
Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

Abstract
Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.

In many ways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control locality of their data through careful choices
in their schemas. Finally, Bigtable schema parameters let
clients dynamically control whether to serve data out of
memory or from disk.

Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Figure 1: A slice of an example table that stores Web pages. The row name is a reversed URL. The contents column family con-
tains the page contents, and the anchor column family contains the text of any anchors that reference the page. CNN’s home page
is referenced by both the Sports Illustrated and the MY-look home pages, so the row contains columns named anchor:cnnsi.com
and anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at timestamps t3, t5, and t6.

We settled on this data model after examining a variety
of potential uses of a Bigtable-like system. As one con-
crete example that drove some of our design decisions,
suppose we want to keep a copy of a large collection of
web pages and related information that could be used by
many different projects; let us call this particular table
the Webtable. In Webtable, we would use URLs as row
keys, various aspects of web pages as column names, and
store the contents of the web pages in the contents: col-
umn under the timestamps when they were fetched, as
illustrated in Figure 1.

Rows

The row keys in a table are arbitrary strings (currently up
to 64KB in size, although 10-100 bytes is a typical size
for most of our users). Every read or write of data under
a single row key is atomic (regardless of the number of
different columns being read or written in the row), a
design decision that makes it easier for clients to reason
about the system’s behavior in the presence of concurrent
updates to the same row.

Bigtable maintains data in lexicographic order by row
key. The row range for a table is dynamically partitioned.
Each row range is called a tablet, which is the unit of dis-
tribution and load balancing. As a result, reads of short
row ranges are efficient and typically require communi-
cation with only a small number of machines. Clients
can exploit this property by selecting their row keys so
that they get good locality for their data accesses. For
example, in Webtable, pages in the same domain are
grouped together into contiguous rows by reversing the
hostname components of the URLs. For example, we
store data for maps.google.com/index.html under the
key com.google.maps/index.html. Storing pages from
the same domain near each other makes some host and
domain analyses more efficient.

Column Families

Column keys are grouped into sets called column fami-
lies, which form the basic unit of access control. All data
stored in a column family is usually of the same type (we
compress data in the same column family together). A
column family must be created before data can be stored
under any column key in that family; after a family has
been created, any column key within the family can be
used. It is our intent that the number of distinct column
families in a table be small (in the hundreds at most), and
that families rarely change during operation. In contrast,
a table may have an unbounded number of columns.

A column key is named using the following syntax:
family:qualifier. Column family names must be print-
able, but qualifiers may be arbitrary strings. An exam-
ple column family for the Webtable is language, which
stores the language in which a web page was written. We
use only one column key in the language family, and it
stores each web page’s language ID. Another useful col-
umn family for this table is anchor; each column key in
this family represents a single anchor, as shown in Fig-
ure 1. The qualifier is the name of the referring site; the
cell contents is the link text.

Access control and both disk and memory account-
ing are performed at the column-family level. In our
Webtable example, these controls allow us to manage
several different types of applications: some that add new
base data, some that read the base data and create derived
column families, and some that are only allowed to view
existing data (and possibly not even to view all of the
existing families for privacy reasons).

Timestamps

Each cell in a Bigtable can contain multiple versions of
the same data; these versions are indexed by timestamp.
Bigtable timestamps are 64-bit integers. They can be as-
signed by Bigtable, in which case they represent “real
time” in microseconds, or be explicitly assigned by client

To appear in OSDI 2006 2

// Open the table
Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation r1(T, "com.cnn.www");
r1.Set("anchor:www.c-span.org", "CNN");
r1.Delete("anchor:www.abc.com");
Operation op;
Apply(&op, &r1);

Figure 2: Writing to Bigtable.

applications. Applications that need to avoid collisions
must generate unique timestamps themselves. Different
versions of a cell are stored in decreasing timestamp or-
der, so that the most recent versions can be read first.

To make the management of versioned data less oner-
ous, we support two per-column-family settings that tell
Bigtable to garbage-collect cell versions automatically.
The client can specify either that only the last n versions
of a cell be kept, or that only new-enough versions be
kept (e.g., only keep values that were written in the last
seven days).

In our Webtable example, we set the timestamps of
the crawled pages stored in the contents: column to
the times at which these page versions were actually
crawled. The garbage-collection mechanism described
above lets us keep only the most recent three versions of
every page.

3 API

The Bigtable API provides functions for creating and
deleting tables and column families. It also provides
functions for changing cluster, table, and column family
metadata, such as access control rights.

Client applications can write or delete values in
Bigtable, lookup values from individual rows, or iter-
ate over a subset of the data in a table. Figure 2 shows
C++ code that uses a RowMutation abstraction to per-
form a series of updates. (Irrelevant details were elided
to keep the example short.) The call to Apply performs
an atomic mutation to the Webtable: it adds one anchor
to www.cnn.com and deletes a different anchor.

Figure 3 shows C++ code that uses a Scanner ab-
straction to iterate over all anchors in a particular row.
Clients can iterate over multiple column families, and
there are several mechanisms for limiting the rows,
columns, and timestamps produced by a scan. For ex-
ample, we could restrict the scan above to only produce
anchors whose columns match the regular expression
anchor:com.cnn.*, or to only produce anchors whose
timestamps fall within ten days of the current time.

Scanner scanner(T);
ScanStream *stream;
stream = scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions();
scanner.Lookup("com.cnn.www");
for (; !stream->Done(); stream->Next()) {

printf("%s %s %lld %s\n",
scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

}

Figure 3: Reading from Bigtable.

Bigtable supports several other features that allow the
user to manipulate data in more complex ways. First,
Bigtable supports single-row transactions, which can be
used to perform atomic read-modify-write sequences on
data stored under a single row key. Bigtable does not cur-
rently support general transactions across row keys, al-
though it provides an interface for batching writes across
row keys at the clients. Second, Bigtable allows cells
to be used as integer counters. Finally, Bigtable sup-
ports the execution of client-supplied scripts in the ad-
dress spaces of the servers. The scripts are written in a
language developed at Google for processing data called
Sawzall [28]. At the moment, our Sawzall-based API
does not allow client scripts to write back into Bigtable,
but it does allow various forms of data transformation,
filtering based on arbitrary expressions, and summariza-
tion via a variety of operators.

Bigtable can be used with MapReduce [12], a frame-
work for running large-scale parallel computations de-
veloped at Google. We have written a set of wrappers
that allow a Bigtable to be used both as an input source
and as an output target for MapReduce jobs.

4 Building Blocks

Bigtable is built on several other pieces of Google in-
frastructure. Bigtable uses the distributed Google File
System (GFS) [17] to store log and data files. A Bigtable
cluster typically operates in a shared pool of machines
that run a wide variety of other distributed applications,
and Bigtable processes often share the same machines
with processes from other applications. Bigtable de-
pends on a cluster management system for scheduling
jobs, managing resources on shared machines, dealing
with machine failures, and monitoring machine status.

The Google SSTable file format is used internally to
store Bigtable data. An SSTable provides a persistent,
ordered immutable map from keys to values, where both
keys and values are arbitrary byte strings. Operations are
provided to look up the value associated with a specified

To appear in OSDI 2006 3

key, and to iterate over all key/value pairs in a specified
key range. Internally, each SSTable contains a sequence
of blocks (typically each block is 64KB in size, but this
is configurable). A block index (stored at the end of the
SSTable) is used to locate blocks; the index is loaded
into memory when the SSTable is opened. A lookup
can be performed with a single disk seek: we first find
the appropriate block by performing a binary search in
the in-memory index, and then reading the appropriate
block from disk. Optionally, an SSTable can be com-
pletely mapped into memory, which allows us to perform
lookups and scans without touching disk.

Bigtable relies on a highly-available and persistent
distributed lock service called Chubby [8]. A Chubby
service consists of five active replicas, one of which is
elected to be the master and actively serve requests. The
service is live when a majority of the replicas are running
and can communicate with each other. Chubby uses the
Paxos algorithm [9, 23] to keep its replicas consistent in
the face of failure. Chubby provides a namespace that
consists of directories and small files. Each directory or
file can be used as a lock, and reads and writes to a file
are atomic. The Chubby client library provides consis-
tent caching of Chubby files. Each Chubby client main-
tains a session with a Chubby service. A client’s session
expires if it is unable to renew its session lease within the
lease expiration time. When a client’s session expires, it
loses any locks and open handles. Chubby clients can
also register callbacks on Chubby files and directories
for notification of changes or session expiration.

Bigtable uses Chubby for a variety of tasks: to ensure
that there is at most one active master at any time; to
store the bootstrap location of Bigtable data (see Sec-
tion 5.1); to discover tablet servers and finalize tablet
server deaths (see Section 5.2); to store Bigtable schema
information (the column family information for each ta-
ble); and to store access control lists. If Chubby becomes
unavailable for an extended period of time, Bigtable be-
comes unavailable. We recently measured this effect
in 14 Bigtable clusters spanning 11 Chubby instances.
The average percentage of Bigtable server hours during
which some data stored in Bigtable was not available due
to Chubby unavailability (caused by either Chubby out-
ages or network issues) was 0.0047%. The percentage
for the single cluster that was most affected by Chubby
unavailability was 0.0326%.

5 Implementation

The Bigtable implementation has three major compo-
nents: a library that is linked into every client, one mas-
ter server, and many tablet servers. Tablet servers can be

dynamically added (or removed) from a cluster to acco-
modate changes in workloads.

The master is responsible for assigning tablets to tablet
servers, detecting the addition and expiration of tablet
servers, balancing tablet-server load, and garbage col-
lection of files in GFS. In addition, it handles schema
changes such as table and column family creations.

Each tablet server manages a set of tablets (typically
we have somewhere between ten to a thousand tablets per
tablet server). The tablet server handles read and write
requests to the tablets that it has loaded, and also splits
tablets that have grown too large.

As with many single-master distributed storage sys-
tems [17, 21], client data does not move through the mas-
ter: clients communicate directly with tablet servers for
reads and writes. Because Bigtable clients do not rely on
the master for tablet location information, most clients
never communicate with the master. As a result, the mas-
ter is lightly loaded in practice.

A Bigtable cluster stores a number of tables. Each ta-
ble consists of a set of tablets, and each tablet contains
all data associated with a row range. Initially, each table
consists of just one tablet. As a table grows, it is auto-
matically split into multiple tablets, each approximately
100-200 MB in size by default.

5.1 Tablet Location
We use a three-level hierarchy analogous to that of a B+-
tree [10] to store tablet location information (Figure 4).

..

.

...

...

..

.

...

..

.

 tablets
METADATA
 Other

Chubby file
...

UserTable1

UserTableN
...

...

...

...

...
Root tablet

(1st METADATA tablet)

Figure 4: Tablet location hierarchy.

The first level is a file stored in Chubby that contains
the location of the root tablet. The root tablet contains
the location of all tablets in a special METADATA table.
Each METADATA tablet contains the location of a set of
user tablets. The root tablet is just the first tablet in the
METADATA table, but is treated specially—it is never
split—to ensure that the tablet location hierarchy has no
more than three levels.

The METADATA table stores the location of a tablet
under a row key that is an encoding of the tablet’s table

To appear in OSDI 2006 4

identifier and its end row. Each METADATA row stores
approximately 1KB of data in memory. With a modest
limit of 128 MB METADATA tablets, our three-level lo-
cation scheme is sufficient to address 2

34 tablets (or 2
61

bytes in 128 MB tablets).
The client library caches tablet locations. If the client

does not know the location of a tablet, or if it discov-
ers that cached location information is incorrect, then
it recursively moves up the tablet location hierarchy.
If the client’s cache is empty, the location algorithm
requires three network round-trips, including one read
from Chubby. If the client’s cache is stale, the location
algorithm could take up to six round-trips, because stale
cache entries are only discovered upon misses (assuming
that METADATA tablets do not move very frequently).
Although tablet locations are stored in memory, so no
GFS accesses are required, we further reduce this cost
in the common case by having the client library prefetch
tablet locations: it reads the metadata for more than one
tablet whenever it reads the METADATA table.

We also store secondary information in the
METADATA table, including a log of all events per-
taining to each tablet (such as when a server begins
serving it). This information is helpful for debugging
and performance analysis.

5.2 Tablet Assignment

Each tablet is assigned to one tablet server at a time. The
master keeps track of the set of live tablet servers, and
the current assignment of tablets to tablet servers, in-
cluding which tablets are unassigned. When a tablet is
unassigned, and a tablet server with sufficient room for
the tablet is available, the master assigns the tablet by
sending a tablet load request to the tablet server.

Bigtable uses Chubby to keep track of tablet servers.
When a tablet server starts, it creates, and acquires an
exclusive lock on, a uniquely-named file in a specific
Chubby directory. The master monitors this directory
(the servers directory) to discover tablet servers. A tablet
server stops serving its tablets if it loses its exclusive
lock: e.g., due to a network partition that caused the
server to lose its Chubby session. (Chubby provides an
efficient mechanism that allows a tablet server to check
whether it still holds its lock without incurring network
traffic.) A tablet server will attempt to reacquire an ex-
clusive lock on its file as long as the file still exists. If the
file no longer exists, then the tablet server will never be
able to serve again, so it kills itself. Whenever a tablet
server terminates (e.g., because the cluster management
system is removing the tablet server’s machine from the
cluster), it attempts to release its lock so that the master
will reassign its tablets more quickly.

The master is responsible for detecting when a tablet
server is no longer serving its tablets, and for reassign-
ing those tablets as soon as possible. To detect when a
tablet server is no longer serving its tablets, the master
periodically asks each tablet server for the status of its
lock. If a tablet server reports that it has lost its lock,
or if the master was unable to reach a server during its
last several attempts, the master attempts to acquire an
exclusive lock on the server’s file. If the master is able to
acquire the lock, then Chubby is live and the tablet server
is either dead or having trouble reaching Chubby, so the
master ensures that the tablet server can never serve again
by deleting its server file. Once a server’s file has been
deleted, the master can move all the tablets that were pre-
viously assigned to that server into the set of unassigned
tablets. To ensure that a Bigtable cluster is not vulnera-
ble to networking issues between the master and Chubby,
the master kills itself if its Chubby session expires. How-
ever, as described above, master failures do not change
the assignment of tablets to tablet servers.

When a master is started by the cluster management
system, it needs to discover the current tablet assign-
ments before it can change them. The master executes
the following steps at startup. (1) The master grabs
a unique master lock in Chubby, which prevents con-
current master instantiations. (2) The master scans the
servers directory in Chubby to find the live servers.
(3) The master communicates with every live tablet
server to discover what tablets are already assigned to
each server. (4) The master scans the METADATA table
to learn the set of tablets. Whenever this scan encounters
a tablet that is not already assigned, the master adds the
tablet to the set of unassigned tablets, which makes the
tablet eligible for tablet assignment.

One complication is that the scan of the METADATA
table cannot happen until the METADATA tablets have
been assigned. Therefore, before starting this scan (step
4), the master adds the root tablet to the set of unassigned
tablets if an assignment for the root tablet was not dis-
covered during step 3. This addition ensures that the root
tablet will be assigned. Because the root tablet contains
the names of all METADATA tablets, the master knows
about all of them after it has scanned the root tablet.

The set of existing tablets only changes when a ta-
ble is created or deleted, two existing tablets are merged
to form one larger tablet, or an existing tablet is split
into two smaller tablets. The master is able to keep
track of these changes because it initiates all but the last.
Tablet splits are treated specially since they are initi-
ated by a tablet server. The tablet server commits the
split by recording information for the new tablet in the
METADATA table. When the split has committed, it noti-
fies the master. In case the split notification is lost (either

To appear in OSDI 2006 5

because the tablet server or the master died), the master
detects the new tablet when it asks a tablet server to load
the tablet that has now split. The tablet server will notify
the master of the split, because the tablet entry it finds in
the METADATA table will specify only a portion of the
tablet that the master asked it to load.

5.3 Tablet Serving
The persistent state of a tablet is stored in GFS, as illus-
trated in Figure 5. Updates are committed to a commit
log that stores redo records. Of these updates, the re-
cently committed ones are stored in memory in a sorted
buffer called a memtable; the older updates are stored in a
sequence of SSTables. To recover a tablet, a tablet server

tablet log

GFS

Memory

Write Op
SSTable Files

memtable Read Op

Figure 5: Tablet Representation

reads its metadata from the METADATA table. This meta-
data contains the list of SSTables that comprise a tablet
and a set of a redo points, which are pointers into any
commit logs that may contain data for the tablet. The
server reads the indices of the SSTables into memory and
reconstructs the memtable by applying all of the updates
that have committed since the redo points.

When a write operation arrives at a tablet server, the
server checks that it is well-formed, and that the sender
is authorized to perform the mutation. Authorization is
performed by reading the list of permitted writers from a
Chubby file (which is almost always a hit in the Chubby
client cache). A valid mutation is written to the commit
log. Group commit is used to improve the throughput of
lots of small mutations [13, 16]. After the write has been
committed, its contents are inserted into the memtable.

When a read operation arrives at a tablet server, it is
similarly checked for well-formedness and proper autho-
rization. A valid read operation is executed on a merged
view of the sequence of SSTables and the memtable.
Since the SSTables and the memtable are lexicograph-
ically sorted data structures, the merged view can be
formed efficiently.

Incoming read and write operations can continue
while tablets are split and merged.

5.4 Compactions

As write operations execute, the size of the memtable in-
creases. When the memtable size reaches a threshold, the
memtable is frozen, a new memtable is created, and the
frozen memtable is converted to an SSTable and written
to GFS. This minor compaction process has two goals:
it shrinks the memory usage of the tablet server, and it
reduces the amount of data that has to be read from the
commit log during recovery if this server dies. Incom-
ing read and write operations can continue while com-
pactions occur.

Every minor compaction creates a new SSTable. If this
behavior continued unchecked, read operations might
need to merge updates from an arbitrary number of
SSTables. Instead, we bound the number of such files
by periodically executing a merging compaction in the
background. A merging compaction reads the contents
of a few SSTables and the memtable, and writes out a
new SSTable. The input SSTables and memtable can be
discarded as soon as the compaction has finished.

A merging compaction that rewrites all SSTables
into exactly one SSTable is called a major compaction.
SSTables produced by non-major compactions can con-
tain special deletion entries that suppress deleted data in
older SSTables that are still live. A major compaction,
on the other hand, produces an SSTable that contains
no deletion information or deleted data. Bigtable cy-
cles through all of its tablets and regularly applies major
compactions to them. These major compactions allow
Bigtable to reclaim resources used by deleted data, and
also allow it to ensure that deleted data disappears from
the system in a timely fashion, which is important for
services that store sensitive data.

6 Refinements

The implementation described in the previous section
required a number of refinements to achieve the high
performance, availability, and reliability required by our
users. This section describes portions of the implementa-
tion in more detail in order to highlight these refinements.

Locality groups

Clients can group multiple column families together into
a locality group. A separate SSTable is generated for
each locality group in each tablet. Segregating column
families that are not typically accessed together into sep-
arate locality groups enables more efficient reads. For
example, page metadata in Webtable (such as language
and checksums) can be in one locality group, and the
contents of the page can be in a different group: an ap-

To appear in OSDI 2006 6

plication that wants to read the metadata does not need
to read through all of the page contents.

In addition, some useful tuning parameters can be
specified on a per-locality group basis. For example, a lo-
cality group can be declared to be in-memory. SSTables
for in-memory locality groups are loaded lazily into the
memory of the tablet server. Once loaded, column fam-
ilies that belong to such locality groups can be read
without accessing the disk. This feature is useful for
small pieces of data that are accessed frequently: we
use it internally for the location column family in the
METADATA table.

Compression

Clients can control whether or not the SSTables for a
locality group are compressed, and if so, which com-
pression format is used. The user-specified compres-
sion format is applied to each SSTable block (whose size
is controllable via a locality group specific tuning pa-
rameter). Although we lose some space by compress-
ing each block separately, we benefit in that small por-
tions of an SSTable can be read without decompress-
ing the entire file. Many clients use a two-pass custom
compression scheme. The first pass uses Bentley and
McIlroy’s scheme [6], which compresses long common
strings across a large window. The second pass uses a
fast compression algorithm that looks for repetitions in
a small 16 KB window of the data. Both compression
passes are very fast—they encode at 100–200 MB/s, and
decode at 400–1000 MB/s on modern machines.

Even though we emphasized speed instead of space re-
duction when choosing our compression algorithms, this
two-pass compression scheme does surprisingly well.
For example, in Webtable, we use this compression
scheme to store Web page contents. In one experiment,
we stored a large number of documents in a compressed
locality group. For the purposes of the experiment, we
limited ourselves to one version of each document in-
stead of storing all versions available to us. The scheme
achieved a 10-to-1 reduction in space. This is much
better than typical Gzip reductions of 3-to-1 or 4-to-1
on HTML pages because of the way Webtable rows are
laid out: all pages from a single host are stored close
to each other. This allows the Bentley-McIlroy algo-
rithm to identify large amounts of shared boilerplate in
pages from the same host. Many applications, not just
Webtable, choose their row names so that similar data
ends up clustered, and therefore achieve very good com-
pression ratios. Compression ratios get even better when
we store multiple versions of the same value in Bigtable.

Caching for read performance

To improve read performance, tablet servers use two lev-
els of caching. The Scan Cache is a higher-level cache
that caches the key-value pairs returned by the SSTable
interface to the tablet server code. The Block Cache is a
lower-level cache that caches SSTables blocks that were
read from GFS. The Scan Cache is most useful for appli-
cations that tend to read the same data repeatedly. The
Block Cache is useful for applications that tend to read
data that is close to the data they recently read (e.g., se-
quential reads, or random reads of different columns in
the same locality group within a hot row).

Bloom filters

As described in Section 5.3, a read operation has to read
from all SSTables that make up the state of a tablet.
If these SSTables are not in memory, we may end up
doing many disk accesses. We reduce the number of
accesses by allowing clients to specify that Bloom fil-
ters [7] should be created for SSTables in a particu-
lar locality group. A Bloom filter allows us to ask
whether an SSTable might contain any data for a spec-
ified row/column pair. For certain applications, a small
amount of tablet server memory used for storing Bloom
filters drastically reduces the number of disk seeks re-
quired for read operations. Our use of Bloom filters
also implies that most lookups for non-existent rows or
columns do not need to touch disk.

Commit-log implementation

If we kept the commit log for each tablet in a separate
log file, a very large number of files would be written
concurrently in GFS. Depending on the underlying file
system implementation on each GFS server, these writes
could cause a large number of disk seeks to write to the
different physical log files. In addition, having separate
log files per tablet also reduces the effectiveness of the
group commit optimization, since groups would tend to
be smaller. To fix these issues, we append mutations
to a single commit log per tablet server, co-mingling
mutations for different tablets in the same physical log
file [18, 20].

Using one log provides significant performance ben-
efits during normal operation, but it complicates recov-
ery. When a tablet server dies, the tablets that it served
will be moved to a large number of other tablet servers:
each server typically loads a small number of the orig-
inal server’s tablets. To recover the state for a tablet,
the new tablet server needs to reapply the mutations for
that tablet from the commit log written by the original
tablet server. However, the mutations for these tablets

To appear in OSDI 2006 7

were co-mingled in the same physical log file. One ap-
proach would be for each new tablet server to read this
full commit log file and apply just the entries needed for
the tablets it needs to recover. However, under such a
scheme, if 100 machines were each assigned a single
tablet from a failed tablet server, then the log file would
be read 100 times (once by each server).

We avoid duplicating log reads by first sort-
ing the commit log entries in order of the keys
〈table, row name, log sequence number〉. In the
sorted output, all mutations for a particular tablet are
contiguous and can therefore be read efficiently with one
disk seek followed by a sequential read. To parallelize
the sorting, we partition the log file into 64 MB seg-
ments, and sort each segment in parallel on different
tablet servers. This sorting process is coordinated by the
master and is initiated when a tablet server indicates that
it needs to recover mutations from some commit log file.

Writing commit logs to GFS sometimes causes perfor-
mance hiccups for a variety of reasons (e.g., a GFS server
machine involved in the write crashes, or the network
paths traversed to reach the particular set of three GFS
servers is suffering network congestion, or is heavily
loaded). To protect mutations from GFS latency spikes,
each tablet server actually has two log writing threads,
each writing to its own log file; only one of these two
threads is actively in use at a time. If writes to the ac-
tive log file are performing poorly, the log file writing is
switched to the other thread, and mutations that are in
the commit log queue are written by the newly active log
writing thread. Log entries contain sequence numbers
to allow the recovery process to elide duplicated entries
resulting from this log switching process.

Speeding up tablet recovery

If the master moves a tablet from one tablet server to
another, the source tablet server first does a minor com-
paction on that tablet. This compaction reduces recov-
ery time by reducing the amount of uncompacted state in
the tablet server’s commit log. After finishing this com-
paction, the tablet server stops serving the tablet. Before
it actually unloads the tablet, the tablet server does an-
other (usually very fast) minor compaction to eliminate
any remaining uncompacted state in the tablet server’s
log that arrived while the first minor compaction was
being performed. After this second minor compaction
is complete, the tablet can be loaded on another tablet
server without requiring any recovery of log entries.

Exploiting immutability

Besides the SSTable caches, various other parts of the
Bigtable system have been simplified by the fact that all

of the SSTables that we generate are immutable. For ex-
ample, we do not need any synchronization of accesses
to the file system when reading from SSTables. As a re-
sult, concurrency control over rows can be implemented
very efficiently. The only mutable data structure that is
accessed by both reads and writes is the memtable. To re-
duce contention during reads of the memtable, we make
each memtable row copy-on-write and allow reads and
writes to proceed in parallel.

Since SSTables are immutable, the problem of perma-
nently removing deleted data is transformed to garbage
collecting obsolete SSTables. Each tablet’s SSTables are
registered in the METADATA table. The master removes
obsolete SSTables as a mark-and-sweep garbage collec-
tion [25] over the set of SSTables, where the METADATA
table contains the set of roots.

Finally, the immutability of SSTables enables us to
split tablets quickly. Instead of generating a new set of
SSTables for each child tablet, we let the child tablets
share the SSTables of the parent tablet.

7 Performance Evaluation

We set up a Bigtable cluster with N tablet servers to
measure the performance and scalability of Bigtable as
N is varied. The tablet servers were configured to use 1
GB of memory and to write to a GFS cell consisting of
1786 machines with two 400 GB IDE hard drives each.
N client machines generated the Bigtable load used for
these tests. (We used the same number of clients as tablet
servers to ensure that clients were never a bottleneck.)
Each machine had two dual-core Opteron 2 GHz chips,
enough physical memory to hold the working set of all
running processes, and a single gigabit Ethernet link.
The machines were arranged in a two-level tree-shaped
switched network with approximately 100-200 Gbps of
aggregate bandwidth available at the root. All of the ma-
chines were in the same hosting facility and therefore the
round-trip time between any pair of machines was less
than a millisecond.

The tablet servers and master, test clients, and GFS
servers all ran on the same set of machines. Every ma-
chine ran a GFS server. Some of the machines also ran
either a tablet server, or a client process, or processes
from other jobs that were using the pool at the same time
as these experiments.

R is the distinct number of Bigtable row keys involved
in the test. R was chosen so that each benchmark read or
wrote approximately 1 GB of data per tablet server.

The sequential write benchmark used row keys with
names 0 to R − 1. This space of row keys was parti-
tioned into 10N equal-sized ranges. These ranges were
assigned to the N clients by a central scheduler that as-

To appear in OSDI 2006 8

of Tablet Servers
Experiment 1 50 250 500
random reads 1212 593 479 241
random reads (mem) 10811 8511 8000 6250
random writes 8850 3745 3425 2000
sequential reads 4425 2463 2625 2469
sequential writes 8547 3623 2451 1905
scans 15385 10526 9524 7843 100 200 300 400 500

Number of tablet servers

1M

2M

3M

4M

V
al

ue
s r

ea
d/

w
ri

tt
en

 p
er

 se
co

nd

scans
random reads (mem)
random writes
sequential reads
sequential writes
random reads

Figure 6: Number of 1000-byte values read/written per second. The table shows the rate per tablet server; the graph shows the
aggregate rate.

signed the next available range to a client as soon as the
client finished processing the previous range assigned to
it. This dynamic assignment helped mitigate the effects
of performance variations caused by other processes run-
ning on the client machines. We wrote a single string un-
der each row key. Each string was generated randomly
and was therefore uncompressible. In addition, strings
under different row key were distinct, so no cross-row
compression was possible. The random write benchmark
was similar except that the row key was hashed modulo
R immediately before writing so that the write load was
spread roughly uniformly across the entire row space for
the entire duration of the benchmark.

The sequential read benchmark generated row keys in
exactly the same way as the sequential write benchmark,
but instead of writing under the row key, it read the string
stored under the row key (which was written by an earlier
invocation of the sequential write benchmark). Similarly,
the random read benchmark shadowed the operation of
the random write benchmark.

The scan benchmark is similar to the sequential read
benchmark, but uses support provided by the Bigtable
API for scanning over all values in a row range. Us-
ing a scan reduces the number of RPCs executed by the
benchmark since a single RPC fetches a large sequence
of values from a tablet server.

The random reads (mem) benchmark is similar to the
random read benchmark, but the locality group that con-
tains the benchmark data is marked as in-memory, and
therefore the reads are satisfied from the tablet server’s
memory instead of requiring a GFS read. For just this
benchmark, we reduced the amount of data per tablet
server from 1 GB to 100 MB so that it would fit com-
fortably in the memory available to the tablet server.

Figure 6 shows two views on the performance of our
benchmarks when reading and writing 1000-byte values
to Bigtable. The table shows the number of operations
per second per tablet server; the graph shows the aggre-
gate number of operations per second.

Single tablet-server performance

Let us first consider performance with just one tablet
server. Random reads are slower than all other operations
by an order of magnitude or more. Each random read in-
volves the transfer of a 64 KB SSTable block over the
network from GFS to a tablet server, out of which only a
single 1000-byte value is used. The tablet server executes
approximately 1200 reads per second, which translates
into approximately 75 MB/s of data read from GFS. This
bandwidth is enough to saturate the tablet server CPUs
because of overheads in our networking stack, SSTable
parsing, and Bigtable code, and is also almost enough
to saturate the network links used in our system. Most
Bigtable applications with this type of an access pattern
reduce the block size to a smaller value, typically 8KB.

Random reads from memory are much faster since
each 1000-byte read is satisfied from the tablet server’s
local memory without fetching a large 64 KB block from
GFS.

Random and sequential writes perform better than ran-
dom reads since each tablet server appends all incoming
writes to a single commit log and uses group commit to
stream these writes efficiently to GFS. There is no sig-
nificant difference between the performance of random
writes and sequential writes; in both cases, all writes to
the tablet server are recorded in the same commit log.

Sequential reads perform better than random reads
since every 64 KB SSTable block that is fetched from
GFS is stored into our block cache, where it is used to
serve the next 64 read requests.

Scans are even faster since the tablet server can return
a large number of values in response to a single client
RPC, and therefore RPC overhead is amortized over a
large number of values.

Scaling

Aggregate throughput increases dramatically, by over a
factor of a hundred, as we increase the number of tablet
servers in the system from 1 to 500. For example, the

To appear in OSDI 2006 9

of tablet servers # of clusters
0 .. 19 259

20 .. 49 47
50 .. 99 20

100 .. 499 50
> 500 12

Table 1: Distribution of number of tablet servers in Bigtable
clusters.

performance of random reads from memory increases by
almost a factor of 300 as the number of tablet server in-
creases by a factor of 500. This behavior occurs because
the bottleneck on performance for this benchmark is the
individual tablet server CPU.

However, performance does not increase linearly. For
most benchmarks, there is a significant drop in per-server
throughput when going from 1 to 50 tablet servers. This
drop is caused by imbalance in load in multiple server
configurations, often due to other processes contending
for CPU and network. Our load balancing algorithm at-
tempts to deal with this imbalance, but cannot do a per-
fect job for two main reasons: rebalancing is throttled to
reduce the number of tablet movements (a tablet is un-
available for a short time, typically less than one second,
when it is moved), and the load generated by our bench-
marks shifts around as the benchmark progresses.

The random read benchmark shows the worst scaling
(an increase in aggregate throughput by only a factor of
100 for a 500-fold increase in number of servers). This
behavior occurs because (as explained above) we transfer
one large 64KB block over the network for every 1000-
byte read. This transfer saturates various shared 1 Gi-
gabit links in our network and as a result, the per-server
throughput drops significantly as we increase the number
of machines.

8 Real Applications

As of August 2006, there are 388 non-test Bigtable clus-
ters running in various Google machine clusters, with a
combined total of about 24,500 tablet servers. Table 1
shows a rough distribution of tablet servers per cluster.
Many of these clusters are used for development pur-
poses and therefore are idle for significant periods. One
group of 14 busy clusters with 8069 total tablet servers
saw an aggregate volume of more than 1.2 million re-
quests per second, with incoming RPC traffic of about
741 MB/s and outgoing RPC traffic of about 16 GB/s.

Table 2 provides some data about a few of the tables
currently in use. Some tables store data that is served
to users, whereas others store data for batch processing;
the tables range widely in total size, average cell size,

percentage of data served from memory, and complexity
of the table schema. In the rest of this section, we briefly
describe how three product teams use Bigtable.

8.1 Google Analytics
Google Analytics (analytics.google.com) is a service
that helps webmasters analyze traffic patterns at their
web sites. It provides aggregate statistics, such as the
number of unique visitors per day and the page views
per URL per day, as well as site-tracking reports, such as
the percentage of users that made a purchase, given that
they earlier viewed a specific page.

To enable the service, webmasters embed a small
JavaScript program in their web pages. This program
is invoked whenever a page is visited. It records various
information about the request in Google Analytics, such
as a user identifier and information about the page be-
ing fetched. Google Analytics summarizes this data and
makes it available to webmasters.

We briefly describe two of the tables used by Google
Analytics. The raw click table (˜200 TB) maintains a
row for each end-user session. The row name is a tuple
containing the website’s name and the time at which the
session was created. This schema ensures that sessions
that visit the same web site are contiguous, and that they
are sorted chronologically. This table compresses to 14%
of its original size.

The summary table (˜20 TB) contains various prede-
fined summaries for each website. This table is gener-
ated from the raw click table by periodically scheduled
MapReduce jobs. Each MapReduce job extracts recent
session data from the raw click table. The overall sys-
tem’s throughput is limited by the throughput of GFS.
This table compresses to 29% of its original size.

8.2 Google Earth
Google operates a collection of services that provide
users with access to high-resolution satellite imagery of
the world’s surface, both through the web-based Google
Maps interface (maps.google.com) and through the
Google Earth (earth.google.com) custom client soft-
ware. These products allow users to navigate across the
world’s surface: they can pan, view, and annotate satel-
lite imagery at many different levels of resolution. This
system uses one table to preprocess data, and a different
set of tables for serving client data.

The preprocessing pipeline uses one table to store raw
imagery. During preprocessing, the imagery is cleaned
and consolidated into final serving data. This table con-
tains approximately 70 terabytes of data and therefore is
served from disk. The images are efficiently compressed
already, so Bigtable compression is disabled.

To appear in OSDI 2006 10

Project Table size Compression # Cells # Column # Locality % in Latency-
name (TB) ratio (billions) Families Groups memory sensitive?
Crawl 800 11% 1000 16 8 0% No
Crawl 50 33% 200 2 2 0% No

Google Analytics 20 29% 10 1 1 0% Yes
Google Analytics 200 14% 80 1 1 0% Yes

Google Base 2 31% 10 29 3 15% Yes
Google Earth 0.5 64% 8 7 2 33% Yes
Google Earth 70 – 9 8 3 0% No

Orkut 9 – 0.9 8 5 1% Yes
Personalized Search 4 47% 6 93 11 5% Yes

Table 2: Characteristics of a few tables in production use. Table size (measured before compression) and # Cells indicate approxi-
mate sizes. Compression ratio is not given for tables that have compression disabled.

Each row in the imagery table corresponds to a sin-
gle geographic segment. Rows are named to ensure that
adjacent geographic segments are stored near each other.
The table contains a column family to keep track of the
sources of data for each segment. This column family
has a large number of columns: essentially one for each
raw data image. Since each segment is only built from a
few images, this column family is very sparse.

The preprocessing pipeline relies heavily on MapRe-
duce over Bigtable to transform data. The overall system
processes over 1 MB/sec of data per tablet server during
some of these MapReduce jobs.

The serving system uses one table to index data stored
in GFS. This table is relatively small (˜500 GB), but it
must serve tens of thousands of queries per second per
datacenter with low latency. As a result, this table is
hosted across hundreds of tablet servers and contains in-
memory column families.

8.3 Personalized Search
Personalized Search (www.google.com/psearch) is an
opt-in service that records user queries and clicks across
a variety of Google properties such as web search, im-
ages, and news. Users can browse their search histories
to revisit their old queries and clicks, and they can ask
for personalized search results based on their historical
Google usage patterns.

Personalized Search stores each user’s data in
Bigtable. Each user has a unique userid and is assigned
a row named by that userid. All user actions are stored
in a table. A separate column family is reserved for each
type of action (for example, there is a column family that
stores all web queries). Each data element uses as its
Bigtable timestamp the time at which the corresponding
user action occurred. Personalized Search generates user
profiles using a MapReduce over Bigtable. These user
profiles are used to personalize live search results.

The Personalized Search data is replicated across sev-
eral Bigtable clusters to increase availability and to re-
duce latency due to distance from clients. The Personal-
ized Search team originally built a client-side replication
mechanism on top of Bigtable that ensured eventual con-
sistency of all replicas. The current system now uses a
replication subsystem that is built into the servers.

The design of the Personalized Search storage system
allows other groups to add new per-user information in
their own columns, and the system is now used by many
other Google properties that need to store per-user con-
figuration options and settings. Sharing a table amongst
many groups resulted in an unusually large number of
column families. To help support sharing, we added a
simple quota mechanism to Bigtable to limit the stor-
age consumption by any particular client in shared ta-
bles; this mechanism provides some isolation between
the various product groups using this system for per-user
information storage.

9 Lessons

In the process of designing, implementing, maintaining,
and supporting Bigtable, we gained useful experience
and learned several interesting lessons.

One lesson we learned is that large distributed sys-
tems are vulnerable to many types of failures, not just
the standard network partitions and fail-stop failures as-
sumed in many distributed protocols. For example, we
have seen problems due to all of the following causes:
memory and network corruption, large clock skew, hung
machines, extended and asymmetric network partitions,
bugs in other systems that we are using (Chubby for ex-
ample), overflow of GFS quotas, and planned and un-
planned hardware maintenance. As we have gained more
experience with these problems, we have addressed them
by changing various protocols. For example, we added
checksumming to our RPC mechanism. We also handled

To appear in OSDI 2006 11

some problems by removing assumptions made by one
part of the system about another part. For example, we
stopped assuming a given Chubby operation could return
only one of a fixed set of errors.

Another lesson we learned is that it is important to
delay adding new features until it is clear how the new
features will be used. For example, we initially planned
to support general-purpose transactions in our API. Be-
cause we did not have an immediate use for them, how-
ever, we did not implement them. Now that we have
many real applications running on Bigtable, we have
been able to examine their actual needs, and have discov-
ered that most applications require only single-row trans-
actions. Where people have requested distributed trans-
actions, the most important use is for maintaining sec-
ondary indices, and we plan to add a specialized mech-
anism to satisfy this need. The new mechanism will
be less general than distributed transactions, but will be
more efficient (especially for updates that span hundreds
of rows or more) and will also interact better with our
scheme for optimistic cross-data-center replication.

A practical lesson that we learned from supporting
Bigtable is the importance of proper system-level mon-
itoring (i.e., monitoring both Bigtable itself, as well as
the client processes using Bigtable). For example, we ex-
tended our RPC system so that for a sample of the RPCs,
it keeps a detailed trace of the important actions done on
behalf of that RPC. This feature has allowed us to de-
tect and fix many problems such as lock contention on
tablet data structures, slow writes to GFS while com-
mitting Bigtable mutations, and stuck accesses to the
METADATA table when METADATA tablets are unavail-
able. Another example of useful monitoring is that ev-
ery Bigtable cluster is registered in Chubby. This allows
us to track down all clusters, discover how big they are,
see which versions of our software they are running, how
much traffic they are receiving, and whether or not there
are any problems such as unexpectedly large latencies.

The most important lesson we learned is the value of
simple designs. Given both the size of our system (about
100,000 lines of non-test code), as well as the fact that
code evolves over time in unexpected ways, we have
found that code and design clarity are of immense help in
code maintenance and debugging. One example of this
is our tablet-server membership protocol. Our first pro-
tocol was simple: the master periodically issued leases
to tablet servers, and tablet servers killed themselves if
their lease expired. However, this protocol reduced avail-
ability significantly in the presence of network problems,
and therefore we redesigned the protocol several times
until we had a protocol that performed well. However,
the resulting protocol was too complex and depended on
the behavior of Chubby features that were seldom exer-

cised by other applications. We discovered that we were
spending an inordinate amount of time debugging ob-
scure corner cases, not only in Bigtable code, but also in
Chubby code. Eventually, we scrapped this protocol and
moved to a newer simpler protocol that depends solely
on widely-used Chubby features.

10 Related Work

The Boxwood project [24] has components that overlap
in some ways with Chubby, GFS, and Bigtable, since it
provides for distributed agreement, locking, distributed
chunk storage, and distributed B-tree storage. In each
case where there is overlap, it appears that the Box-
wood’s component is targeted at a somewhat lower level
than the corresponding Google service. The Boxwood
project’s goal is to provide infrastructure for building
higher-level services such as file systems or databases,
while the goal of Bigtable is to directly support client
applications that wish to store data.

Many recent projects have tackled the problem of pro-
viding distributed storage or higher-level services over
wide area networks, often at “Internet scale.” This in-
cludes work on distributed hash tables that began with
projects such as CAN [29], Chord [32], Tapestry [37],
and Pastry [30]. These systems address concerns that do
not arise for Bigtable, such as highly variable bandwidth,
untrusted participants, or frequent reconfiguration; de-
centralized control and Byzantine fault tolerance are not
Bigtable goals.

In terms of the distributed data storage model that one
might provide to application developers, we believe the
key-value pair model provided by distributed B-trees or
distributed hash tables is too limiting. Key-value pairs
are a useful building block, but they should not be the
only building block one provides to developers. The
model we chose is richer than simple key-value pairs,
and supports sparse semi-structured data. Nonetheless,
it is still simple enough that it lends itself to a very effi-
cient flat-file representation, and it is transparent enough
(via locality groups) to allow our users to tune important
behaviors of the system.

Several database vendors have developed parallel
databases that can store large volumes of data. Oracle’s
Real Application Cluster database [27] uses shared disks
to store data (Bigtable uses GFS) and a distributed lock
manager (Bigtable uses Chubby). IBM’s DB2 Parallel
Edition [4] is based on a shared-nothing [33] architecture
similar to Bigtable. Each DB2 server is responsible for
a subset of the rows in a table which it stores in a local
relational database. Both products provide a complete
relational model with transactions.

To appear in OSDI 2006 12

Bigtable locality groups realize similar compression
and disk read performance benefits observed for other
systems that organize data on disk using column-based
rather than row-based storage, including C-Store [1, 34]
and commercial products such as Sybase IQ [15, 36],
SenSage [31], KDB+ [22], and the ColumnBM storage
layer in MonetDB/X100 [38]. Another system that does
vertical and horizontal data partioning into flat files and
achieves good data compression ratios is AT&T’s Day-
tona database [19]. Locality groups do not support CPU-
cache-level optimizations, such as those described by
Ailamaki [2].

The manner in which Bigtable uses memtables and
SSTables to store updates to tablets is analogous to the
way that the Log-Structured Merge Tree [26] stores up-
dates to index data. In both systems, sorted data is
buffered in memory before being written to disk, and
reads must merge data from memory and disk.

C-Store and Bigtable share many characteristics: both
systems use a shared-nothing architecture and have two
different data structures, one for recent writes, and one
for storing long-lived data, with a mechanism for mov-
ing data from one form to the other. The systems dif-
fer significantly in their API: C-Store behaves like a
relational database, whereas Bigtable provides a lower
level read and write interface and is designed to support
many thousands of such operations per second per server.
C-Store is also a “read-optimized relational DBMS”,
whereas Bigtable provides good performance on both
read-intensive and write-intensive applications.

Bigtable’s load balancer has to solve some of the same
kinds of load and memory balancing problems faced by
shared-nothing databases (e.g., [11, 35]). Our problem is
somewhat simpler: (1) we do not consider the possibility
of multiple copies of the same data, possibly in alternate
forms due to views or indices; (2) we let the user tell us
what data belongs in memory and what data should stay
on disk, rather than trying to determine this dynamically;
(3) we have no complex queries to execute or optimize.

11 Conclusions

We have described Bigtable, a distributed system for
storing structured data at Google. Bigtable clusters have
been in production use since April 2005, and we spent
roughly seven person-years on design and implementa-
tion before that date. As of August 2006, more than sixty
projects are using Bigtable. Our users like the perfor-
mance and high availability provided by the Bigtable im-
plementation, and that they can scale the capacity of their
clusters by simply adding more machines to the system
as their resource demands change over time.

Given the unusual interface to Bigtable, an interest-
ing question is how difficult it has been for our users to
adapt to using it. New users are sometimes uncertain of
how to best use the Bigtable interface, particularly if they
are accustomed to using relational databases that support
general-purpose transactions. Nevertheless, the fact that
many Google products successfully use Bigtable demon-
strates that our design works well in practice.

We are in the process of implementing several addi-
tional Bigtable features, such as support for secondary
indices and infrastructure for building cross-data-center
replicated Bigtables with multiple master replicas. We
have also begun deploying Bigtable as a service to prod-
uct groups, so that individual groups do not need to main-
tain their own clusters. As our service clusters scale,
we will need to deal with more resource-sharing issues
within Bigtable itself [3, 5].

Finally, we have found that there are significant ad-
vantages to building our own storage solution at Google.
We have gotten a substantial amount of flexibility from
designing our own data model for Bigtable. In addi-
tion, our control over Bigtable’s implementation, and
the other Google infrastructure upon which Bigtable de-
pends, means that we can remove bottlenecks and ineffi-
ciencies as they arise.

Acknowledgements

We thank the anonymous reviewers, David Nagle, and
our shepherd Brad Calder, for their feedback on this pa-
per. The Bigtable system has benefited greatly from the
feedback of our many users within Google. In addition,
we thank the following people for their contributions to
Bigtable: Dan Aguayo, Sameer Ajmani, Zhifeng Chen,
Bill Coughran, Mike Epstein, Healfdene Goguen, Robert
Griesemer, Jeremy Hylton, Josh Hyman, Alex Khesin,
Joanna Kulik, Alberto Lerner, Sherry Listgarten, Mike
Maloney, Eduardo Pinheiro, Kathy Polizzi, Frank Yellin,
and Arthur Zwiegincew.

References

[1] ABADI, D. J., MADDEN, S. R., AND FERREIRA,
M. C. Integrating compression and execution in column-
oriented database systems. Proc. of SIGMOD (2006).

[2] AILAMAKI, A., DEWITT, D. J., HILL, M. D., AND SK-
OUNAKIS, M. Weaving relations for cache performance.
In The VLDB Journal (2001), pp. 169–180.

[3] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Re-
source containers: A new facility for resource manage-
ment in server systems. In Proc. of the 3rd OSDI (Feb.
1999), pp. 45–58.

[4] BARU, C. K., FECTEAU, G., GOYAL, A., HSIAO,
H., JHINGRAN, A., PADMANABHAN, S., COPELAND,

To appear in OSDI 2006 13

G. P., AND WILSON, W. G. DB2 parallel edition. IBM
Systems Journal 34, 2 (1995), 292–322.

[5] BAVIER, A., BOWMAN, M., CHUN, B., CULLER, D.,
KARLIN, S., PETERSON, L., ROSCOE, T., SPALINK, T.,
AND WAWRZONIAK, M. Operating system support for
planetary-scale network services. In Proc. of the 1st NSDI
(Mar. 2004), pp. 253–266.

[6] BENTLEY, J. L., AND MCILROY, M. D. Data compres-
sion using long common strings. In Data Compression
Conference (1999), pp. 287–295.

[7] BLOOM, B. H. Space/time trade-offs in hash coding with
allowable errors. CACM 13, 7 (1970), 422–426.

[8] BURROWS, M. The Chubby lock service for loosely-
coupled distributed systems. In Proc. of the 7th OSDI
(Nov. 2006).

[9] CHANDRA, T., GRIESEMER, R., AND REDSTONE, J.
Paxos made live — An engineering perspective. In Proc.
of PODC (2007).

[10] COMER, D. Ubiquitous B-tree. Computing Surveys 11, 2
(June 1979), 121–137.

[11] COPELAND, G. P., ALEXANDER, W., BOUGHTER,
E. E., AND KELLER, T. W. Data placement in Bubba. In
Proc. of SIGMOD (1988), pp. 99–108.

[12] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified
data processing on large clusters. In Proc. of the 6th OSDI
(Dec. 2004), pp. 137–150.

[13] DEWITT, D., KATZ, R., OLKEN, F., SHAPIRO, L.,
STONEBRAKER, M., AND WOOD, D. Implementation
techniques for main memory database systems. In Proc.
of SIGMOD (June 1984), pp. 1–8.

[14] DEWITT, D. J., AND GRAY, J. Parallel database sys-
tems: The future of high performance database systems.
CACM 35, 6 (June 1992), 85–98.

[15] FRENCH, C. D. One size fits all database architectures
do not work for DSS. In Proc. of SIGMOD (May 1995),
pp. 449–450.

[16] GAWLICK, D., AND KINKADE, D. Varieties of concur-
rency control in IMS/VS fast path. Database Engineering
Bulletin 8, 2 (1985), 3–10.

[17] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The
Google file system. In Proc. of the 19th ACM SOSP (Dec.
2003), pp. 29–43.

[18] GRAY, J. Notes on database operating systems. In Oper-
ating Systems — An Advanced Course, vol. 60 of Lecture
Notes in Computer Science. Springer-Verlag, 1978.

[19] GREER, R. Daytona and the fourth-generation language
Cymbal. In Proc. of SIGMOD (1999), pp. 525–526.

[20] HAGMANN, R. Reimplementing the Cedar file system
using logging and group commit. In Proc. of the 11th
SOSP (Dec. 1987), pp. 155–162.

[21] HARTMAN, J. H., AND OUSTERHOUT, J. K. The Zebra
striped network file system. In Proc. of the 14th SOSP
(Asheville, NC, 1993), pp. 29–43.

[22] KX.COM. kx.com/products/database.php. Product page.

[23] LAMPORT, L. The part-time parliament. ACM TOCS 16,
2 (1998), 133–169.

[24] MACCORMICK, J., MURPHY, N., NAJORK, M.,
THEKKATH, C. A., AND ZHOU, L. Boxwood: Abstrac-
tions as the foundation for storage infrastructure. In Proc.
of the 6th OSDI (Dec. 2004), pp. 105–120.

[25] MCCARTHY, J. Recursive functions of symbolic expres-
sions and their computation by machine. CACM 3, 4 (Apr.
1960), 184–195.

[26] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL,
E. The log-structured merge-tree (LSM-tree). Acta Inf.
33, 4 (1996), 351–385.

[27] ORACLE.COM. www.oracle.com/technology/products/-
database/clustering/index.html. Product page.

[28] PIKE, R., DORWARD, S., GRIESEMER, R., AND QUIN-
LAN, S. Interpreting the data: Parallel analysis with
Sawzall. Scientific Programming Journal 13, 4 (2005),
227–298.

[29] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP,
R., AND SHENKER, S. A scalable content-addressable
network. In Proc. of SIGCOMM (Aug. 2001), pp. 161–
172.

[30] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scal-
able, distributed object location and routing for large-
scale peer-to-peer systems. In Proc. of Middleware 2001
(Nov. 2001), pp. 329–350.

[31] SENSAGE.COM. sensage.com/products-sensage.htm.
Product page.

[32] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK,
M. F., AND BALAKRISHNAN, H. Chord: A scalable
peer-to-peer lookup service for Internet applications. In
Proc. of SIGCOMM (Aug. 2001), pp. 149–160.

[33] STONEBRAKER, M. The case for shared nothing.
Database Engineering Bulletin 9, 1 (Mar. 1986), 4–9.

[34] STONEBRAKER, M., ABADI, D. J., BATKIN, A., CHEN,
X., CHERNIACK, M., FERREIRA, M., LAU, E., LIN,
A., MADDEN, S., O’NEIL, E., O’NEIL, P., RASIN,
A., TRAN, N., AND ZDONIK, S. C-Store: A column-
oriented DBMS. In Proc. of VLDB (Aug. 2005), pp. 553–
564.

[35] STONEBRAKER, M., AOKI, P. M., DEVINE, R.,
LITWIN, W., AND OLSON, M. A. Mariposa: A new ar-
chitecture for distributed data. In Proc. of the Tenth ICDE
(1994), IEEE Computer Society, pp. 54–65.

[36] SYBASE.COM. www.sybase.com/products/database-
servers/sybaseiq. Product page.

[37] ZHAO, B. Y., KUBIATOWICZ, J., AND JOSEPH, A. D.
Tapestry: An infrastructure for fault-tolerant wide-area
location and routing. Tech. Rep. UCB/CSD-01-1141, CS
Division, UC Berkeley, Apr. 2001.

[38] ZUKOWSKI, M., BONCZ, P. A., NES, N., AND HEMAN,
S. MonetDB/X100 — A DBMS in the CPU cache. IEEE
Data Eng. Bull. 28, 2 (2005), 17–22.

To appear in OSDI 2006 14

