatic             java/lang/System/out Ljava/io/PrintStream; 
   ldc                   "Enter x: " 
LABEL24: 
   dup 
   invokevirtual         java/lang/Object/toString()Ljava/lang/String; 
   ldc                   "   invokevirtual            
java/io/PrintStream/println(Ljava/lang/String;)V" 
   getstatic             IdList/appId I 
   invokestatic          
ChkStSpace/checkTransitionOnOutput(Ljava/lang/String;Ljava/lang/String;I)I 
   iconst_1               
   if_icmpeq             LABEL30 
LABEL26: 
   ldc2_w                1500 
   invokestatic          java/lang/Thread/sleep(J)V 
LABEL28: 
   goto                  LABEL24 
LABEL30: 
invokevirtual         java/io/PrintStream/println(Ljava/lang/String;)V 
 
   …..  
   …..  
 
 
Similarly for portions of the disassembled code, where there are input statements, call to 
the execution monitor function checkTransitionOnInput() is inserted after the input 
statement. The call to the execution monitor function is as follows:  
 
   …..  



   …..  
 
   .line                 28 
   aload_2                
   invokevirtual         java/io/BufferedReader/readLine()Ljava/lang/String; 
LABEL32: 
   dup 
   invokevirtual         java/lang/Object/toString()Ljava/lang/String; 
   getstatic             IdList/appId I 
   invokestatic          ChkStSpace/checkTransitionOnInput(Ljava/lang/String;I)I 
   iconst_1               
   if_icmpeq             LABEL38 
LABEL34: 
   ldc2_w                1500 
   invokestatic          java/lang/Thread/sleep(J)V 
LABEL36: 
   goto                  LABEL32 
LABEL38: 
   astore_3               
 
   …..  
   …..  
 
Also portions of the disassembled code, where the state variables change values, are 
noted and a call to the execution monitor function checkTransitionValidity() is inserted 
before the assignment of the new value. The call to the execution monitor function is as 
follows: 
 
   …..  
   …..  
 
   .line                 26 
   aload_1                 
   aload_3                 
   invokestatic          java/lang/Integer/parseInt(Ljava/lang/String;)I  
LABEL8: 
   dup  
   invokestatic          java/lang/Integer/toString(I)Ljava/lang/String;  
   ldc                   "HelloWorld_x"  
   getstatic             IdList/appId I 
   invokestatic          
Chk_stspace/checkTransitionValidity(Ljava/lang/String;Ljava/lang/String;I)I  
   bipush                1  
   if_icmpeq             LABEL14  
LABEL10: 
   ldc2_w                1500 
   invokestatic          java/lang/Thread/sleep(J)V 



LABEL12: 
   goto                  LABEL8:  
LABEL14: 
   putfield              HelloWorld/x I  
 
   ……  
   …….  
  
 
The modified file is assembled back to a valid Java class file using the Java assembler 
Jasmin. The modified byte code takes care of the integrity constraints by giving call to 
the checkState() function that does not allow the application to enter an invalid state. 
 
The execution monitor functions, checkTransitionOnOutput(), checkTransitionOnInput(), 
and checkTransitionValidity() are generated from the State Definitions files, which 
include the different states the application can move through, and the Constraints 
Specification file which includes the constraints incident on those states.  
 
Some important details regarding these functions are as discussed below: 
 

1. This function is used to check the validity of a state transition. If a transition is 
found to be illegal at any point in time, the application waits there until the 
transition is found to be valid. The application is made to sleep for a time interval 
after which it wakes up and checks for the validity of the next state transition. The 
outputs are performed only when the transition is found to be valid and after the 
application enters the new state. 

 
 
 
 
 
 
The functions described above reside in a class called ChkStSpace which gives call to 
other functions as mentioned below: 
 
determineCurrState()  //the function has a copy of the values of all the state variables in 
the application at the current instant. Using these it determines the current state of the 
application. Returns the state name. 
 
determineFutureState() // this function has all the constraints as generated from the 
constraints file. Using the value passed in the transition validity functions, i.e the 
requested new value of a state variable or the specific outputs or inputs, it finds out the 
state the application is trying to transit to and returns this future state. 
 
want_to_leave()  // this function checks the exit status of the application from the current 
state depending upon the obligatory constraint specified in the constraints file. Using the 



rules in it, it checks whether this transition is valid or not. This procedure is described in 
detail below. If valid, the function returns TRUE, else returns FALSE. 
 
want_to_enter()  // this function checks the entry status of the application in the future 
state depending upon the permitted and forbidden constraint specified in the constraints 
file. Using the rules in it, it checks whether this transition is valid or not. This procedure 
is described in detail below. If valid, the function returns TRUE, else returns FALSE. 
 
If the transition is allowed, i.e if TRUE is returned then , 

• The output is performed if the state transition is caused due to an output. 
• The current state of the application is updated so as to make it visible to the 

outside world. The updating is done with the help of a database as described later. 
• The control is returned to the application with the new value assigned to the state 

variable if the state transition occurs due to change in the value of a state variable. 
 
 
If the transition is not allowed, i.e. if FALSE is returned, 

• The application is made to sleep for a specific time period as provided by the 
deployer in the file sleepTime.txt. 

• The application is again woken up after the specified time period and it checks for 
the validity of the state transition. 

• The above steps continue until the transition to next state is found valid. 
 
 
Limitations of the current implementation 
 
The framework currently causes state changes of the applications because of inputs and 
outputs caused by standard methods. For example, in file, console and socket IO, the 
methods from the reader and writer classes are only tracked. Similarly, for database IO, 
the mostly used methods in Statement interface like execute(), executeQuery() and 
executeUpdate() will cause the state change. 
 
Determination of validity of state transition from a global snapshot of 
state space 
 
The constraints in LogicFence can be global constraints across states. Hence to determine 
the validity of a state transition, it is necessary to have a snapshot of at least a subset of 
the global state space. 
In the current implementation this is achieved with the help of a database. The database 
maintains a single table called state_tabl which among other attributes has the following 
attributes: statename, and no_of_applications. One tuple is created in the database 
corresponding to every state. When an application wants to make a transition from the 
current state: 

• It checks the obligatory constraints from the current state. The presence of 
some other applications in one or more of the states holding an obligatory 



constraint from the current state will allow the application to leave the 
current state. 

• Once the application finds out the next state where the transition takes 
place, it checks the validity of the transition. The validity of the transition 
is determined from the state_tabl table looking at the states holding 
permitted and forbidden constraints on the next state. If the transition is 
found to be valid, it locks all the states which hold a permitted or a 
forbidden constraint on the next state. Theoretically an exclusive lock is 
required for the state from which the application exits and the state in 
which the application enters. Shared lock is required for the states which 
have an obligatory constraint on the current state and those having 
permitted and forbidden constraints on the future state. In the current 
implementation however a MySQL database is used where the complete 
table is locked exclusively for the transactions to take place. 

• With the state transition, the records corresponding to the old and new 
states are updated and the locks are released. 

 
 
Future work 
 

1. In the version 2.0 of LogicFence one needs to provide all the constraints or 
configurations before the applications are registered with the framework. If one 
needs to add or delete constraints then all the applications are to be registered with 
the framework having the new set of constraints. The applications will be 
restarted once again from their initial state and they will follow the new set of 
constraints. However in real world restarting all the applications once again from 
the start state is not always desirable. Hence considering practical systems, one 
should be allowed to add or delete constraints without stopping any of the 
applications. The framework will gradually adapt itself to the new set of 
constraints and the new set of constraints will be enforced across all applications. 
The next version of LogicFence aims at including this feature. 
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Ptrace() is highly dependent on the architecture of the underlying hardware. Applications 
using ptrace are not easily portable across different architectures and 
implementations(11). 


