
DoublePlay: Parallelizing Sequential Logging and Replay

Kaushik Veeraraghavan Dongyoon Lee Benjamin Wester Jessica Ouyang

Peter M. Chen Jason Flinn Satish Narayanasamy

University of Michigan

{kaushikv,dongyoon,bwester,jouyang,pmchen,jflinn,nsatish}@umich.edu

Abstract

Deterministic replay systems record and reproduce the execution of
a hardware or software system. In contrast to replaying execution
on uniprocessors, deterministic replay on multiprocessors is very
challenging to implement efficiently because of the need to repro-
duce the order or values read by shared memory operations per-
formed by multiple threads. In this paper, we present DoublePlay,
a new way to efficiently guarantee replay on commodity multipro-
cessors. Our key insight is that one can use the simpler and faster
mechanisms of single-processor record and replay, yet still achieve
the scalability offered by multiple cores, by using an additional
execution to parallelize the record and replay of an application.
DoublePlay timeslices multiple threads on a single processor, then
runs multiple time intervals (epochs) of the program concurrently
on separate processors. This strategy, which we call uniparallelism,
makes logging much easier because each epoch runs on a single
processor (so threads in an epoch never simultaneously access the
same memory) and different epochs operate on different copies of
the memory. Thus, rather than logging the order of shared-memory
accesses, we need only log the order in which threads in an epoch
are timesliced on the processor. DoublePlay runs an additional ex-
ecution of the program on multiple processors to generate check-
points so that epochs run in parallel. We evaluate DoublePlay on
a variety of client, server, and scientific parallel benchmarks; with
spare cores, DoublePlay reduces logging overhead to an average
of 15% with two worker threads and 28% with four threads.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design; D.4.8 [Operating Systems]: Perfor-
mance

General Terms Design, Performance, Reliability

Keywords Deterministic Replay, Uniparallelism

1. Introduction

Deterministic replay systems record and reproduce the execution
of a hardware or software system. The ability to faithfully repro-
duce an execution has proven useful in many areas, including de-
bugging [15, 36, 40], fault tolerance [5], computer forensics [9],
dynamic analysis [7, 26], and workload capture [22, 46].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

Deterministic replay systems work by logging all non-
deterministic events during a recording phase, then reproduc-
ing these events during a replay phase. On uniprocessors, non-
deterministic events (e.g., interrupts and data from input devices)
occur relatively infrequently, so logging and replaying them adds
little overhead [46]. If there are multiple threads running on the
uniprocessor, these can be replayed at low overhead by logging and
reproducing the thread schedule [33]. On multiprocessors, how-
ever, shared-memory accesses add a high-frequency source of non-
determinism, and logging and replaying these accesses can drasti-
cally reduce performance.

Many ideas have been proposed to reduce the overhead of log-
ging and replaying shared-memory, multithreaded programs on
multiprocessors, but all fall short in some way. Some approaches
require custom hardware [12, 20, 21, 45]. Other approaches cannot
replay programs with data races [32] or are prohibitively slow for
applications with a high degree of sharing [10]. Some recent ap-
proaches provide the ability to replay only while the recording is in
progress [18] or sacrifice the guarantee of being able to replay the
recorded execution without the possibility of a prohibitively long
search [1, 30, 43, 47].

In this paper, we describe a new way to guarantee deterministic
replay on commodity multiprocessors. Our method combines the
simplicity and low recording overhead of logging a multithreaded
program on a uniprocessor with the speed and scalability of exe-
cuting that program on a multiprocessor.

Our key insight is that one can use the simpler and faster mech-
anisms of single-processor record and replay, yet still achieve the
scalability offered by multiple cores, by using an additional exe-
cution to parallelize the record and replay of an application. Our
goal is for the single-processor execution to be as fast as a tradi-
tional parallel execution, but to retain the ease-of-logging of single-
processor multithreaded execution.

To accomplish this goal, we observe that there are (at least)
two ways to run a multithreaded program on multiple proces-
sors, which we call thread parallelism and epoch parallelism. With
thread parallelism, the threads of a multithreaded program run on
multiple processors. While this traditional method of paralleliza-
tion can achieve good scalability, it is expensive to log the shared-
memory accesses from multiple threads running simultaneously.
With epoch parallelism, multiple time intervals (epochs) of the
program run concurrently. This style of parallelism has also been
called Master/Slave Speculative Parallelism by Zilles [48] and Pre-
dictor/Executor by Süßkraut [39].

Uniparallel execution runs a thread-parallel and an epoch-
parallel execution of a program concurrently. It further constrains
the epoch-parallel execution so that all threads for a given epoch
execute on a single processor. This strategy makes logging much
easier because multiple threads in an epoch never simultaneously
access the same memory, and because different epochs operate on
different copies of the memory. Thus, rather than logging the order

of shared-memory accesses, we need only log the order in which
threads in an epoch are timesliced on the processor.

To run epochs in parallel, we must generate checkpoints from
which to start each of the epochs, and we must generate these
checkpoints early enough to start future epochs before the ear-
lier ones finish. Uniparallel execution generates these checkpoints
speculatively by combining thread parallelism and online re-
play [18]. A thread-parallel execution runs ahead of the epoch-
parallel execution and generates checkpoints from which to start
future epochs. If these checkpoints diverge from the state produced
by the epoch-parallel execution, we abort all epochs that started
after the divergence, roll back, and restart from the last matching
state. We reduce the chance of divergence by logging a subset of
the non-deterministic events in the thread-parallel execution (e.g.,
the order of synchronization operations) and using this log to guide
the execution of the epoch-parallel execution down a similar path.

This approach supports deterministic replay on commodity mul-
tiprocessors without needing to log shared-memory accesses. Re-
playing multithreaded programs on multiprocessors becomes as
easy as replaying multithreaded programs on uniprocessors, while
still preserving the speed and scalability of parallel execution. The
main overhead of this approach is the use of more cores to run two
instances of the program during logging. We believe the advent of
many-core processors makes this a worthwhile tradeoff: the num-
ber of cores per computer is expected to grow exponentially, and
scaling applications to use these extra cores is notoriously difficult.

To demonstrate these ideas, we implement a system called Dou-
blePlay that can take advantage of spare cores to log multithreaded
programs on multiprocessors at low overhead and guarantee be-
ing able to replay them deterministically. We evaluate the perfor-
mance of DoublePlay on a variety of client, server, and scientific
parallel benchmarks. We find that, with spare cores, DoublePlay in-
creases run time by an average of 15% with two worker threads and
28% with four worker threads, and that DoublePlay can replay the
run later without much additional overhead. On computers without
spare cores, DoublePlay adds approximately 100% overhead for
CPU-bound applications that can scale to 8 cores; this compares
favorably with other software solutions that provide guaranteed de-
terministic replay.

Our paper is organized as follows. Section 2 describes other ap-
proaches to replaying multithreaded programs on multiprocessors.
Section 3 discusses the principle of uniparallelism. Sections 4 and 5
describe the design and implementation of DoublePlay. Section 6
reports on how DoublePlay performs for a range of benchmarks,
and Section 7 concludes.

2. Related work

Because of its wide array of uses, deterministic replay has been the
subject of intense research by the hardware and software systems
communities.

Many of the early replay systems focused on uniprocessor re-
play; e.g., IGOR [11], Hypervisor [5], Mach 3.0 Replay [33], De-
jaVu [6], ReVirt [9], and Flashback [36]. The designers of these
systems observed that when executing a multithreaded program on
a uniprocessor, there are many fewer thread switch events than ac-
cesses to shared memory. DoublePlay leverages this observation
by logging and replaying epochs that each run the multithreaded
program on a single processor, while taking advantage of multiple
processors by starting multiple epochs in parallel.

Multiprocessor replay has been a particular area of focus in re-
cent years because of the growing prevalence of multi-core proces-
sors. The main difficulty in replaying multithreaded programs on
multiprocessors is logging and replaying shared memory accesses
efficiently. One approach is to log the order of shared accesses [16],
but this incurs high overhead. SMP-ReVirt [10] uses page protec-

tions to log only the order of conflicting accesses to memory pages,
but this still incurs high overhead for some applications because
of the cost of memory protection faults and false sharing. Another
approach is to log and replay the values returned by load instruc-
tions [4, 23], but this also incurs high overhead.

One way to reduce the overhead of logging multiprocessors is
to add hardware support. The most common strategy is to modify
the cache coherence mechanism to log the information needed to
infer the order of shared memory accesses [2, 12, 20, 21, 24, 42].
While these approaches are promising, we would like to support
deterministic replay on commodity multiprocessors.

Another response to the high overhead of logging multiproces-
sors is to reduce the scope of programs that can be replayed. Rec-
Play [32] logs only explicit synchronization operations and so is
unable to replay programs with unsynchronized accesses to shared
memory (data races). DoublePlay also logs synchronization op-
erations, but it uses these only as hints to guide the execution
of the epoch-parallel run; DoublePlay guarantees deterministic re-
play for programs with and without data races by logging all non-
determinism in the epoch-parallel run.

Researchers have also tried to reduce logging overhead by re-
laxing the definition of deterministic replay. Instead of requiring
that all instructions return the same data returned in the original
run, these approaches provide slightly weaker guarantees, which
still support the proposed uses of replay. PRES [30] and ODR [1]
guarantee that all failures in the original run are also visible dur-
ing replay, where failures are usually defined as the output of the
program and program errors (e.g., assertions). Respec [18] guaran-
tees that both the output and the ending state of the replayed exe-
cution match the logged execution. DoublePlay requires the same
criteria as Respec for deterministic replay when evaluating whether
the epoch-parallel execution matches the thread-parallel execution,
since this guarantees that each checkpoint that starts a future epoch
matches the ending state of the prior epoch.

Respec also distinguishes between online and offline re-
play [18]. Online replay refers to the ability to replay while the
recording is in progress; offline replay refers to the ability to replay
after the recording is complete. Respec provides only online replay.
DoublePlay uses online replay, but only for the purpose of guiding
the epoch-parallel execution. DoublePlay supports offline replay by
logging and replaying the epoch-parallel execution.

Another way to reduce logging overhead is to shift work from
the recording phase to the offline replay phase. To achieve this,
recent research has investigated an alternate approach to determin-
istic replay based on search [1, 17, 30, 43, 47]. Rather than logging
enough data to quickly replay an execution, these systems record
a subset of information (e.g., synchronization operations or core
dumps), then use that information to guide the search for an equiv-
alent execution. The search space includes all possible orders of
shared-memory accesses that are allowed by the logged informa-
tion, so it grows exponentially with the number of racing accesses.
With good heuristics, search-based replay can often find equiva-
lent executions quickly, especially for programs with few racing
accesses. However, because of the exponential search space, they
may not be able to find an equivalent execution within a reason-
able time frame. In addition, even if the search succeeds within a
few tries, the execution of the program during search can be slowed
by several orders of magnitude due to the need to log the detailed
order of shared-memory accesses [30]. DoublePlay logs similar in-
formation as some of these systems (e.g., the SYS configuration in
PRES [30]), so its recording should add a similar amount of over-
head to the original application. One can view DoublePlay as us-
ing extra cores to search for an equivalent replay during the origi-
nal run. However, while other systems risk not being able to later
find an equivalent run quickly (or at all), DoublePlay verifies dur-

ing recording that the epoch-parallel execution matches the thread-
parallel execution. While DoublePlay must execute intervals that
contain races sequentially, this is unlikely to slow the program sig-
nificantly because these intervals are likely to be a small fraction of
the overall execution time.

Deterministic replay helps reproduce non-deterministic multi-
processor executions. An alternative approach is to ensure that
all inter-thread communication is deterministic for a given in-
put [3, 8, 13, 28]. This approach eliminates the need to log the
order of shared-memory accesses. However, current solutions for
deterministic execution only support programs that are free of data
races [28], require language [13] or hardware [8] support, or only
support programs with fork-join parallelism.

Finally, DoublePlay applies ideas from research on using spec-
ulation to run applications in parallel, such as thread-level spec-
ulation [29, 35, 37]. In particular, Master/Slave Speculative Par-
allelization [48], Speck [26], and Fast Track [14] also use a fast
execution to start multiple slow executions in parallel. DoublePlay
applies this idea in a new way by using a fast, thread-parallel ex-
ecution on multiple processors to start multiple uniprocessor exe-
cutions that execute threads sequentially on one processor. As both
the thread-parallel and uniprocessor executions run the same pro-
gram, DoublePlay could leverage the speculative control and data
flow prediction scheme introduced in SlipStream [38] so the lead-
ing thread-parallel execution communicates values and branch out-
comes to the trailing epoch-parallel execution, further reducing log-
ging overhead.

In summary, DoublePlay distinguishes itself from prior
software-only multiprocessor deterministic replay systems by
adding little overhead to application execution time during record-
ing while also guaranteeing that the recorded execution will be able
to be replayed in the future in a reasonable amount of time. The
cost of this guarantee is that DoublePlay must use additional cores
to run two executions of the program during recording.

3. Uniparallelism

Many properties are difficult or slow to achieve on a multiprocessor
but easy to achieve on a uniprocessor. For example, one can guar-
antee deterministic replay on a uniprocessor by recording external
inputs and scheduling events such as interrupts, but on a multipro-
cessor, one must also record or infer the order or value of shared
memory operations. Other properties that are easier to guarantee
on a uniprocessor include sequential consistency and detecting or
avoiding certain types of races. Importantly, the cost to provide
these properties on a multiprocessor may be much higher than 2x
for many benchmarks; techniques that work well on a uniprocessor
may become infeasible when two threads execute concurrently on
different cores.

Uniparallelism is a technique for achieving the benefits of ex-
ecuting on a uniprocessor, while still allowing application perfor-
mance to scale with increasing processors. A uniparallel execution
consists of both a thread-parallel and epoch-parallel execution of
the same program. The epoch-parallel execution runs all threads of
a given epoch on a single processor at a time; this enables the use
of techniques that run only on a uniprocessor. Unlike a traditional
thread-parallel execution that scales with the number of cores by
running different threads on different cores, an epoch-parallel ex-
ecution achieves scalability in a different way, namely by concur-
rently running different epochs (time slices) of the execution on
multiple cores. Epoch-parallel execution thus requires the ability
to predict future program states; such predictions are generated by
running the second, thread-parallel execution concurrently. Conse-
quently, for CPU-bound workloads, uniparallel execution requires
twice the number of cores as a traditional execution, leading to an

approximately 100% increase in CPU utilization and energy usage
(assuming energy-proportional hardware).

Uniparallelism improves performance in two cases. First, if a
workload is not CPU-bound or an application cannot scale to ef-
fectively use all cores of a multicore computer, the cost of uni-
parallelism can be much less than 100% (typically less than 20%
in our experiments). Second, when the property being provided is
more than twice as expensive on a multiprocessor as on a unipro-
cessor (as is often the case for deterministic replay), it is more effi-
cient in terms of both time and energy to run the application twice
with uniparallelism than to provide the property directly on the
multiprocessor version of the application. For instance, even with-
out spare cores, DoublePlay’s energy and performance overhead is
lower than that of all prior systems which guarantee deterministic
replay on commodity multiprocessors.

4. Design overview

The goal of DoublePlay is to efficiently record the execution of
a process or group of processes running on a multiprocessor such
that the execution can later be deterministically replayed as many
times as needed. DoublePlay is implemented inside the Linux op-
erating system, and its boundary of record and replay is the process
abstraction. The operating system itself is outside the boundary of
record and replay, so DoublePlay records the results and order of
system calls executed by the process and returns this data to the
application during replay.

Figure 1 shows an overview of how DoublePlay records pro-
cess execution. DoublePlay simultaneously runs two executions of
the program being recorded. Each execution uses multiple cores.
The execution on the left, which we refer to as the thread-parallel
execution, runs multiple threads concurrently on the cores allo-
cated to it. DoublePlay partitions the thread-parallel execution into
time slices called epochs. At the beginning of each epoch, Double-
Play creates a copy-on-write checkpoint of the state of the thread-
parallel execution.

The execution on the right, which we refer to as the epoch-
parallel execution, runs each epoch on one of the cores allocated
to it. All threads of a given epoch run on the same core, which sim-
plifies the task of deterministically replaying the resulting execu-
tion. DoublePlay achieves good performance by running different
epochs of the same process concurrently. As shown in Figure 1,
both the thread-parallel execution and the epoch-parallel execution
start running the first epoch simultaneously. However, the thread-
parallel execution runs the epoch much faster because it uses more
cores. When the thread-parallel execution reaches the start of the
second epoch, DoublePlay checkpoints the process state and uses
that state to start running the second epoch in the epoch-parallel
execution. By the time the thread-parallel execution is running the
fourth epoch, the epoch-parallel execution is able to fully utilize
the four cores allocated to it. From this point on, the epoch-parallel
execution can achieve speedup from parallelization roughly equiv-
alent to that achieved by the thread-parallel execution.

During recording, DoublePlay saves three items that are suffi-
cient to guarantee that the process execution can be replayed deter-
ministically in the future. First, DoublePlay records the initial state
of the process at the start of recording. Second, DoublePlay records
the order and results of system calls, signals, and low-level synchro-
nization operations in GNU libc. Finally, DoublePlay records the
schedule of thread execution (i.e., when context switches between
threads occur) of the epoch-parallel execution. Note that since each
epoch is executed on a single core in the epoch-parallel execution,
DoublePlay does not need to record the ordering or results of any
shared memory operations performed by multiple threads; the three
items above are sufficient to exactly recreate identical operations
during replay.

[Ep 0]

[Ep 1]

[Ep 2]

[Ep 3]

A

CPU 0

B

CPU 1

C

CPU 2

D

CPU 3

A

CPU 0

C

D

B

B

C

C
A

A

B

B

A

D

C

C

A
B

D

D.
.

RECORD (Uniparallelism)

.

..
.
..

.

..
.
..

Epoch-parallel executionThread-parallel execution

REPLAY

 Syscalls

 Signals

 Sync Ops

[Ep 0]

[Ep 1]

[Ep 2]

CPU 7

D

D

D

A

C

B

B
C
C

[Ep 3]

 Thread

 Schedule

T
I

M
E

Epoch

process

state

 Syscalls

 Signals

 Sync Ops

CPU 4

A

C

D

B

B

C

C
A

A

[Ep 0]
CPU 5

B

A

D

C

C

A
B

D

B

[Ep 1]

CPU 6

D

C

D

B

A

A

C
D

B

[Ep 2]

Initial

process

state

Figure 1. Overview of DoublePlay record and replay

The two executions can be viewed as follows. The epoch-
parallel execution is the actual execution of the program that is be-
ing recorded. Because each epoch of the epoch-parallel execution
runs on a single core, DoublePlay can use the simple and efficient
mechanisms for uniprocessor deterministic replay to record and re-
play its execution. The thread-parallel execution allows the epoch-
parallel execution to achieve good performance and scale with the
number of cores. The thread-parallel execution provides a hint as to
what the future state of the process execution will be at each epoch
transition. As long as this hint is correct, the state of the process
at the beginning of each epoch in the epoch-parallel execution will
match the state of the process at the end of the previous epoch. This
means that the epochs can be pieced together to form a single, nat-
ural execution of the process. This process is akin to splicing movie
segments together to form a single coherent video.

But, what if the hint is incorrect? In such an instance, two
epochs cannot be pieced together to form a single natural run; the
logged run will contain unnatural transitions in program values at
epoch boundaries akin to artifacts in a bad video splice. To detect
such events, DoublePlay compares the process state (memory val-
ues and registers) of the thread-parallel and the epoch-parallel runs
at each epoch transition. If the state of the epoch-parallel execution
has diverged from the state of the thread-parallel execution, Dou-
blePlay squashes the execution of all subsequent epochs for both
executions. It restores the state of the thread-parallel execution to
the checkpoint at the beginning of the epoch and restarts both exe-
cutions from this point.

In Section 5.2.4, we discuss two different implementations for
rolling back execution state. The first is a simpler design that rolls
both executions back to the start of the epoch that diverged and
restarts execution. The second is more complicated, but guarantees
forward progress; it rolls both executions back to the state of the
epoch-parallel execution at the divergence and restarts both execu-
tions from that state.

DoublePlay prevents the process from externalizing any output
that depends on the execution of an epoch that may subsequently
be rolled back. This means that output cannot be externalized until

all prior epochs have been found to be free of divergence. Under
the simpler design that rolls back to the start of the epoch, the
current epoch must also be checked for divergence. Under the
second design, output can be released as soon as the system call
that generates that output is called by the epoch-parallel execution.

A divergence between the thread-parallel and epoch-parallel ex-
ecutions can slow performance substantially because it may lead to
DoublePlay squashing the execution of several subsequent epochs.
DoublePlay uses online replay [18] to reduce the frequency of
such divergences and their resulting slowdown. During the thread-
parallel execution, DoublePlay logs the ordering and results of
all system calls and low-level synchronization operations in libc.
When the epoch-parallel execution executes a system call or syn-
chronization operation, DoublePlay returns the logged result in-
stead of executing the operation. It also delays the thread execution
to match the order of operations in the log. Further, DoublePlay
logs signals and delivers them only on kernel entry or exit, making
their effects deterministic. These actions are sufficient to ensure
that the thread-parallel and epoch-parallel executions are identical
(and, hence, do not diverge) for any epochs that are free of data
races. The only situation in which the thread-parallel and epoch-
parallel executions might diverge is when the program contains a
data race and two threads execute unsynchronized, conflicting op-
erations on a shared memory address.

At any subsequent time, DoublePlay can replay a recorded exe-
cution by (1) restoring the initial state of the recorded process, (2)
replaying it on a single core using the logged system calls, signals,
and synchronization operations, and (3) using the same schedule of
thread execution that was used during the epoch-parallel execution.

Our current implementation only uses a single core during re-
play. However, DoublePlay could also use uniparallelism to speed
up replay. In other words, DoublePlay could execute multiple
threads of a replayed process on multiple cores and use the results
to spawn concurrent replays of multiple epochs, each on a single
core. As during recording, the executions could diverge, in which
case, DoublePlay would squash future (incorrect) epochs and start
again from the epoch that caused the divergence. This technique

would be useful, for example, to skip ahead to the next break point
during debugging.

5. Implementation

The implementation of DoublePlay leverages our prior Respec [18]
work to provide deterministic online replay. Respec ensures that
two concurrent executions of the same process are externally deter-
ministic, which we define to mean that the two executions execute
the same system calls in the same order, and that the program state
(values in the address space and registers) of the two processes are
identical at the end of each epoch of execution.

Respec only ensures external determinism while two processes
execute at the same time. It does not address deterministic replay of
a process after the original execution completes; therefore, it cannot
be used for offline debugging, intrusion analysis, and other activ-
ities that must take place after an execution finishes. DoublePlay
builds on top of Respec to provide this capability.

We first provide background information about the design and
implementation of Respec. We then describe how DoublePlay ex-
tends Respec to support offline deterministic replay.

5.1 Respec background

Respec is a system in the Linux kernel that runs two executions of a
multithreaded process (or set of processes) concurrently. When Re-
spec is invoked by a process, Respec duplicates the process’s state
via a multi-threaded fork that clones both its address space and the
execution state of all concurrently executing threads. Respec then
executes the cloned copy concurrently with the original execution.

The original and cloned executions have a producer-consumer
relationship. When the original execution performs a system call,
Respec writes the arguments and results of the call to a circular
buffer. Respec logs the total order of system call entry and exit
across all threads. During the cloned execution, Respec enforces
the same total order by blocking threads when they enter or exit a
system call until all prior entries in the circular buffer have been
consumed. For most system calls, Respec does not re-execute the
actual system call during the cloned execution; instead, it simply
provides the results obtained by the original execution. Respec does
re-execute system calls such as clone and mmap that change the
process’s address space to support subsequent loads and stores; it
serializes these operations in both executions to ensure that they are
performed deterministically. Respec also logs the value and timing
of signals in this log, and delivers signals at the same point in both
executions. To reduce log size, we modified Respec to assume that
the underlying file system is copy-on-write [31, 34], so that it can
delay logging large file reads until such files are actually modified.
File system interfaces exist that let systems such as Respec create
custom file versioning policies [41].

At user-level, Respec also writes to a circular buffer the low-
level synchronization operations in libc performed by the original
execution, such as lock acquisition, waits, and wakeups. In contrast
to the system calls, Respec only records a happens-before partial
order of synchronization operations and enforces this partial order
during the cloned execution. Enforcing the recorded partial order
for synchronization operations ensures that all shared memory ac-
cesses are ordered, provided the program is race free.

Combined, these mechanisms are sufficient to ensure that the
original and cloned executions execute identically in the absence
of data races. However, a benign or malign data race may cause the
two executions to diverge. Respec divides the executions into semi-
regular intervals called epochs. During each epoch, it compares the
arguments passed to all system calls, and, at the end of each epoch,
it verifies that the memory and register state of the original and
cloned executions match. To reduce the cost of such comparisons,

Respec only compares memory pages modified during the execu-
tion of the prior epoch.

Respec uses Speculator [25] to checkpoint the original execu-
tion at the beginning of each epoch. Each checkpoint is a copy-on-
write fork of the process address space, so that only pages mod-
ified in an epoch are duplicated. Read-shared pages thus do not
increase memory or cache overhead. If the divergence check suc-
ceeds, Respec commits the checkpoint. If the check fails, it rolls
back the state of both executions to the checkpoint and tries the ex-
ecution again. During an epoch, the recording process is prevented
from committing any external output (e.g., writing to the console
or network). Instead, its outputs are buffered in the kernel. Outputs
buffered during an epoch are only externalized after both processes
have finished executing the epoch and the divergence check suc-
ceeds. They are discarded on a rollback. Thus, epochs that are later
rolled back are not visible to any external observer.

To summarize, the guarantees provided by Respec are: (1) the
original and cloned executions produce the same external outputs
(more precisely, the same system calls) in the same order, and (2)
the memory and register state of the two executions are identical at
epoch boundaries.

5.2 Supporting offline replay

DoublePlay uses Respec during recording to coordinate the thread-
parallel and epoch-parallel executions. From the point of view of
Respec, the thread-parallel execution is the original execution and
the epoch-parallel execution is the cloned execution. DoublePlay
makes several enhancements to the basic Respec infrastructure in
order to support offline replay, which we describe in the following
sections.

5.2.1 Enabling concurrent epoch execution

DoublePlay needs to run multiple epochs concurrently, while Re-
spec runs only a single epoch at a time. DoublePlay therefore
makes multiple copies of the thread-parallel execution by calling
the multi-threaded fork primitive before starting the execution of
each individual epoch. This primitive creates a new process whose
state is identical to that of the thread-parallel execution at that point
in its execution. Each time a new process is created, DoublePlay
does not let it begin execution, but instead places it in an epoch
queue ordered by process creation time.

The DoublePlay scheduler is responsible for deciding when and
where each process will run. Currently, the scheduler uses a simple
policy that reserves half of the available cores for the thread-parallel
execution and half for the epoch-parallel execution. It uses the
Linux sched setaffinity system call to constrain process execution
to specific cores. As long as cores remain available, the scheduler
pulls the next process from the epoch queue, allocates a core to it,
constrains it to execute on only that core, and wakes up the process.
When the process completes executing the epoch, it informs the
scheduler that the core is now free, and the scheduler allocates the
core to the next process in the epoch queue.

Even though DoublePlay starts execution of the epochs in the
epoch-parallel execution in sequential order, there is no guarantee
that epoch execution will finish in order, since some epochs are
much shorter than others. DoublePlay uses an adaptive algorithm
to vary epoch lengths. It sets the epoch length to 50 ms after a roll-
back. Each epoch without a rollback increases the epoch length
by 50 ms up to a maximum of one second. Further, by leveraging
output-triggered commits [27], DoublePlay ends an epoch immedi-
ately if a system call requires synchronous external output and no
later than 50 ms after asynchronous external output. Network appli-
cations have much external output, so they have many short epochs
even with few rollbacks.

Even though epochs may finish out of order, DoublePlay en-
sures that they commit or roll back in sequential order. When
a epoch completes execution, DoublePlay performs a divergence
check by comparing its memory and register state to that of the
checkpoint associated with the next epoch. Once this check passes,
DoublePlay allows the process to exit and allocates its processor to
another epoch. If all prior epochs have been committed, Double-
Play also commits the epoch and discards the checkpoint for that
epoch. Otherwise, it simply marks the epoch as completed. After
all prior epochs commit, DoublePlay will commit that epoch.

In its strictest form of verification, DoublePlay considers a di-
vergence check to fail if (1) a thread in the epoch-parallel execution
calls a different system call from the one called by the correspond-
ing thread in the thread-parallel execution, (2) the two threads call
different libc synchronization operations, (3) the two threads call
the same system call or synchronization operation, but with dif-
ferent arguments, or (4) the registers or memory state of the two
executions differ at the end of the epoch. In Section 5.2.5, we de-
scribe how we loosen these restrictions slightly to reduce unneces-
sary rollbacks.

When a divergence check fails, DoublePlay terminates all
threads executing the current epoch and any future epochs in
the epoch-parallel execution, as well as all threads of the thread-
parallel execution, by sending them kill signals. However, epochs
started prior to the one that failed the divergence check may still
be executing for the epoch-parallel execution. DoublePlay allows
these epochs to finish and complete their divergence checks. If
these checks succeed, DoublePlay restarts the thread-parallel exe-
cution from the failed epoch. If a check for one of the prior epochs
fails, it restarts execution from the earliest epoch that failed.

5.2.2 Replaying thread schedules

DoublePlay guarantees deterministic offline replay by executing
each epoch on a single core using the same thread schedule that
was used during recording by the epoch-parallel execution. There
are two basic strategies for providing this property. One strategy
is to use the same deterministic scheduler during epoch-parallel
execution and offline replay. The second strategy is to log the
scheduling decisions made during epoch-parallel execution and
replay those decisions deterministically during offline replay.

To implement these strategies, we added a custom scheduler
layer that chooses exactly one thread at a time to be run by the
Linux scheduler and blocks all other threads on a wait queue.
When the DoublePlay scheduler decides to execute a new thread,
it blocks the previously-executing thread on the wait queue and
unblocks only the thread that it chooses to run. It would also
have been possible to implement these strategies by modifying the
Linux scheduler, but this would have required instrumenting all
scheduling decisions made in Linux.

To implement the first strategy (the deterministic scheduler),
DoublePlay assigns a strict priority to each thread based on the or-
der in which the threads are created. DoublePlay always chooses to
run the highest-priority thread eligible to run that would preserve
the total ordering of system calls and the partial ordering of syn-
chronization operations.

To preserve system call ordering, the thread-parallel execution
assigns a sequence number to every system call entry or exit when it
is added to the circular buffer. A thread in the epoch-parallel execu-
tion only consumes an entry if it has a sequence number one greater
than the entry last consumed. Thus, a high-priority thread whose
next entry is several sequence numbers in the future must block un-
til low-priority threads consume the intervening entries. Similarly,
DoublePlay uses multiple sequence numbers to represent the par-
tial order of user-level synchronization operations. Specifically, the
address of each lock or futex accessed in a synchronization opera-

tion is hashed to one of 512 separate counters, each of which rep-
resents a separate sequence number. Note that once a low-priority
thread consumes an entry in either buffer, a higher-priority thread
may become eligible to run. In this instance, DoublePlay immedi-
ately blocks the low-priority thread and unblocks the high-priority
thread. For any given set of system calls and synchronization op-
erations, this algorithm produces a deterministic schedule. That is,
context switches always occur at the same point in each thread’s
execution.

This first strategy is relatively easy to implement and requires
no additional logging. However, it is difficult to allow preemptions
in this strategy, because doing so would require inserting preemp-
tions deterministically [28]. Allowing preemptions has two bene-
fits: it allows uniparallel to reproduce any bug that manifests on
sequentially-consistent hardware, and it maintains liveness in the
presence of spin locks.

To allow preemptions, we implemented a second strategy for
replaying thread schedules deterministically, which is to log the
preemptions that occur during epoch-parallel execution and replay
those decisions deterministically during offline replay. In order to
deterministically reproduce preemptions, we record the instruction
pointer and branch count of a thread when it is preempted dur-
ing epoch-parallel execution. The branch count is necessary be-
cause the instruction could be inside a loop, and we must replay
the preemption on the correct iteration [19]. These branch counts
are maintained per thread and obtained using hardware perfor-
mance monitoring counters configured to count branches executed
in user-space [5]. We compensate for return from interrupt (iret)
branches, which would otherwise cause interrupts to perturb the
branch count non-deterministically. After recording the instruction
pointer and branch count, we unblock the next thread. In offline re-
play, we preempt a thread when it reaches the recorded instruction
pointer and branch count and allow the next thread to run.

As with all deterministic replay systems, DoublePlay perturbs
the execution that it is logging. When using deterministic replay
for debugging, such perturbations may change the likelihood of en-
countering particular bugs. Epoch parallelism avoids the perturba-
tion due to instrumenting shared memory accesses, but adds pertur-
bation due to timeslicing a multithreaded program onto a unipro-
cessor. The degree to which timeslicing changes the likelihood that
a particular bug will manifest depends on the particular schedul-
ing algorithm being used (e.g., certain race conditions may occur
infrequently with coarse-grained timeslicing).

5.2.3 Offline replay

To support offline replay, DoublePlay records the system calls
and synchronization operations executed during an epoch in a set
of log files (for simplicity, DoublePlay uses a separate log for
each thread). After committing each epoch, DoublePlay marks the
entries belonging to that epoch as eligible to be written to disk.
It then writes the marked records out asynchronously while other
epochs are executing. Note that DoublePlay only has to record the
results of synchronization operations and system calls, since the
arguments to those calls will be deterministically reproduced by
any offline replay process. This reduces log size considerably for
system calls such as write. Signals are logged with the system
calls after which they are delivered.

If a rollback occurs, DoublePlay deallocates any records in the
circular buffer that occurred after the point in the thread-parallel
execution to which it is rolling back (these records cannot have
been written to disk since the epoch has not yet committed). It
also ensures that all entries that precede the rollback point are
written to disk before restoring the checkpoint. The checkpoint
includes the sequence numbers at the point in execution where the
checkpoint was taken, so subsequent entries will have the correct

sequence number. Thus, there is no indication of the divergence or
the rollback in the logs on disk.

DoublePlay saves the initial state of the process when record-
ing began. To perform an offline replay, it starts from this initial
copy. DoublePlay currently runs the offline replay on a single pro-
cessor and uses the scheduling algorithm described in Section 5.2.2
to constrain the order of thread execution for the offline replay pro-
cess. When an offline replay thread executes a system call or syn-
chronization operation, DoublePlay returns the results recorded in
its log file. The only system calls that DoublePlay actually executes
are ones that modify the process address space, such as mmap and
clone. DoublePlay delivers recorded signals at the same point in
process execution that they were delivered during recording.

As mentioned in Section 4, DoublePlay could potentially use
uniparallel execution to accelerate replay in the same manner that
it accelerates recording. With this optimization, we would expect
offline replay execution time to be no worse than recording time.

5.2.4 Forward recovery

We implemented two different rollback strategies in DoublePlay.
Initially, we decided to roll both executions back to the checkpoint
at the beginning of the epoch that failed the divergence check. Both
executions would restart from this point. If the divergence check
again failed, we would roll back and try again. However, we saw
some executions in which a given epoch would roll back several
times in a row before the divergence check succeeded, presumably
because it contained one or more frequently-diverging data races.
Frequent rollbacks imposed a substantial performance overhead for
some applications; in the worst case, a program with many frequent
races could fail to make forward progress.

After consideration, we realized that this strategy reflected the
incorrect view that the thread-parallel execution was the run being
recorded. In fact, the epoch-parallel execution is the “real” execu-
tion being recorded — it is after all the one that is being executed
on a single core with a known thread schedule. The epoch-parallel
execution is also a perfectly legal execution that could have oc-
curred on the thread-parallel execution with a particular set of rela-
tive speeds among the processors (since we verify the ending state
of the prior epoch matches the starting state of the next epoch). The
thread-parallel execution exists merely as a means for generating
hints about future process state so that multiple epochs can be exe-
cuted in parallel.

Once we viewed the epoch-parallel execution as the one being
recorded, it was clear that the state of its execution at the time
the divergence check fails is a valid execution state that can be
deterministically reproduced offline. Therefore, DoublePlay can
use the epoch-parallel process state at the time the divergence check
fails as a checkpoint from which to restart execution. We call this
process forward recovery.

A complication arises because the kernel state is associated only
with the thread-parallel execution (because it is the process that ac-
tually executes all system calls), while the correct process state is
associated with the epoch-parallel execution. DoublePlay detects
when the thread-parallel and epoch-parallel executions diverge by
comparing the order and arguments of system calls, and the mem-
ory and registers after each epoch. At the point of divergence, the
(logical) kernel states of the two executions are guaranteed to be
identical because the executions have issued the same sequence of
system calls up to that point. Because the logical kernel states are
identical, it is correct to merge the kernel state of the thread-parallel
execution with the memory and register state of the epoch-parallel
execution.

DoublePlay logs an undo operation for each system call that
modifies kernel state, so that forward (and regular) recovery can
roll back kernel state by applying the undo operations. It can thus

roll back the thread-parallel execution’s kernel state to the system
call at which a divergence was detected. It then makes the contents
of the address space of the thread-parallel execution equal to the
contents of the address space of the epoch-parallel execution at the
point where the divergence check failed.

For instance, consider a process with a data race that causes the
memory states of the two executions to differ at the end of an epoch.
DoublePlay’s divergence check already compares the address space
of the epoch-parallel execution with a checkpoint of the thread-
parallel execution. If any bytes differ, DoublePlay simply copies
the corresponding bytes from the epoch-parallel address space to
the checkpoint’s. DoublePlay then restores the checkpoint to restart
the thread-parallel execution; new epoch-parallel executions will be
spawned as it proceeds.

Forward recovery guarantees that DoublePlay makes forward
progress, even when a divergence check fails. All work done by the
epoch-parallel execution up until the divergence check, including
at least one data race (the one that triggered the divergence), will
be preserved. In the worst case, every epoch may contain frequent
data races, and divergence checks might always fail. However, even
in this case, DoublePlay should be able to approach the speed of
uniprocessor replay since a single core can always make progress.
In the expected scenario where data races are relatively infrequent,
DoublePlay runs much faster.

5.2.5 Looser divergence checks

In our initial design for DoublePlay, we made the divergence check
very strict because we wanted to detect a divergence as soon as
possible in order to minimize the amount of work thrown away on
a rollback. However, once we implemented forward recovery, we
decided that strict divergence checks might no longer be best. As
long as the epoch-parallel execution can continue its execution, any
work that it completes will be preserved after a rollback.

Even with forward recovery, it is still necessary to check mem-
ory and register state at each epoch boundary. If the process state at
the end of an epoch of the epoch-parallel execution does not match
the state from which the next epoch execution starts, the epoch-
parallel executions of all subsequent epochs are invalid and must
be squashed. However, strict divergence checks are not necessarily
required within an epoch.

As long as the external output of the epoch-parallel execution
continues to match the external output of the thread-parallel exe-
cution, then the system calls and synchronization operations per-
formed by the two executions can be allowed to diverge slightly.
On the other hand, if one of these operations can affect state exter-
nal to the process, then the state changes cannot be made visible to
an external entity and all subsequent results from system calls and
synchronization operations must be consistent with the divergence.

Based on this observation, we modified DoublePlay to support
three slightly looser forms of divergence checks within an epoch.
First, if a thread’s circular buffer contains a system call with no
effect outside that thread, but the epoch-parallel execution omits
that system call, we allow it to skip over the extra record in the
buffer. Examples of such system calls are getpid and nanosleep.

Second, if a thread executes a system call that produces output
for an external device such as the screen or network, the epoch-
parallel execution is allowed to execute the same system call with
different output. Because DoublePlay buffers such output in the
kernel until after both executions have completed the system call,
no external entity observes this output prior to the execution of
the call by the epoch-parallel execution. Because that execution
is logically the “real” execution, we simply release its output,
rather than the output from the thread-parallel execution, to external
observers. The observers therefore see the same output during
recording and offline replay. The output produced by the thread-

parallel execution can be viewed as an incorrect hint that is later
corrected.

Third, if a thread executes a set of self-canceling synchroniza-
tion operations or system calls during the thread-parallel execution,
but omits them in the epoch-parallel execution, then all members of
the set can be skipped. By self-canceling, we mean two or more op-
erations that when executed together have no effect on state exter-
nal to the thread. For example, lock and unlock operations for the
same low-level lock are a self-canceling pair. If the thread-parallel
execution performed both operations, then the epoch-parallel exe-
cution can achieve the same effect by performing neither.

Looser divergence checks have two benefits. First, the epoch
parallel execution can run longer before a rollback is needed. Sec-
ond, a rollback can sometimes be avoided all together when the
divergence in process state is transitory. For example, one applica-
tion we tested (pbzip2) has a benign race in which one thread spins
waiting for another to set a value. Since the thread calls nanosleep
periodically, the spin loop executes different numbers of iterations
in different executions. With strict divergence checks, such behav-
ior leads to rollbacks. However, with looser divergence checks, the
epoch-parallel execution continues past this loop. While different
calls to nanosleep leave temporary differences on the thread’s
stack, these differences are soon overwritten by subsequent system
calls. Thus, unless the epoch boundary happens immediately after
the spin loop, the divergence in program state heals and no rollback
is needed.

5.2.6 Reverse scheduling

We implemented one final feature as an option to the deterministic
scheduling algorithm, which we refer to as reverse scheduling. The
idea behind reverse scheduling is to try to avoid rollbacks when
a divergence check fails by finding a different schedule whose
execution causes the check to pass. Thus, when a check fails,
DoublePlay runs another epoch-parallel execution of the failed
epoch on the processor allocated for that epoch, but it uses the
opposite scheduling priorities from the ones it used in the failed
execution. That is, the last thread created has the highest, not the
lowest, priority. The idea is that if there is a single data race in the
epoch, then either the normal or reverse schedule is very likely to
reproduce the same program state produced by the thread-parallel
execution. If the second execution passes the divergence check, the
epoch is committed and no rollback occurs. The reverse thread
schedule is recorded in the DoublePlay log so that it is also used
during replay.

Our results with reverse scheduling were mixed. We found
that this feature did in fact eliminate many rollbacks. However,
for the applications we tested, fewer rollbacks did not lead to
improved performance. One reason is that the forward recovery
and loose replay optimizations already eliminated many rollbacks
entirely and reduced the performance impact of the remaining ones.
Another reason is that reverse scheduling may use CPU time for
the second execution yet not eliminate the need for rollback. Thus,
while reverse scheduling may prove useful for applications we have
not yet tested, DoublePlay currently does not use this feature.

6. Evaluation

Our evaluation answers the following questions:

• What is the overhead of DoublePlay record and replay for
common applications and benchmarks?

• How often do applications roll back, and what is the effect of
rollback on replay time?

• Do our optimizations, namely forward recovery and loose re-
play, reduce overhead for applications with data races?

6.1 Methodology

We used two different 8-core computers to parallelize our evalu-
ation. The first has a 2 GHz 8-core Xeon processor with 3 GB of
RAM, while the second has a 2.66 GHz 8-core Xeon with 4 GB
of RAM. Both computers run CentOS Linux version 5.3. The ker-
nel is a stock Linux 2.6.26 kernel, modified to include DoublePlay.
We also modified the GNU glibc library version 2.5.1 to support
DoublePlay. We use our first strategy for replaying thread sched-
ules, i.e. the deterministic scheduler that runs threads according to
a strict priority.

We evaluated DoublePlay with 9 benchmarks: five parallel ap-
plications (pfscan, pbzip2, aget, the Apache web server, and the
mysql database server) and 4 SPLASH-2 [44] benchmarks (fft,
radix, ocean, and water). We report three values for each experi-
ment: the original execution time of the application running on a
stock system, the execution time during DoublePlay recording, and
the execution time for DoublePlay offline replay. The record time
measures the time for both the thread-parallel and epoch-parallel
executions to finish.

DoublePlay periodically writes the kernel and user-level replay
logs to disk so they can be used for offline replay. We report the
size of the log and include the time taken to write the log in the
recording cost.

We evaluate pbzip2 compressing a 311 MB log file in parallel.
We use pfscan to search in parallel for a string in a directory with
952 MB of log files. We extended the benchmark to perform 100
iterations of the search so that we could measure the overhead of
deterministic replay over a longer run while ensuring that data is
in the file cache (otherwise, our benchmark would be disk-bound).
Aget is a bandwidth-stealing application that takes advantage of
I/O parallelism by opening multiple connections to a remote server.
We used aget to retrieve a 21 MB file over a local network from a
server configured to limit each connection to a maximum download
bit rate of 1MB/sec. We tested Apache using ab (Apache Bench)
to simultaneously send 100 requests from eight concurrent clients
over a local network. We evaluate mysql using sysbench version
0.4.12. This benchmark generates 3000 total database queries on
a 9 GB myISAM database; 2000 queries are read-only, 600 are
updates, and 400 are other types such as table lock and unlock.
Since mysql uses a separate worker thread to handle each client,
we vary the number of concurrent clients depending on the number
of worker threads we are evaluating in each trial.

For each benchmark, we vary the number of worker threads
from one to eight for the original execution. DoublePlay uses two
cores per worker thread, so we measure its performance with up
to four worker threads. Many benchmarks have additional control
threads which do little work during the execution; we do not count
these in the number of threads. Pbzip2 uses two additional threads:
one to read file data and one to write the output; these threads are
also not counted in the number of threads shown. Unless otherwise
mentioned, all results are the mean of five trials.

6.2 Record and replay performance

Table 1 shows the overall performance results for DoublePlay. The
first three columns show the application or benchmark executed,
the number of worker threads used, and the execution time of
the application without DoublePlay. The next seven columns give
statistics about DoublePlay execution: the number of user-level
synchronization operations logged, system calls logged, epochs ex-
ecuted, memory pages compared, size of the DoublePlay logs writ-
ten to disk, the average number of rollbacks that occurred per exe-
cution, and the time to record an execution. The next column shows
the overhead added by DoublePlay during recording, compared to
two configurations of the original application. The first overhead is
relative to the original application with the same number of appli-

app worker original synch. system epochs pages log average record recording offline
threads time (s) ops. calls compared size rollbacks time (s) overhead time (s)

& stdev. (MB) per run & stdev. & stdev.
pfscan 1 193.93 (0.11)

2 100.99 (0.89) 23302 7528 101 1325 1.60 0 108.38 (0.87) 7% / 105% 193.73 (0.26)

3 69.01 (0.26) 22250 7531 60 868 1.55 0 78.91 (1.01) 14% / 112% 190.23 (2.88)

4 52.97 (0.18) 21575 7534 50 760 1.52 0 59.20 (0.92) 12% / 102% 188.19 (1.16)

6 37.18 (0.04)

8 29.26 (0.03)

pbzip2 1 91.65 (0.06)

2 46.08 (0.03) 26182 5481 46 573243 1.30 0 50.42 (0.41) 9% / 111% 92.88 (0.11)

3 31.45 (0.77) 26025 5207 31 574131 1.28 0 35.92 (0.09) 14% / 119% 92.94 (0.29)

4 23.94 (0.38) 26393 5066 23 562705 1.29 0 29.38 (0.43) 23% / 128% 92.85 (0.10)

6 16.38 (0.07)

8 12.90 (0.03)

aget 1 21.19 (0.04)

2 10.73 (0.02) 25243 33495 22 267 27.41 0.4 10.80 (0.06) 1% / 99% 0.28 (0.01)

3 7.22 (0.01) 21564 29022 20 263 26.54 0.2 7.31 (0.08) 1% / 102% 0.26 (0.01)

4 5.42 (0.01) 19618 27372 20 277 26.13 0.2 5.54 (0.15) 2% / 104% 0.25 (0.02)

6 3.62 (0.01)

8 2.71 (0.00)

apache 1 44.36 (0.13)

2 43.59 (0.27) 3756 3944 393 5264 0.14 0.1 43.95 (0.33) 1% / 10% 0.04 (0.00)

3 41.67 (0.35) 3682 3923 386 5285 0.14 1.0 42.74 (0.59) 3% / 11% 0.04 (0.00)

4 40.13 (0.27) 3636 3904 389 5383 0.14 1.7 40.75 (0.65) 2% / 9% 0.04 (0.00)

6 38.39 (0.41)

8 37.35 (0.61)

mysql 1 29.97 (0.08)

2 29.25 (0.09) 195903 46691 3035 195903 13.86 0 34.89 (0.23) 19% / 19% 0.53 (0.00)

3 29.28 (0.08) 199952 46792 3052 199952 14.07 0 34.98 (0.21) 19% / 19% 0.54 (0.00)

4 29.20 (0.08) 200598 46951 3069 200598 14.10 0.2 34.25 (1.39) 17% / 17% 0.55 (0.00)

6 29.33 (0.12)

8 29.35 (0.14)

fft 1 117.88 (0.19)

2 58.12 (0.06) 15689 3011 67 547619 0.90 0 68.72 (0.25) 18% / 106% 115.65 (0.11)

4 33.33 (1.08) 32242 3041 41 333837 1.77 0 43.47 (0.17) 30% / 131% 106.61 (0.15)

8 18.79 (0.15)

radix 1 177.84 (0.96)

2 89.10 (0.39) 4571 471 41 1295817 0.22 0 96.88 (0.15) 9% / 114% 177.58 (0.23)

4 45.28 (0.28) 11140 607 41 1313664 0.53 0 53.43 (0.23) 18% / 127% 177.73 (0.24)

8 23.50 (0.03)

ocean 1 56.67 (0.03)

2 28.19 (0.67) 108808 149 32 914104 4.88 0 46.09 (0.06) 63% / 222% 56.45 (0.03)

4 14.31 (1.35) 218788 222 27 745697 10.44 0 31.75 (0.26) 121% / 278% 53.24 (0.25)

8 8.39 (0.09)

water 1 154.57 (1.97)

2 81.70 (1.95) 5376008 21404 88 275484 207.33 0 89.00 (3.78) 9% / 106% 160.57 (3.63)

3 57.78 (1.25) 6756393 21741 65 279701 260.64 0 63.10 (1.45) 9% / 89% 160.60 (2.13)

4 43.15 (0.03) 8131526 21537 54 334339 313.81 0 56.32 (1.96) 31% / 92% 162.99 (1.05)

6 33.39 (0.52)

8 29.33 (0.22)

Results are the mean of five trials. Values in parentheses show standard deviations. Note that DoublePlay uses more cores than the original
execution during recording since it executes two copies of the application. The overhead column shows the overhead of DoublePlay with respect
to two configurations of the original application. The first overhead is relative to the original application with the same number of application
threads; this shows the overhead of DoublePlay when it can take advantage of unused cores. The second overhead is relative to the original
application with twice as many application threads; this shows the overhead of DoublePlay relative to an application configured to use the same
number of cores as DoublePlay.

Table 1. DoublePlay performance

cation threads; this shows the overhead of DoublePlay when it can
take advantage of unused cores. The second overhead is relative to
the original application with twice as many application threads; this

shows the overhead of DoublePlay relative to an application con-
figured to use the same number of cores as DoublePlay. The last
column shows the offline replay execution time.

app threads rollbacks rollbacks execution execution relative
w/o with time(s) & stdev. time(s) & stdev. reduction in
opt. opt. w/o opt. with opt. exec. time

pbzip2 2 2.2 0 53.32 (2.61) 50.42 (0.41) 6%
3 1.2 0 38.54 (3.77) 35.92 (0.09) 8%
4 0.8 0 32.59 (3.04) 29.38 (0.43) 13%

aget 2 0.4 0.4 10.80 (0.06) 10.84 (0.12) 0%
3 0.2 0.2 7.31 (0.08) 7.30 (0.02) 0%
4 0.2 0.2 5.54 (0.15) 5.57 (0.03) 0%

apache 2 0.1 0.1 43.95 (0.33) 43.81 (0.31) 0%
3 1.0 1.0 42.74 (0.59) 41.78 (0.48) 2%
4 1.7 1.7 40.75 (0.65) 41.09 (1.28) -1%

mysql 4 0.2 0.2 34.25 (1.39) 34.25 (1.39) 0%

Table 2. Benefit of forward recovery and loose replay.

The availability of unused cores significantly impacts the over-
head added by DoublePlay during recording. If there are sufficient
unused cores, DoublePlay adds little overhead to the recorded ap-
plication execution time. On average, 2 worker threads add about
15% overhead to the application run time. The overhead gradually
increases to 28% with 4 threads. For the five real applications, the
maximum overhead of any benchmark is 23% (for pbzip2 with 4
worker threads) — the average overhead is only 7% with 2 worker
threads and 11% with 4 worker threads. Apache and aget are lim-
ited by the speed of our local network; mysql is limited by disk
I/O, and the remaining benchmarks are CPU bound. DoublePlay
shows more overhead for the SPLASH-2 benchmarks, generally
because they perform many more synchronization operations per
second and dirty memory pages more rapidly, which increases the
number of pages compared. As shown in the Respec paper [18],
Ocean is a challenging benchmark as most of its overhead derives
from sharing the limited memory bandwidth and processor caches
between the thread-parallel and epoch-parallel executions. As ex-
pected, Ocean incurs approximately the same overhead with Dou-
blePlay as it incurs with Respec.

If all cores can be productively used by the application, then
DoublePlay incurs much higher overhead because it executes the
application twice during recording, and this uses cores that could
have been used by the application. When compared to an appli-
cation configured to use the same number of cores as DoublePlay,
DoublePlay adds approximately 100% overhead to CPU-bound ap-
plications that can scale to eight cores (this does not affect Apache,
which is network bound, or mysql, which is disk bound). For com-
parison, iDNA adds an average of 1100% overhead [4], and SMP-
ReVirt adds 10-600% overhead [10]. SMP-ReVirt does not in-
cur DoublePlay’s overhead of executing the application twice, but
SMP-ReVirt does incur high overhead for applications that share
data frequently (including false sharing due to tracking owner-
ship at page granularity) because of the cost of memory protection
faults. DoublePlay also scales well up to 8 cores (e.g., its average
overhead across all benchmarks without spare cores is 99% with
2 threads and 110% with 4 threads), while SMP-ReVirt does not
scale well for some applications even up to 4 cores.

Thus, DoublePlay is well suited for three settings that require
deterministic replay (e.g., for forensic or auditing purposes): (1)
applications which cannot scale effectively to use all cores on the
machine, (2) sites that are willing to dedicate extra cores to provide
deterministic replay, and (3) applications that share data frequently
between cores (for which DoublePlay is the lowest overhead solu-
tion). In particular, we believe that many machines will have unused
cores that DoublePlay can take advantage of because the number of
cores per computer is expected to grow exponentially, and scaling

applications to use these extra cores is notoriously difficult. In such
settings with spare cores, DoublePlay incurs only modest overhead.

For CPU-bound benchmarks, DoublePlay’s offline replay takes
approximately the same amount of time as a single-threaded exe-
cution of the application. This is due to our current implementa-
tion, which limits offline replay to executing on one core. If we
used two executions to accelerate replay in the same way we ac-
celerate recording, the offline replay time should be approximately
the same as the record time for these benchmarks. Aget runs much
faster during offline replay than during recording because it obtains
its data from sequential disk reads rather than from network re-
ceives. Apache runs even faster because it uses Linux’s zero-copy
sendfile: thus, no data is copied into or out of its address space
on replay. Mysql also benefits from sequential disk I/O.

DoublePlay’s offline replay performance is a substantial im-
provement over system such as PRES and ODR that log partial
information during recording, then search during replay for an ex-
ecution that matches the original execution. In its low-recording
overhead mode (SI-DRI), ODR’s replay time is reported as rang-
ing from 300 to over 39000 times the original application time,
with some replays not completing at all. During the first replay of
an execution, PRES records the global order of accesses to shared
variables from different threads (called the RW scheme) to guide
its search for an execution that matches the recorded run. This is
reported to have an overhead from 28% (for network applications
to several hundred times (for CPU-bound applications and bench-
marks) the original execution time. This additional work is neces-
sary to guarantee that the produced replay can be reproduced at
will. Further, PRES may try several executions before finding a
matching one. When PRES records synchronization operations and
system calls (similar to DoublePlay), it takes 1-28 tries to replay
most runs, and is unable to replay one run within 1000 tries. Once
a valid replay is found, subsequent PRES replays do not incur this
searching overhead. Thus, DoublePlay’s contribution compared to
these prior systems is (1) to guarantee that a replay can be produced
in a bounded amount of time, and (2) to substantially lower relative
replay time. The main cost of these contributions is that DoublePlay
uses twice as many cores during recording to run two executions of
CPU-bound applications.

6.3 Forward recovery and loose replay

Of the nine benchmarks we used in our evaluation, four (pbzip,
aget, Apache, and mysql) experience application-level benign data
races. For instance, pbzip2 has a benign data race in which an
output thread spins waiting for a worker thread to set a value. Aget
has a benign race where a thread reads and displays a progress
counter without grabbing a lock. Apache has a benign race in
which worker threads increment an idle counter in a spin loop with

an atomic compare-and-swap implemented using low-level locks.
If two worker threads contend, one may experience an additional
iteration of the spin loop, which leads to an additional paired lock-
unlock sequence.

As shown in Table 2, DoublePlay’s loose replay optimization re-
duces the frequency of rollbacks for pbzip2 — in fact, all rollbacks
were eliminated during our evaluation. Eliminating rollbacks im-
proves execution time from 6% of the original execution time with
two threads to 13% with four threads. In all runs during our evalua-
tion, the loose replay optimization was able to continue the execu-
tion of the epoch-parallel execution past the spin loop. While extra
system calls create a transient difference in stack values, the pro-
cess states soon converge when the thread overwrites those values
during subsequent function calls.

For aget and Apache, no rollbacks were avoided. Although
loose replay allows epoch-parallel execution to proceed when aget
outputs a different progress value to the console, the output values
usually remain in a buffer in libc at the end of the epoch, which is
detected as a divergence. The data races in Apache lead to compli-
cated divergences in synchronization operations and system calls
for which loose replay cannot be used. Further, for these two appli-
cations, forward recovery does not have a measurable performance
impact. For aget, the reason is that DoublePlay saves a copy of data
received over the network until the epoch that received the data is
committed (otherwise, the received data would be lost). On a roll-
back, the subsequent execution reads the copied data from mem-
ory rather than the network, so those system calls are much faster.
Apache also benefits from this behavior, but it also takes frequent
epochs because it sends external output over the network quite of-
ten. Consequently, the amount of work preserved by a forward re-
covery is very small. Since divergence check failures are relatively
infrequent, the effect of forward recovery on the execution time of
the two applications is negligible. We observed only one rollback
during the mysql benchmarks; as with Apache, this rollback could
not be avoided due to a complicated divergence, but the perfor-
mance impact was negligible due to frequent epochs. Thus, while
forward recovery and loose replay are often successful in reducing
rollbacks and preserving work done during a failed epoch, they ap-
pear to be most beneficial for CPU-bound applications with longer
epoch durations.

7. Conclusion

Providing efficient deterministic replay for multithreaded programs
running on multiprocessors is challenging. While many prior solu-
tions have been proposed, all fall short in some way. For instance,
they may require custom hardware support, be prohibitively slow
for many applications, or not guarantee that a replayed execution
can be produced in a reasonable amount of time. Compared to these
prior systems, DoublePlay’s contribution is to provide guaranteed
software-only record and replay with a minimal overhead to ex-
ecution time, at the cost of using more cores. The key insight in
DoublePlay is that one can use the simpler and faster mechanisms
of single-processor record and replay, yet still achieve the scalabil-
ity offered by multiple cores, by using an additional execution to
parallelize the record and replay of an application. On machines
with spare cores, this insight allows DoublePlay to record applica-
tion execution with only an average of 15% overhead with 2 threads
and 28% with 4 threads.

Acknowledgments

We thank the anonymous reviewers for comments that improved this paper.
The work is supported by the National Science Foundation under awards
CNS-0905149 and CCF-0916770. The views and conclusions contained in
this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of NSF, the
University of Michigan, the U.S. government, or industrial sponsors.

References

[1] ALTEKAR, G., AND STOICA, I. ODR: Output-deterministic replay
for multicore debugging. In Proceedings of the 22nd ACM Symposium

on Operating Systems Principles (October 2009), pp. 193–206.

[2] BACON, D. F., AND GOLDSTEIN, S. C. Hardware assisted replay
of multiprocessor programs. In Proceedings of the 1991 ACM/ONR

Workshop on Parallel and Distributed Debugging (1991), ACM Press,
pp. 194–206.

[3] BERGER, E. D., YANG, T., LIU, T., AND NOVARK, G. Grace: safe
multithreaded programming for c/c++. In Proceeding of the 24th

ACM SIGPLAN conference on Object oriented programming systems

languages and applications (Orlando, Florida, USA, 2009), pp. 81–
96.

[4] BHANSALI, S., CHEN, W., DE JONG, S., EDWARDS, A., AND

DRINIC, M. Framework for instruction-level tracing and analysis of
programs. In Second International Conference on Virtual Execution

Environments (June 2006), pp. 154–163.

[5] BRESSOUD, T. C., AND SCHNEIDER, F. B. Hypervisor-based fault
tolerance. ACM Transactions on Computer Systems 14, 1 (February
1996), 80–107.

[6] CHOI, J. D., ALPERN, B., NGO, T., AND SRIDHARAN, M. A
perturbation free replay platform for cross-optimized multithreaded
applications. In Proceedings of the 15th International Parallel and

Distributed Processing Symposium (April 2001).

[7] CHOW, J., GARFINKEL, T., AND CHEN, P. M. Decoupling dynamic
program analysis from execution in virtual environments. In Proceed-

ings of the 2008 USENIX Technical Conference (June 2008), pp. 1–14.

[8] DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. DMP: Deter-
ministic shared memory multiprocessing. In Proceedings of the 2009

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (March 2009), pp. 85–
96.

[9] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND

CHEN, P. M. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of the 5th Symposium

on Operating Systems Design and Implementation (Boston, MA, De-
cember 2002), pp. 211–224.

[10] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M., AND CHEN,
P. M. Execution replay on multiprocessor virtual machines. In
Proceedings of the 2008 ACM SIGPLAN/SIGOPS International Con-

ference on Virtual Execution Environments (VEE) (March 2008),
pp. 121–130.

[11] FELDMAN, S. I., AND BROWN, C. B. IGOR: A system for program
debugging via reversible execution. In PADD ’88: Proceedings of

the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and

Distributed Debugging (1988), pp. 112–123.

[12] HOWER, D. R., AND HILL, M. D. Rerun: Exploiting episodes for
lightweight memory race recording. In Proceedings of the 2008 Inter-

national Symposium on Computer Architecture (June 2008), pp. 265–
276.

[13] JR., R. L. B., ADVE, V. S., DIG, D., ADVE, S. V., HEUMANN, S.,
KOMURAVELLI, R., OVERBEY, J., SIMMONS, P., SUNG, H., AND

VAKILIAN, M. A type and effect system for deterministic parallel
java. In OOPSLA (2009), pp. 97–116.

[14] KELSEY, K., BAI, T., DING, C., AND ZHANG, C. Fast Track: A
software system for speculative program optimization. In Proceed-

ings of the 2009 International Symposium on Code Generation and

Optimization (CGO) (March 2009), pp. 157–168.

[15] KING, S. T., DUNLAP, G. W., AND CHEN, P. M. Debugging oper-
ating systems with time-traveling virtual machines. In Proceedings of

the 2005 USENIX Technical Conference (April 2005), pp. 1–15.

[16] LEBLANC, T. J., AND MELLOR-CRUMMEY, J. M. Debugging paral-
lel programs with instant replay. IEEE Transaction on Computers 36,
4 (1987), 471–482.

[17] LEE, D., SAID, M., NARAYANASAMY, S., YANG, Z. J., AND

PEREIRA, C. Offline symbolic analysis for multi-processor execution
replay. In International Symposium on Microarchitecture (MICRO)

(2009).

[18] LEE, D., WESTER, B., VEERARAGHAVAN, K., CHEN, P. M.,
FLINN, J., AND NARAYANASAMY, S. Respec: Efficient online mul-
tiprocessor replay via speculation and external determinism. In Pro-

ceedings of the 15th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (Pittsburgh,
PA, March 2010), pp. 77–89.

[19] MELLOR-CRUMMEY, J. M., AND LEBLANC, T. J. A Software In-
struction Counter. In Proceedings of the 1989 International Confer-

ence on Architectural Support for Programming Languages and Op-

erating Systems (April 1989), pp. 78–86.

[20] MONTESINOS, P., CEZE, L., AND TORRELLAS, J. DeLorean:
Recording and deterministically replaying shared-memory multipro-
cessor execution efficiently. In Proceedings of the 2008 International

Symposium on Computer Architecture (June 2008), pp. 289–300.

[21] NARAYANASAMY, S., PEREIRA, C., AND CALDER, B. Recording
shared memory dependencies using Strata. In ASPLOS-XII: Proceed-

ings of the 12th International Conference on Architectural Support

for Programming Languages and Operating Systems (2006), pp. 229–
240.

[22] NARAYANASAMY, S., PEREIRA, C., PATIL, H., COHN, R., AND

CALDER, B. Automatic logging of operating system effects to guide
application-level architecture simulation. In International Conference

on Measurements and Modeling of Computer Systems (SIGMETRICS)

(June 2006), pp. 216–227.

[23] NARAYANASAMY, S., POKAM, G., AND CALDER, B. BugNet: Con-
tinuously recording program execution for deterministic replay debug-
ging. In Proceedings of the 32nd Annual International Symposium on

Computer Architecture (ISCA) (June 2005), pp. 284–295.

[24] NETZER, R. H. B. Optimal tracing and replay for debugging shared-
memory parallel programs. In Proceedings of the ACM/ONR Work-

shop on Parallel and Distributed Debugging (1993), pp. 1–11.

[25] NIGHTINGALE, E. B., CHEN, P. M., AND FLINN, J. Speculative
execution in a distributed file system. In Proceedings of the 20th

ACM Symposium on Operating Systems Principles (Brighton, United
Kingdom, October 2005), pp. 191–205.

[26] NIGHTINGALE, E. B., PEEK, D., CHEN, P. M., AND FLINN, J.
Parallelizing security checks on commodity hardware. In Proceedings

of the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems (Seattle, WA, March
2008), pp. 308–318.

[27] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND

FLINN, J. Rethink the sync. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation (Seattle, WA, October
2006), pp. 1–14.

[28] OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S. Kendo:
efficient deterministic multithreading in software. In Proceedings

of the 2009 International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS) (March
2009), pp. 97–108.

[29] OPLINGER, J., AND LAM, M. S. Enhancing software reliability
using speculative threads. In Proceedings of the 2002 International

Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS) (October 2002), pp. 184–196.

[30] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE,
K. H., AND LU, S. PRES: Probabilistic replay with execution sketch-
ing on multiprocessors. In Proceedings of the 22nd ACM Symposium

on Operating Systems Principles (October 2009), pp. 177–191.

[31] PETERSON, Z. N. J., AND BURNS, R. Ext3cow: A time-shifting file
system for regulatory compliance. ACM Transacations on Storage 1,
2 (2005), 190–212.

[32] RONSSE, M., AND BOSSCHERE, K. D. RecPlay: A full integrated
practical record/replay system. ACM Transactions on Computer Sys-

tems 17, 2 (May 1999), 133–152.

[33] RUSSINOVICH, M., AND COGSWELL, B. Replay for concurrent non-
deterministic shared-memory applications. In Proceedings of the ACM

SIGPLAN 1996 Conference on Programming Language Design and

Implementation (1996), pp. 258–266.

[34] SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,
A. C., CARTON, R. W., AND OFIR, J. Deciding when to forget in
the Elephant file system. SIGOPS Operating Systems Review 33, 5
(1999), 110–123.

[35] SOHI, G. S., BREACH, S. E., AND VIJAYKUMAR, T. N. Multiscalar
processors. In Proceedings of the 1995 International Symposium on

Computer Architecture (June 1995), pp. 414–425.

[36] SRINIVASAN, S., ANDREWS, C., KANDULA, S., AND ZHOU, Y.
Flashback: A light-weight extension for rollback and deterministic
replay for software debugging. In Proceedings of the 2004 USENIX

Technical Conference (Boston, MA, June 2004), pp. 29–44.

[37] STEFFAN, J. G., AND MOWRY, T. C. The potential for using thread-
level data speculation to facilitate automatic parallelization. In Pro-

ceedings of the 1998 Symposium on High Performance Computer Ar-

chitecture (February 1998), pp. 2–13.

[38] SUNDARAMOORTHY, K., PURSER, Z., AND ROTENBERG, E. Slip-
stream processors: improving both performance and fault tolerance. In
Proceedings of the 9th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (November
2000), pp. 257–268.

[39] SÜSSKRAUT, M., KNAUTH, T., WEIGERT, S., SCHIFFEL, U., MEIN-
HOLD, M., FETZER, C., BAI, T., DING, C., AND ZHANG, C.
Prospect: A compiler framework for speculative parallelization. In
Proceedings of the 2010 International Symposium on Code Genera-

tion and Optimization (CGO) (April 2010), pp. 131–140.

[40] TUCEK, J., LU, S., HUANG, C., XANTHOS, S., AND ZHOU, Y.
Triage: Diagnosing production run failures at the user’s site. In Pro-

ceedings of the 21st ACM Symposium on Operating Systems Principles

(October 2007), pp. 131–144.

[41] VEERARAGHAVAN, K., FLINN, J., NIGHTINGALE, E. B., AND NO-
BLE, B. quFiles: The right file at the right time. In Proceedings of the

8th USENIX Conference on File and Storage Technologies (San Jose,
CA, February 2010), pp. 1–14.

[42] VLACHOS, E., GOODSTEIN, M. L., KOZUCH, M. A., CHEN, S.,
FALSAFI, B., GIBBONS, P. B., AND MOWRY, T. C. ParaLog: En-
abling and accelerating online parallel monitoring of multithreaded
applications. In Proceedings of the 15th International Conference

on Architectural Support for Programming Languages and Operating

Systems (Pittsburgh, PA, March 2010), pp. 271–284.

[43] WEERATUNGE, D., ZHANG, X., AND JAGANNATHAN, S. Analyzing
multicore dumps to facilitate concurrency bug reproduction. In Pro-

ceedings of the 2010 International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS)

(March 2010), pp. 155–166.

[44] WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA,
A. The SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the 22nd International Symposium

on Computer Architecture (June 1995), pp. 24–36.

[45] XU, M., BODIK, R., AND HILL, M. D. A “flight data recorder” for
enabling full-system multiprocessor deterministic replay. In Proceed-

ings of the 2003 International Symposium on Computer Architecture

(June 2003), pp. 122–135.

[46] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM, G.,
AND WEISSMAN, B. ReTrace: Collecting execution trace with virtual
machine deterministic replay. In Proceedings of the 2007 Workshop

on Modeling, Benchmarking and Simulation (MoBS) (June 2007).

[47] ZAMFIR, C., AND CANDEA, G. Execution synthesis: A technique for
automated software debugging. In Proceedings of the 2010 European

Conference on Computer Systems (EuroSys) (April 2010), pp. 321–
334.

[48] ZILLES, C., AND SOHI, G. Master/slave speculative parallelization.
In Proceedings of the 35th Annual ACM/IEEE International Sympo-

sium on Microarchitecture (MICRO) (2002), pp. 85–96.

