
TA68

Performance Aspects of x86
Virtualization

Ole Agesen
Principal Engineer

VMware

Talk Outline

Part 1. Problem statement
Part 2. Instruction set virtualization techniques
Part 3. Memory virtualization techniques
Part 4. Practicalities
Conclusions

Understanding Performance in a Complex Space

Life used to be simple (1999)
All guests were 32 bit
All CPUs were 32 bit
All VMMs used binary translation (BT)

Now we have diversity (2007)
32 and 64 bit guests (and CPUs)
64 bit architecture divergence (AMD/Intel)
CPUs with/without hardware assist

1st generation hw assist: instruction set virtualization

2nd generation hw assist: memory virtualization

Para-virtualized guests (not covered in this talk)

What Can You do with this Understanding?

Buying systems?
I don’t think my analysis will help you

Writing software?
Can help you get better performance in virtual machine

Tuning and adjusting existing workloads?
Ditto

Virtualizing workloads?
Better understand what can be successfully virtualized today, and
in the future as new hardware/OSes/workloads appear

Caveats

Performance numbers are very rounded
Indicative of numbers one might measure, not actual numbers

Avoid “apples” vs. “oranges” (no one CPU can run all modes)
Ignoring MHz, pipelines, cache sizes

Big picture has longer life than details
Tomorrow’s CPUs
Tomorrow’s guests

Using micro-benchmarks that exaggerate properties
Discussing just CPU performance; ignoring I/O, resource
mgmt, power consumption, etc.

Any use of virtualization must consider all these factors

What’s the First Thing You Do with a New Computer?

Benchmark it!

phobos 100> cc –o sum sum.c
phobos 101> time sum
s = 499999999500000000, c = 499999999500000000
3.276u 0.003s 0:03.28 99.6% ...

uint64_t i, s = 0;
for (i = 0; i < 1000000000; i++) {
s = s + i;

}
printf("s = %ld, c = %ld\n",

s, i * (i – 1) / 2);

sum.c:

...And if You get a New Virtual Computer?

Benchmark virtual against native
Native performance generally is upper bound for virtual

Ideal performance of VM relative to native: 100%

Native(sum): 3.28s

Virtual(sum): 3.47s

Ratio: 95%

Probably happy with the new virtual computer!

What’s the Next Thing You Do?

Tell your friend about the new computer!
Victor to Bob: “my virtual computer runs at 95% of native!”

Bob to Victor: “my virtual computer runs at 25% of native – help!”

What’s the Next Thing You Do?

Tell your friend about the new computer!
Victor to Bob: “my virtual computer runs at 95% of native!”

Bob to Victor: “my virtual computer runs at 25% of native – help!”

uint64_t i, s = 0;
for (i = 0; i < 1000000000; i++) {
s = s + i;

}

sum.c:

for (int i = 0; i < 10000000; i++) {
getppid();

}

getppid.c:

Hoping to Understand It, We Swap Benchmarks

Bob Victor

sum 95% 95%
getppid 25% 95%

Percent of native performance:

...And Call Nat Who Also has a New Virtual Computer

and a couple of benchmarks that have him scratching
his head...

for (int i = 0; i < 1000000; i++) {
if (fork() == 0) return;

}

forkwait.c:

#define S (8192 * 4096)
volatile char large[S];
for (unsigned i = 0; i < 10 * S; i++) {
large[(4096 * i + i) % S] = 1 + large[i % S];

}

memsweep.c:

85%

40%

A Complex Picture Emerges

No system handles all benchmarks well
No two systems suffer same overheads!

Bob
Trellis

Victor
Thomson

Nat
Petersen

sum 95% 95% 95%

getppid 25% 95% 95%

forkwait 15% 5% 85%
memsweep 85% 85% 40%

A Complex Picture Emerges

3 different execution modes:
Binary Translation

1’st generation hardware assist for instructions (Intel VT-x, AMD-V)

2’nd generation hardware assist for memory (AMD-V Nested Paging1,2)

Bob
Trellis

Victor
Thomson

Nat
Petersen

sum 95% 95% 95%

getppid 25% 95% 95%

forkwait 15% 5% 85%
memsweep 85% 85% 40%

1Results generated on pre-release AMD ‘Barcelona’ processors. Results are unaudited
and are intended to demonstrate relative NP/BT performance only.
2 Intel has announced a similar feature in a future processor: EPT.

Talk Outline

Part 1. Problem statement
Part 2. Instruction set virtualization techniques

Background: classical trap-and-emulate

Software: binary translation (BT)

Hardware: Intel VT-x and AMD-V

Qualitative performance comparison

Part 3. Memory virtualization techniques
Part 4. Practicalities
Conclusions

Classical Instruction Virtualization
Trap-and-emulate

Nonvirtualized (“native”) system
OS runs in privileged mode

OS “owns” the hardware

Application code has less privilege

Virtualized
VMM most privileged (for isolation)

Classical “ring compression” or “de-privileging”
Run guest OS kernel in Ring 1

Privileged instructions trap; emulated by VMM

But: does not work for x86 (lack of traps)

Ring 3

Ring 0OS

Apps

Ring 3

Ring 0

Guest OS

Apps

VMM

Ring 1

Classical VM performance

Native speed except for traps
Overhead = trap frequency * average trap cost

Trap sources:
Privileged instructions

Page table updates (to support memory virtualization)

Memory-mapped devices

Back-of-the-envelope numbers:
Trap cost is high on deeply pipelined CPUs: ~1000 cycles

Trap frequency is high for “tough” workloads: 50 kHz or greater

Bottom line: substantial overhead

Binary Translation of Guest Code

Translate guest kernel code
Replace privileged instrs with safe “equivalent”
instruction sequences
No need for traps
BT is an extremely powerful technology

Permits any unmodified x86 OS to run in a VM

Can virtualize any instruction set

BT Mechanics

Each translator invocation
Consume one input basic block (guest code)
Produce one output basic block

Store output in translation cache
Future reuse
Amortize translation costs
Guest-transparent: no patching “in place”

translator
input
basic blockGuest

translated
basic block

Translation cache

Combining BT and Direct Execution

Direct Execution
(user mode guest code)

Binary Translation
(kernel mode guest code)

VMM

Faults, syscalls
interrupts

IRET, sysret

Performance of a BT-based VMM

Costs
Running the translator

Path lengthening: output is sometimes longer than input

System call overheads: DE/BT transition

Benefits
Avoid costly traps

Most instructions need no change (“identical” translation)

Adaptation: adjust translation in response to guest behavior
Online profile-guided optimization

User-mode code runs at full speed (“direct execution”)

Intel VT-x / AMD-V: 1st Generation HW Support

Key feature: root vs. guest CPU mode
VMM executes in root mode
Guest (OS, apps) execute in guest mode

VMM and Guest run as
“co-routines”

VM enter
Guest runs
A while later: VM exit
VMM runs
...

R
oot m

ode
G

uest m
ode

Ring 3

Ring 0

VM
exit

VM
enter

Guest OS

Apps

VMM

How VMM Controls Guest Execution

Hardware-defined structure
Intel: VMCS (virtual machine control structure)
AMD: VMCB (virtual machine control block)

VMCB/VMCS contains
Guest state
Control bits that define conditions for exit

Exit on IN, OUT, CPUID, ...
Exit on write to control register CR3
Exit on page fault, pending interrupt, ...

VMM uses control bits to “confine” and observe guest

VMM

physical CPU

Guest
VMCB

Performance of a VT-x/AMD-V Based VMM

VMM only intervenes to handle exits
Same performance equation as classical trap-and-
emulate:

overhead = exit frequency * average exit cost

VMCB/VMCS can avoid simple exits (e.g., enable/disable
interrupts), but many exits remain

Page table updates

Context switches

In/out

Interrupts

Qualitative Comparison of BT and VT-x/AMD-V

BT loses on:
system calls

translator overheads

path lengthening

indirect control flow

BT wins on:
page table updates (adaptation)

memory-mapped I/O (adapt.)

IN/OUT instructions

no traps for priv. instructions

VT-x/AMD-V loses on:
exits (costlier than “callouts”)

no adaptation (cannot elim. exits)

page table updates

memory-mapped I/O

IN/OUT instructions

VT-x/AMD-V wins on:
system calls

almost all code runs “directly”

Qualitative Comparison of BT and VT-x/AMD-V

BT loses on:
system calls

translator overheads

path lengthening

indirect control flow

BT wins on:
page table updates (adaptation)

memory-mapped I/O (adapt.)

IN/OUT instructions

no traps for priv. instructions

VT-x/AMD-V loses on:
exits (costlier than “callouts”)

no adaptation (cannot elim. exits)

page table updates

memory-mapped I/O

IN/OUT instructions

VT-x/AMD-V wins on:
system calls

almost all code runs “directly”

Explains
Bob’s slow

getppid Explains
Victor’s very
slow forkwait

Qualitative Comparison of BT and VT-x/AMD-V

BT loses on:
system calls

translator overheads

path lengthening

indirect control flow

BT wins on:
page table updates (adaptation)

memory-mapped I/O (adapt.)

IN/OUT instructions

no traps for priv. instructions

VT-x/AMD-V loses on:
exits (costlier than “callouts”)

no adaptation (cannot elim. exits)

page table updates

memory-mapped I/O

IN/OUT instructions

VT-x/AMD-V wins on:
system calls

almost all code runs “directly”

Talk outline

Part 1. Problem statement
Part 2. Instruction set virtualization techniques
Part 3. Memory virtualization techniques

Software: shadow page tables

Hardware: nested page tables (NPT), extended page tables (EPT)

Qualitative performance comparison

Part 4. Practicalities
Conclusions

Virtual Memory

Applications see contiguous virtual address space, not physical memory
OS defines VA -> PA mapping

Usually at 4 KB granularity: a page at a time
Mappings are stored in page tables

Process 1 Process 2

Virtual
Memory

VA

Physical
Memory

PA

0 4GB 0 4GB

Virtual Memory

Applications see contiguous virtual address space, not physical memory
OS defines VA -> PA mapping

Usually at 4 KB granularity
Mappings are stored in page tables

HW memory management unit (MMU)
Page table walker
TLB (translation look-aside buffer)

Process 1 Process 2

Virtual
Memory

VA

Physical
Memory

PA

0 4GB 0 4GB

TLB fill
hardware

VA PA
TLB

%cr3

VA→PA mapping

. . .

Virtualizing Virtual Memory

To run multiple VMs on a single system, another level of memory virtualization must
be done

Guest OS still controls virtual to physical mapping: VA -> PA
Guest OS has no direct access to machine memory (to enforce isolation)

VMM maps guest physical memory to actual machine memory: PA -> MA

Virtual
Memory

Physical
Memory

VA

PA

VM 1 VM 2

Process 1 Process 2Process 1 Process 2

Machine
Memory

MA

Virtualizing Virtual Memory
Shadow Page Tables

VMM builds “shadow page tables” to accelerate the mappings
Shadow directly maps VA -> MA
Can avoid doing two levels of translation on every access
TLB caches VA->MA mapping
Leverage hardware walker for TLB fills (walking shadows)
When guest changes VA -> PA, the VMM updates shadow page tables

Virtual
Memory

Physical
Memory

VA

PA

VM 1 VM 2

Process 1 Process 2Process 1 Process 2

Machine
Memory

MA

3-way Performance Trade-off in Shadow Page Tables

1. Trace costs
VMM must intercept Guest writes to primary page tables
Propagate change into shadow page table (or invalidate)

2. Page fault costs
VMM must intercept page faults
Validate shadow page table entry (hidden page fault), or
forward fault to Guest (true page fault)

3. Context switch costs
VMM must intercept CR3 writes
Activate new set of shadow page tables

Finding good trade-off is crucial for performance
VMware has 9 years of experience here

Shadow Page Tables and Scaling to Wide vSMP

VMware currently supports up to 4-way vSMP
Problems lurk in scaling to higher numbers of vCPUs

Per-vcpu shadow page tables
High memory overhead

Process migration costs (cold shadows/lack of shadows)

Remote trace events costlier than local events

vcpu-shared shadow page tables
Higher synchronization costs in VMM

Can already see this in extreme cases
forkwait is slower on vSMP than a uniprocessor VM

Hardware Support
Nested/Extended Page Tables

VA MA
TLB

TLB fill
hardware

guest
VMM

Guest PT ptr

Nested PT ptr

VA→PA mapping

PA→MA mapping

. . .

Analysis of NPT

MMU composes VA->PA and PA->MA mappings on the fly at
TLB fill time
Benefits

Significant reduction in “exit frequency”
No trace faults (primary page table modifications as fast as native)
Page faults require no exits
Context switches require no exits

No shadow page table memory overhead
Better scalability to wider vSMP

Aligns with multi-core: performance through parallelism

Costs
More expensive TLB misses: O(n2) cost for page table walk,
where n is the depth of the page table tree

Analysis of NPT

MMU composes VA->PA and PA->MA mappings on the fly at
TLB fill time
Benefits

Significant reduction in “exit frequency”
No trace faults (primary page table modifications as fast as native)
Page faults require no exits
Context switches require no exits

No shadow page table memory overhead
Better scalability to wider vSMP

Aligns with multi-core: performance through parallelism

Costs
More expensive TLB misses: O(n2) cost for page table walk,
where n is the depth of the page table tree

Explains Nat’s
near-native

speed forkwait

Explains Nat’s
low

performance
memsweep

Improving NPT Performance
Large pages

2 MB today, 1 GB in the future
In part guest’s responsibility: “inner” page tables

For most guests/workloads this requires explicit setup
In part VMM’s responsibility: “outer” page tables

ESX will take care of it

1st benefit: faster page walks (fewer levels to traverse)
2nd benefit: fewer page walks (increased TLB capacity)

TLB

MMU

Talk Outline

Part 1. Problem statement
Part 2. Instruction set virtualization techniques
Part 3. Memory virtualization techniques
Part 4. Practicalities

Which execution mode does my VM use?

How do I specify modes (when there is a choice)?

Performance suggestions

Conclusions

Which Execution Mode Does my 32 bit VM Use?

General 32 bit rule: use Binary Translation
Intel CPUs:

No use of 1st generation VT-x: BT usually performs better

AMD CPUs:
No use of 1st generation AMD-V: BT usually performs better

Option to use 2nd generation AMD-V NPT1

1Under consideration for future ESX releases.

Which Execution Mode Does my 64 Bit VM Use?

No general rule (AMD/Intel architecture divergence)
AMD CPUs:

Opteron Rev E and F: use BT
Rev F has 1st generation hardware support, but we prefer BT (perf)

‘Barcelona’: use AMD-V with NPT1

2nd generation hardware support usually performs better than BT
Retain BT option for workloads that don’t benefit from NPT

Intel CPUs:
Always use VT-x 1st generation hardware support

BT not possible (no segment limit checks)
EPT supported subject to hardware availability1

1Under consideration for future ESX releases.

User-visible Choice
To use or not to use NPT1

monitor.virtual_mmu = software (shadow page table, BT)
monitor.virtual_mmu = hardware (NPT)
monitor.virtual_mmu = automatic

System tries to make the best choice

One day perhaps based on online profiling

Initially just based on guest OS type:
64 bit VM: “automatic” selects NPT (and AMD-V)

32 bit VM: “automatic” selects shadow page tables (and BT)

1Under consideration for future ESX releases.

When Should I Override “automatic”?

Depends on
Guest OS

Workload

Memory size

Number of virtual CPUs

Bake-off between “software” and “hardware” MMU is
best way to decide

Factors Favoring “Hardware” MMU (NPT)

High rate of:
page table updates (e.g., memmap/unmap)

context switches (process/process)

page faults

process creation

Higher numbers of virtual CPUs
A need to reduce overhead memory
Win2003 SP2 more likely to work well with NPT than other
versions of (SMP) 32 bit Windows

Reason: Microsoft eliminated most APIC TPR accesses whose
overheads would otherwise defeat any NPT gains

General Performance Recommendations

TLB perf: configure workload to use 2 MB pages
Especially important for NPT but also helps other modes

Not a guaranteed win (measure and compare)
GOS and system-level bottlenecks may arise

May increase memory usage (by reducing page-sharing)

I/O perf: vmxnet often more efficient than e1000
Fewer “touches” per packet transmitted

Most important for hardware-assisted execution (high exit costs)

Adaptive BT tolerates higher rate of device touches

Conclusions
CPU performance

Complex and evolving space
CPUs changing

Software improving

Diversity of execution modes
Workload performance may be strongly affected by mode

No one mode is universally best

Ability to flexibly leverage different modes
Choice of mode partly locked down by CPU/VMM

Software/hardware MMU choice exposed to user

Conclusions
Benchmarks

Interpret results with reference to execution mode
Micro-benchmarks

Exaggerate certain properties

Understand degree to which these properties matter for real workload

“Real” workloads mix aspects of all microbenchmarks
Less black and white

Usually performs closer to native (poison is much diluted)

Examples:
http://www.vmware.com/resources/techresources/cat/91,96

No benchmark is as good a test as the real workload

Questions?

 TA68
 Performance Aspects of x86 Virtualization

 Ole Agesen
 VMware

	TA68�Performance Aspects of x86 Virtualization
	Talk Outline
	Understanding Performance in a Complex Space
	What Can You do with this Understanding?
	Caveats
	What’s the First Thing You Do with a New Computer?
	...And if You get a New Virtual Computer?
	What’s the Next Thing You Do?
	What’s the Next Thing You Do?
	Hoping to Understand It, We Swap Benchmarks
	...And Call Nat Who Also has a New Virtual Computer
	A Complex Picture Emerges
	A Complex Picture Emerges
	Talk Outline
	Classical Instruction Virtualization�Trap-and-emulate
	Classical VM performance
	Binary Translation of Guest Code
	BT Mechanics
	Combining BT and Direct Execution
	Performance of a BT-based VMM
	Intel VT-x / AMD-V: 1st Generation HW Support
	How VMM Controls Guest Execution
	Performance of a VT-x/AMD-V Based VMM
	Qualitative Comparison of BT and VT-x/AMD-V
	Qualitative Comparison of BT and VT-x/AMD-V
	Qualitative Comparison of BT and VT-x/AMD-V
	Talk outline
	Virtual Memory
	Virtual Memory
	Virtualizing Virtual Memory
	Virtualizing Virtual Memory�Shadow Page Tables
	3-way Performance Trade-off in Shadow Page Tables
	Shadow Page Tables and Scaling to Wide vSMP
	Hardware Support�Nested/Extended Page Tables
	Analysis of NPT
	Analysis of NPT
	Improving NPT Performance�Large pages
	Talk Outline
	Which Execution Mode Does my 32 bit VM Use?
	Which Execution Mode Does my 64 Bit VM Use?
	User-visible Choice�To use or not to use NPT1
	When Should I Override “automatic”?
	Factors Favoring “Hardware” MMU (NPT)
	General Performance Recommendations
	Conclusions�CPU performance
	Conclusions�Benchmarks
	Questions?

