
LogicFence: Architecture for an interactive
systems execution monitor

Abstract

LogicFence is a framework that is embedded in the
runtime environment of applications to enable
seamless and automatic global constraints
implementation. LogicFence does not require the
applications to follow a specific messaging abstraction.
The applications may not be aware themselves of
being monitored by LogicFence. LogicFence monitors
the application objects directly and controls their
activity. Using LogicFence global constraints are
specified as a plug-in in the environment. Applications
may be executing in their own ways, but LogicFence
takes care of their execution by enforcing global
constraints and preventing them from entering into
states which makes the overall system state unsafe.
This paper carries forward the concept of LogicFence,
first discussed in [1], describes some modifications,
and then goes on to discuss possible implementations
of this automatic seamless execution monitoring
mechanism for interactive systems.

Introduction:

Any large information system (IS) can be viewed as having two broad concerns: services
that deals with application logic providing services to users and coordination that
maintains system wide integrity. There exists a degree of autonomy between services and
coordination. Application or service logic may be written in several different forms while
bound by the same set of coordination rules. Similarly the coordination logic may be
changed due to changes in policy without affecting the service logic. Coordination
requirements of an IS are usually modeled using coordination language. Some of the

early approaches to coordination were actually communication abstractions. Later
approaches like CSDL[4] and Manifold[2,9] separate communication and coordination
logic. The framework Logic Fence discussed in [1] acts at a layer below the application.
It is embedded in the virtual machine or at the runtime environment of application
process. It enforces coordination constraints by reasoning on the states of application
objects. Applications need not be aware that they are being monitored and coordinated by
an underlying layer. Constraints are enforced using states among set of applications. A
change in state occurs when the application affects the external world by performing an
output which is like a commit operation. Along with that, the deployer may use the
names of some variables in the application program which determine the state of the
application. Inputs can also cause a change in state to denote that the application has
accepted it from an external entity. Logic Fence is presently implemented as a prototype
in Java which implies that constraint implementation is currently possible only on Java
codes. Compiled class files have to be first run through Logic Fence and then deployed
and executed under the JVM.

Initial approaches

One particular approach for runtime monitoring is insertion of codes in the application
program to check state variables and their states. For Java applications, As the source
codes for the application programs are not available, the codes to be inserted for
monitoring purpose should also be written in the form of byte codes. However, writing
codes in the byte code format directly is quite cumbersome as they are almost illegible
resembling machine codes. Hence the procedure needs some round about way to write
the monitoring codes in byte code format.
Initially we tried to make changes in the Java compiler itself such that while compiling
the compiler will insert the necessary codes for the purpose of monitoring the execution.
The compiler will read the constraint file given in the form of a plug-in during the
process of compilation and insert monitoring codes accordingly. At the time Sun JDK
being not open source software, we started experimenting with IBM Research Virtual
Machine (RVM). However, the sheer size of the code, accompanied by lack of enough
documentation, made any modification of the virtual machine less feasible. Another
compiler called Kafé also had similar kind of problems.
A secondary significant approach is to use a disassembler to convert the byte codes into
readable assembly form, insert the monitoring codes therein and assemble it back to byte
code format. javap –c which comes with JDK though disassembles java byte codes, yet it
does not have a corresponding assembler with it that can reconvert the assembly code
back to byte code format. In fact the assembly format produced by javap –c has some
limitations that do not allow it to be assembled into byte code format. Hence the idea of
disassembling the byte codes using javap –c was not of any use. Jasper was found to be
another disassembler which converts the byte codes into assembly format almost similar
to that produced by javap –c with the exception that one assembler called Jasmin can read
assembly files produced by Jasper and can convert them back to byte code format. Thus
using Jasper and Jasmin the modification of the code to enable it to receive execution
monitoring commands from LogicFence was made simple.

Overall Architecture

Application 1 Application 2
LogicFence files

JVM

 Fig 1

Fig 1 depicts the overall architecture of LogicFence. The compiled Java class files are
modified to receive execution monitoring commands from LogicFence, and the main
body of the execution monitor is generated from the interaction schema[1] specified by
the LogicFence deployer. Applications then run in an environment under the constraints
specified by the interaction schema, and enforced by LogicFence.

 Fig 2

Fig 2 describes the process of deployment of an application using LogicFence. The
compiled class files, (the byte code) is first modified to be able to receive execution
monitoring directives from LogicFence. These modifications enable the execution
monitor to keep a watch on the applications execution states. Then a main body of
execution monitor is generated from constraints specified in the interaction schema which
tracks the applications execution states and prevents it from entering into an invalid one.
The modified application then runs on JVM, while its activities are constantly monitored
by the execution monitor thereby assuring that the application does not violate any
constraints, as specified by the interaction schema.

Interaction Schema

As discussed in [1] an interaction space defines the dependencies across applications. The
interaction space is characterized by coordination across applications. Applications can
move in their state space as long as the coordination constraints among them are not
violated. The interaction schema(first proposed in [12]) describes this coordination
paradigm in a formal way. The schema is specified through building blocks called
contracts[1]. A contract can be formally defined as C = (S,ψ). S denotes the states of the
shared interaction space across applications. ψ denotes the set of coordination
constraints across the interaction state space. The transitions across the shared interaction
space states are defined by the application logic. The coordination constraints can be

JVM

Byte
Code

Modifications
Execution
Monitor

Interaction Schema

Modified
Code

expressed in the form of State Modality Rules(SMR). Though the application logic drives
the application through shared state space, the application itself is unaware of the global
rules or coordination constraints across the interaction state space. The application has
only partial control over its environment. It is unaware of the coordination and interaction
rules it must follow during its transitions in the global state space. LogicFence monitors
the applications and does not allow them to enter an invalid state. It is worthy of mention
that the applications need not be aware of the presence of LogicFence at all.
An application instance executing a contract is called a channel[1] and the modality rules
take the following form: conf a -> M(conf b), where M may be O, P or F, i.e. obligated,
permitted or forbidden. A configuration is a state or a conjunction of states with
associated predicates.

Rule Interpretation
s1 P[s2] If a channel or an application is in state s1,

then another application or channel can
enter state s2.

s1 F[s2] A channel is forbidden to enter state s2 as
long as there is a channel in state s1.

s1 O[s2] The presence of a channel in state s2 is
obligated(required) for a channel in state s1
if it wants to leave its current state.

A rule like s1 F[s2] applies to new channels trying to come to enter s2 but does not
affect existing channels in state s2.

The negation of modalities are as: ¬O => P, ¬P => F, ¬F => P. Also all the modalities
are idempotent, i.e. O O => O, P ∧ ∧ P => P and F ∧ F => F. For two or more
incoming modalities on a particular configuration, the resultant modality becomes a
conjunction of all the incoming modalities. The priority of the modalities is as follows: P
< F and P < O. This is because in LogicFence safety is considered as more important than
liveness. Hence P F => F and P ∧ ∧ O => O. There cannot be two incoming modalities
with O and F on a particular configuration since it makes the interaction schema invalid.

In the current implementation of LogicFence, an application can by default move to any
interaction space state unless specific constraints prevent it from doing so. Such kinds of
systems are termed maximal systems.

Predicate support in LogicFence

In the implementation, the constraints are provided in a more generalized manner with
associated predicates. A forbidden constraint is associated with some predicate that
depicts a condition which forbids some application from entering a specific state.
Similarly a permitted constraint is associated with some condition(s) in the form of
predicates that allow an application to enter a state only if the conditions specified by the
predicates are satisfied. The predicates have been implemented in the form of auxiliary

functions and hence arbitrary predicates can be added and used to specify constraints.
The set of auxiliary functions in the latest version of LogicFence are as follows:

1. boolean filled(“state_name”): This function checks the presence of applications
other than the calling application in the state state_name. The calling application
is not considered since the validity of the P, F or O constraints, as defined in the
previous section, depends on the presence of applications other than the one
making the transition.

2. int count(“state_name”): This function returns the number of applications in the

specified state including the calling application, i.e. the application trying to make
the transition.

3. int numberOf(“state_name”, “property_conditions”): This function returns the

number of applications in the state state_name with the specified conditions of the
properties. Here is an example: numberOf("b1", "test_color>=4"). Here the
function returns the number of applications in state b1 with value of property
color being greater than or equal to 4.

4. boolean getVal(“property_conditions”): This function checks if the specified

property conditions hold for the application trying to make a transition.

Below are some example configurations:
Constraint statement Representation in configuration.xml
An application with a property color=red in
class car is forbidden from entering state s2
if some other application is in state s1. (It
implicitly means that all applications with
non-red color are always permitted to enter
s2). Stated otherwise, a configuration with
an application in state s2 with property
color=red is forbidden if some other
application is in s1.

(filled(“s1”) &&
getval(“car_color=red”))
-> F -> s2

An application with a property color=red in
class car is forbidden from entering state s2
if some other application is in state s1.
However, applications with non-red color
are always forbidden from entering s2.

(!filled(“s1”) &&
getval(“car_color=red”)) -> P ->
s2

A configuration with an application in state
s2 with property color=red is permitted if
some other application is in s1. (It
implicitly means that all applications with
non-red color are always forbidden from
entering s2.).

(filled(“s1”) &&
getval(“car_color=red”)) -> P ->
s2

An application with a property color=red in
class car is permitted to enter state s2 if
some other application is in state s1.
However, applications with non-red color
can always enter s2.

(!filled(“s1”) &&
getval(“car_color=red”)) -> F ->
s2

An application with a property color=red in
class car can leave state s2 only if some
other application is in state s1. (It implicitly
means that all applications with non-red
color are never allowed to leave s2).

s2 -> O -> (filled(“s1”) &&
getval(“car_color=red”))

An application with a property color=red in
class car can leave state s2 if some other
application is in state s1. However,
applications with non-red color can always
leave s2.

s2 -> O -> ((filled(“s1”) &&
getval(“car_color=red”)) ||
(getval(“car_color<>red”)))

Entry in a narrow bridge (state s1) is
forbidden if (property) direction of the
entering car (application) is different from
the cars (applications) already present on
the bridge.

(filled(“s1”) &&
appl_s1[0].direction !=
car_direction) -> F -> s1

Two applications, one in state s1 and
another in state s3 are required to forbid an
application from entering state s2.

(filled(“s1”) && filled(“s3”)) -> F
-> s2

An application is allowed to leave state b1
only if i) there are more than 1 application
in state b1 (the one that is trying to leave
b1 can also be considered) with property
number, defined in state test, greater than
or equal to 4 and ii) the test value of the
application trying to make the transition
should be greater than 2.

b1 -> O -> (numberOf("b1",
"test_number>=4")>1 &&
getval("test_number>2"))

Here is an example of configuration.xml file that contains all the configurations for the
system running in LogicFence framework.

<db_host_ip>localhost</db_host_ip>
<state_properties>int test_color;boolean test_wheels</state_properties>
<config><state_used>b1</state_used>b1 -> O -> (numberOf("b1",
"test_color>=4")>1 && getval("test_color>2"))</config>
<config><state_used>b1</state_used>(filled("b2")) -> F -> b2</config>
<config><state_used>b1</state_used>(filled("b1") || filled("b3")) -> P
-> b2</config>
<config><state_used>b1</state_used>b3 -> O -> (filled("b2"))</config>

Here color and wheels are properties defined in test class of the application program.
These properties also need to be defined in the file properties.xml.

LogicFence Constraint Enforcement

Coordination constraints are enforced by preventing applications from entering an illegal
state. An application’s path of execution (i.e. which all states it transits through) is
determined at runtime by various factors, primarily the inputs from other applications and
the environment. During the lifetime of an application, it performs various outputs
affecting the external environment and hence causes a change in state as an output is
equivalent to a commit operation. Also various inputs and computations cause changes in
the internal variables of the application. The change of state of an application is reflected
in the changes of values of some of these internal variables. Change in state can also be
specified in terms of inputs accepted by the application. Thus when an external entity like
an execution monitor wants to keep track of the various states of an application, it can do
so by watching the outputs and inputs performed by the application and those specific
variables which reflect changes in the applications state.

Consequently, for deploying an application in a monitored environment, it is necessary to
know the names of those variables in the application, which reflect the state of the
application’s execution.

In LogicFence, the interaction schema designer is expected to know the inputs and
outputs performed by the application. Thus the schema designer specifies the current
state of the application and the inputs and the outputs that cause a transition to the future
state. The exact input and output need not be required to be specified by the schema
designer. The schema designer can specify the input or the output in the form of regular
expressions as recognized by Java. The transitions caused by outputs are specified by the
schema designer in the outputStateDefs file. In the current implementation, this is an
XML file. LogicFence keeps track of the current state and the next state is defined based
on the current state and the specific input. An example outputStateDefs file looks as
follows:

<states>
 <State>
 <current>s0</current>
 <output type=yes>0</output>
 <future>b2</future>
 </State>
</states>

Similarly the schema designer should also specify the state transitions corresponding to
inputs. The transitions caused by inputs are specified by the schema designer in the
inputStateDefs file. An example inputStateDefs file looks as follows:

<states>
 <State>
 <current>b2</current>
 <input type=yes>1</input>
 <future>b1</future>
 </State>
 <State>

 <current>b1</current>
 <input type=yes>hello</input>
 <future>s4</future>
 </State>
</states>

The attribute ‘type’ may be of the following types: yes, no, yes_db and no_db. The
description of each of them is as follows:
i) yes: This denotes the presence of the regex in the output or input.
ii) no: This denotes the absence of the regex in the output or input.
iii) yes_db: This denotes the presence of the regex in the output or input provided the
output is a database output like create, insert, update, delete statements etc.
iii) no_db: This denotes the absence of the regex in the output or input provided the
output is a database output like create, insert, update, delete statements etc.
The database IO is different from other types of IO as the IO strings are matched in a case
insensitive manner and hence requires different attributes. Between the <State> and
</State> tags one can specify multiple input tags. A conjunction will be formed among
the different inputs or outputs. Let us illustrate with the following example of the
inputStateDefs.xml file.

 <State>
 <current>b1</current>
 <input type=yes>.{5}</input>
 <input type=yes>.*[a-c]{2}.*</input>
 <input type=no>.b</input>
 <future>b2</future>
 </State>
It denotes that if the current state of the application is ‘b1’ and if the input has a length of
5 characters with at least two contiguous characters from ‘a’, ’b’, ’c’ with ‘b’ not being
followed by any character, then the future state is ‘b2’.

The interaction schema designer is also expected to know the names of the variables to be
watched. In this literature, we refer to those variables (which reflect changes in an
application’s state) as State variables. Thus the schema designer specifies the names of
the state variables in the StateVariablesDefinitions file. In the current implementation,
this is an XML file, which lists down all the state variables in the application which will
be deployed under LogicFence. LogicFence watches these variables to determine current
state, and state changes in the application.

An example StateVariablesDefinitions file is as follows:

<StateVarDef>
<State>
 <Variable>
 <class> Account </class>
 <Type>long</Type>
 <Name>balance</Name>

 </Variable>
 <Variable>
 <class>Account</class>
 <Type>long</Type>
 <Name>Amount_withdrawn</Name>
 </Variable>
</State>
</StateVarDef>

The schema designer also defines a StateDefinitions file. In the current implementation,
this also, is an XML file, which lists the various states of the application in terms of the
values of the state variables.

<states>

<State>
<name> Offer_premium_services </name>
<varused> Account_balance </varused>
<condition> Account_balance > 50000 </condition>
</State>

<State>
<name> impose_fine </name>
<varused> Account_balance </varused>
<condition> Account_balance < 500 &&
 Account_balance > 0
</condition>
</State>

<State>
<name> Overdraft </name>
<varused> Account_balance </varused>
<condition> Account_balance < 0 && </condition>
</State>

</states>

LogicFence keeps track of the application by looking at the state variables and the
outputs and inputs performed by the application and determines the states as described in
these state definition files. The steps involved in tracking the execution steps of the
applications are as follows:

The third party compiled Java file is received along with the state variable definition
files. Below is an example of the output of a simple disassembled Java file.

The compiled Java file is disassembled using Java disassembler ‘Jasper’.

The original Java file:

public class HelloWorld{
 int x;
 int y;

 public static void main(String args[])
 {
 HelloWorld h1 = new HelloWorld();
 try{
 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));
 System.out.println("Enter x: ");
 String ip=br.readLine();
 h1.x=Integer.parseInt(ip);
 System.out.println("Enter y: ");
 ip=br.readLine();
 h1.y=Integer.parseInt(ip);

 } catch(Exception e){
 }

 }
}

The disassembled form using Jasper:

.source HelloWorld.java
.class public HelloWorld
.super java/lang/Object

.field x I
.field y I

.method public <init>()V
 .limit stack 1
 .limit locals 1
 .line 15
 aload_0
 invokespecial java/lang/Object/<init>()V
 return
.end method

.method public static main([Ljava/lang/String;)V
 .limit stack 5
 .limit locals 4
 .line 21
 new HelloWorld
 dup
 invokespecial HelloWorld/<init>()V
 astore_1
 .line 23
LABEL0x8:
 new java/io/BufferedReader
 dup
 new java/io/InputStreamReader
 dup
 getstatic java/lang/System/in Ljava/io/InputStream;
 invokespecial java/io/InputStreamReader/<init>(Ljava/io/InputStream;)V
 invokespecial java/io/BufferedReader/<init>(Ljava/io/Reader;)V
 astore_2
 .line 24
 getstatic java/lang/System/out Ljava/io/PrintStream;
 ldc "Enter x: "
 invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
 .line 25
 aload_2
 invokevirtual java/io/BufferedReader/readLine()Ljava/lang/String;
 astore_3
 .line 26
 aload_1
 aload_3
 invokestatic java/lang/Integer/parseInt(Ljava/lang/String;)I
 putfield HelloWorld/x I
 .line 27
 getstatic java/lang/System/out Ljava/io/PrintStream;
 ldc "Enter y: "
 invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
 .line 28
 aload_2
 invokevirtual java/io/BufferedReader/readLine()Ljava/lang/String;
 astore_3
 .line 29
 aload_1
 aload_3
 invokestatic java/lang/Integer/parseInt(Ljava/lang/String;)I
 putfield HelloWorld/y I
 .line 32
LABEL0x44:
 goto LABEL0x48

 .line 31
LABEL0x47:
 astore_2
 .line 34
LABEL0x48:
 return
 .catch java/lang/Exception from LABEL0x8 to LABEL0x44 using
LABEL0x47
.end method

Portions of the disassembled code, where there are output statements, call to the
execution monitor function checkTransitionOnOutput() is inserted before the output
statement. The call to the execution monitor function is as follows:

 …..
 …..

 .line 24
 getstatic java/lang/System/out Ljava/io/PrintStream;
 ldc "Enter x: "
LABEL24:
 dup
 invokevirtual java/lang/Object/toString()Ljava/lang/String;
 ldc " invokevirtual
java/io/PrintStream/println(Ljava/lang/String;)V"
 getstatic IdList/appId I
 invokestatic
ChkStSpace/checkTransitionOnOutput(Ljava/lang/String;Ljava/lang/String;I)I
 iconst_1
 if_icmpeq LABEL30
LABEL26:
 ldc2_w 1500
 invokestatic java/lang/Thread/sleep(J)V
LABEL28:
 goto LABEL24
LABEL30:
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

 …..
 …..

Similarly for portions of the disassembled code, where there are input statements, call to
the execution monitor function checkTransitionOnInput() is inserted after the input
statement. The call to the execution monitor function is as follows:

 …..

 …..

 .line 28
 aload_2
 invokevirtual java/io/BufferedReader/readLine()Ljava/lang/String;
LABEL32:
 dup
 invokevirtual java/lang/Object/toString()Ljava/lang/String;
 getstatic IdList/appId I
 invokestatic ChkStSpace/checkTransitionOnInput(Ljava/lang/String;I)I
 iconst_1
 if_icmpeq LABEL38
LABEL34:
 ldc2_w 1500
 invokestatic java/lang/Thread/sleep(J)V
LABEL36:
 goto LABEL32
LABEL38:
 astore_3

 …..
 …..

Also portions of the disassembled code, where the state variables change values, are
noted and a call to the execution monitor function checkTransitionValidity() is inserted
before the assignment of the new value. The call to the execution monitor function is as
follows:

 …..
 …..

 .line 26
 aload_1
 aload_3
 invokestatic java/lang/Integer/parseInt(Ljava/lang/String;)I
LABEL8:
 dup
 invokestatic java/lang/Integer/toString(I)Ljava/lang/String;
 ldc "HelloWorld_x"
 getstatic IdList/appId I
 invokestatic
Chk_stspace/checkTransitionValidity(Ljava/lang/String;Ljava/lang/String;I)I
 bipush 1
 if_icmpeq LABEL14
LABEL10:
 ldc2_w 1500
 invokestatic java/lang/Thread/sleep(J)V

LABEL12:
 goto LABEL8:
LABEL14:
 putfield HelloWorld/x I

 ……
 …….

The modified file is assembled back to a valid Java class file using the Java assembler
Jasmin. The modified byte code takes care of the integrity constraints by giving call to
the checkState() function that does not allow the application to enter an invalid state.

The execution monitor functions, checkTransitionOnOutput(), checkTransitionOnInput(),
and checkTransitionValidity() are generated from the State Definitions files, which
include the different states the application can move through, and the Constraints
Specification file which includes the constraints incident on those states.

Some important details regarding these functions are as discussed below:

1. This function is used to check the validity of a state transition. If a transition is
found to be illegal at any point in time, the application waits there until the
transition is found to be valid. The application is made to sleep for a time interval
after which it wakes up and checks for the validity of the next state transition. The
outputs are performed only when the transition is found to be valid and after the
application enters the new state.

The functions described above reside in a class called ChkStSpace which gives call to
other functions as mentioned below:

determineCurrState() //the function has a copy of the values of all the state variables in
the application at the current instant. Using these it determines the current state of the
application. Returns the state name.

determineFutureState() // this function has all the constraints as generated from the
constraints file. Using the value passed in the transition validity functions, i.e the
requested new value of a state variable or the specific outputs or inputs, it finds out the
state the application is trying to transit to and returns this future state.

want_to_leave() // this function checks the exit status of the application from the current
state depending upon the obligatory constraint specified in the constraints file. Using the

rules in it, it checks whether this transition is valid or not. This procedure is described in
detail below. If valid, the function returns TRUE, else returns FALSE.

want_to_enter() // this function checks the entry status of the application in the future
state depending upon the permitted and forbidden constraint specified in the constraints
file. Using the rules in it, it checks whether this transition is valid or not. This procedure
is described in detail below. If valid, the function returns TRUE, else returns FALSE.

If the transition is allowed, i.e if TRUE is returned then ,

• The output is performed if the state transition is caused due to an output.
• The current state of the application is updated so as to make it visible to the

outside world. The updating is done with the help of a database as described later.
• The control is returned to the application with the new value assigned to the state

variable if the state transition occurs due to change in the value of a state variable.

If the transition is not allowed, i.e. if FALSE is returned,

• The application is made to sleep for a specific time period as provided by the
deployer in the file sleepTime.txt.

• The application is again woken up after the specified time period and it checks for
the validity of the state transition.

• The above steps continue until the transition to next state is found valid.

Limitations of the current implementation

The framework currently causes state changes of the applications because of inputs and
outputs caused by standard methods. For example, in file, console and socket IO, the
methods from the reader and writer classes are only tracked. Similarly, for database IO,
the mostly used methods in Statement interface like execute(), executeQuery() and
executeUpdate() will cause the state change.

Determination of validity of state transition from a global snapshot of
state space

The constraints in LogicFence can be global constraints across states. Hence to determine
the validity of a state transition, it is necessary to have a snapshot of at least a subset of
the global state space.
In the current implementation this is achieved with the help of a database. The database
maintains a single table called state_tabl which among other attributes has the following
attributes: statename, and no_of_applications. One tuple is created in the database
corresponding to every state. When an application wants to make a transition from the
current state:

• It checks the obligatory constraints from the current state. The presence of
some other applications in one or more of the states holding an obligatory

constraint from the current state will allow the application to leave the
current state.

• Once the application finds out the next state where the transition takes
place, it checks the validity of the transition. The validity of the transition
is determined from the state_tabl table looking at the states holding
permitted and forbidden constraints on the next state. If the transition is
found to be valid, it locks all the states which hold a permitted or a
forbidden constraint on the next state. Theoretically an exclusive lock is
required for the state from which the application exits and the state in
which the application enters. Shared lock is required for the states which
have an obligatory constraint on the current state and those having
permitted and forbidden constraints on the future state. In the current
implementation however a MySQL database is used where the complete
table is locked exclusively for the transactions to take place.

• With the state transition, the records corresponding to the old and new
states are updated and the locks are released.

Future work

1. In the version 2.0 of LogicFence one needs to provide all the constraints or
configurations before the applications are registered with the framework. If one
needs to add or delete constraints then all the applications are to be registered with
the framework having the new set of constraints. The applications will be
restarted once again from their initial state and they will follow the new set of
constraints. However in real world restarting all the applications once again from
the start state is not always desirable. Hence considering practical systems, one
should be allowed to add or delete constraints without stopping any of the
applications. The framework will gradually adapt itself to the new set of
constraints and the new set of constraints will be enforced across all applications.
The next version of LogicFence aims at including this feature.

References:

1. S. Srinivasa, S. Mukherjee, A. Hegde. LogicFence: A Framework for Automatic
Enforcement of Coordination Constraints

2. F. Arbab, I. Herman. Manifold. Future Generation Computer Systems. Vol. 10 , pp

273-277, June 1994

3. F. Depaoli , F. Tisato . Development of a Collaborative Application in CSDL .
proc. of 13

th
 Int’l conf. on Distributed Computing Systems, 1993, Pittsburg, USA,

pp .210-217

4. G. A Papadopoulos , F . Arbab, IWIM Model for Coordination of Concurrent
Activities. Proc. First Int. Conf. on Corordination Models and Languages, Lecture
notes in Computer Science , Vol. 1061, pp. 34-56, April 1996.

5. Srinath Srinivasa. An Algebra of Fix Points for Characterizing Interactive Behavior

of Information Systems, PhD Thesis Brandenburg Technical University at
Cottbus, Germany, April 2001.

6. Jasper reference: http://www.angelfire.com/tx4/cus/jasper/
7. Jasmin reference: http://jasmin.sourceforge.net/
8. I. Stoica, R. Morris, D. L. Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, H.

Balakrishnan, Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet
Applications

9. Kaffe reference: http://www.kaffe.org/
10. RVM reference: http://jikesrvm.sourceforge.net/
11. http://linuxgazette.net/issue81/sandeep.html (ptrace reference)
12. http://en.wikipedia.org/wiki/Emergence (Emergent properties/behaviour)

Ptrace() is highly dependent on the architecture of the underlying hardware. Applications
using ptrace are not easily portable across different architectures and
implementations(11).

