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Abstract

Execution trace is an important tool in computer archi-
tecture research. Unfortunately, existing trace collection
techniques are often slow (due to software tracing over-
heads) or expensive (due to special tracing hardware re-
quirements). Regardless of the method of collection, de-
tailed trace files are generally large and inconvenient to
store and share.

We present ReTrace, a trace collection tool based on the
deterministic replay technology of the VMware hyper-
visor. ReTrace operates in two stages: capturing and
expansion. ReTrace capturing accumulates the mini-
mal amount of information necessary to later recreate
a more detailed execution trace. It captures (records)
only non-deterministic events resulting in low time and
space overheads (as low as 5% run-time overhead, as low
as 0.5 byte per thousand instructions log growth rate)
on supported platforms. ReTrace expansion uses the in-
formation collected by the capturing stage to generate a
complete and accurate execution trace without any data
loss or distortion. ReTrace is an experimental feature
of VMware Workstation 6.0 currently available in Win-
dows and Linux flavors for commodity IA32 platforms.
No special tracing hardware is required.

We have three key results. First, we find that trace col-
lection can be done both efficiently and inexpensively.
Second, deterministic replay is an effective technique for
compressing large trace files. Third, performing the trace
collection at the hypervisor layer is minimally invasive
to the collected trace while enabling tracing of the entire
system (user/supervisor level, CPU, peripheral devices).

ReTrace is a rapidly evolving technology. We would like
to use this paper to solicit feedback on the applicability
of ReTrace in computer architecture research to help us
refine our future development plans.

1 Introduction

When computer architects want to peek into a running
system, they often use trace-driven techniques, which

means collecting run time information (herein called ex-
ecution traces) from a workload. Offline, the execu-
tion traces can be analyzed in more detail, such as per-
forming cache simulations. Execution traces vary from
sparse traces (e.g., collecting context switches) to de-
tailed traces (e.g., collecting memory references). Not
surprisingly, it is the detailed execution traces that are
the most challenging to collect.

In their survey, Uhlig and Mudge noted the following
challenges in trace collection [25].

• Maximizing trace completeness and the detail level.
For example, a memory reference trace is more com-
plete if it includes both operating system (OS) and
application memory references. Similarly, a memory
reference trace is more detailed if it includes the an-
notation of virtual address to physical address map-
ping for each reference.

• Minimizing trace distortion. In other words, the
trace collected should faithfully represent the pro-
gram being traced. For example, trace collection
itself should not introduce extra memory references
in a memory trace. Perhaps more subtly, tracing
should minimize time dilation and memory dilation,
which occurs when tracing causes a program to run
slower (from its own perspective) or to consume
more memory (in its own address space).

• Reducing trace file size. The trace collecting tool
should produce highly compact trace files, which
are easier to store and share with other researchers.
Compact trace files also enable long execution traces
to be collected for different analysis needs.

• Fast, inexpensive and easy to operate.

To the best of our knowledge, none of the existing trace
collection techniques sufficiently solves all these chal-
lenges. We briefly survey these techniques in Section 6.
This paper presents a deterministic replay based execu-
tion trace technique, ReTrace, which better solves all
these challenges. ReTrace decomposes traditional trace
collection process into two steps: ReTrace capturing and



ReTrace expansion. This decomposition is the key to
meet the four challenges above. During ReTrace captur-
ing, minimum information on execution nondeterminism
is logged. This reduces the necessary trace file size and
trace distortion, because the capturing overhead is min-
imal. During ReTrace expansion, maximum information
on all aspects of the execution can be collected. The
resulting trace is complete and detailed without added
trace distortion. By building on virtual machine tech-
nology, ReTrace is fast, inexpensive and easy to operate.

Deterministic replay is the key technology that enables
the decomposition of ReTrace capturing and ReTrace
expansion. Our deterministic replayer is built on top
of VMware’s virtual machine monitor [1, 24]. A vir-
tual machine monitor enables multiple operating systems
(guests) to share the same physical hardware (host) [21].
Our deterministic replayer can record and replay the
guest execution (including both guest OS and guest
applications) at the IA32 Instruction Set Architecture
(ISA) layer. During recording, only minimal information
to capture the nondeterminism is recorded, thereby, min-
imizing the trace distortion and trace file size. Because
of the low overhead in recording, ReTrace is accurate,
fast and easy to operate. During replaying, complete
and detailed execution traces can be selectively collected
in batch mode. Even though replaying is much slower
than recording, no additional trace distortion is intro-
duced because of deterministic replay. Finally, ReTrace
is implemented completely in software and is available
as an experimental feature in VMware Workstation 6.01
without requiring special tracing hardware.

The rest of the paper is organized as follows. Section 2
briefly introduces our deterministic replayer, which is
the key enabling technology of ReTrace. Section 3 and
Section 4 describe in detail the two steps of using Re-
Trace – ReTrace capturing and ReTrace expansion. Sec-
tion 5 presents evaluation results of ReTrace using SPEC
CPU2006 [12] and Apache Benchmark [2]. Finally, we
briefly discuss existing work in Section 6 and conclude
in Section 7.

2 Deterministic replay of virtual
machines

Virtualization allows multiple operating systems (OS)
to simultaneously execute on a single physical hardware
platform [21]. Virtualization provides many benefits,
such as server consolidation and security isolation, to
computer users. A Virtual Machine (VM) consists of
necessary state, including the CPU, memory and I/O

1VMware Workstation 6.0 is available to researchers through
VMAP [13].

devices, to run a guest OS. The Virtual Machine Moni-
tor (VMM) is a thin layer of software that sits between
the physical hardware and the guest OS to enable shar-
ing of the physical CPU, memory and I/O devices among
multiple VM. Until recently, the IA32 architecture has
not permitted the classical trap-and-emulate virtualiza-
tion. Adams and Agesen present an up to date study on
virtualizing IA32 [1].

Deterministic replay [3, 10, 17, 18, 20, 23, 28] creates an
execution that is logically equivalent to an original exe-
cution of interest. Two executions are logically equiva-
lent if they contain the same set of dynamic instructions,
each dynamic instruction computes the same result in
the two executions, and the two executions compute the
same final state. A deterministic replayer is a software
or hardware component that records an execution and
replays it deterministically. Our deterministic replayer
is based on VMware’s VMM [1, 24], which is an ideal
place to record and replay the guest execution as we will
show. Our replayer supports full-system recording and
replay, i.e., the entire VM execution, including guest OS
and guest applications, is recorded and replayed.

During recording, all sources of nondeterminism from
outside the virtual machine are captured and logged in
a log file. These include data and timing of inputs to
all devices, including virtual disks, virtual network in-
terface cards (NIC), etc. A combination of techniques,
such as device emulation and binary translation, are used
to ensure deterministically replay as long as the recorded
device input data are replayed at right time.

We solve two challenging problems in this replay system.
First, we efficiently keep track of number of instructions
executed in the recorded execution, so that we can re-
inject the same nondeterministic events at the same ex-
ecution points during replay. Second, we ensure the VM
is deterministic, even though underlying real machine is
nondeterministic.

Our deterministic replayer is currently limited to unipro-
cessor VMs and it supports popular IA32 platforms, such
as Pentium 4, Opteron and Core 22.

3 ReTrace capturing

The first step in using ReTrace is trace capturing. The
resulting log file is called the replay log. The replay log
contains multiple types of log entries. The log entries
are sequentially stored in the execution order. Some en-
tries records the nondeterministic input values needed
during replay. Others records both timing and values of
nondeterministic events.

2Opteron and Core 2 are supported without hardware acceler-
ation in the released VMware Workstation 6.0 software.



To use ReTrace, users need to execute the target work-
load in a virtual machine environment. The virtual ma-
chine environment is almost identical to its native coun-
terpart. Therefore, no porting of the workload is neces-
sary. Then, the user needs to turn on ReTrace recorder
to capture the replay log while the target workload is
executing. We now discuss the following two questions
in more detail.

1. How much trace distortion do the virtual machine
and ReTrace recorder incur?

2. How usable is the ReTrace Recorder in both work-
load setup and gathering the replay log?

3.1 Trace distortion

Question 1 is important for ReTrace because the cap-
turing process is the only source of trace distortion in
ReTrace. The second step, ReTrace expansion, is a de-
terministic replay, which by definition is logically equiv-
alent to the captured execution. Thus it does not incur
additional distortion3.

Much of the trace distortion come from the virtualiza-
tion layer, where virtual devices may have different char-
acteristics than the real devices. For instance, a virtual
keyboard command that finishes in one instruction in a
VM will take much longer to finish with a real keyboard.
Therefore, while a native execution trace contains thou-
sands of instructions between the start and finish of the
command, the virtual execution trace will contain just
one instruction between the two events. However, the
extent of this kind of trace distortion is limited, because
the virtual machine monitor strives to implement faith-
ful device models to support unmodified guest OSes. It
would also be possible to plug in more detailed device
models in the future.

Secondly, the trace capturing overhead incurs minimal
trace distortion, because (1) the virtual machine layer
executes guest instructions at close to native speed and
(2) only the rare nondeterministic events are intercepted
and logged by the recorder.

3.2 Usability

The capturing process is as easy as pushing a recording
button if the target workload is already imported into
a virtual machine. Otherwise, tools like VMware Con-
verter [27] make it is easy to import workload into a

3We assume that users are only interested in an ISA level exe-
cution trace, which does not contain ISA-invisible execution infor-
mation, such as cache misses or speculative instruction execution
serviced by underlying hardware at trace collection time.

virtual machine. During capturing, there is minimal im-
pact on the interactive responsiveness of a workload, due
to the low run-time overhead of trace capturing. This
eases workload setup, when interactive responsiveness is
important.

4 ReTrace expansion

After ReTrace capturing, users can obtain more detailed
execution traces by deterministically replaying the re-
play log with additional probes added to the replayed
execution. We call this step ReTrace expansion. The
resulting execution trace is called the full trace. Thanks
to the portability of virtual machines and the small size
of the replay log, ReTrace expansion can be moved to
a different computer4 to facilitate sharing of execution
traces among researchers.

ReTrace expansion can generate different types of exe-
cution traces, such as instruction traces, memory refer-
ence traces and device event traces. All these can be
done without incurring any trace distortion because of
deterministic replay. The full trace can be extremely ver-
bose. For example, memory reference trace may include
both virtual and physical addresses, as well as details of
virtual-to-physical mappings. In addition, it should be
possible to directly attach a timing simulator to ReTrace
during ReTrace expansion. This avoids generating and
storing large full trace files. Finally, it would be possible
to filter the full trace to collect traces only for a given
user-level application in future releases of ReTrace.

The speed of the deterministic replay depends on sev-
eral factors. Without trace expansion, the replay speed
can be faster than the original execution, because re-
play skips over the idle time of HLT instructions [14]5
in the original execution. With trace expansion, the re-
play speed is much slower than the original execution,
depending on the detail level of the expanded execution
trace. Fortunately, the deterministic replay is very eas-
ily parallelizable. During replay (or recording), one can
take multiple VM checkpoints and subsequently replay
can start from those checkpoints. Therefore, even though
ReTrace expansion is a slower process than ReTrace cap-
turing, a full trace can be potentially generated quickly
using multiple machines expanding the replay log in par-
allel.

ReTrace also supports selective trace expansion. In par-
ticular, a keyboard command controls when to start and
stop the trace expansion during deterministic replay. In

4Restrictions on processor types and software versions apply to
this portability feature.

5HLT stops the processor execution until the next interrupt.
The time to replay HLT can be much shorter than its original
execution.



other words, while watching the fast replay of the cap-
tured execution, a user can select the portions of ex-
ecution that she is the most interested to expand. If
the user activates ReTrace expansion during replay, the
virtual machine monitor enters an instruction interpre-
tation mode. In this mode, before and after executing
each instruction, the VM state is inspected and logged in
a separate full trace file. The full trace file is compressed
with gzip [29]. In current version of ReTrace, the exe-
cution trace is in plain text, which gives users flexibility
in how to use the execution trace with their simulation
tools. A trace file contains the following fields.

• Processor CPL

• Instruction Pointer (IP)

• Exceptions, Faults and Interrupts

• Registers: EAX, EBX, ECX, EDX, EDI, ESI, EBP,
ESP, EFLAGS

• Segments: ES, CS, SS, DS, FS, GS

• Control registers: CR0, CR2, CR3, CR4

Currently, the trace content is far from complete and
the plain text format does not conform to any widely ac-
cepted standard. We are looking forward to hearing from
our users on which other types of information should
be added to the trace and which standard trace format
should ReTrace use.

5 Experimental results

We first describe the experimental methodology, then the
runtime impact and log sizes of ReTrace.

5.1 Methodology

We evaluate ReTrace with two foci: its performance im-
pact and the replay log size and the full trace size. We
use two types of workloads: SPEC CPU2006 [12] and
Apache Benchmark (AB) [2]. All experiments are con-
ducted within a Linux VM.

The VM has one virtual CPU, 2GB of memory and a
40GB virtual SCSI disk. The guest OS is Xubuntu 6.06
running an unmodified Linux 2.6 kernel packaged with
the distribution. The host OS is Ubuntu 6.06 also run-
ning Linux 2.6. The host system has two dual core AMD
Opteron CPUs with 4GB of memory and a 120 GB SATA
disk.

The SPEC CPU2006 benchmark suite consists of 12 in-
teger benchmarks and 17 floating point benchmarks. We

compile the benchmarks using a gcc 4.2 snapshot from
March 16, 2007. We run each benchmark 5 times with
training inputs. The entire experiment takes about 14
hours.

Despite the non-trivial setup process of SPEC CPU2006,
ReTrace does not make it harder than on a native ma-
chine. For example, correct configurations have to be
selected to successfully compile all benchmarks as well
as gcc itself. The entire setup process is no worse than
on a real machine because of the low overhead incurred
by virtualization.

The Apache benchmark is a simple static web server
benchmark. A driver program repeatedly fetches static
web pages from an Apache 2.0 web server. Both the
driver and the web server run in the same VM. We in-
tend to use this benchmark to test ReTrace under OS-
intensive and IO-intensive workload. Like other commer-
cial workloads, the performance is measured by through-
put (KB/s) not latency. We perform five 30-second runs
for each configuration.

5.2 Run-time impacts

Figure 1 shows the run-time impact of ReTrace captur-
ing. We compare the run-time in the VM without and
with ReTrace capturing. Each benchmark is run 5 times
and the normalized average run-time is plotted. The
rightmost pair of bars shows the geometric mean of the
run-time overheads. The run-time overheads of ReTrace
capturing range from 0.7% to 31% with a geometric mean
of 5.09%. This shows that ReTrace has extremely low
overhead for CPU intensive workloads6.

ReTrace capturing incurs significantly more overhead
(2.6x) on this OS and IO intensive workload than the
CPU intensive workloads. Apache benchmark reports
a throughput of 747 KB/s without ReTrace but only
283 KB/s with ReTrace. The overhead primarily comes
from unoptimized paths in the VMM during guest kernel
execution. We understand that the problem is solvable
and we are working on a fix for the problem. Even at
a slowdown of 2.6x, ReTrace capturing has much lower
overhead than existing tracing methods, which often in-
cur at least 1 or 2 orders of magnitude slowdown [5, 19].

We do not compare ReTrace’s performance with native
(non-virtualized) executions for two reasons. First, vir-
tualization is being widely accepted as a standard way of
deploying server workloads. Therefore, execution traces

6By default, the released version of ReTrace has slightly more
overhead due to increased runtime checks, which help us catch bugs
in the field.
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Figure 1: SPEC CPU2006 INT and FP performance without and with ReTrace capturing. Each benchmark is run
5 times and the average runtime is compared. The geometric mean is 5.09% slowdown with ReTrace capturing.

collected within a VM are relevant to computer archi-
tecture research. Second, virtualization usually incurs
acceptable overhead in production environments. There-
fore, execution traces collected within a VM should be
close to the native executions.

Table 1 shows the run-time of deterministic replay with-
out and with ReTrace Expansion. Due to the slow in-
terpretation mode and the detailed trace collection, Re-
Trace expansion is at least 2 orders of magnitude slower
than an non-expansion replay. However, this slow expan-
sion speed does not incur any trace distortion (because
of deterministic replay) and is unlikely to cause usability
problems (because it does not require any user interac-
tion). In fact, we stopped the expansion after 2 hours,
because the huge size of the resulting execution trace
files quickly become the bottleneck. It is more likely
that users will use the selective trace expansion feature
to expand only small and interesting segments from the
much longer replay log. In other words, a user can re-
peatedly “zoom in” onto interested execution segments
using deterministic replay.

5.3 Replay log and full trace size

Table 2 shows that the captured log is 4 orders of mag-
nitude smaller than the expanded log file for 400.perl-
bench and Apache Benchmark. This is not surprising
because ReTrace records only those non-deterministic
inputs, not a full instruction trace. In addition, be-
cause ReTrace replays the entire virtual machine, rather
than only a CPU, ReTrace avoids logging CPU inputs
from devices (such as inputs from the disk controller).
On average, ReTrace generates 4.8 byte per thousand
instructions. In contrast, a previous CPU-centric de-
terministic replayer generates log file at approximately

14 bytes/kilo-instruction (70 instructions per byte) [22],
partly because it logs CPU inputs.

Table 3 shows the same log size comparison after ap-
plying gzip compression, which reduces the replay log
by another 5X to 10X. The lower compression ratio for
400.perlbench is due to more idle time in the start-up of
the workload. More idle time results in (relatively) more
nondeterministic timer events per instruction. The timer
events tend to be less compressible. In other words, more
idle time results in more log data per instruction, but less
log data per second.

In practice, we observe a complete Windows XP boot-
shutdown generates 776 KB of compressed replay log.

6 Related work

Uhlig and Mudge presented a comprehensive survey on
trace-driven memory simulation [25]. In this section, we
briefly contrast ReTrace with other trace collection and
compression methods, especially those methods devel-
oped after Uhlig’s survey.

6.1 Trace collection

Trace collection methods can be broadly divided into
software-based and hardware-based. Existing software-
based trace collection methods incur significant run-time
overhead due to software instrumentation cost. To re-
duce this cost, static program analysis [4, 26] can be
applied to minimize the instrumentation points in a pro-
gram. In contrast, ReTrace works on program binaries
without requiring any static program analysis.



Without Expansion With Expansion
400.perlbench 117 seconds > 2 hours

Apache Benchmark 30 seconds > 2 hours

Table 1: ReTrace expansion speed of 400.perlbench and Apache Benchmark.

Replay Log Full Trace Expansion Factor
400.perlbench 4.1 296,849 72402X

Apache Benchmark 5.4 301,950 55916X

Table 2: ReTrace log size of 400.perlbench and Apache Benchmark. All log size numbers are in Byte/Kilo-
instructions.

Replay Log Full Trace Expansion Factor
400.perlbench 1.1 10,047 9134X

Apache Benchmark 0.5 10,366 20732X

Table 3: Gzip compressed ReTrace log size of 400.perlbench and Apache Benchmark. All log size numbers are in
Byte/Kilo-instructions.

Some hardware-based methods require expensive and
system-specific hardware probing devices, such as Tek-
tronix logic analyzer [11] and hardware bus monitor [9,
6]. A serious problem is that not all traced program ac-
tivities are visible to the probing device due to effects
such as on-chip caching etc. Some researchers have pro-
posed instrumenting the traced program to bypass the
caching effects. Others utilize on-chip trace collecting
hardware in commodity processors [15]. Both on-chip or
off-chip hardware tracing methods suffer from the lim-
ited size of the hardware trace buffer. When the buffer
fills up, the traced program has to be stalled or a dis-
continued trace will be collected. For example, ITrace,
an open source instruction trace facility, can incur 100x
slowdown to traced program [19].

6.2 Trace compression

Detailed execution traces are often huge in size. For ex-
ample, a SPEC CPU2000 perlbmk trace is 601.4 MB,
which contains only 214.7 million memory references (a
fraction of a second execution) [8]. Trace compression is
often needed. For example, Kaplan et al. proposed lossy
and loss-less compression techniques for memory refer-
ence traces [16]. Burtscher proposed a value prediction
based method to compress instruction traces [7]. These
methods share the common feature that trace compres-
sion is applied after large trace files have been generated.
In contrast, ReTrace captures minimal log file in the first
place and the ReTrace compression is independent of
what kind of trace analysis is later applied to the trace,
e.g., ReTrace does not assume LRU based simulation on
the memory reference trace or value predictability.

6.3 Replay-based trace collection

Most recently, deterministic replay based trace collection
has been recognized as a promising method.

CITCAT employs a simulator-based deterministic re-
player [22]. The key elements of CITCAT is its cache-
filtered address trace recorder on a real machine. In
contrast with ReTrace, CITCAT differs in two ways.
CITCAT needs to modify traced OS to make key non-
deterministic events visible on the off-chip system bus.
CITCAT is CPU-centric, which does not replay devices.

Bhansali et al. from Microsoft presented a framework
for instruction tracing based on deterministic replay [5].
Their technique is based on binary translation. Like Re-
Trace, no special tracing hardware is required. However,
the 5X to 17X run-time overhead is much higher than
that of ReTrace. Also, unlike ReTrace’s full system re-
play, their replay is at the application level.

In both CITCAT and Bhansali’s replayer, the trace log
size is larger than that of ReTrace because more run-time
information (such as memory reads) are treated as non-
deterministic. CITCAT has a log size growth rate from
14 bytes/kilo-instruction and Bhansali’s replayer gener-
ates log at a rate from 10 to 137 bytes/kilo-instruction.

7 Conclusion

In conclusion, ReTrace is a trace collection tool based on
VMware’s virtual machine monitor and deterministic re-
play. ReTrace has extremely low run-time overhead and
high trace file compression ratio. We show that deter-
ministic replay can enable efficient and inexpensive trace



collection. Our experiences suggest that the virtual ma-
chine monitor is an ideal place to collect full-system exe-
cution traces, which can be stored as small deterministic
log files and can be selectively expanded into a detailed
full-system execution trace during the fast replay.

Future work includes extending ReTrace to work with
other trace process and simulation tools. Community
feedback would be invaluable to ReTrace’s future devel-
opment plan.
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