
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 2B:
Instruction Set Reference, N-Z

NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.

Order Number: 253667-029US
November 2008

ii Vol. 2B

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUA-
TION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an Intel® HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.htm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks or reg-
istered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation

Vol. 2B 4-1

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 INSTRUCTIONS (N-Z)
Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions
(N-Z). See also: Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

4-2 Vol. 2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, N-Z

NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement.
(This operation is equivalent to subtracting the operand from 0.) The destination
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IF DEST = 0
THEN CF ← 0;
ELSE CF ← 1;

FI;
DEST ← [– (DEST)]

Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF,
AF, and PF flags are set according to the result.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

F6 /3 NEG r/m8 Valid Valid Two's complement negate r/m8.

REX + F6 /3 NEG r/m8* Valid N.E. Two's complement negate r/m8.

F7 /3 NEG r/m16 Valid Valid Two's complement negate
r/m16.

F7 /3 NEG r/m32 Valid Valid Two's complement negate
r/m32.

REX.W + F7 /3 NEG r/m64 Valid N.E. Two's complement negate
r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Vol. 2B 4-3

INSTRUCTION SET REFERENCE, N-Z

NEG—Two's Complement Negation

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

4-4 Vol. 2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Vol. 2B 4-5

INSTRUCTION SET REFERENCE, N-Z

NOP—No Operation

NOP—No Operation

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:

• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not
issue a memory operation. The instruction’s operation is the same in non-64-bit
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

The multi-byte NOP instruction performs no operation on supported processors and
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte
sequence of “no operation” as one instruction. For situations where multiple-byte
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are:

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

90 NOP Valid Valid One byte no-operation instruction.

0F 1F /0 NOP r/m16 Valid Valid Multi-byte no-operation instruction.

0F 1F /0 NOP r/m32 Valid Valid Multi-byte no-operation instruction.

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] 0F 1F 00H

4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H

4-6 Vol. 2B NOP—No Operation

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 +
00000000H]

66 0F 1F 84 00 00 00 00
00H

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction (Contd.)

Length Assembly Byte Sequence

Vol. 2B 4-7

INSTRUCTION SET REFERENCE, N-Z

NOT—One's Complement Negation

NOT—One's Complement Negation

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the
destination operand and stores the result in the destination operand location. The
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F6 /2 NOT r/m8 Valid Valid Reverse each bit of r/m8.

REX + F6 /2 NOT r/m8* Valid N.E. Reverse each bit of r/m8.

F7 /2 NOT r/m16 Valid Valid Reverse each bit of r/m16.

F7 /2 NOT r/m32 Valid Valid Reverse each bit of r/m32.

REX.W + F7 /2 NOT r/m64 Valid N.E. Reverse each bit of r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

4-8 Vol. 2B NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Vol. 2B 4-9

INSTRUCTION SET REFERENCE, N-Z

OR—Logical Inclusive OR

OR—Logical Inclusive OR
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

0C ib OR AL, imm8 Valid Valid AL OR imm8.

0D iw OR AX, imm16 Valid Valid AX OR imm16.

0D id OR EAX, imm32 Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 Valid N.E. RAX OR imm32 (sign-
extended).

80 /1 ib OR r/m8, imm8 Valid Valid r/m8 OR imm8.

REX + 80 /1 ib OR r/m8*, imm8 Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16, imm16 Valid Valid r/m16 OR imm16.

81 /1 id OR r/m32, imm32 Valid Valid r/m32 OR imm32.

REX.W + 81 /1 id OR r/m64, imm32 Valid N.E. r/m64 OR imm32 (sign-
extended).

83 /1 ib OR r/m16, imm8 Valid Valid r/m16 OR imm8 (sign-
extended).

83 /1 ib OR r/m32, imm8 Valid Valid r/m32 OR imm8 (sign-
extended).

REX.W + 83 /1 ib OR r/m64, imm8 Valid N.E. r/m64 OR imm8 (sign-
extended).

08 /r OR r/m8, r8 Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m8*, r8* Valid N.E. r/m8 OR r8.

09 /r OR r/m16, r16 Valid Valid r/m16 OR r16.

09 /r OR r/m32, r32 Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 Valid N.E. r/m64 OR r64.

0A /r OR r8, r/m8 Valid Valid r8 OR r/m8.

REX + 0A /r OR r8*, r/m8* Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 Valid N.E. r64 OR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

4-10 Vol. 2B OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z

Description

Performs a bitwise inclusive OR operation between the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is
set to 0 if both corresponding bits of the first and second operands are 0; otherwise,
each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST ← DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

Vol. 2B 4-11

INSTRUCTION SET REFERENCE, N-Z

OR—Logical Inclusive OR

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-12 Vol. 2B ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Description

Performs a bitwise logical OR of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] ← DEST[127:0] BitwiseOR SRC[127:0];

Intel® C/C++ Compiler Intrinsic Equivalent

ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 56 /r ORPD xmm1, xmm2/m128 Valid Valid Bitwise OR of xmm2/m128
and xmm1.

Vol. 2B 4-13

INSTRUCTION SET REFERENCE, N-Z

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

4-14 Vol. 2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Description

Performs a bitwise logical OR of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] ← DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent

ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 56 /r ORPS xmm1, xmm2/m128 Valid Valid Bitwise OR of
xmm2/m128 and
xmm1.

Vol. 2B 4-15

INSTRUCTION SET REFERENCE, N-Z

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-16 Vol. 2B OUT—Output to Port

INSTRUCTION SET REFERENCE, N-Z

OUT—Output to Port

Description

Copies the value from the second operand (source operand) to the I/O port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the
DX register as a source operand allows I/O ports from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O
ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor insures that the EWBE#
pin has been sampled active before it begins to execute the next instruction. (Note
that the instruction can be prefetched if EWBE# is not active, but it will not be

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

E6 ib OUT imm8, AL Valid Valid Output byte in AL to I/O port
address imm8.

E7 ib OUT imm8, AX Valid Valid Output word in AX to I/O port
address imm8.

E7 ib OUT imm8, EAX Valid Valid Output doubleword in EAX to I/O
port address imm8.

EE OUT DX, AL Valid Valid Output byte in AL to I/O port
address in DX.

EF OUT DX, AX Valid Valid Output word in AX to I/O port
address in DX.

EF OUT DX, EAX Valid Valid Output doubleword in EAX to I/O
port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Vol. 2B 4-17

INSTRUCTION SET REFERENCE, N-Z

OUT—Output to Port

executed until the EWBE# pin is sampled active.) Only the Pentium processor family
has the EWBE# pin.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to selected I/O port *)
FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.

4-18 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Description

Copies data from the source operand (second operand) to the I/O port specified with
the destination operand (first operand). The source operand is a memory location,
the address of which is read from either the DS:SI, DS:ESI or the RSI registers
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-
tively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an I/O port address (from 0 to 65,535) that is read from the
DX register. The size of the I/O port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit I/O port or by the
operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the OUTS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand should be a symbol that indicates the size of the

Opcode* Instruction 64-Bit Mode Compat/
Leg Mode

Description

6E OUTS DX, m8 Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTS DX, m16 Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTS DX, m32 Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/O port
specified in DX**.

6E OUTSB Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTSW Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTSD Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/O port
specified in DX**.

NOTES:
* See IA-32 Architecture Compatibility section below.
** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit

mode, only 32-bit (ESI) and 16-bit (SI) address sizes are supported.

Vol. 2B 4-19

INSTRUCTION SET REFERENCE, N-Z

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

I/O port and the source address, and the destination operand must be DX. This
explicit-operands form is provided to allow documentation; however, note that the
documentation provided by this form can be misleading. That is, the source operand
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source
operand and DX is assumed to be the destination operand. The size of the I/O port is
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the
I/O port, the SI/ESI/RSI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP
prefix for block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix. This instruction is only useful for accessing I/O ports located in the
processor’s I/O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on
accessing I/O ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit
address is specified using RSI by default. 32-bit address using ESI is support using
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium
processor insures that the EWBE# pin has been sampled active before it begins to
execute the next instruction. (Note that the instruction can be prefetched if EWBE#
is not active, but it will not be executed until the EWBE# pin is sampled active.) Only
the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next
instruction until the data phase of the transaction is complete.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

4-20 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z

IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)

#GP(0);
ELSE (* I/O operation is allowed *)

DEST ← SRC; (* Writes to I/O port *)
FI;

ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL ≤ IOPL *)
DEST ← SRC; (* Writes to I/O port *)

FI;

Byte transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 1;
ELSE RSI ← RSI or – 1;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 1;
ELSE ESI ← ESI – 1;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
FI;

Word transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 2;
ELSE RSI ← RSI or – 2;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 2;

Vol. 2B 4-21

INSTRUCTION SET REFERENCE, N-Z

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

ELSE ESI ← ESI – 2;
FI;

FI;
ELSE

IF DF = 0
THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
FI;

Doubleword transfer:
IF 64-bit mode

Then
IF 64-Bit Address Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 4;
ELSE RSI ← RSI or – 4;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 4;
ELSE ESI ← ESI – 4;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.

If a memory operand effective address is outside the limit of the
CS, DS, ES, FS, or GS segment.

If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.

4-22 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being

accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege
level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/O port being accessed is 1.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-23

INSTRUCTION SET REFERENCE, N-Z

PABSB/PABSW/PABSD — Packed Absolute Value

PABSB/PABSW/PABSD — Packed Absolute Value

Description

PABSB/W/D computes the absolute value of each data element of the source operand
(the second operand) and stores the UNSIGNED results in the destination operand
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit
words, and PABSD operates on signed 32-bit integers. The source operand can be an
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX or an XMM register. Both
operands can be MMX register or XMM registers. When the source operand is a
128-bit memory operand, the operand must be aligned on a 16byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PABSB with 64 bit operands

Unsigned DEST[7:0] ← ABS(SRC[7:0])
Repeat operation for 2nd through 7th bytes
Unsigned DEST[63:56] ← ABS(SRC[63:56])

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 38 1C /r PABSB mm1,
mm2/m64

Valid Valid Compute the absolute value of
bytes in mm2/m64 and store
UNSIGNED result in mm1.

66 0F 38 1C /r PABSB xmm1,
xmm2/m128

Valid Valid Compute the absolute value of
bytes in xmm2/m128 and store
UNSIGNED result in xmm1.

0F 38 1D /r PABSW mm1,
mm2/m64

Valid Valid Compute the absolute value of 16-
bit integers in mm2/m64 and store
UNSIGNED result in mm1.

66 0F 38 1D /r PABSW xmm1,
xmm2/m128

Valid Valid Compute the absolute value of 16-
bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

0F 38 1E /r PABSD mm1,
mm2/m64

Valid Valid Compute the absolute value of 32-
bit integers in mm2/m64 and store
UNSIGNED result in mm1.

66 0F 38 1E /r PABSD xmm1,
xmm2/m128

Valid Valid Compute the absolute value of 32-
bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

4-24 Vol. 2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, N-Z

PABSB with 128 bit operands:

Unsigned DEST[7:0] ← ABS(SRC[7:.0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120] ← ABS(SRC[127:120])

PABSW with 64 bit operands:

Unsigned DEST[15:0] ← ABS(SRC[15:0])
Repeat operation for 2nd through 3rd 16-bit words
Unsigned DEST[63:48] ← ABS(SRC[63:48])

PABSW with 128 bit operands:

Unsigned DEST[15:0] ← ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112] ← ABS(SRC[127:112])

PABSD with 64 bit operands:

Unsigned DEST[31:0] ← ABS(SRC[31:0])
Unsigned DEST[63:32] ← ABS(SRC[63:32])

PABSD with 128 bit operands:

Unsigned DEST[31:0] ← ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96] ← ABS(SRC[127:96])

Intel C/C++ Compiler Intrinsic Equivalents

PABSB __m64 _mm_abs_pi8 (__m64 a)

PABSB __m128i _mm_abs_epi8 (__m128i a)

PABSW __m64 _mm_abs_pi16 (__m64 a)

PABSW __m128i _mm_abs_epi16 (__m128i a)

PABSD __m64 _mm_abs_pi32 (__m64 a)

PABSD __m128i _mm_abs_epi32 (__m128i a)

Protected Mode Exceptions
#GP(0): If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Vol. 2B 4-25

INSTRUCTION SET REFERENCE, N-Z

PABSB/PABSW/PABSD — Packed Absolute Value

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0): If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD: If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

4-26 Vol. 2B PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-27

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers
(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-1 for an
example of the packing operation.

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination
operand (first operand) and 4 or 8 signed word integers from the source operand

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 63 /r PACKSSWB mm1,
mm2/m64

Valid Valid Converts 4 packed signed word
integers from mm1 and from
mm2/m64 into 8 packed signed
byte integers in mm1 using signed
saturation.

66 0F 63 /r PACKSSWB xmm1,
xmm2/m128

Valid Valid Converts 8 packed signed word
integers from xmm1 and from
xxm2/m128 into 16 packed signed
byte integers in xxm1 using signed
saturation.

0F 6B /r PACKSSDW mm1,
mm2/m64

Valid Valid Converts 2 packed signed
doubleword integers from mm1 and
from mm2/m64 into 4 packed
signed word integers in mm1 using
signed saturation.

66 0F 6B /r PACKSSDW xmm1,
xmm2/m128

Valid Valid Converts 4 packed signed
doubleword integers from xmm1
and from xxm2/m128 into 8 packed
signed word integers in xxm1 using
signed saturation.

Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A

4-28 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

(second operand) into 8 or 16 signed byte integers and stores the result in the desti-
nation operand. If a signed word integer value is beyond the range of a signed byte
integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination
operand (first operand) and 2 or 4 signed doublewords from the source operand
(second operand) into 4 or 8 signed words in the destination operand (see
Figure 4-1). If a signed doubleword integer value is beyond the range of a signed
word (that is, greater than 7FFFH for a positive integer or greater than 8000H for a
negative integer), the saturated signed word integer value of 7FFFH or 8000H,
respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit
operands. When operating on 64-bit operands, the destination operand must be an
MMX technology register and the source operand can be either an MMX technology
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKSSWB instruction with 64-bit operands:
DEST[7:0] ← SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] ← SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] ← SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] ← SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] ← SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB instruction with 128-bit operands:
DEST[7:0]← SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToSignedByte (DEST[79:64]);

Vol. 2B 4-29

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

DEST[47:40] ← SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW instruction with 128-bit operands:
DEST[15:0] ← SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] ← SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] ← SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] ← SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] ← SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] ← SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] ← SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] ← SaturateSignedDwordToSignedWord (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

PACKSSDW __m128i _mm_packs_epi32(__m128i m1, __m128i m2)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

4-30 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

Vol. 2B 4-31

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-32 Vol. 2B PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

PACKUSDW — Pack with Unsigned Saturation

Description

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively, is stored in the destination.

Operation

TMP[15:0] (DEST[31:0] < 0) ? 0 : DEST[15:0];
DEST[15:0] (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] (DEST[63:32] < 0) ? 0 : DEST[47:32];
DEST[31:16] (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] (DEST[95:64] < 0) ? 0 : DEST[79:64];
DEST[47:32] (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48] (DEST[127:96] < 0) ? 0 : DEST[111:96];
DEST[63:48] (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] (SRC[31:0] < 0) ? 0 : SRC[15:0];
DEST[63:48] (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] (SRC[63:32] < 0) ? 0 : SRC[47:32];
DEST[95:80] (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] (SRC[127:96] < 0) ? 0 : SRC[111:96];
DEST[128:112] (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F
38 2B /r

PACKUSDW xmm1,
xmm2/m128

Valid Valid Convert 4 packed signed doubleword integers
from xmm1 and 4 packed signed doubleword
integers from xmm2/m128 into 8 packed
unsigned word integers in xmm1 using
unsigned saturation.

Vol. 2B 4-33

INSTRUCTION SET REFERENCE, N-Z

PACKUSDW — Pack with Unsigned Saturation

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0): For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

4-34 Vol. 2B PACKUSDW — Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-35

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

PACKUSWB—Pack with Unsigned Saturation

Description

Converts 4 or 8 signed word integers from the destination operand (first operand)
and 4 or 8 signed word integers from the source operand (second operand) into 8 or
16 unsigned byte integers and stores the result in the destination operand. (See
Figure 4-1 for an example of the packing operation.) If a signed word integer value is
beyond the range of an unsigned byte integer (that is, greater than FFH or less than
00H), the saturated unsigned byte integer value of FFH or 00H, respectively, is stored
in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When
operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKUSWB instruction with 64-bit operands:
DEST[7:0] ← SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToUnsignedByte SRC[63:48];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 67 /r PACKUSWB mm,
mm/m64

Valid Valid Converts 4 signed word integers
from mm and 4 signed word
integers from mm/m64 into 8
unsigned byte integers in mm using
unsigned saturation.

66 0F 67 /r PACKUSWB xmm1,
xmm2/m128

Valid Valid Converts 8 signed word integers
from xmm1 and 8 signed word
integers from xmm2/m128 into 16
unsigned byte integers in xmm1
using unsigned saturation.

4-36 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB instruction with 128-bit operands:
DEST[7:0]← SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] ← SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToUnsignedByte (SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PACKUSWB __m128i _mm_packs_epu16(__m128i m1, __m128i m2)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

Vol. 2B 4-37

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

4-38 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-39

INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

PADDB/PADDW/PADDD—Add Packed Integers

Description

Performs a SIMD add of the packed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too
large to be represented in 8 bits (overflow), the result is wrapped around and the low
8 bits are written to the destination operand (that is, the carry is ignored).

The PADDW instruction adds packed word integers. When an individual result is too
large to be represented in 16 bits (overflow), the result is wrapped around and the
low 16 bits are written to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result
is too large to be represented in 32 bits (overflow), the result is wrapped around and
the low 32 bits are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F FC /r PADDB mm,
mm/m64

Valid Valid Add packed byte integers from
mm/m64 and mm.

66 0F FC /r PADDB xmm1,
xmm2/m128

Valid Valid Add packed byte integers from
xmm2/m128 and xmm1.

0F FD /r PADDW mm,
mm/m64

Valid Valid Add packed word integers from
mm/m64 and mm.

66 0F FD /r PADDW xmm1,
xmm2/m128

Valid Valid Add packed word integers from
xmm2/m128 and xmm1.

0F FE /r PADDD mm,
mm/m64

Valid Valid Add packed doubleword integers from
mm/m64 and mm.

66 0F FE /r PADDD xmm1,
xmm2/m128

Valid Valid Add packed doubleword integers from
xmm2/m128 and xmm1.

4-40 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

undetected overflow conditions, software must control the ranges of values operated
on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDB instruction with 64-bit operands:
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] + SRC[127:120];

PADDW instruction with 64-bit operands:
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];

PADDW instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDD instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDB __m128i _mm_add_epi8 (__m128ia,__m128ib)

PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16 (__m128i a, __m128i b)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32 (__m128i a, __m128i b)

Vol. 2B 4-41

INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

4-42 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-43

INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

PADDQ—Add Packed Quadword Integers

Description

Adds the first operand (destination operand) to the second operand (source operand)
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it
can be two packed quadword integers stored in an XMM register or an 128-bit
memory location. The destination operand can be a quadword integer stored in an
MMX technology register or two packed quadword integers stored in an XMM register.
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDQ instruction with 64-Bit operands:
DEST[63:0] ← DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ __m64 _mm_add_si64 (__m64 a, __m64 b)

PADDQ __m128i _mm_add_epi64 (__m128i a, __m128i b)

Flags Affected

None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F D4 /r PADDQ mm1,
mm2/m64

Valid Valid Add quadword integer
mm2/m64 to mm1.

66 0F D4 /r PADDQ xmm1,
xmm2/m128

Valid Valid Add packed quadword integers
xmm2/m128 to xmm1.

4-44 Vol. 2B PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Vol. 2B 4-45

INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-46 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

Description

Performs a SIMD add of the packed signed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F EC /r PADDSB mm,
mm/m64

Valid Valid Add packed signed byte integers
from mm/m64 and mm and
saturate the results.

66 0F EC /r PADDSB xmm1,
xmm2/m128

Valid Valid Add packed signed byte integers
from xmm2/m128 and xmm1
saturate the results.

0F ED /r PADDSW mm,
mm/m64

Valid Valid Add packed signed word integers
from mm/m64 and mm and
saturate the results.

66 0F ED /r PADDSW xmm1,
xmm2/m128

Valid Valid Add packed signed word integers
from xmm2/m128 and xmm1
and saturate the results.

Vol. 2B 4-47

INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

Operation

PADDSB instruction with 64-bit operands:
DEST[7:0] ← SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB instruction with 128-bit operands:
DEST[7:0] ←SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

PADDSW instruction with 64-bit operands
DEST[15:0] ← SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW instruction with 128-bit operands
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8 (__m128i a, __m128i b)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

4-48 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

Vol. 2B 4-49

INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-50 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

Description

Performs a SIMD add of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the packed
integer results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD
operation. Overflow is handled with unsigned saturation, as described in the
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual
word result is beyond the range of an unsigned word integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F DC /r PADDUSB mm,
mm/m64

Valid Valid Add packed unsigned byte integers
from mm/m64 and mm and
saturate the results.

66 0F DC /r PADDUSB xmm1,
xmm2/m128

Valid Valid Add packed unsigned byte integers
from xmm2/m128 and xmm1
saturate the results.

0F DD /r PADDUSW mm,
mm/m64

Valid Valid Add packed unsigned word
integers from mm/m64 and mm
and saturate the results.

66 0F DD /r PADDUSW xmm1,
xmm2/m128

Valid Valid Add packed unsigned word
integers from xmm2/m128 to
xmm1 and saturate the results.

Vol. 2B 4-51

INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

Operation

PADDUSB instruction with 64-bit operands:
DEST[7:0] ← SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW instruction with 64-bit operands:
DEST[15:0] ← SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW instruction with 128-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8 (__m128i a, __m128i b)

PADDUSW __m128i _mm_adds_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-52 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

Vol. 2B 4-53

INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-54 Vol. 2B PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, N-Z

PALIGNR — Packed Align Right

Description

PALIGNR concatenates the destination operand (the first operand) and the source
operand (the second operand) into an intermediate composite, shifts the composite
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX
or an XMM register. The immediate value is considered unsigned. Immediate shift
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands)
produce a zero result. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PALIGNR with 64-bit operands:

temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[63:0] = temp1[63:0]

PALIGNR with 128-bit operands:

temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] = temp1[127:0]

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

PALIGNR __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 3A 0F PALIGNR mm1,
mm2/m64, imm8

Valid Valid Concatenate destination and source
operands, extract byte-aligned
result shifted to the right by
constant value in imm8 into mm1.

66 0F 3A 0F PALIGNR xmm1,
xmm2/m128,
imm8

Valid Valid Concatenate destination and source
operands, extract byte-aligned
result shifted to the right by
constant value in imm8 into xmm1

Vol. 2B 4-55

INSTRUCTION SET REFERENCE, N-Z

PALIGNR — Packed Align Right

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-56 Vol. 2B PALIGNR — Packed Align Right

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-57

INSTRUCTION SET REFERENCE, N-Z

PAND—Logical AND

PAND—Logical AND

Description

Performs a bitwise logical AND operation on the source operand (second operand)
and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise,
it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST ← (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PAND __m64 _mm_and_si64 (__m64 m1, __m64 m2)

PAND __m128i _mm_and_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F DB /r PAND mm, mm/m64 Valid Valid Bitwise AND mm/m64 and
mm.

66 0F DB /r PAND xmm1, xmm2/m128 Valid Valid Bitwise AND of
xmm2/m128 and xmm1.

4-58 Vol. 2B PAND—Logical AND

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

Vol. 2B 4-59

INSTRUCTION SET REFERENCE, N-Z

PAND—Logical AND

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-60 Vol. 2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

Description

Performs a bitwise logical NOT of the destination operand (first operand), then
performs a bitwise logical AND of the source operand (second operand) and the
inverted destination operand. The result is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if
the corresponding bit in the first operand is 0 and the corresponding bit in the second
operand is 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST ← ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PANDN __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

PANDN _m128i _mm_andnot_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F DF /r PANDN mm, mm/m64 Valid Valid Bitwise AND NOT of
mm/m64 and mm.

66 0F DF /r PANDN xmm1, xmm2/m128 Valid Valid Bitwise AND NOT of
xmm2/m128 and
xmm1.

Vol. 2B 4-61

INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

4-62 Vol. 2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-63

INSTRUCTION SET REFERENCE, N-Z

PAUSE—Spin Loop Hint

PAUSE—Spin Loop Hint

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a
Pentium 4 or Intel Xeon processor suffers a severe performance penalty when exiting
the loop because it detects a possible memory order violation. The PAUSE instruction
provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation in most situations,
which greatly improves processor performance. For this reason, it is recommended
that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by
a Pentium 4 processor while executing a spin loop. The Pentium 4 processor can
execute a spin-wait loop extremely quickly, causing the processor to consume a lot of
power while it waits for the resource it is spinning on to become available. Inserting
a pause instruction in a spin-wait loop greatly reduces the processor’s power
consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement
the PAUSE instruction as a pre-defined delay. The delay is finite and can be zero for
some processors. This instruction does not change the architectural state of the
processor (that is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE Valid Valid Gives hint to processor that improves
performance of spin-wait loops.

4-64 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

Description

Performs a SIMD average of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the results
in the destination operand. For each corresponding pair of data elements in the first
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be
an MMX technology register or a 64-bit memory location or it can be an XMM register
or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PAVGB instruction with 64-bit operands:
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] ← (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW instruction with 64-bit operands:
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] ← (SRC[63:48] + DEST[63:48] + 1) >> 1;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F E0 /r PAVGB mm1,
mm2/m64

Valid Valid Average packed unsigned byte
integers from mm2/m64 and mm1
with rounding.

66 0F E0, /r PAVGB xmm1,
xmm2/m128

Valid Valid Average packed unsigned byte
integers from xmm2/m128 and xmm1
with rounding.

0F E3 /r PAVGW mm1,
mm2/m64

Valid Valid Average packed unsigned word
integers from mm2/m64 and mm1
with rounding.

66 0F E3 /r PAVGW xmm1,
xmm2/m128

Valid Valid Average packed unsigned word
integers from xmm2/m128 and xmm1
with rounding.

Vol. 2B 4-65

INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

PAVGB instruction with 128-bit operands:
DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] ← (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW instruction with 128-bit operands:
DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] ← (SRC[127:112] + DEST[127:112] + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB __m64 _mm_avg_pu8 (__m64 a, __m64 b)

PAVGW __m64 _mm_avg_pu16 (__m64 a, __m64 b)

PAVGB __m128i _mm_avg_epu8 (__m128i a, __m128i b)

PAVGW __m128i _mm_avg_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

4-66 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

Vol. 2B 4-67

INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-68 Vol. 2B PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, N-Z

PBLENDVB — Variable Blend Packed Bytes

Description

Conditionally copies byte elements from the source operand (second operand) to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMM0. The mask bits are the most significant bit in each
byte element of the XMM0 register.

If a mask bit is “1", then the corresponding byte element in the source operand is
copied to the destination, else the byte element in the destination operand is left
unchanged.

The register assignment of the implicit third operand is defined to be the architectural
register XMM0.

Operation

MASK XMM0;
IF (MASK[7] == 1)

THEN DEST[7:0] SRC[7:0];
 ELSE DEST[7:0] DEST[7:0]; FI;
IF (MASK[15] == 1)

THEN DEST[15:8] SRC[15:8];
ELSE DEST[15:8] DEST[15:8]; FI;

IF (MASK[23] == 1)
THEN DEST[23:16] SRC[23:16]
ELSE DEST[23:16] DEST[23:16]; FI;

IF (MASK[31] == 1)
THEN DEST[31:24] SRC[31:24]
ELSE DEST[31:24] DEST[31:24]; FI;

IF (MASK[39] == 1)
THEN DEST[39:32] SRC[39:32]

 ELSE DEST[39:32] DEST[39:32]; FI;
IF (MASK[47] == 1)

THEN DEST[47:40] SRC[47:40]
 ELSE DEST[47:40] DEST[47:40]; FI;

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 10
/r

PBLENDVB xmm1,
xmm2/m128,
<XMM0>

Valid Valid Select byte values from xmm1 and
xmm2/m128 from mask specified in
the high bit of each byte in XMM0
and store the values into xmm1.

Vol. 2B 4-69

INSTRUCTION SET REFERENCE, N-Z

PBLENDVB — Variable Blend Packed Bytes

IF (MASK[55] == 1)
THEN DEST[55:48] SRC[55:48]
ELSE DEST[55:48] DEST[55:48]; FI;

IF (MASK[63] == 1)
THEN DEST[63:56] SRC[63:56]
ELSE DEST[63:56] DEST[63:56]; FI;

IF (MASK[71] == 1)
THEN DEST[71:64] SRC[71:64]
ELSE DEST[71:64] DEST[71:64]; FI;

IF (MASK[79] == 1)
THEN DEST[79:72] SRC[79:72]
ELSE DEST[79:72] DEST[79:72]; FI;

IF (MASK[87] == 1)
THEN DEST[87:80] SRC[87:80]
ELSE DEST[87:80] DEST[87:80]; FI;

IF (MASK[95] == 1)
THEN DEST[95:88] SRC[95:88]
ELSE DEST[95:88] DEST[95:88]; FI;

IF (MASK[103] == 1)
THEN DEST[103:96] SRC[103:96]
ELSE DEST[103:96] DEST[103:96]; FI;

IF (MASK[111] == 1)
THEN DEST[111:104] SRC[111:104]
ELSE DEST[111:104] DEST[111:104]; FI;

IF (MASK[119] == 1)
THEN DEST[119:112] SRC[119:112]
ELSE DEST[119:112] DEST[119:112]; FI;

IF (MASK[127] == 1)
THEN DEST[127:120] SRC[127:120]
ELSE DEST[127:120] DEST[127:120]); FI;

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDVB __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

4-70 Vol. 2B PBLENDVB — Variable Blend Packed Bytes

INSTRUCTION SET REFERENCE, N-Z

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If not aligned on 16-byte boundary, regardless of segment

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

Vol. 2B 4-71

INSTRUCTION SET REFERENCE, N-Z

PBLENDVB — Variable Blend Packed Bytes

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-72 Vol. 2B PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, N-Z

PBLENDW — Blend Packed Words

Description

Conditionally copies word elements from the source operand (second operand) to the
destination operand (first operand) depending on the immediate byte (third
operand). Each bit of Imm8 correspond to a word element.

If a bit is “1", then the corresponding word element in the source operand is copied
to the destination, else the word element in the destination operand is left
unchanged.

Operation

IF (imm8[0] == 1)
THEN DEST[15:0] SRC[15:0];
ELSE DEST[15:0] DEST[15:0]; FI;

IF (imm8[1] == 1)
THEN DEST[31:16] SRC[31:16];
ELSE DEST[31:16] DEST[31:16]); FI;

IF (imm8[2] == 1)
THEN DEST[47:32] SRC[47:32];
ELSE DEST[47:32] DEST[47:32]; FI;

IF (imm8[3] == 1)
THEN DEST[63:48] SRC[63:48];
ELSE DEST[63:48] DEST[63:48]; FI;

IF (imm8[4] == 1)
THEN DEST[79:64] SRC[79:64];
ELSE DEST[79:64] DEST[79:64]; FI;

IF (imm8[5] == 1)
THEN DEST[95:80] SRC[95:80];
ELSE DEST[95:80] DEST[95:80]; FI;

IF (imm8[6] == 1)
THEN DEST[111:96] SRC[111:96];
ELSE DEST[111:96] DEST[111:96]; FI;

IF (imm8[7] == 1)

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
0E /r ib

PBLENDW xmm1,
xmm2/m128, imm8

Valid Valid Select words from xmm1 and
xmm2/m128 from mask specified in
imm8 and store the values into
xmm1.

Vol. 2B 4-73

INSTRUCTION SET REFERENCE, N-Z

PBLENDW — Blend Packed Words

THEN DEST[127:112] SRC[127:112];
ELSE DEST[127:112] DEST[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

4-74 Vol. 2B PBLENDW — Blend Packed Words

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-75

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in
the destination operand (first operand) and the source operand (second operand). If
a pair of data elements is equal, the corresponding data element in the destination
operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an
MMX technology register or a 64-bit memory location, or it can be an XMM register or
a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; and the PCMPEQD instruction compares the
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PCMPEQB instruction with 64-bit operands:
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 74 /r PCMPEQB mm,
mm/m64

Valid Valid Compare packed bytes in
mm/m64 and mm for equality.

66 0F 74 /r PCMPEQB xmm1,
xmm2/m128

Valid Valid Compare packed bytes in
xmm2/m128 and xmm1 for
equality.

0F 75 /r PCMPEQW mm,
mm/m64

Valid Valid Compare packed words in
mm/m64 and mm for equality.

66 0F 75 /r PCMPEQW xmm1,
xmm2/m128

Valid Valid Compare packed words in
xmm2/m128 and xmm1 for
equality.

0F 76 /r PCMPEQD mm,
mm/m64

Valid Valid Compare packed doublewords in
mm/m64 and mm for equality.

66 0F 76 /r PCMPEQD xmm1,
xmm2/m128

Valid Valid Compare packed doublewords in
xmm2/m128 and xmm1 for
equality.

4-76 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z

IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SRC[127:120]

THEN DEST[127:120] ← FFH;
ELSE DEST[127:120] ← 0; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112] = SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]

Vol. 2B 4-77

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)

PCMPEQB __m128i _mm_cmpeq_epi8 (__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i a, __m128i b)

PCMPEQD __m128i _mm_cmpeq_epi32 (__m128i a, __m128i b)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

4-78 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-79

INSTRUCTION SET REFERENCE, N-Z

PCMPEQQ — Compare Packed Qword Data for Equal

PCMPEQQ — Compare Packed Qword Data for Equal

Description

Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to 0s.

Operation

IF (DEST[63:0] = SRC[63:0])
THEN DEST[63:0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] 0; FI;

IF (DEST[127:64] = SRC[127:64])
THEN DEST[127:64] FFFFFFFFFFFFFFFFH;

 ELSE DEST[127:64] 0; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
29 /r

PCMPEQQ xmm1,
xmm2/m128

Valid Valid Compare packed qwords in
xmm2/m128 and xmm1 for
equality.

4-80 Vol. 2B PCMPEQQ — Compare Packed Qword Data for Equal

INSTRUCTION SET REFERENCE, N-Z

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-81

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 3.1.2, “Imm8 Control Byte
Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates
an index stored to ECX.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). The index of the first (or last, according
to imm8[6]) set bit of IntRes2 (see Section 3.1.2.4) is returned in ECX. If no bits are
set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 61
/r imm8

PCMPESTRI
xmm1,
xmm2/m128,
imm8

Valid Valid Perform a packed comparison of
string data with explicit lengths,
generating an index, and storing the
result in ECX.

4-82 Vol. 2B PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions
#GP Interrupt 13 If any part of the operand lies outside the effective

address space from 0 to FFFFH.

Operating
mode/size

Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX

Vol. 2B 4-83

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-84 Vol. 2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 3.1.2, “Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask
stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Opcode Instruction 64-Bit
Mode

Compat/
Leg
Mode

Description

66 0F 3A 60
/r imm8

PCMPESTRM
xmm1,
xmm2/m128,
imm8

Valid Valid Perform a packed comparison of
string data with explicit lengths,
generating a mask, and storing the
result in XMM0

Vol. 2B 4-85

INSTRUCTION SET REFERENCE, N-Z

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);
int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions
#GP Interrupt 13 If any part of the operand lies outside the effective

address space from 0 to FFFFH.

#NM If TS in CR0 is set.

Operating
mode/size

Operand1 Operand2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0

4-86 Vol. 2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-87

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Description

The instruction compares data from two strings based on the encoded value in the
Imm8 Control Byte (see Section 3.1.2, “Imm8 Control Byte Operation for PCMPESTRI
/ PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is
considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). The index of the first (or last, according
to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX
is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag –IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
63 /r imm8

PCMPISTRI xmm1,
xmm2/m128,
imm8

Valid Valid Perform a packed comparison of
string data with implicit lengths,
generating an index, and storing
the result in ECX.

Operating mode/size Operand1 Operand2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX

4-88 Vol. 2B PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions
#GP Interrupt 13 If any part of the operand lies outside the effective

address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Vol. 2B 4-89

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-90 Vol. 2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Description

The instruction compares data from two strings based on the encoded value in the
imm8 byte (see Section 3.1.2, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask stored to XMM0.

Each string is represented by a single value. The The value is an xmm (or possibly
m128 for the second operand) which contains the data elements of the string (byte
or word data). Each input byte/word is augmented with a valid/invalid tag. A
byte/word is considered valid only if it has a lower index than the least significant null
byte/word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMM0 (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag – Reset if IntRes2 is equal to zero, set otherwise
ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise
SFlag – Set if any byte/word of xmm1 is null, reset otherwise
OFlag – IntRes2[0]
AFlag – Reset
PFlag – Reset

Effective Operand Size

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
62 /r imm8

PCMPISTRM xmm1,
xmm2/m128, imm8

Valid Valid Perform a packed comparison of
string data with implicit lengths,
generating a mask, and storing
the result in XMM0.

Operating mode/size Operand1 Operand2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0

Vol. 2B 4-91

INSTRUCTION SET REFERENCE, N-Z

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128i a, __m128i b, const int mode);
int _mm_cmpistrc (__m128i a, __m128i b, const int mode);
int _mm_cmpistro (__m128i a, __m128i b, const int mode);
int _mm_cmpistrs (__m128i a, __m128i b, const int mode);
int _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#SS(0) For an illegal address in the SS segment

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions
#GP Interrupt 13 If any part of the operand lies outside the effective

address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

4-92 Vol. 2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-93

INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for
Greater Than

Description

Performs a SIMD signed compare for the greater value of the packed byte, word, or
doubleword integers in the destination operand (first operand) and the source
operand (second operand). If a data element in the destination operand is greater
than the corresponding date element in the source operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The
source operand can be an MMX technology register or a 64-bit memory location, or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 64 /r PCMPGTB mm,
mm/m64

Valid Valid Compare packed signed byte
integers in mm and mm/m64 for
greater than.

66 0F 64 /r PCMPGTB xmm1,
xmm2/m128

Valid Valid Compare packed signed byte
integers in xmm1 and
xmm2/m128 for greater than.

0F 65 /r PCMPGTW mm,
mm/m64

Valid Valid Compare packed signed word
integers in mm and mm/m64 for
greater than.

66 0F 65 /r PCMPGTW xmm1,
xmm2/m128

Valid Valid Compare packed signed word
integers in xmm1 and
xmm2/m128 for greater than.

0F 66 /r PCMPGTD mm,
mm/m64

Valid Valid Compare packed signed
doubleword integers in mm and
mm/m64 for greater than.

66 0F 66 /r PCMPGTD xmm1,
xmm2/m128

Valid Valid Compare packed signed
doubleword integers in xmm1
and xmm2/m128 for greater
than.

4-94 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, N-Z

Operation

PCMPGTB instruction with 64-bit operands:
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]

THEN DEST[127:120] ← FFH;
ELSE DEST[127:120] ← 0; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

Vol. 2B 4-95

INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)

DCMPGTD __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i a, __m128i b)

PCMPGTW __m128i _mm_cmpgt_epi16 (__m128i a, __m128i b)

DCMPGTD __m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

4-96 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

Vol. 2B 4-97

INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-98 Vol. 2B PCMPGTQ — Compare Packed Data for Greater Than

INSTRUCTION SET REFERENCE, N-Z

PCMPGTQ — Compare Packed Data for Greater Than

Description

Performs an SIMD compare for the packed quadwords in the destination operand
(first operand) and the source operand (second operand). If the data element in the
first (destination) operand is greater than the corresponding element in the second
(source) operand, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to 0s.

Operation

IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0] FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0] 0; FI

IF (DEST[127-64] > SRC[127-64])
THEN DEST[127-64] FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64] 0; FI

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

Opcode Instruction 64-
Bit
Mode

Compat/
Leg
Mode

Description

66 0F 38
37 /r

PCMPGTQ
xmm1,xmm2/m1
28

Valid Valid Compare packed qwords in
xmm2/m128 and xmm1 for greater
than.

Vol. 2B 4-99

INSTRUCTION SET REFERENCE, N-Z

PCMPGTQ — Compare Packed Data for Greater Than

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#NM If TS bit in CR0 is set.

Real Mode Exceptions
#GP If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If not aligned on 16-byte boundary, regardless of segment.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#NM If TS bit in CR0 is set.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF (fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#NM If TS bit in CR0 is set.

4-100 Vol. 2B PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Description

Copies a data element (byte, dword, quadword) in the source operand (second
operand) specified by the count operand (third operand) to the destination operand
(first operand). The source operand is an XMM register. The destination operand can
be a general-purpose register or a memory address. The count operand is an 8-bit
immediate. When specifying a quadword [dword, byte] element, the [2, 4] least-
significant bit(s) of the count operand specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). PEXTRQ requires REX.W. If the
destination operand is a general-purpose register, the default operand size of
PEXTRB is 64 bits.

Operation
CASE of

PEXTRB: SEL COUNT[3:0];
TEMP (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)

THEN
Mem8 TEMP[7:0];

ELSE IF (64-Bit Mode and 64-bit register selected)
THEN

R64[7:0] TEMP[7:0];
r64[63:8] ← ZERO_FILL; };

ELSE

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 14
/r ib

PEXTRB reg/m8,
xmm2, imm8

Valid Valid Extract a byte integer value from
xmm2 at the source byte offset
specified by imm8 into rreg or
m8. The upper bits of r32 or r64
are zeroed.

66 0F 3A 16
/r ib

PEXTRD r/m32,
xmm2, imm8

Valid Valid Extract a dword integer value
from xmm2 at the source dword
offset specified by imm8 into
r/m32.

66 REX.W 0F
3A 16
/r ib

PEXTRQ r/m64,
xmm2, imm8

Valid N. E. Extract a qword integer value
from xmm2 at the source dword
offset specified by imm8 into
r/m64.

Vol. 2B 4-101

INSTRUCTION SET REFERENCE, N-Z

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

R32[7:0] TEMP[7:0];
r32[31:8] ← ZERO_FILL; };

FI;
PEXTRD:SEL COUNT[1:0];

TEMP (Src >> SEL*32) AND FFFF_FFFFH;
DEST TEMP;

PEXTRQ: SEL COUNT[0];
TEMP (Src >> SEL*64);
DEST TEMP;

EASC:

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#UD If CR0.EM[bit 2] = 1.

4-102 Vol. 2B PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#NM If CR0.TS[bit 3] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Vol. 2B 4-103

INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

PEXTRW—Extract Word

Description

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology register or an XMM register. The destination
operand can be the low word of a general-purpose register or a 16-bit memory
address. The count operand is an 8-bit immediate. When specifying a word location
in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). If the destination operand is a
general-purpose register, the default operand size is 64-bits in 64-bit mode.

Operation

IF (DEST = Mem16)
THEN

SEL COUNT[2:0];
TEMP (Src >> SEL*16) AND FFFFH;
Mem16 TEMP[15:0];

ELSE IF (64-Bit Mode and destination is a general-purpose register)
THEN

FOR (PEXTRW instruction with 64-bit source operand)
 { SEL ← COUNT[1:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F C5 /r ib PEXTRW reg, mm,
imm8

Valid Valid Extract the word specified by
imm8 from mm and move it to
reg, bits 15-0. The upper bits of
r32 or r64 is zeroed.

66 0F C5 /r ib PEXTRW reg,
xmm, imm8

Valid Valid Extract the word specified by
imm8 from xmm and move it to
reg, bits 15-0. The upper bits of
r32 or r64 is zeroed.

66 0F 3A 15
/r ib

PEXTRW
reg/m16, xmm,
imm8

Valid Valid Extract the word specified by
imm8 from xmm and copy it to
lowest 16 bits of reg or m16.
Zero-extend the result in the
destination, r32 or r64.

4-104 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z

r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
 { SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)
 { SEL ← COUNT[1:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
 { SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FI;
FI;

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW int _mm_extract_pi16 (__m64 a, int n)

PEXTRW int _mm_extract_epi16 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) (3 byte opcode only) If a memory operand effective address is

outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) (3 byte opcode only) If a memory operand effective address is
outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Vol. 2B 4-105

INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)
is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) (3 byte opcode only) If a page fault occurs.

#AC(0) (3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (3 byte opcode only) If any part of the operand lies outside of

the effective address space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)
is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) (3 byte opcode only) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) (3 byte opcode only) If the memory address is in a non-canon-

ical form.

#SS(0) (3 byte opcode only) If a memory address referencing the SS
segment is in a non-canonical form.

#PF(fault-code) (3 byte opcode only) For a page fault.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

4-106 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)
is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-107

INSTRUCTION SET REFERENCE, N-Z

PHADDW/PHADDD — Packed Horizontal Add

PHADDW/PHADDD — Packed Horizontal Add

Description

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and
destination operands and packs the 16-bit signed results to the destination operand
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHADDW with 64-bit operands:

mm1[15-0] = mm1[31-16] + mm1[15-0];
mm1[31-16] = mm1[63-48] + mm1[47-32];
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW with 128-bit operands :

xmm1[15-0] = xmm1[31-16] + xmm1[15-0];
xmm1[31-16] = xmm1[63-48] + xmm1[47-32];
xmm1[47-32] = xmm1[95-80] + xmm1[79-64];
xmm1[63-48] = xmm1[127-112] + xmm1[111-96];
xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 01 /r PHADDW mm1,
mm2/m64

Valid Valid Add 16-bit signed integers
horizontally, pack to MM1.

66 0F 38 01 /r PHADDW xmm1,
xmm2/m128

Valid Valid Add 16-bit signed integers
horizontally, pack to XMM1.

0F 38 02 /r PHADDD mm1,
mm2/m64

Valid Valid Add 32-bit signed integers
horizontally, pack to MM1.

66 0F 38 02 /r PHADDD xmm1,
xmm2/m128

Valid Valid Add 32-bit signed integers
horizontally, pack to XMM1.

4-108 Vol. 2B PHADDW/PHADDD — Packed Horizontal Add

INSTRUCTION SET REFERENCE, N-Z

PHADDD with 64-bit operands :

mm1[31-0] = mm1[63-32] + mm1[31-0];
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD with 128-bit operands:

xmm1[31-0] = xmm1[63-32] + xmm1[31-0];
xmm1[63-32] = xmm1[127-96] + xmm1[95-64];
xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

PHADDW __m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHADDD __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

PHADDD __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0): If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM(bit 2)= 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

Vol. 2B 4-109

INSTRUCTION SET REFERENCE, N-Z

PHADDW/PHADDD — Packed Horizontal Add

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only). If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-110 Vol. 2B PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, N-Z

PHADDSW — Packed Horizontal Add and Saturate

Description

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and
destination operands and saturates the signed results; packs the signed, saturated
16-bit results to the destination operand (first operand) Both operands can be MMX
or XMM registers. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHADDSW with 64-bit operands:

mm1[15-0] = SaturateToSignedWord((mm1[31-16] + mm1[15-0]);
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]);

PHADDSW with 128-bit operands :

xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);
xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);
xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);
xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64]);
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]);

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

PHADDSW __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 03 /r PHADDSW mm1,
mm2/m64

Valid Valid Add 16-bit signed integers
horizontally, pack saturated integers
to MM1.

66 0F 38 03 /r PHADDSW xmm1,
xmm2/m128

Valid Valid Add 16-bit signed integers
horizontally, pack saturated integers
to XMM1.

Vol. 2B 4-111

INSTRUCTION SET REFERENCE, N-Z

PHADDSW — Packed Horizontal Add and Saturate

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0): (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-112 Vol. 2B PHADDSW — Packed Horizontal Add and Saturate

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-113

INSTRUCTION SET REFERENCE, N-Z

PHMINPOSUW — Packed Horizontal Word Minimum

PHMINPOSUW — Packed Horizontal Word Minimum

Description

Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.

Operation

INDEX 0;
MIN SRC[15:0]
IF (SRC[31:16] < MIN)

THEN INDEX 1; MIN SRC[31:16]; FI;
IF (SRC[47:32] < MIN)

THEN INDEX 2; MIN SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN)

THEN INDEX 7; MIN SRC[127:112]; FI;
DEST[15:0] MIN;
DEST[18:16] INDEX;
DEST[127:19] 0000000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW __m128i _mm_minpos_epu16(__m128i packed_words);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
41 /r

PHMINPOSUW xmm1,
xmm2/m128

Valid Valid Find the minimum unsigned word in
xmm2/m128 and place its value in the
low word of xmm1 and its index in the
second-lowest word of xmm1.

4-114 Vol. 2B PHMINPOSUW — Packed Horizontal Word Minimum

INSTRUCTION SET REFERENCE, N-Z

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

Vol. 2B 4-115

INSTRUCTION SET REFERENCE, N-Z

PHMINPOSUW — Packed Horizontal Word Minimum

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-116 Vol. 2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, N-Z

PHSUBW/PHSUBD — Packed Horizontal Subtract

Description

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the source and destination operands, and packs the signed 16-bit results to
the destination operand (first operand). PHSUBD performs horizontal subtraction on
each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed
32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHSUBW with 64-bit operands:

mm1[15-0] = mm1[15-0] - mm1[31-16];
mm1[31-16] = mm1[47-32] - mm1[63-48];
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48];

PHSUBW with 128-bit operands:

xmm1[15-0] = xmm1[15-0] - xmm1[31-16];
xmm1[31-16] = xmm1[47-32] - xmm1[63-48];
xmm1[47-32] = xmm1[79-64] - xmm1[95-80];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 38 05 /r PHSUBW mm1,
mm2/m64

Valid Valid Subtract 16-bit signed
integers horizontally, pack
to MM1.

66 0F 38 05 /r PHSUBW xmm1,
xmm2/m128

Valid Valid Subtract 16-bit signed
integers horizontally, pack
to XMM1.

0F 38 06 /r PHSUBD mm1,
mm2/m64

Valid Valid Subtract 32-bit signed
integers horizontally, pack
to MM1.

66 0F 38 06 /r PHSUBD xmm1,
xmm2/m128

Valid Valid Subtract 32-bit signed
integers horizontally, pack
to XMM1.

Vol. 2B 4-117

INSTRUCTION SET REFERENCE, N-Z

PHSUBW/PHSUBD — Packed Horizontal Subtract

xmm1[63-48] = xmm1[111-96] - xmm1[127-112];
xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16];
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48];
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80];
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD with 64-bit operands:

mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];

PHSUBD with 128-bit operands:

xmm1[31-0] = xmm1[31-0] - xmm1[63-32];
xmm1[63-32] = xmm1[95-64] - xmm1[127-96];
xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

PHSUBW __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PHSUBD __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

PHSUBD __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

4-118 Vol. 2B PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions
#GP(0): If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD: If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-119

INSTRUCTION SET REFERENCE, N-Z

PHSUBSW — Packed Horizontal Subtract and Saturate

PHSUBSW — Packed Horizontal Subtract and Saturate

Description

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the source and destination operands. The signed, saturated 16-bit
results are packed to the destination operand (first operand). Both operands can be
MMX or XMM register. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PHSUBSW with 64-bit operands:

mm1[15-0] = SaturateToSignedWord(mm1[15-0] - mm1[31-16]);
mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

PHSUBSW with 128-bit operands:

xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]);
xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);
xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);
xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);
xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]);
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]);
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 07 /r PHSUBSW mm1,
mm2/m64

Valid Valid Subtract 16-bit signed
integer horizontally, pack
saturated integers to MM1.

66 0F 38 07 /r PHSUBSW
xmm1,
xmm2/m128

Valid Valid Subtract 16-bit signed
integer horizontally, pack
saturated integers to
XMM1

4-120 Vol. 2B PHSUBSW — Packed Horizontal Subtract and Saturate

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

PHSUBSW __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) if a memory operand effective address is outside the CS, DS, ES,

FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0 (128-bit operations only).

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made while the current privilege level is 3 (64-bit opera-
tions only).

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0 (128-bit operations only).

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF If there is a pending x87 FPU exception (64-bit operations only).

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made (64-bit operations only).

Vol. 2B 4-121

INSTRUCTION SET REFERENCE, N-Z

PHSUBSW — Packed Horizontal Subtract and Saturate

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-122 Vol. 2B PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it
in the destination operand (first operand) at the location specified with the count
operand (third operand). (The other elements in the destination register are left
untouched.) The source operand can be a general-purpose register or a memory
location. (When the source operand is a general-purpose register, PINSRB copies the
low byte of the register.) The destination operand is an XMM register. The count
operand is an 8-bit immediate. When specifying a qword[dword, byte] location in an
an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the
location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.

Operation
CASE OF

PINSRB: SEL COUNT[3:0];
MASK (0FFH << (SEL * 8));
TEMP (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL COUNT[1:0];
MASK (0FFFFFFFFH << (SEL * 32));
TEMP (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL COUNT[0]
MASK (0FFFFFFFFFFFFFFFFH << (SEL * 64));
TEMP (((SRC << (SEL *32)) AND MASK) ;

ESAC;
DEST ((DEST AND NOT MASK) OR TEMP);

Opcode Instruction Compat/
Leg Mode

64-bit
Mode

Description

66 0F 3A
20 /r ib

PINSRB xmm1,
r32/m8, imm8

Valid Valid Insert a byte integer value from r32/m8
into xmm1 at the destination element in
xmm1 specified by imm8.

66 0F 3A
22 /r ib

PINSRD xmm1,
r/m32, imm8

Valid Valid Insert a dword integer value from r/m32
into the xmm1 at the destination
elements specified by imm8.

66 REX.W
0F 3A 22 /r
ib

PINSRQ xmm1,
r/m64, imm8

N. E. Valid Insert a qword integer value from r/m32
into the xmm1 at the destination
elements specified by imm8.

Vol. 2B 4-123

INSTRUCTION SET REFERENCE, N-Z

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);
PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

4-124 Vol. 2B PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and qword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Vol. 2B 4-125

INSTRUCTION SET REFERENCE, N-Z

PINSRW—Insert Word

PINSRW—Insert Word

Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third
operand). (The other words in the destination register are left untouched.) The
source operand can be a general-purpose register or a 16-bit memory location.
(When the source operand is a general-purpose register, the low word of the register
is copied.) The destination operand can be an MMX technology register or an XMM
register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15).

Operation

PINSRW instruction with 64-bit source operand:
SEL ← COUNT AND 3H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 000000000000FFFFH;
SEL ← 1: MASK ← 00000000FFFF0000H;
SEL ← 2: MASK ← 0000FFFF00000000H;
SEL ← 3: MASK ← FFFF000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL ← COUNT AND 7H;

CASE (Determine word position) OF
SEL ← 0: MASK ← 0000000000000000000000000000FFFFH;
SEL ← 1: MASK ← 000000000000000000000000FFFF0000H;
SEL ← 2: MASK ← 00000000000000000000FFFF00000000H;
SEL ← 3: MASK ← 0000000000000000FFFF000000000000H;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F C4 /r ib PINSRW mm,
r32/m16, imm8

Valid Valid Insert the low word from
r32 or from m16 into mm
at the word position
specified by imm8

66 0F C4 /r ib PINSRW xmm,
r32/m16, imm8

Valid Valid Move the low word of r32
or from m16 into xmm at
the word position specified
by imm8.

4-126 Vol. 2B PINSRW—Insert Word

INSTRUCTION SET REFERENCE, N-Z

SEL ← 4: MASK ← 000000000000FFFF0000000000000000H;
SEL ← 5: MASK ← 00000000FFFF00000000000000000000H;
SEL ← 6: MASK ← 0000FFFF000000000000000000000000H;
SEL ← 7: MASK ← FFFF0000000000000000000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW __m64 _mm_insert_pi16 (__m64 a, int d, int n)

PINSRW __m128i _mm_insert_epi16 (__m128i a, int b, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address

space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

Vol. 2B 4-127

INSTRUCTION SET REFERENCE, N-Z

PINSRW—Insert Word

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-128 Vol. 2B PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, N-Z

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Description

PMADDUBSW multiplies vertically each unsigned byte of the destination operand
(first operand) with the corresponding signed byte of the source operand (second
operand), producing intermediate signed 16-bit integers. Each adjacent pair of
signed words is added and the saturated result is packed to the destination operand.
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination
register (15-0). The same operation is performed on the other pairs of adjacent
bytes. Both operands can be MMX register or XMM registers. When the source
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PMADDUBSW with 64 bit operands:

DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);
DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW with 128 bit operands:

DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 38 04 /r PMADDUBSW
mm1, mm2/m64

Valid Valid Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to MM1.

66 0F 38 04 /r PMADDUBSW
xmm1,
xmm2/m128

Valid Valid Multiply signed and
unsigned bytes, add
horizontal pair of signed
words, pack saturated
signed-words to XMM1.

Vol. 2B 4-129

INSTRUCTION SET REFERENCE, N-Z

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-
112]* DEST[119-112]);

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

PMADDUBSW __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0 (128-bit operations only)

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

4-130 Vol. 2B PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-131

INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

PMADDWD—Multiply and Add Packed Integers

Description

Multiplies the individual signed words of the destination operand (first operand) by
the corresponding signed words of the source operand (second operand), producing
temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in
the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words. (Figure 4-2 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of
words being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F F5 /r PMADDWD mm,
mm/m64

Valid Valid Multiply the packed words in mm
by the packed words in mm/m64,
add adjacent doubleword results,
and store in mm.

66 0F F5 /r PMADDWD xmm1,
xmm2/m128

Valid Valid Multiply the packed word integers
in xmm1 by the packed word
integers in xmm2/m128, add
adjacent doubleword results, and
store in xmm1.

4-132 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

Operation

PMADDWD instruction with 64-bit operands:
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

PMADDWD instruction with 128-bit operands:
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);
DEST[95:64] ← (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]);
DEST[127:96] ← (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMADDWD __m128i _mm_madd_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Figure 4-2. PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1∗Y1) + (X0∗Y0)(X3∗Y3) + (X2∗Y2)

TEMP

Vol. 2B 4-133

INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

4-134 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-135

INSTRUCTION SET REFERENCE, N-Z

PMAXSB — Maximum of Packed Signed Byte Integers

PMAXSB — Maximum of Packed Signed Byte Integers

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed
value in the destination operand.

Operation

IF (DEST[7:0] > SRC[7:0])
THEN DEST[7:0] DEST[7:0];
ELSE DEST[7:0] SRC[7:0]; FI;

IF (DEST[15:8] > SRC[15:8])
THEN DEST[15:8] DEST[15:8];
ELSE DEST[15:8] SRC[15:8]; FI;

IF (DEST[23:16] > SRC[23:16])
THEN DEST[23:16] DEST[23:16];
ELSE DEST[23:16] SRC[23:16]; FI;

IF (DEST[31:24] > SRC[31:24])
THEN DEST[31:24] DEST[31:24];
ELSE DEST[31:24] SRC[31:24]; FI;

IF (DEST[39:32] > SRC[39:32])
THEN DEST[39:32] DEST[39:32];
ELSE DEST[39:32] SRC[39:32]; FI;

IF (DEST[47:40] > SRC[47:40])
THEN DEST[47:40] DEST[47:40];
ELSE DEST[47:40] SRC[47:40]; FI;

IF (DEST[55:48] > SRC[55:48])
THEN DEST[55:48] DEST[55:48];
ELSE DEST[55:48] SRC[55:48]; FI;

IF (DEST[63:56] > SRC[63:56])
THEN DEST[63:56] DEST[63:56];
ELSE DEST[63:56] SRC[63:56]; FI;

IF (DEST[71:64] > SRC[71:64])
THEN DEST[71:64] DEST[71:64];

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
3C /r

PMAXSB xmm1,
xmm2/m128

Valid Valid Compare packed signed byte integers
in xmm1 and xmm2/m128 and store
packed maximum values in xmm1.

4-136 Vol. 2B PMAXSB — Maximum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, N-Z

ELSE DEST[71:64] SRC[71:64]; FI;
IF (DEST[79:72] > SRC[79:72])

THEN DEST[79:72] DEST[79:72];
ELSE DEST[79:72] SRC[79:72]; FI;

IF (DEST[87:80] > SRC[87:80])
THEN DEST[87:80] DEST[87:80];
ELSE DEST[87:80] SRC[87:80]; FI;

IF (DEST[95:88] > SRC[95:88])
THEN DEST[95:88] DEST[95:88];
ELSE DEST[95:88] SRC[95:88]; FI;

IF (DEST[103:96] > SRC[103:96])
THEN DEST[103:96] DEST[103:96];
ELSE DEST[103:96] SRC[103:96]; FI;

IF (DEST[111:104] > SRC[111:104])
THEN DEST[111:104] DEST[111:104];
ELSE DEST[111:104] SRC[111:104]; FI;

IF (DEST[119:112] > SRC[119:112])
THEN DEST[119:112] DEST[119:112];
ELSE DEST[119:112] SRC[119:112]; FI;

IF (DEST[127:120] > SRC[127:120])
THEN DEST[127:120] DEST[127:120];
ELSE DEST[127:120] SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB __m128i _mm_max_epi8 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Vol. 2B 4-137

INSTRUCTION SET REFERENCE, N-Z

PMAXSB — Maximum of Packed Signed Byte Integers

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-138 Vol. 2B PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

PMAXSD — Maximum of Packed Signed Dword Integers

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD __m128i _mm_max_epi32 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
3D /r

PMAXSD xmm1,
xmm2/m128

Valid Valid Compare packed signed dword integers in
xmm1 and xmm2/m128 and store
packed maximum values in xmm1.

Vol. 2B 4-139

INSTRUCTION SET REFERENCE, N-Z

PMAXSD — Maximum of Packed Signed Dword Integers

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

4-140 Vol. 2B PMAXSD — Maximum of Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-141

INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

PMAXSW—Maximum of Packed Signed Word Integers

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXSW instruction for 64-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN

DEST[127:112] ← DEST[127:112];
ELSE

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F EE /r PMAXSW mm1,
mm2/m64

Valid Valid Compare signed word integers in
mm2/m64 and mm1 and return
maximum values.

66 0F EE /r PMAXSW xmm1,
xmm2/m128

Valid Valid Compare signed word integers in
xmm2/m128 and xmm1 and return
maximum values.

4-142 Vol. 2B PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z

DEST[127:112] ← SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXSW __m128i _mm_max_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

Vol. 2B 4-143

INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-144 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

PMAXUB—Maximum of Packed Unsigned Byte Integers

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXUB instruction for 64-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN

DEST[127:120] ← DEST[127:120];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F DE /r PMAXUB mm1,
mm2/m64

Valid Valid Compare unsigned byte integers
in mm2/m64 and mm1 and
returns maximum values.

66 0F DE /r PMAXUB xmm1,
xmm2/m128

Valid Valid Compare unsigned byte integers
in xmm2/m128 and xmm1 and
returns maximum values.

Vol. 2B 4-145

INSTRUCTION SET REFERENCE, N-Z

PMAXUB—Maximum of Packed Unsigned Byte Integers

ELSE
DEST[127:120] ← SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

4-146 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-147

INSTRUCTION SET REFERENCE, N-Z

PMAXUD — Maximum of Packed Unsigned Dword Integers

PMAXUD — Maximum of Packed Unsigned Dword Integers

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] DEST[127:96];

 ELSE DEST[127:96] SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD __m128i _mm_max_epu32 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

Opcode Instruction 64-bit Mode Compat/
Leg Mode

Description

66 0F 38
3F /r

PMAXUD xmm1,
xmm2/m128

Valid Valid Compare packed unsigned
dword integers in xmm1 and
xmm2/m128 and store packed
maximum values in xmm1.

4-148 Vol. 2B PMAXUD — Maximum of Packed Unsigned Dword Integers

INSTRUCTION SET REFERENCE, N-Z

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

Vol. 2B 4-149

INSTRUCTION SET REFERENCE, N-Z

PMAXUD — Maximum of Packed Unsigned Dword Integers

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-150 Vol. 2B PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

PMAXUW — Maximum of Packed Word Integers

Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[15:0] > SRC[15:0])
THEN DEST[15:0] DEST[15:0];
ELSE DEST[15:0] SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16])
THEN DEST[31:16] DEST[31:16];
ELSE DEST[31:16] SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32])
THEN DEST[47:32] DEST[47:32];
ELSE DEST[47:32] SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48])
THEN DEST[63:48] DEST[63:48];
ELSE DEST[63:48] SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64])
THEN DEST[79:64] DEST[79:64];

 ELSE DEST[79:64] SRC[79:64]; FI;
IF (DEST[95:80] > SRC[95:80])

THEN DEST[95:80] DEST[95:80];
ELSE DEST[95:80] SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96])
THEN DEST[111:96] DEST[111:96];
ELSE DEST[111:96] SRC[111:96]; FI;

IF (DEST[127:112] > SRC[127:112])
THEN DEST[127:112] DEST[127:112];
ELSE DEST[127:112] SRC[127:112]; FI;

Opcode Instruction Compat/
Leg Mode

64-bit
Mode

Description

66 0F 38
3E /r

PMAXUW xmm1,
xmm2/m128

Valid Valid Compare packed unsigned word
integers in xmm1 and xmm2/m128
and store packed maximum values in
xmm1.

Vol. 2B 4-151

INSTRUCTION SET REFERENCE, N-Z

PMAXUW — Maximum of Packed Word Integers

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW__m128i _mm_max_epu16 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-152 Vol. 2B PMAXUW — Maximum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-153

INSTRUCTION SET REFERENCE, N-Z

PMINSB — Minimum of Packed Signed Byte Integers

PMINSB — Minimum of Packed Signed Byte Integers

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[7:0] < SRC[7:0])
THEN DEST[7:0] DEST[7:0];
ELSE DEST[7:0] SRC[7:0]; FI;

IF (DEST[15:8] < SRC[15:8])
THEN DEST[15:8] DEST[15:8];
ELSE DEST[15:8] SRC[15:8]; FI;

IF (DEST[23:16] < SRC[23:16])
THEN DEST[23:16] DEST[23:16];
ELSE DEST[23:16] SRC[23:16]; FI;

IF (DEST[31:24] < SRC[31:24])
THEN DEST[31:24] DEST[31:24];
ELSE DEST[31:24] SRC[31:24]; FI;

IF (DEST[39:32] < SRC[39:32])
THEN DEST[39:32] DEST[39:32];
ELSE DEST[39:32] SRC[39:32]; FI;

IF (DEST[47:40] < SRC[47:40])
THEN DEST[47:40] DEST[47:40];

 ELSE DEST[47:40] SRC[47:40]; FI;
IF (DEST[55:48] < SRC[55:48])

THEN DEST[55:48] DEST[55:48];
ELSE DEST[55:48] SRC[55:48]; FI;

IF (DEST[63:56] < SRC[63:56])
THEN DEST[63:56] DEST[63:56];
ELSE DEST[63:56] SRC[63:56]; FI;

IF (DEST[71:64] < SRC[71:64])
THEN DEST[71:64] DEST[71:64];

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 38
/r

PMINSB xmm1,
xmm2/m128

Valid Valid Compare packed signed byte integers in
xmm1 and xmm2/m128 and store packed
minimum values in xmm1.

4-154 Vol. 2B PMINSB — Minimum of Packed Signed Byte Integers

INSTRUCTION SET REFERENCE, N-Z

ELSE DEST[71:64] SRC[71:64]; FI;
IF (DEST[79:72] < SRC[79:72])

THEN DEST[79:72] DEST[79:72];
ELSE DEST[79:72] SRC[79:72]; FI;

IF (DEST[87:80] < SRC[87:80])
THEN DEST[87:80] DEST[87:80];
ELSE DEST[87:80] SRC[87:80]; FI;

IF (DEST[95:88] < SRC[95:88])
THEN DEST[95:88] DEST[95:88];
ELSE DEST[95:88] SRC[95:88]; FI;

IF (DEST[103:96] < SRC[103:96])
THEN DEST[103:96] DEST[103:96];
ELSE DEST[103:96] SRC[103:96]; FI;

IF (DEST[111:104] < SRC[111:104])
THEN DEST[111:104] DEST[111:104];
ELSE DEST[111:104] SRC[111:104]; FI;

IF (DEST[119:112] < SRC[119:112])
THEN DEST[119:112] DEST[119:112];
ELSE DEST[119:112] SRC[119:112]; FI;

IF (DEST[127:120] < SRC[127:120])
THEN DEST[127:120] DEST[127:120];
ELSE DEST[127:120] SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB __m128i _mm_min_epi8 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Vol. 2B 4-155

INSTRUCTION SET REFERENCE, N-Z

PMINSB — Minimum of Packed Signed Byte Integers

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-156 Vol. 2B PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

PMINSD — Minimum of Packed Dword Integers

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])
THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD __m128i _mm_min_epi32 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
39 /r

PMINSD xmm1,
xmm2/m128

Valid Valid Compare packed signed dword integers in
xmm1 and xmm2/m128 and store packed
minimum values in xmm1.

Vol. 2B 4-157

INSTRUCTION SET REFERENCE, N-Z

PMINSD — Minimum of Packed Dword Integers

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

4-158 Vol. 2B PMINSD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-159

INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

PMINSW—Minimum of Packed Signed Word Integers

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINSW instruction for 64-bit operands:
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN

DEST[127:112] ← DEST[127:112];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F EA /r PMINSW mm1,
mm2/m64

Valid Valid Compare signed word integers in
mm2/m64 and mm1 and return
minimum values.

66 0F EA /r PMINSW xmm1,
xmm2/m128

Valid Valid Compare signed word integers in
xmm2/m128 and xmm1 and return
minimum values.

4-160 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[127:112] ← SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW __m64 _mm_min_pi16 (__m64 a, __m64 b)

PMINSW __m128i _mm_min_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

Vol. 2B 4-161

INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-162 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

PMINUB—Minimum of Packed Unsigned Byte Integers

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINUB instruction for 64-bit operands:
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] ← DEST[127:120];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F DA /r PMINUB mm1,
mm2/m64

Valid Valid Compare unsigned byte integers in
mm2/m64 and mm1 and returns
minimum values.

66 0F DA /r PMINUB xmm1,
xmm2/m128

Valid Valid Compare unsigned byte integers in
xmm2/m128 and xmm1 and
returns minimum values.

Vol. 2B 4-163

INSTRUCTION SET REFERENCE, N-Z

PMINUB—Minimum of Packed Unsigned Byte Integers

ELSE
DEST[127:120] ← SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB __m64 _m_min_pu8 (__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

4-164 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-165

INSTRUCTION SET REFERENCE, N-Z

PMINUD — Minimum of Packed Dword Integers

PMINUD — Minimum of Packed Dword Integers

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] DEST[31:0];
ELSE DEST[31:0] SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] DEST[63:32];
ELSE DEST[63:32] SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] DEST[95:64];
ELSE DEST[95:64] SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])
THEN DEST[127:96] DEST[127:96];
ELSE DEST[127:96] SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD __m128i _mm_min_epu32 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
3B /r

PMINUD xmm1,
xmm2/m128

Valid Valid Compare packed unsigned dword
integers in xmm1 and xmm2/m128
and store packed minimum values in
xmm1.

4-166 Vol. 2B PMINUD — Minimum of Packed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

Vol. 2B 4-167

INSTRUCTION SET REFERENCE, N-Z

PMINUD — Minimum of Packed Dword Integers

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-168 Vol. 2B PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

PMINUW — Minimum of Packed Word Integers

Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[15:0] < SRC[15:0])
THEN DEST[15:0] DEST[15:0];
ELSE DEST[15:0] SRC[15:0]; FI;

IF (DEST[31:16] < SRC[31:16])
THEN DEST[31:16] DEST[31:16];
ELSE DEST[31:16] SRC[31:16]; FI;

IF (DEST[47:32] < SRC[47:32])
THEN DEST[47:32] DEST[47:32];
ELSE DEST[47:32] SRC[47:32]; FI;

IF (DEST[63:48] < SRC[63:48])
THEN DEST[63:48] DEST[63:48];
ELSE DEST[63:48] SRC[63:48]; FI;

IF (DEST[79:64] < SRC[79:64])
THEN DEST[79:64] DEST[79:64];
ELSE DEST[79:64] SRC[79:64]; FI;

IF (DEST[95:80] < SRC[95:80])
THEN DEST[95:80] DEST[95:80];
ELSE DEST[95:80] SRC[95:80]; FI;

IF (DEST[111:96] < SRC[111:96])
THEN DEST[111:96] DEST[111:96];
ELSE DEST[111:96] SRC[111:96]; FI;

IF (DEST[127:112] < SRC[127:112])
THEN DEST[127:112] DEST[127:112];
ELSE DEST[127:112] SRC[127:112]; FI;

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 3A
/r

PMINUW xmm1,
xmm2/m128

Valid Valid Compare packed unsigned word
integers in xmm1 and xmm2/m128
and store packed minimum values in
xmm1.

Vol. 2B 4-169

INSTRUCTION SET REFERENCE, N-Z

PMINUW — Minimum of Packed Word Integers

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW __m128i _mm_min_epu16 (__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-170 Vol. 2B PMINUW — Minimum of Packed Word Integers

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-171

INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

PMOVMSKB—Move Byte Mask

Description

Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-
ands, the byte mask is 16-bits.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). The default operand size is 64-bit
in 64-bit mode.

Operation

PMOVMSKB instruction with 64-bit source operand and r32:
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] ← SRC[63];
r32[31:8] ← ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] ← SRC[127];
r32[31:16] ← ZERO_FILL;

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] ← SRC[7];
r64[1] ← SRC[15];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F D7 /r PMOVMSKB
r32, mm

Valid Valid Move a byte mask of mm to
r32.

REX.W + 0F D7 /r PMOVMSKB
r64, mm

Valid N.E. Move a byte mask of mm to
the lower 32-bits of r64 and
zero-fill the upper 32-bits.

66 0F D7 /r PMOVMSKB reg,
xmm

Valid Valid Move a byte mask of xmm
to reg. The upper bits of r32
or r64 are zeroed

4-172 Vol. 2B PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, N-Z

(* Repeat operation for bytes 2 through 6 *)
r64[7] ← SRC[63];
r64[63:8] ← ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] ← SRC[127];
r64[63:16] ← ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB int _mm_movemask_pi8(__m64 a)

PMOVMSKB int _mm_movemask_epi8 (__m128i a)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Vol. 2B 4-173

INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

64-Bit Mode Exceptions

Same exceptions as in protected mode.

4-174 Vol. 2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, N-Z

PMOVSX — Packed Move with Sign Extend

Description

Sign-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).

Operation

PMOVSXBW
DEST[15:0] SignExtend(SRC[7:0]);
DEST[31:16] SignExtend(SRC[15:8]);
DEST[47:32] SignExtend(SRC[23:16]);
DEST[63:48] SignExtend(SRC[31:24]);
DEST[79:64] SignExtend(SRC[39:32]);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0f 38
20 /r

PMOVSXBW xmm1,
xmm2/m64

Valid Valid Sign extend 8 packed signed 8-bit
integers in the low 8 bytes of
xmm2/m64 to 8 packed signed 16-
bit integers in xmm1.

66 0f 38
21 /r

PMOVSXBD xmm1,
xmm2/m32

Valid Valid Sign extend 4 packed signed 8-bit
integers in the low 4 bytes of
xmm2/m32 to 4 packed signed 32-
bit integers in xmm1.

66 0f 38
22 /r

PMOVSXBQ xmm1,
xmm2/m16

Valid Valid Sign extend 2 packed signed 8-bit
integers in the low 2 bytes of
xmm2/m16 to 2 packed signed 64-
bit integers in xmm1.

66 0f 38
23 /r

PMOVSXWD xmm1,
xmm2/m64

Valid Valid Sign extend 4 packed signed 16-bit
integers in the low 8 bytes of
xmm2/m64 to 4 packed signed 32-
bit integers in xmm1.

66 0f 38
24 /r

PMOVSXWQ xmm1,
xmm2/m32

Valid Valid Sign extend 2 packed signed 16-bit
integers in the low 4 bytes of
xmm2/m32 to 2 packed signed 64-
bit integers in xmm1.

66 0f 38
25 /r

PMOVSXDQ xmm1,
xmm2/m64

Valid Valid Sign extend 2 packed signed 32-bit
integers in the low 8 bytes of
xmm2/m64 to 2 packed signed 64-
bit integers in xmm1.

Vol. 2B 4-175

INSTRUCTION SET REFERENCE, N-Z

PMOVSX — Packed Move with Sign Extend

DEST[95:80] SignExtend(SRC[47:40]);
DEST[111:96] SignExtend(SRC[55:48]);
DEST[127:112] SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0] SignExtend(SRC[7:0]);
DEST[63:32] SignExtend(SRC[15:8]);
DEST[95:64] SignExtend(SRC[23:16]);
DEST[127:96] SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0] SignExtend(SRC[7:0]);
DEST[127:64] SignExtend(SRC[15:8]);

PMOVSXWD
DEST[31:0] SignExtend(SRC[15:0]);
DEST[63:32] SignExtend(SRC[31:16]);
DEST[95:64] SignExtend(SRC[47:32]);
DEST[127:96] SignExtend(SRC[63:48]);

PMOVSXWQ
DEST[63:0] SignExtend(SRC[15:0]);
DEST[127:64] SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0] SignExtend(SRC[31:0]);
DEST[127:64] SignExtend(SRC[63:32]);

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW __m128i _mm_ cvtepi8_epi16 (__m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 (__m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epi64 (__m128i a);
PMOVSXWD __m128i _mm_ cvtepi16_epi32 (__m128i a);
PMOVSXWQ __m128i _mm_ cvtepi16_epi64 (__m128i a);
PMOVSXDQ __m128i _mm_ cvtepi32_epi64 (__m128i a);

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

4-176 Vol. 2B PMOVSX — Packed Move with Sign Extend

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions
#GP if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Vol. 2B 4-177

INSTRUCTION SET REFERENCE, N-Z

PMOVSX — Packed Move with Sign Extend

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-178 Vol. 2B PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, N-Z

PMOVZX — Packed Move with Zero Extend

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).

Operation

PMOVZXBW
DEST[15:0] ZeroExtend(SRC[7:0]);
DEST[31:16] ZeroExtend(SRC[15:8]);
DEST[47:32] ZeroExtend(SRC[23:16]);
DEST[63:48] ZeroExtend(SRC[31:24]);
DEST[79:64] ZeroExtend(SRC[39:32]);
DEST[95:80] ZeroExtend(SRC[47:40]);
DEST[111:96] ZeroExtend(SRC[55:48]);
DEST[127:112] ZeroExtend(SRC[63:56]);

PMOVZXBD
DEST[31:0] ZeroExtend(SRC[7:0]);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0f 38
30 /r

PMOVZXBW xmm1,
xmm2/m64

Valid Valid Zero extend 8 packed 8-bit integers in the
low 8 bytes of xmm2/m64 to 8 packed
16-bit integers in xmm1.

66 0f 38
31 /r

PMOVZXBD xmm1,
xmm2/m32

Valid Valid Zero extend 4 packed 8-bit integers in the
low 4 bytes of xmm2/m32 to 4 packed
32-bit integers in xmm1.

66 0f 38
32 /r

PMOVZXBQ xmm1,
xmm2/m16

Valid Valid Zero extend 2 packed 8-bit integers in the
low 2 bytes of xmm2/m16 to 2 packed
64-bit integers in xmm1.

66 0f 38
33 /r

PMOVZXWD xmm1,
xmm2/m64

Valid Valid Zero extend 4 packed 16-bit integers in
the low 8 bytes of xmm2/m64 to 4
packed 32-bit integers in xmm1.

66 0f 38
34 /r

PMOVZXWQ xmm1,
xmm2/m32

Valid Valid Zero extend 2 packed 16-bit integers in
the low 4 bytes of xmm2/m32 to 2
packed 64-bit integers in xmm1.

66 0f 38
35 /r

PMOVZXDQ xmm1,
xmm2/m64

Valid Valid Zero extend 2 packed 32-bit integers in
the low 8 bytes of xmm2/m64 to 2
packed 64-bit integers in xmm1.

Vol. 2B 4-179

INSTRUCTION SET REFERENCE, N-Z

PMOVZX — Packed Move with Zero Extend

DEST[63:32] ZeroExtend(SRC[15:8]);
DEST[95:64] ZeroExtend(SRC[23:16]);
DEST[127:96] ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0] ZeroExtend(SRC[7:0]);
DEST[127:64] ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0] ZeroExtend(SRC[15:0]);
DEST[63:32] ZeroExtend(SRC[31:16]);
DEST[95:64] ZeroExtend(SRC[47:32]);
DEST[127:96] ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0] ZeroExtend(SRC[15:0]);
DEST[127:64] ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0] ZeroExtend(SRC[31:0]);
DEST[127:64] ZeroExtend(SRC[63:32]);

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW __m128i _mm_ cvtepu8_epi16 (__m128i a);
PMOVZXBD __m128i _mm_ cvtepu8_epi32 (__m128i a);
PMOVZXBQ __m128i _mm_ cvtepu8_epi64 (__m128i a);
PMOVZXWD __m128i _mm_ cvtepu16_epi32 (__m128i a);
PMOVZXWQ __m128i _mm_ cvtepu16_epi64 (__m128i a);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 (__m128i a);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

4-180 Vol. 2B PMOVZX — Packed Move with Zero Extend

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions
#GP if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-181

INSTRUCTION SET REFERENCE, N-Z

PMOVZX — Packed Move with Zero Extend

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-182 Vol. 2B PMULDQ — Multiply Packed Signed Dword Integers

INSTRUCTION SET REFERENCE, N-Z

PMULDQ — Multiply Packed Signed Dword Integers

Description

Performs two signed multiplications from two pairs of signed dword integers and
stores two 64-bit products in the destination operand (first operand). The 64-bit
product from the first/third dword element in the destination operand and the
first/third dword element of the source operand (second operand) is stored to the
low/high qword element of the destination.

If the source is a memory operand then all 128 bits will be fetched from memory but
the second and fourth dwords will not be used in the computation.

Operation

DEST[63:0] = DEST[31:0] * SRC[31:0];
DEST[127:64] = DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ __m128i _mm_mul_epi32(__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38
28 /r

PMULDQ xmm1,
xmm2/m128

Valid Valid Multiply the packed signed dword
integers in xmm1 and xmm2/m128 and
store the quadword product in xmm1.

Vol. 2B 4-183

INSTRUCTION SET REFERENCE, N-Z

PMULDQ — Multiply Packed Signed Dword Integers

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-184 Vol. 2B PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, N-Z

PMULHRSW — Packed Multiply High with Round and Scale

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination
operand (first operand) with the corresponding signed 16-bit integer of the source
operand (second operand), producing intermediate, signed 32-bit integers. Each
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is
always performed by adding 1 to the least significant bit of the 18-bit intermediate
result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers.

When the source operand is a 128-bit memory operand, the operand must be aligned
on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PMULHRSW with 64-bit operands:

temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];

PMULHRSW with 128-bit operand:

temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 0B /r PMULHRSW
mm1, mm2/m64

Valid Valid Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to MM1.

66 0F 38 0B /r PMULHRSW
xmm1,
xmm2/m128

Valid Valid Multiply 16-bit signed
words, scale and round
signed doublewords, pack
high 16 bits to XMM1.

Vol. 2B 4-185

INSTRUCTION SET REFERENCE, N-Z

PMULHRSW — Packed Multiply High with Round and Scale

temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

PMULHRSW __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

4-186 Vol. 2B PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-187

INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the
destination operand (first operand) and the source operand (second operand), and
stores the high 16 bits of each 32-bit intermediate results in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULHUW instruction with 64-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F E4 /r PMULHUW mm1,
mm2/m64

Valid Valid Multiply the packed unsigned
word integers in mm1 register
and mm2/m64, and store the
high 16 bits of the results in
mm1.

66 0F E4 /r PMULHUW xmm1,
xmm2/m128

Valid Valid Multiply the packed unsigned
word integers in xmm1 and
xmm2/m128, and store the high
16 bits of the results in xmm1.

Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[31:16] Z2[31:16] Z1[31:16] Z0[31:16]

4-188 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHUW instruction with 128-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHUW __m128i _mm_mulhi_epu16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Vol. 2B 4-189

INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

4-190 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-191

INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

PMULHW—Multiply Packed Signed Integers and Store High Result

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the high 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULHW instruction with 64-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHW instruction with 128-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F E5 /r PMULHW mm,
mm/m64

Valid Valid Multiply the packed signed word
integers in mm1 register and
mm2/m64, and store the high 16
bits of the results in mm1.

66 0F E5 /r PMULHW xmm1,
xmm2/m128

Valid Valid Multiply the packed signed word
integers in xmm1 and
xmm2/m128, and store the high 16
bits of the results in xmm1.

4-192 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)

PMULHW __m128i _mm_mulhi_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-193

INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-194 Vol. 2B PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z

PMULLD — Multiply Packed Signed Dword Integers and Store Low
Result

Description

Performs four signed multiplications from four pairs of signed dword integers and
stores the lower 32 bits of the four 64-bit products in the destination operand (first
operand). Each dword element in the destination operand is multiplied with the
corresponding dword element of the source operand (second operand) to obtain a
64-bit intermediate product.

Operation
Temp0[63:0] DEST[31:0] * SRC[31:0];
Temp1[63:0] DEST[63:32] * SRC[63:32];
Temp2[63:0] DEST[95:64] * SRC[95:64];
Temp3[63:0] DEST[127:96] * SRC[127:96];
DEST[31:0] Temp0[31:0];
DEST[63:32] Temp1[31:0];
DEST[95:64] Temp2[31:0];
DEST[127:96] Temp3[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b);

Flags Affected

None

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 40 /r PMULLD xmm1,
xmm2/m128

Valid Valid Multiply the packed dword signed
integers in xmm1 and xmm2/m128
and store the low 32 bits of each
product in xmm1.

Vol. 2B 4-195

INSTRUCTION SET REFERENCE, N-Z

PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-196 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the low 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULLW instruction with 64-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F D5 /r PMULLW mm,
mm/m64

Valid Valid Multiply the packed signed word
integers in mm1 register and
mm2/m64, and store the low 16
bits of the results in mm1.

66 0F D5 /r PMULLW xmm1,
xmm2/m128

Valid Valid Multiply the packed signed word
integers in xmm1 and xmm2/m128,
and store the low 16 bits of the
results in xmm1.

Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[15:0] Z2[15:0] Z1[15:0] Z0[15:0]

Vol. 2B 4-197

INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];

PMULLW instruction with 128-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];
DEST[79:64] ← TEMP4[15:0];
DEST[95:80] ← TEMP5[15:0];
DEST[111:96] ← TEMP6[15:0];
DEST[127:112] ← TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULLW __m128i _mm_mullo_epi16 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-198 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

Vol. 2B 4-199

INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-200 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Description

Multiplies the first operand (destination operand) by the second operand (source
operand) and stores the result in the destination operand. The source operand can be
an unsigned doubleword integer stored in the low doubleword of an MMX technology
register or a 64-bit memory location, or it can be two packed unsigned doubleword
integers stored in the first (low) and third doublewords of an XMM register or an
128-bit memory location. The destination operand can be an unsigned doubleword
integer stored in the low doubleword an MMX technology register or two packed
doubleword integers stored in the first and third doublewords of an XMM register. The
result is an unsigned quadword integer stored in the destination an MMX technology
register or two packed unsigned quadword integers stored in an XMM register. When
a quadword result is too large to be represented in 64 bits (overflow), the result is
wrapped around and the low 64 bits are written to the destination element (that is,
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low
doubleword is used in the computation; for 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULUDQ instruction with 64-Bit operands:
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];
DEST[127:64] ← DEST[95:64] ∗ SRC[95:64];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F F4 /r PMULUDQ mm1,
mm2/m64

Valid Valid Multiply unsigned doubleword
integer in mm1 by unsigned
doubleword integer in mm2/m64,
and store the quadword result in
mm1.

66 0F F4 /r PMULUDQ xmm1,
xmm2/m128

Valid Valid Multiply packed unsigned
doubleword integers in xmm1 by
packed unsigned doubleword
integers in xmm2/m128, and store
the quadword results in xmm1.

Vol. 2B 4-201

INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)

PMULUDQ __m128i _mm_mul_epu32 (__m128i a, __m128i b)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

4-202 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-203

INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

POP—Pop a Value from the Stack

Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment
register.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

8F /0 POP r/m16 Valid Valid Pop top of stack into m16; increment stack
pointer.

8F /0 POP r/m32 N.E. Valid Pop top of stack into m32; increment stack
pointer.

8F /0 POP r/m64 Valid N.E. Pop top of stack into m64; increment stack
pointer. Cannot encode 32-bit operand size.

58+ rw POP r16 Valid Valid Pop top of stack into r16; increment stack
pointer.

58+ rd POP r32 N.E. Valid Pop top of stack into r32; increment stack
pointer.

58+ rd POP r64 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand size.

1F POP DS Invalid Valid Pop top of stack into DS; increment stack
pointer.

07 POP ES Invalid Valid Pop top of stack into ES; increment stack
pointer.

17 POP SS Invalid Valid Pop top of stack into SS; increment stack
pointer.

0F A1 POP FS Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.

0F A1 POP FS N.E. Valid Pop top of stack into FS; increment stack
pointer by 32 bits.

0F A1 POP FS Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.

0F A9 POP GS Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.

0F A9 POP GS N.E. Valid Pop top of stack into GS; increment stack
pointer by 32 bits.

0F A9 POP GS Valid N.E. Pop top of stack into GS; increment stack
pointer by 64 bits.

4-204 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

The address-size attribute of the stack segment determines the stack pointer size
(16, 32, 64 bits) and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is incremented by 4; if they are 16, the 16-bit SP register is
incremented by 2. (The B flag in the stack segment’s segment descriptor determines
the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and
also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the
descriptor information associated with that segment selector to be loaded into the
hidden (shadow) part of the segment register and causes the selector and the
descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes
a general protection exception (#GP). In this situation, no memory reference occurs
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register
from the stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to 0H as
a result of the POP instruction, the resulting location of the memory write is
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after
execution of the next instruction. This action allows sequential execution of POP SS
and MOV ESP, EBP instructions without the danger of having an invalid stack during
an interrupt1. However, use of the LSS instruction is the preferred method of loading
the SS and ESP registers.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP

Vol. 2B 4-205

INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning
of this section for encoding data and limits.

Operation

IF StackAddrSize = 32
THEN

IF OperandSize = 32
THEN

DEST ← SS:ESP; (* Copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* Copy a word *)
ESP ← ESP + 2;

FI;
ELSE IF StackAddrSize = 64

THEN
IF OperandSize = 64

THEN
DEST ← SS:RSP; (* Copy quadword *)
RSP ← RSP + 8;

ELSE (* OperandSize = 16*)
DEST ← SS:RSP; (* Copy a word *)
RSP ← RSP + 2;

FI;
FI;

ELSE StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

DEST ← SS:SP; (* Copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* Copy a doubleword *)
SP ← SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as
described in the following listing. These checks are performed on the segment
selector and the segment descriptor it points to.

4-206 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);

IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;

Vol. 2B 4-207

INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

 FI;
FI;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment

selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.

4-208 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS
segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is
marked not present.

#NP If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL
and the CPL are greater than the DPL.

Vol. 2B 4-209

INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#PF(fault-code) If a page fault occurs.

#NP If the FS or GS register is being loaded and the segment pointed
to is marked not present.

#UD If the LOCK prefix is used.

4-210 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

POPA/POPAD—Pop All General-Purpose Registers

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX
(if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same
opcode. The POPA instruction is intended for use when the operand-size attribute is
16 and the POPAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when POPA is used and to 32 when
POPAD is used (using the operand-size override prefix [66H] if necessary). Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting
of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit
mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF OperandSize = 32 (* Instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

61 POPA Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.

61 POPAD Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX, and
EAX.

Vol. 2B 4-211

INSTRUCTION SET REFERENCE, N-Z

POPA/POPAD—Pop All General-Purpose Registers

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();
BP ← Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack

segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack

segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack

segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

4-212 Vol. 2B POPCNT — Return the Count of Number of Bits Set to 1

INSTRUCTION SET REFERENCE, N-Z

POPCNT — Return the Count of Number of Bits Set to 1

Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;
For (i=0; i < OperandSize; i++)
{ IF (SRC[i] = 1) // i’th bit

THEN Count++; FI;
}
DEST Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC == 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT int _mm_popcnt_u32(unsigned int a);

POPCNT int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F B8 /r
F3 0F B8 /r
F3 REX.W 0F B8 /r

POPCNT r16, r/m16
POPCNT r32, r/m32
POPCNT r64, r/m64

Valid
Valid
Valid

Valid
Valid
N.E.

POPCNT on r/m16
POPCNT on r/m32
POPCNT on r/m64

Vol. 2B 4-213

INSTRUCTION SET REFERENCE, N-Z

POPCNT — Return the Count of Number of Bits Set to 1

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-214 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is
16; the POPFD instruction is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode
of operation. When the processor is operating in protected mode at privilege level 0
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags
in the EFLAGS register except RF1, VIP, VIF, and VM may be modified. VIP, VIF and
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than
or equal to IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9D POPF Valid Valid Pop top of stack into lower 16 bits of
EFLAGS.

9D POPFD N.E. Valid Pop top of stack into EFLAGS.

REX.W + 9D POPFQ Valid N.E. Pop top of stack and zero-extend into
RFLAGS.

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears
RF as it begins to execute.

Vol. 2B 4-215

INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)

THEN IF CPL = 0
THEN

IF OperandSize = 32;
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)

ELSE
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

 modified; IOPL, RF, VM, and all reserved bits are
 unaffected; VIP and VIF are cleared. *)

FI;
ELSE IF (Operandsize = 64)

IF CPL > IOPL
THEN

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and

4-216 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z

VIF can be modified; IF, IOPL, RF, VM, and all reserved
 bits are unaffected; VIP and VIF are cleared. *)

ELSE
RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are

 unaffected; VIP and VIF are cleared. *)
FI;

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;
FI;

ELSE (* In Virtual-8086 Mode *)
IF IOPL = 3

THEN IF OperandSize = 32
THEN

EFLAGS ← Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)

ELSE
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)
#GP(0); (* Trap to virtual-8086 monitor. *)

FI;
FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Vol. 2B 4-217

INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction
with an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-218 Vol. 2B POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, N-Z

POR—Bitwise Logical OR

Description

Performs a bitwise logical OR operation on the source operand (second operand) and
the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if either or both of the corresponding bits of the first and second operands
are 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST ← DEST OR SRC;

Intel C/C++ Compiler Intrinsic Equivalent

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F EB /r POR mm, mm/m64 Valid Valid Bitwise OR of mm/m64 and mm.

66 0F EB /r POR xmm1,
xmm2/m128

Valid Valid Bitwise OR of xmm2/m128 and
xmm1.

Vol. 2B 4-219

INSTRUCTION SET REFERENCE, N-Z

POR—Bitwise Logical OR

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

4-220 Vol. 2B POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, N-Z

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-221

INSTRUCTION SET REFERENCE, N-Z

PREFETCHh—Prefetch Data Into Caches

PREFETCHh—Prefetch Data Into Caches

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

• T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

• T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium III processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the
processor, no data movement occurs. Prefetches from uncacheable or WC memory
are ignored.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 Valid Valid Move data from m8 closer to the
processor using T0 hint.

0F 18 /2 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.

0F 18 /3 PREFETCHT2 m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.

0F 18 /0 PREFETCHNTA m8 Valid Valid Move data from m8 closer to the
processor using NTA hint.

4-222 Vol. 2B PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, N-Z

The PREFETCHh instruction is merely a hint and does not affect program behavior. If
executed, this instruction moves data closer to the processor in anticipation of future
use.

The implementation of prefetch locality hints is implementation-dependent, and can
be overloaded or ignored by a processor implementation. The amount of data
prefetched is also processor implementation-dependent. It will, however, be a
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHh instruction is
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or
locked memory references. A PREFETCHh instruction is also unordered with respect
to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR,
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to
be prefetched. The value “i” gives a constant (_MM_HINT_T0, _MM_HINT_T1,
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to
be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Vol. 2B 4-223

INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

PSADBW—Compute Sum of Absolute Differences

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the
source operand (second operand) and from the destination operand (first operand).
These 8 differences are then summed to produce an unsigned word integer result
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an
XMM register. Figure 4-5 shows the operation of the PSADBW instruction when using
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word
of the destination operand, and the remaining bytes in the destination operand are
cleared to all 0s.

When operating on 128-bit operands, two packed results are computed. Here, the 8
low-order bytes of the source and destination operands are operated on to produce a
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through
79 of the destination operand. The remaining bytes of the destination operand are
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F F6 /r PSADBW mm1,
mm2/m64

Valid Valid Computes the absolute differences of
the packed unsigned byte integers
from mm2 /m64 and mm1; differences
are then summed to produce an
unsigned word integer result.

66 0F F6 /r PSADBW xmm1,
xmm2/m128

Valid Valid Computes the absolute differences of
the packed unsigned byte integers
from xmm2 /m128 and xmm1; the 8
low differences and 8 high differences
are then summed separately to
produce two unsigned word integer
results.

4-224 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z

Operation

PSADBW instructions when using 64-bit operands:
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 ← ABS(DEST[63:56] − SRC[63:56]);
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ← ABS(DEST[127:120] − SRC[127:120]);
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;
DEST[79:64] ← SUM(TEMP8:TEMP15);
DEST[127:80] ← 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW __m64 _mm_sad_pu8(__m64 a,__m64 b)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0SRC

DEST

TEMP

X4X5X6X7

Y3 Y2 Y1 Y0Y4Y5Y6Y7

ABS(X0:Y0)ABS(X7:Y7) ABS(X6:Y6) ABS(X5:Y5) ABS(X4:Y4) ABS(X3:Y3) ABS(X2:Y2) ABS(X1:Y1)

DEST 00H 00H00H00H00H00H SUM(TEMP7...TEMP0)

Vol. 2B 4-225

INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

4-226 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-227

INSTRUCTION SET REFERENCE, N-Z

PSHUFB — Packed Shuffle Bytes

PSHUFB — Packed Shuffle Bytes

Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first
operand) according to the shuffle control mask in the source operand (the second
operand). The instruction permutes the data in the destination operand, leaving the
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle
control mask is set, then constant zero is written in the result byte. Each byte in the
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be
MMX register or XMM registers. When the source operand is a 128-bit memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PSHUFB with 64 bit operands:

for i = 0 to 7 {
if (SRC[(i * 8)+7] == 1) then

DEST[(i*8)+7...(i*8)+0] ← 0;
else

index[2..0] ← SRC[(i*8)+2 .. (i*8)+0];
DEST[(i*8)+7...(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif;
}

PSHUFB with 128 bit operands:

for i = 0 to 15 {
if (SRC[(i * 8)+7] == 1) then

DEST[(i*8)+7..(i*8)+0] ← 0;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 38 00 /r PSHUFB mm1,
mm2/m64

Valid Valid Shuffle bytes in mm1
according to contents of
mm2/m64.

66 0F 38 00 /r PSHUFB xmm1,
xmm2/m128

Valid Valid Shuffle bytes in xmm1
according to contents of
xmm2/m128.

4-228 Vol. 2B PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, N-Z

 else
index[3..0] ← SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif
}

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

PSHUFB __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

Figure 4-6. PSHUB with 64-Bit Operands

Vol. 2B 4-229

INSTRUCTION SET REFERENCE, N-Z

PSHUFB — Packed Shuffle Bytes

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CR0.EM = 1.

 (128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

4-230 Vol. 2B PSHUFB — Packed Shuffle Bytes

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-231

INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

PSHUFD—Shuffle Packed Doublewords

Description

Copies doublewords from source operand (second operand) and inserts them in the
destination operand (first operand) at the locations selected with the order operand
(third operand). Figure 4-7 shows the operation of the PSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the
contents of one doubleword location in the destination operand. For example, bits 0
and 1 of the order operand select the contents of doubleword 0 of the destination
operand. The encoding of bits 0 and 1 of the order operand (see the field encoding in
Figure 4-7) determines which doubleword from the source operand will be copied to
doubleword 0 of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 70 /r ib PSHUFD xmm1,
xmm2/m128, imm8

Valid Valid Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Figure 4-7. PSHUFD Instruction Operation

X3 X2 X1 X0SRC

DEST Y3 Y2 Y1 Y0

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER01234567
Operand

4-232 Vol. 2B PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST[31:0] ← (SRC >> (ORDER[1:0] ∗ 32))[31:0];
DEST[63:32] ← (SRC >> (ORDER[3:2] ∗ 32))[31:0];
DEST[95:64] ← (SRC >> (ORDER[5:4] ∗ 32))[31:0];
DEST[127:96] ← (SRC >> (ORDER[7:6] ∗ 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

Vol. 2B 4-233

INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

4-234 Vol. 2B PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z

PSHUFHW—Shuffle Packed High Words

Description

Copies words from the high quadword of the source operand (second operand) and
inserts them in the high quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents
of one word location in the high quadword of the destination operand. The binary
encodings of the order operand fields select words (0, 1, 2 or 3, 4) from the high
quadword of the source operand to be copied to the destination operand. The low
quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the high quadword of the source operand to be
copied to more than one word location in the high quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← SRC[63:0];
DEST[79:64] ← (SRC >> (ORDER[1:0] ∗ 16))[79:64];
DEST[95:80] ← (SRC >> (ORDER[3:2] ∗ 16))[79:64];
DEST[111:96] ← (SRC >> (ORDER[5:4] ∗ 16))[79:64];
DEST[127:112] ← (SRC >> (ORDER[7:6] ∗ 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

Flags Affected

None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F 70 /r ib PSHUFHW xmm1, xmm2/
m128, imm8

Valid Valid Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Vol. 2B 4-235

INSTRUCTION SET REFERENCE, N-Z

PSHUFHW—Shuffle Packed High Words

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

4-236 Vol. 2B PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

Vol. 2B 4-237

INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

PSHUFLW—Shuffle Packed Low Words

Description

Copies words from the low quadword of the source operand (second operand) and
inserts them in the low quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (0, 1, 2, or 3) from the low quadword of
the source operand to be copied to the destination operand. The high quadword of
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the low quadword of the source operand to be
copied to more than one word location in the low quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] ← (SRC >> (ORDER[1:0] ∗ 16))[15:0];
DEST[31:16] ← (SRC >> (ORDER[3:2] ∗ 16))[15:0];
DEST[47:32] ← (SRC >> (ORDER[5:4] ∗ 16))[15:0];
DEST[63:48] ← (SRC >> (ORDER[7:6] ∗ 16))[15:0];
DEST[127:64] ← SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

Flags Affected

None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 70 /r ib PSHUFLW xmm1,
xmm2/m128, imm8

Valid Valid Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.

4-238 Vol. 2B PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

Vol. 2B 4-239

INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

4-240 Vol. 2B PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, N-Z

PSHUFW—Shuffle Packed Words

Description

Copies words from the source operand (second operand) and inserts them in the
destination operand (first operand) at word locations selected with the order operand
(third operand). This operation is similar to the operation used by the PSHUFD
instruction, which is illustrated in Figure 4-7. For the PSHUFW instruction, each 2-bit
field in the order operand selects the contents of one word location in the destination
operand. The encodings of the order operand fields select words from the source
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an MMX technology register. The order operand is an 8-bit
immediate. Note that this instruction permits a word in the source operand to be
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] ← (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] ← (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] ← (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] ← (SRC >> (ORDER[7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Numeric Exceptions

None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 70 /r ib PSHUFW mm1,
mm2/m64, imm8

Valid Valid Shuffle the words in mm2/m64
based on the encoding in imm8 and
store the result in mm1.

Vol. 2B 4-241

INSTRUCTION SET REFERENCE, N-Z

PSHUFW—Shuffle Packed Words

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address

space from 0 to FFFFH.
#UD If CR0.EM[bit 2] = 1.

If the LOCK prefix is used.
#NM If CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#GP(0) If the memory address is in a non-canonical form.
#UD If CR0.EM[bit 2] = 1.

If the LOCK prefix is used.
#NM If CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-242 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

PSIGNB/PSIGNW/PSIGND — Packed SIGN

Description

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand
(the first operand) if the signed integer value of the corresponding data element in
the source operand (the second operand) is less than zero. If the signed integer
value of a data element in the source operand is positive, the corresponding data
element in the destination operand is unchanged. If a data element in the source
operand is zero, the corresponding data element in the destination operand is set to
zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or
XMM registers. When the source operand is a 128bit memory operand, the operand
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PSIGNB with 64 bit operands:

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 38 08 /r PSIGNB mm1,
mm2/m64

Valid Valid Negate/zero/preserve packed byte
integers in mm1 depending on the
corresponding sign in mm2/m64

66 0F 38 08 /r PSIGNB xmm1,
xmm2/m128

Valid Valid Negate/zero/preserve packed byte
integers in xmm1 depending on the
corresponding sign in xmm2/m128.

0F 38 09 /r PSIGNW mm1,
mm2/m64

Valid Valid Negate/zero/preserve packed word
integers in mm1 depending on the
corresponding sign in mm2/m128.

66 0F 38 09 /r PSIGNW xmm1,
xmm2/m128

Valid Valid Negate/zero/preserve packed word
integers in xmm1 depending on the
corresponding sign in xmm2/m128.

0F 38 0A /r PSIGND mm1,
mm2/m64

Valid Valid Negate/zero/preserve packed
doubleword integers in mm1
depending on the corresponding sign
in mm2/m128.

66 0F 38 0A /r PSIGND xmm1,
xmm2/m128

Valid Valid Negate/zero/preserve packed
doubleword integers in xmm1
depending on the corresponding sign
in xmm2/m128.

Vol. 2B 4-243

INSTRUCTION SET REFERENCE, N-Z

PSIGNB/PSIGNW/PSIGND — Packed SIGN

IF (SRC[7:0] < 0)
DEST[7:0] ← Neg(DEST[7:0])

ELSEIF (SRC[7:0] == 0)
DEST[7:0] ← 0

ELSEIF (SRC[7:0] > 0)
DEST[7:0] ← DEST[7:0]

Repeat operation for 2nd through 7th bytes

IF (SRC[63:56] < 0)
DEST[63:56] ← Neg(DEST[63:56])

ELSEIF (SRC[63:56] == 0)
DEST[63:56] ← 0

ELSEIF (SRC[63:56] > 0)
DEST[63:56] ← DEST[63:56]

PSIGNB with 128 bit operands:

IF (SRC[7:0] < 0)
DEST[7:0] ← Neg(DEST[7:0])

ELSEIF (SRC[7:0] == 0)
DEST[7:0] ← 0

ELSEIF (SRC[7:0] > 0)
DEST[7:0] ← DEST[7:0]

Repeat operation for 2nd through 15th bytes
IF (SRC[127:120] < 0)

DEST[127:120] ← Neg(DEST[127:120])
ELSEIF (SRC[127:120] == 0)

DEST[127:120] ← 0
ELSEIF (SRC[127:120] > 0)

DEST[127:120] ← DEST[127:120]

PSIGNW with 64 bit operands:

IF (SRC[15:0] < 0)
DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] == 0)
DEST[15:0] ← 0

ELSEIF (SRC[15:0] > 0)
DEST[15:0] ← DEST[15:0]

Repeat operation for 2nd through 3rd words
IF (SRC[63:48] < 0)

DEST[63:48] ← Neg(DEST[63:48])
ELSEIF (SRC[63:48] == 0)

DEST[63:48] ← 0
ELSEIF (SRC[63:48] > 0)

4-244 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

DEST[63:48] ← DEST[63:48]

PSIGNW with 128 bit operands:

IF (SRC[15:0] < 0)
DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] == 0)
DEST[15:0] ← 0

ELSEIF (SRC[15:0] > 0)
DEST[15:0] ← DEST[15:0]

Repeat operation for 2nd through 7th words
IF (SRC[127:112] < 0)

DEST[127:112] ← Neg(DEST[127:112])
ELSEIF (SRC[127:112] == 0)

DEST[127:112] ← 0
ELSEIF (SRC[127:112] > 0)

DEST[127:112] ← DEST[127:112]

PSIGND with 64 bit operands:

IF (SRC[31:0] < 0)
DEST[31:0] ← Neg(DEST[31:0])

ELSEIF (SRC[31:0] == 0)
DEST[31:0] ← 0

ELSEIF (SRC[31:0] > 0)
DEST[31:0] ← DEST[31:0]

IF (SRC[63:32] < 0)
DEST[63:32] ← Neg(DEST[63:32])

ELSEIF (SRC[63:32] == 0)
DEST[63:32] ← 0

ELSEIF (SRC[63:32] > 0)
DEST[63:32] ← DEST[63:32]

PSIGND with 128 bit operands:

IF (SRC[31:0] < 0)
DEST[31:0] ← Neg(DEST[31:0])

ELSEIF (SRC[31:0] == 0)
DEST[31:0] ← 0

ELSEIF (SRC[31:0] > 0)
DEST[31:0] ← DEST[31:0]

Repeat operation for 2nd through 3rd double words
IF (SRC[127:96] < 0)

DEST[127:96] ← Neg(DEST[127:96])
ELSEIF (SRC[127:96] == 0)

Vol. 2B 4-245

INSTRUCTION SET REFERENCE, N-Z

PSIGNB/PSIGNW/PSIGND — Packed SIGN

DEST[127:96] ← 0
ELSEIF (SRC[127:96] > 0)

DEST[127:96] ← DEST[127:96]

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)

PSIGNB __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)

PSIGNW __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)

PSIGND __m128i _mm_sign_epi32 (__m128i a, __m128i b)

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CR0.EM = 1.

(128-bit operations only) If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD (128-bit operations only) If CR0.EM = 1.

If CR4.OSFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

4-246 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

#NM If TS bit in CR0 is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-247

INSTRUCTION SET REFERENCE, N-Z

PSLLDQ—Shift Double Quadword Left Logical

PSLLDQ—Shift Double Quadword Left Logical

Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared
(set to all 0s). If the value specified by the count operand is greater than 15, the
destination operand is set to all 0s. The destination operand is an XMM register. The
count operand is an 8-bit immediate.

Operation

TEMP ← COUNT;
IF (TEMP > 15) THEN TEMP ← 16; FI;
DEST ← DEST << (TEMP ∗ 8);

Intel C/C++ Compiler Intrinsic Equivalent

PSLLDQ __m128i _mm_slli_si128 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 73 /7 ib PSLLDQ xmm1,
imm8

Valid Valid Shift xmm1 left by imm8 bytes
while shifting in 0s.

4-248 Vol. 2B PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Vol. 2B 4-249

INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the left by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted left,
the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all 0s. Figure 4-8 gives an example of
shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F F1 /r PSLLW mm, mm/m64 Valid Valid Shift words in mm left mm/m64
while shifting in 0s.

66 0F F1 /r PSLLW xmm1,
xmm2/m128

Valid Valid Shift words in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in 0s.

66 0F 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by
imm8 while shifting in 0s.

0F F2 /r PSLLD mm, mm/m64 Valid Valid Shift doublewords in mm left by
mm/m64 while shifting in 0s.

66 0F F2 /r PSLLD xmm1,
xmm2/m128

Valid Valid Shift doublewords in xmm1 left
by xmm2/m128 while shifting in
0s.

0F 72 /6 ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left by
imm8 while shifting in 0s.

66 0F 72 /6 ib PSLLD xmm1, imm8 Valid Valid Shift doublewords in xmm1 left
by imm8 while shifting in 0s.

0F F3 /r PSLLQ mm, mm/m64 Valid Valid Shift quadword in mm left by
mm/m64 while shifting in 0s.

66 0F F3 /r PSLLQ xmm1,
xmm2/m128

Valid Valid Shift quadwords in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 73 /6 ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in 0s.

66 0F 73 /6 ib PSLLQ xmm1, imm8 Valid Valid Shift quadwords in xmm1 left by
imm8 while shifting in 0s.

4-250 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z

tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSLLW instruction shifts each of the words in the destination operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the destination operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

FI;

PSLLD instruction with 64-bit operand:
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN

Figure 4-8. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension

Vol. 2B 4-251

INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

DEST[64:0] ← 0000000000000000H;
ELSE

DEST ← ZeroExtend(DEST << COUNT);
FI;

PSLLW instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT);

FI;

PSLLD instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT);

FI;

PSLLQ instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT);

FI;

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

PSLLW __m128i _mm_slli_pi16(__m64 m, int count)

PSLLW __m128i _mm_slli_pi16(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

4-252 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z

PSLLD __m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

PSLLD __m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLQ __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

PSLLQ __m128i _mm_slli_epi64(__m128i m, int count)

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

Vol. 2B 4-253

INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-254 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count
operand (second operand). As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or
31 (for doublewords), each destination data element is filled with the initial value of
the sign bit of the element. (Figure 4-9 gives an example of shifting words in a 64-bit
operand.)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F E1 /r PSRAW mm,
mm/m64

Valid Valid Shift words in mm right by
mm/m64 while shifting in sign
bits.

66 0F E1 /r PSRAW xmm1,
xmm2/m128

Valid Valid Shift words in xmm1 right by
xmm2/m128 while shifting in sign
bits.

0F 71 /4 ib PSRAW mm, imm8 Valid Valid Shift words in mm right by imm8
while shifting in sign bits

66 0F 71 /4 ib PSRAW xmm1,
imm8

Valid Valid Shift words in xmm1 right by
imm8 while shifting in sign bits

0F E2 /r PSRAD mm,
mm/m64

Valid Valid Shift doublewords in mm right by
mm/m64 while shifting in sign
bits.

66 0F E2 /r PSRAD xmm1,
xmm2/m128

Valid Valid Shift doubleword in xmm1 right
by xmm2 /m128 while shifting in
sign bits.

0F 72 /4 ib PSRAD mm, imm8 Valid Valid Shift doublewords in mm right by
imm8 while shifting in sign bits.

66 0F 72 /4 ib PSRAD xmm1,
imm8

Valid Valid Shift doublewords in xmm1 right
by imm8 while shifting in sign bits.

Vol. 2B 4-255

INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the
right by the number of bits specified in the count operand, and the PSRAD instruction
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← SignExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← SignExtend(DEST[63:32] >> COUNT);

PSRAW instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];

Figure 4-9. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Sign
Extension

4-256 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

IF (COUNT > 15)
THEN COUNT ← 16;

FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← SignExtend(DEST[127:96] >>COUNT);

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW __m64 _mm_sra_pi16 (__m64 m, __m64 count)

PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)

PSRAW __m128i _mm_srai_epi16(__m128i m, int count)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count))

PSRAD __m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Vol. 2B 4-257

INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

4-258 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-259

INSTRUCTION SET REFERENCE, N-Z

PSRLDQ—Shift Double Quadword Right Logical

PSRLDQ—Shift Double Quadword Right Logical

Description

Shifts the destination operand (first operand) to the right by the number of bytes
specified in the count operand (second operand). The empty high-order bytes are
cleared (set to all 0s). If the value specified by the count operand is greater than 15,
the destination operand is set to all 0s. The destination operand is an XMM register.
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

TEMP ← COUNT;
IF (TEMP > 15) THEN TEMP ← 16; FI;
DEST ← DEST >> (temp ∗ 8);

Intel C/C++ Compiler Intrinsic Equivalents

PSRLDQ __m128i _mm_srli_si128 (__m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 73 /3 ib PSRLDQ xmm1,
imm8

Valid Valid Shift xmm1 right by imm8 while
shifting in 0s.

4-260 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Numeric Exceptions

None.

Vol. 2B 4-261

INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the right by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted
right, the empty high-order bits are cleared (set to 0). If the value specified by the
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F D1 /r PSRLW mm,
mm/m64

Valid Valid Shift words in mm right by amount
specified in mm/m64 while shifting in
0s.

66 0F D1 /r PSRLW xmm1,
xmm2/m128

Valid Valid Shift words in xmm1 right by amount
specified in xmm2/m128 while
shifting in 0s.

0F 71 /2 ib PSRLW mm,
imm8

Valid Valid Shift words in mm right by imm8 while
shifting in 0s.

66 0F 71 /2 ib PSRLW xmm1,
imm8

Valid Valid Shift words in xmm1 right by imm8
while shifting in 0s.

0F D2 /r PSRLD mm,
mm/m64

Valid Valid Shift doublewords in mm right by
amount specified in mm/m64 while
shifting in 0s.

66 0F D2 /r PSRLD xmm1,
xmm2/m128

Valid Valid Shift doublewords in xmm1 right by
amount specified in xmm2 /m128
while shifting in 0s.

0F 72 /2 ib PSRLD mm,
imm8

Valid Valid Shift doublewords in mm right by
imm8 while shifting in 0s.

66 0F 72 /2 ib PSRLD xmm1,
imm8

Valid Valid Shift doublewords in xmm1 right by
imm8 while shifting in 0s.

0F D3 /r PSRLQ mm,
mm/m64

Valid Valid Shift mm right by amount specified in
mm/m64 while shifting in 0s.

66 0F D3 /r PSRLQ xmm1,
xmm2/m128

Valid Valid Shift quadwords in xmm1 right by
amount specified in xmm2/m128
while shifting in 0s.

0F 73 /2 ib PSRLQ mm,
imm8

Valid Valid Shift mm right by imm8 while shifting
in 0s.

66 0F 73 /2 ib PSRLQ xmm1,
imm8

Valid Valid Shift quadwords in xmm1 right by
imm8 while shifting in 0s.

4-262 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, N-Z

quadword), then the destination operand is set to all 0s. Figure 4-10 gives an
example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRLW instruction shifts each of the words in the destination operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the destination operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD instruction with 64-bit operand:
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);

FI;

Figure 4-10. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension

Vol. 2B 4-263

INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST ← ZeroExtend(DEST >> COUNT);
FI;

PSRLW instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] >> COUNT);

FI;

PSRLD instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] >> COUNT);

FI;

PSRLQ instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] >> COUNT);

FI;

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW __m64 _mm_srli_pi16(__m64 m, int count)

PSRLW __m64 _mm_srl_pi16 (__m64 m, __m64 count)

4-264 Vol. 2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

INSTRUCTION SET REFERENCE, N-Z

PSRLW __m128i _mm_srli_epi16 (__m128i m, int count)

PSRLW __m128i _mm_srl_epi16 (__m128i m, __m128i count)

PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

PSRLD __m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

PSRLQ __m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-265

INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-266 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Description

Performs a SIMD subtract of the packed integers of the source operand (second
operand) from the packed integers of the destination operand (first operand), and
stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 16 bits are written to the destination element.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F F8 /r PSUBB mm,
mm/m64

Valid Valid Subtract packed byte integers in
mm/m64 from packed byte integers in
mm.

66 0F F8 /r PSUBB xmm1,
xmm2/m128

Valid Valid Subtract packed byte integers in
xmm2/m128 from packed byte
integers in xmm1.

0F F9 /r PSUBW mm,
mm/m64

Valid Valid Subtract packed word integers in
mm/m64 from packed word integers in
mm.

66 0F F9 /r PSUBW xmm1,
xmm2/m128

Valid Valid Subtract packed word integers in
xmm2/m128 from packed word
integers in xmm1.

0F FA /r PSUBD mm,
mm/m64

Valid Valid Subtract packed doubleword integers
in mm/m64 from packed doubleword
integers in mm.

66 0F FA /r PSUBD xmm1,
xmm2/m128

Valid Valid Subtract packed doubleword integers
in xmm2/mem128 from packed
doubleword integers in xmm1.

Vol. 2B 4-267

INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

The PSUBD instruction subtracts packed doubleword integers. When an individual
result is too large or too small to be represented in a doubleword, the result is
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values upon
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBB instruction with 64-bit operands:
DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] − SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] − SRC[127:120];

PSUBW instruction with 64-bit operands:
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] ← DEST[63:48] − SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] − SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] ← DEST[31:0] − SRC[31:0];
DEST[63:32] ← DEST[63:32] − SRC[63:32];

PSUBD instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0] − SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] ← DEST[127:96] − SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

4-268 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBB __m128i _mm_sub_epi8 (__m128i a, __m128i b)

PSUBW __m128i _mm_sub_epi16 (__m128i a, __m128i b)

PSUBD __m128i _mm_sub_epi32 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

Vol. 2B 4-269

INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-270 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The source operand can be
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an
128-bit memory location. The destination operand can be a quadword integer stored
in an MMX technology register or two packed quadword integers stored in an XMM
register. When packed quadword operands are used, a SIMD subtract is performed.
When a quadword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBQ instruction with 64-Bit operands:
DEST[63:0] ← DEST[63:0] − SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] ← DEST[63:0] − SRC[63:0];
DEST[127:64] ← DEST[127:64] − SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F FB /r PSUBQ mm1, mm2/m64 Valid Valid Subtract quadword integer
in mm1 from mm2 /m64.

66 0F FB /r PSUBQ xmm1, xmm2/m128 Valid Valid Subtract packed quadword
integers in xmm1 from
xmm2 /m128.

Vol. 2B 4-271

INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

4-272 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-273

INSTRUCTION SET REFERENCE, N-Z

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

Description

Performs a SIMD subtract of the packed signed integers of the source operand
(second operand) from the packed signed integers of the destination operand (first
operand), and stores the packed integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F E8 /r PSUBSB mm,
mm/m64

Valid Valid Subtract signed packed bytes in
mm/m64 from signed packed bytes
in mm and saturate results.

66 0F E8 /r PSUBSB xmm1,
xmm2/m128

Valid Valid Subtract packed signed byte
integers in xmm2/m128 from
packed signed byte integers in
xmm1 and saturate results.

0F E9 /r PSUBSW mm,
mm/m64

Valid Valid Subtract signed packed words in
mm/m64 from signed packed words
in mm and saturate results.

66 0F E9 /r PSUBSW xmm1,
xmm2/m128

Valid Valid Subtract packed signed word
integers in xmm2/m128 from
packed signed word integers in
xmm1 and saturate results.

4-274 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBSB instruction with 64-bit operands:
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte (DEST[63:56] − SRC[63:56]);

PSUBSB instruction with 128-bit operands:
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[111:120] − SRC[127:120]);

PSUBSW instruction with 64-bit operands
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord (DEST[63:48] − SRC[63:48]);

PSUBSW instruction with 128-bit operands
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] − SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Vol. 2B 4-275

INSTRUCTION SET REFERENCE, N-Z

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

4-276 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-277

INSTRUCTION SET REFERENCE, N-Z

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand
(second operand) from the packed unsigned integers of the destination operand (first
operand), and stores the packed unsigned integer results in the destination operand.
See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of 00H is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of 0000H is written to the
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F D8 /r PSUBUSB mm,
mm/m64

Valid Valid Subtract unsigned packed bytes in
mm/m64 from unsigned packed
bytes in mm and saturate result.

66 0F D8 /r PSUBUSB xmm1,
xmm2/m128

Valid Valid Subtract packed unsigned byte
integers in xmm2/m128 from packed
unsigned byte integers in xmm1 and
saturate result.

0F D9 /r PSUBUSW mm,
mm/m64

Valid Valid Subtract unsigned packed words in
mm/m64 from unsigned packed
words in mm and saturate result.

66 0F D9 /r PSUBUSW xmm1,
xmm2/m128

Valid Valid Subtract packed unsigned word
integers in xmm2/m128 from packed
unsigned word integers in xmm1 and
saturate result.

4-278 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBUSB instruction with 64-bit operands:
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte (DEST[63:56] − SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] − SRC[127:120]);

PSUBUSW instruction with 64-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord (DEST[63:48] − SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] − SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

Vol. 2B 4-279

INSTRUCTION SET REFERENCE, N-Z

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

4-280 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-281

INSTRUCTION SET REFERENCE, N-Z

PTEST- Logical Compare

PTEST- Logical Compare

Description

Performs a bitwise AND of the destination operand (first operand) and the source
operand (second operand), then sets the ZF flag only if all bits in the result are 0.
PTEST sets the CF flag if all bits in the result are 0 of the bitwise AND of the source
operand (second operand) and the bitwise logical NOT of the destination operand.

Operation

IF (SRC[127:0] bitwiseAND DEST[127:0] = 0)
THEN ZF 1;
ELSE ZF 0; FI;

IF (SRC[127:0] bitwiseAND (bitwiseNOT DEST[127:0]) = 0)
THEN CF 1;
ELSE CF 0; FI;

DEST[127:0] Unmodified;
AF = OF = PF = SF 0;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int _mm_testz_si128 (__m128i s1, __m128i s2);
int _mm_testc_si128 (__m128i s1, __m128i s2);
int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 38 17 /r PTEST xmm1,
xmm2/m128

Valid Valid Set ZF if xmm2/m128 AND xmm1
result is all 0s. Set CF if xmm2/m128
AND NOT xmm1 result is all 0s.

4-282 Vol. 2B PTEST- Logical Compare

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Vol. 2B 4-283

INSTRUCTION SET REFERENCE, N-Z

PTEST- Logical Compare

Either the prefix REP (F3h) or REPN (F2H) is used.

4-284 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack
High Data

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
or quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. Figure 4-11 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 68 /r PUNPCKHBW mm,
mm/m64

Valid Valid Unpack and interleave high-order
bytes from mm and mm/m64
into mm.

66 0F 68 /r PUNPCKHBW xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
bytes from xmm1 and
xmm2/m128 into xmm1.

0F 69 /r PUNPCKHWD mm,
mm/m64

Valid Valid Unpack and interleave high-order
words from mm and mm/m64
into mm.

66 0F 69 /r PUNPCKHWD xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
words from xmm1 and
xmm2/m128 into xmm1.

0F 6A /r PUNPCKHDQ mm,
mm/m64

Valid Valid Unpack and interleave high-order
doublewords from mm and
mm/m64 into mm.

66 0F 6A /r PUNPCKHDQ xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
doublewords from xmm1 and
xmm2/m128 into xmm1.

66 0F 6D /r PUNPCKHQDQ xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
quadwords from xmm1 and
xmm2/m128 into xmm1.

Vol. 2B 4-285

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

The source operand can be an MMX technology register or a 64-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but
the instruction uses only the high-order 32 bits. When the source data comes from a
128-bit memory operand, an implementation may fetch only the appropriate 64 bits;
however, alignment to a 16-byte boundary and normal segment checking will still be
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high-order doubleword (or doublewords) of the source and destination operands,
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all 0s in the source operand. Here, if the source operand contains all 0s, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKHBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] ← DEST[39:32];
DEST[15:8] ← SRC[39:32];
DEST[23:16] ← DEST[47:40];
DEST[31:24] ← SRC[47:40];

Figure 4-11. PUNPCKHBW Instruction Operation Using 64-bit Operands

X4X7 X6 X5 Y4Y7 Y6 Y5

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST

4-286 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

DEST[39:32] ← DEST[55:48];
DEST[47:40] ← SRC[55:48];
DEST[55:48] ← DEST[63:56];
DEST[63:56] ← SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] ← DEST[47:32];
DEST[31:16] ← SRC[47:32];
DEST[47:32] ← DEST[63:48];
DEST[63:48] ← SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] ← DEST[63:32];
DEST[63:32] ← SRC[63:32];

PUNPCKHBW instruction with 128-bit operands:
DEST[7:0]← DEST[71:64];
DEST[15:8] ← SRC[71:64];
DEST[23:16] ← DEST[79:72];
DEST[31:24] ← SRC[79:72];
DEST[39:32] ← DEST[87:80];
DEST[47:40] ← SRC[87:80];
DEST[55:48] ← DEST[95:88];
DEST[63:56] ← SRC[95:88];
DEST[71:64] ← DEST[103:96];
DEST[79:72] ← SRC[103:96];
DEST[87:80] ← DEST[111:104];
DEST[95:88] ← SRC[111:104];
DEST[103:96] ← DEST[119:112];
DEST[111:104] ← SRC[119:112];
DEST[119:112] ← DEST[127:120];
DEST[127:120] ← SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] ← DEST[79:64];
DEST[31:16] ← SRC[79:64];
DEST[47:32] ← DEST[95:80];
DEST[63:48] ← SRC[95:80];
DEST[79:64] ← DEST[111:96];
DEST[95:80] ← SRC[111:96];
DEST[111:96] ← DEST[127:112];
DEST[127:112] ← SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[95:64];
DEST[63:32] ← SRC[95:64];

Vol. 2B 4-287

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

DEST[95:64] ← DEST[127:96];
DEST[127:96] ← SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] ← DEST[127:64];
DEST[127:64] ← SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)

PUNPCKHDQ __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

4-288 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address

space from 0 to FFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Vol. 2B 4-289

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-290 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data

Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. (Figure 4-12 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 60 /r PUNPCKLBW mm,
mm/m32

Valid Valid Interleave low-order bytes from
mm and mm/m32 into mm.

66 0F 60 /r PUNPCKLBW xmm1,
xmm2/m128

Valid Valid Interleave low-order bytes from
xmm1 and xmm2/m128 into
xmm1.

0F 61 /r PUNPCKLWD mm,
mm/m32

Valid Valid Interleave low-order words from
mm and mm/m32 into mm.

66 0F 61 /r PUNPCKLWD xmm1,
xmm2/m128

Valid Valid Interleave low-order words from
xmm1 and xmm2/m128 into
xmm1.

0F 62 /r PUNPCKLDQ mm,
mm/m32

Valid Valid Interleave low-order doublewords
from mm and mm/m32 into mm.

66 0F 62 /r PUNPCKLDQ xmm1,
xmm2/m128

Valid Valid Interleave low-order doublewords
from xmm1 and xmm2/m128 into
xmm1.

66 0F 6C /r PUNPCKLQDQ xmm1,
xmm2/m128

Valid Valid Interleave low-order quadword
from xmm1 and xmm2/m128 into
xmm1 register.

Figure 4-12. PUNPCKLBW Instruction Operation Using 64-bit Operands

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST

Vol. 2B 4-291

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

The source operand can be an MMX technology register or a 32-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking
will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all 0s in the source operand. Here, if the source operand contains all 0s, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKLBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] ← SRC[31:24];
DEST[55:48] ← DEST[31:24];
DEST[47:40] ← SRC[23:16];
DEST[39:32] ← DEST[23:16];
DEST[31:24] ← SRC[15:8];
DEST[23:16] ← DEST[15:8];
DEST[15:8] ← SRC[7:0];
DEST[7:0] ← DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] ← SRC[31:16];
DEST[47:32] ← DEST[31:16];
DEST[31:16] ← SRC[15:0];
DEST[15:0] ← DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] ← SRC[31:0];
DEST[31:0] ← DEST[31:0];

4-292 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0]← DEST[7:0];
DEST[15:8] ← SRC[7:0];
DEST[23:16] ← DEST[15:8];
DEST[31:24] ← SRC[15:8];
DEST[39:32] ← DEST[23:16];
DEST[47:40] ← SRC[23:16];
DEST[55:48] ← DEST[31:24];
DEST[63:56] ← SRC[31:24];
DEST[71:64] ← DEST[39:32];
DEST[79:72] ← SRC[39:32];
DEST[87:80] ← DEST[47:40];
DEST[95:88] ← SRC[47:40];
DEST[103:96] ← DEST[55:48];
DEST[111:104] ← SRC[55:48];
DEST[119:112] ← DEST[63:56];
DEST[127:120] ← SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0];
DEST[31:16] ← SRC[15:0];
DEST[47:32] ← DEST[31:16];
DEST[63:48] ← SRC[31:16];
DEST[79:64] ← DEST[47:32];
DEST[95:80] ← SRC[47:32];
DEST[111:96] ← DEST[63:48];
DEST[127:112] ← SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0];
DEST[63:32] ← SRC[31:0];
DEST[95:64] ← DEST[63:32];
DEST[127:96] ← SRC[63:32];

PUNPCKLQDQ
DEST[63:0] ← DEST[63:0];
DEST[127:64] ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

Vol. 2B 4-293

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

PUNPCKLDQ __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions (PUNPCKLQDQ) on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKLQDQ) on a non-SSE2

4-294 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data

INSTRUCTION SET REFERENCE, N-Z

capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-295

INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 Valid Valid Push r/m16.

FF /6 PUSH r/m32 N.E. Valid Push r/m32.

FF /6 PUSH r/m64 Valid N.E. Push r/m64. Default operand size 64-
bits.

50+rw PUSH r16 Valid Valid Push r16.

50+rd PUSH r32 N.E. Valid Push r32.

50+rd PUSH r64 Valid N.E. Push r64. Default operand size
64-bits.

6A PUSH imm8 Valid Valid Push sign-extended imm8. Stack
pointer is incremented by the size of
stack pointer.

68 PUSH imm16 Valid Valid Push sign-extended imm16. Stack
pointer is incremented by the size of
stack pointer.

68 PUSH imm32 Valid Valid Push sign-extended imm32. Stack
pointer is incremented by the size of
stack pointer.

0E PUSH CS Invalid Valid Push CS.

16 PUSH SS Invalid Valid Push SS.

1E PUSH DS Invalid Valid Push DS.

06 PUSH ES Invalid Valid Push ES.

0F A0 PUSH FS Valid Valid Push FS and decrement stack pointer
by 16 bits.

0F A0 PUSH FS N.E. Valid Push FS and decrement stack pointer
by 32 bits.

0F A0 PUSH FS Valid N.E. Push FS. Default operand size 64-bits.
(66H override causes 16-bit
operation).

0F A8 PUSH GS Valid Valid Push GS and decrement stack pointer
by 16 bits.

0F A8 PUSH GS N.E. Valid Push GS and decrement stack pointer
by 32 bits.

4-296 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z

Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. The address-size attribute of the stack segment determines the stack pointer
size (16, 32 or 64 bits). The operand-size attribute of the current code segment
determines the amount the stack pointer is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the
32-bit ESP register (stack pointer) is decremented by 4. If both attributes are 16, the
16-bit SP register (stack pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the
stack, a sign-extended value is pushed on the stack. If the source operand is the FS
or GS and its size is less than the address size of the stack, the zero-extended value
is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-
size attribute. The D flag in the current code segment’s segment descriptor (with
prefixes), determines the operand-size attribute and the address-size attribute of the
source operand. Pushing a 16-bit operand when the stack address-size attribute is 32
can result in a misaligned stack pointer (a stack pointer that is not be aligned on a
doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before
the instruction was executed. Thus if a PUSH instruction uses a memory operand in
which the ESP register is used for computing the operand address, the address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the
64-bit RSP register (stack pointer) is decremented by 8. A 66H override causes
16-bit operation. Note that pushing a 16-bit operand can result in the stack pointer
misaligned to 8-byte boundary.

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F A8 PUSH GS Valid N.E. Push GS, default operand size 64-bits.
(66H override causes 16-bit
operation).

NOTES:
* See IA-32 Architecture Compatibility section below.

Vol. 2B 4-297

INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is
also true for Intel 64 architecture, real-address and virtual-8086 modes of IA-32
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new
value of the SP register (that is the value after it has been decremented by 2).

Operation

IF StackAddrSize = 64
THEN

IF OperandSize = 64
THEN

RSP ← (RSP − 8);
IF (SRC is FS or GS)

THEN
TEMP = ZeroExtend64(SRC);

ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend64(SRC); FI;

ELSE
TEMP = SRC;

FI
RSP ← TEMP; (* Push quadword *)

ELSE (* OperandSize = 16; 66H used *)
RSP ← (RSP − 2);
RSP ← SRC; (* Push word *)

FI;
ELSE IF StackAddrSize = 32

THEN
IF OperandSize = 32

THEN
ESP ← (ESP − 4);
IF (SRC is FS or GS)

THEN
TEMP = ZeroExtend32(SRC);

ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend32(SRC); FI;

ELSE
TEMP = SRC;

FI;
SS:ESP ← TEMP; (* Push doubleword *)

ELSE (* OperandSize = 16*)
ESP ← (ESP − 2);
SS:ESP ← SRC; (* Push word *)

4-298 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z

FI;
ELSE StackAddrSize = 16

IF OperandSize = 16
THEN

SP ← (SP − 2);
 SS:SP ← SRC; (* Push word *)

ELSE (* OperandSize = 32 *)
SP ← (SP − 4);
SS:SP ← SRC; (* Push doubleword *)

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

If the new value of the SP or ESP register is outside the stack
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

Vol. 2B 4-299

INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-300 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

Description

Pushes the contents of the general-purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX,
BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These
instructions perform the reverse operation of the POPA/POPAD instructions. The
value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-bit Mode

THEN #UD

FI;

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp ← (ESP);
Push(EAX);

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and
DI.

60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP, EBP,
ESI, and EDI.

Vol. 2B 4-301

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is outside the stack

segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

4-302 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

Vol. 2B 4-303

INSTRUCTION SET REFERENCE, N-Z

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and
pushes the entire contents of the EFLAGS register onto the stack, or decrements the
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS
image stored on the stack. See Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the EFLAGS
register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer
(RSP) by 8 and pushes RFLAGS on the stack. 16-bit operation is supported using the
operand size override prefix 66H. 32-bit operand size cannot be encoded in this
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are
not copied; instead, values for these flags are cleared in the RFLAGS image stored on
the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error
reported prevents #SS delivery). Next, the processor generates a #DF exception and
enters a shutdown state as described in the #DF discussion in Chapter 5 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9C PUSHF Valid Valid Push lower 16 bits of EFLAGS.

9C PUSHFD N.E. Valid Push EFLAGS.

9C PUSHFQ Valid N.E. Push RFLAGS.

4-304 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (PE = 0) or (PE = 1 and ((VM = 0) or (VM = 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN
push (EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64

THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;

Flags Affected

None.

Protected Mode Exceptions
#SS(0) If the new value of the ESP register is outside the stack segment

boundary.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

Vol. 2B 4-305

INSTRUCTION SET REFERENCE, N-Z

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

4-306 Vol. 2B PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand
(second operand) and the destination operand (first operand) and stores the result in
the destination operand. The source operand can be an MMX technology register or a
64-bit memory location or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register. Each
bit of the result is 1 if the corresponding bits of the two operands are different; each
bit is 0 if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST ← DEST XOR SRC;

Intel C/C++ Compiler Intrinsic Equivalent

PXOR __m64 _mm_xor_si64 (__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128 (__m128i a, __m128i b)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F EF /r PXOR mm, mm/m64 Valid Valid Bitwise XOR of
mm/m64 and mm.

66 0F EF /r PXOR xmm1, xmm2/m128 Valid Valid Bitwise XOR of
xmm2/m128 and
xmm1.

Vol. 2B 4-307

INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions
#GP (128-bit operations only) If a memory operand is not aligned on

a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

4-308 Vol. 2B PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol. 2B 4-309

INSTRUCTION SET REFERENCE, N-Z

RCL/RCR/ROL/ROR-—Rotate

RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D0 /2 RCL r/m8, 1 Valid Valid Rotate 9 bits (CF, r/m8) left once.

REX + D0 /2 RCL r/m8*, 1 Valid N.E. Rotate 9 bits (CF, r/m8) left once.

D2 /2 RCL r/m8, CL Valid Valid Rotate 9 bits (CF, r/m8) left CL times.

REX + D2 /2 RCL r/m8*, CL Valid N.E. Rotate 9 bits (CF, r/m8) left CL times.

C0 /2 ib RCL r/m8,
imm8

Valid Valid Rotate 9 bits (CF, r/m8) left imm8
times.

REX + C0 /2 ib RCL r/m8*,
imm8

Valid N.E. Rotate 9 bits (CF, r/m8) left imm8
times.

D1 /2 RCL r/m16, 1 Valid Valid Rotate 17 bits (CF, r/m16) left once.

D3 /2 RCL r/m16, CL Valid Valid Rotate 17 bits (CF, r/m16) left CL
times.

C1 /2 ib RCL r/m16,
imm8

Valid Valid Rotate 17 bits (CF, r/m16) left imm8
times.

D1 /2 RCL r/m32, 1 Valid Valid Rotate 33 bits (CF, r/m32) left once.

REX.W + D1 /2 RCL r/m64, 1 Valid N.E. Rotate 65 bits (CF, r/m64) left once.
Uses a 6 bit count.

D3 /2 RCL r/m32, CL Valid Valid Rotate 33 bits (CF, r/m32) left CL
times.

REX.W + D3 /2 RCL r/m64, CL Valid N.E. Rotate 65 bits (CF, r/m64) left CL
times. Uses a 6 bit count.

C1 /2 ib RCL r/m32,
imm8

Valid Valid Rotate 33 bits (CF, r/m32) left imm8
times.

REX.W + C1 /2
ib

RCL r/m64,
imm8

Valid N.E. Rotate 65 bits (CF, r/m64) left imm8
times. Uses a 6 bit count.

D0 /3 RCR r/m8, 1 Valid Valid Rotate 9 bits (CF, r/m8) right once.

REX + D0 /3 RCR r/m8*, 1 Valid N.E. Rotate 9 bits (CF, r/m8) right once.

D2 /3 RCR r/m8, CL Valid Valid Rotate 9 bits (CF, r/m8) right CL
times.

REX + D2 /3 RCR r/m8*, CL Valid N.E. Rotate 9 bits (CF, r/m8) right CL
times.

4-310 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

Opcode** Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

C0 /3 ib RCR r/m8,
imm8

Valid Valid Rotate 9 bits (CF, r/m8) right imm8
times.

REX + C0 /3 ib RCR r/m8*,
imm8

Valid N.E. Rotate 9 bits (CF, r/m8) right imm8
times.

D1 /3 RCR r/m16, 1 Valid Valid Rotate 17 bits (CF, r/m16) right once.

D3 /3 RCR r/m16, CL Valid Valid Rotate 17 bits (CF, r/m16) right CL
times.

C1 /3 ib RCR r/m16,
imm8

Valid Valid Rotate 17 bits (CF, r/m16) right imm8
times.

D1 /3 RCR r/m32, 1 Valid Valid Rotate 33 bits (CF, r/m32) right once.
Uses a 6 bit count.

REX.W + D1 /3 RCR r/m64, 1 Valid N.E. Rotate 65 bits (CF, r/m64) right once.
Uses a 6 bit count.

D3 /3 RCR r/m32, CL Valid Valid Rotate 33 bits (CF, r/m32) right CL
times.

REX.W + D3 /3 RCR r/m64, CL Valid N.E. Rotate 65 bits (CF, r/m64) right CL
times. Uses a 6 bit count.

C1 /3 ib RCR r/m32,
imm8

Valid Valid Rotate 33 bits (CF, r/m32) right imm8
times.

REX.W + C1 /3
ib

RCR r/m64,
imm8

Valid N.E. Rotate 65 bits (CF, r/m64) right imm8
times. Uses a 6 bit count.

D0 /0 ROL r/m8, 1 Valid Valid Rotate 8 bits r/m8 left once.

REX + D0 /0 ROL r/m8*, 1 Valid N.E. Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL Valid Valid Rotate 8 bits r/m8 left CL times.

REX + D2 /0 ROL r/m8*, CL Valid N.E. Rotate 8 bits r/m8 left CL times.

C0 /0 ib ROL r/m8,
imm8

Valid Valid Rotate 8 bits r/m8 left imm8 times.

REX + C0 /0 ib ROL r/m8*,
imm8

Valid N.E. Rotate 8 bits r/m8 left imm8 times.

D1 /0 ROL r/m16, 1 Valid Valid Rotate 16 bits r/m16 left once.

D3 /0 ROL r/m16, CL Valid Valid Rotate 16 bits r/m16 left CL times.

C1 /0 ib ROL r/m16,
imm8

Valid Valid Rotate 16 bits r/m16 left imm8
times.

D1 /0 ROL r/m32, 1 Valid Valid Rotate 32 bits r/m32 left once.

Vol. 2B 4-311

INSTRUCTION SET REFERENCE, N-Z

RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

REX.W + D1 /0 ROL r/m64, 1 Valid N.E. Rotate 64 bits r/m64 left once. Uses
a 6 bit count.

D3 /0 ROL r/m32, CL Valid Valid Rotate 32 bits r/m32 left CL times.

REX.W + D3 /0 ROL r/m64, CL Valid N.E. Rotate 64 bits r/m64 left CL times.
Uses a 6 bit count.

C1 /0 ib ROL r/m32,
imm8

Valid Valid Rotate 32 bits r/m32 left imm8
times.

C1 /0 ib ROL r/m64,
imm8

Valid N.E. Rotate 64 bits r/m64 left imm8
times. Uses a 6 bit count.

D0 /1 ROR r/m8, 1 Valid Valid Rotate 8 bits r/m8 right once.

REX + D0 /1 ROR r/m8*, 1 Valid N.E. Rotate 8 bits r/m8 right once.

D2 /1 ROR r/m8, CL Valid Valid Rotate 8 bits r/m8 right CL times.

REX + D2 /1 ROR r/m8*, CL Valid N.E. Rotate 8 bits r/m8 right CL times.

C0 /1 ib ROR r/m8,
imm8

Valid Valid Rotate 8 bits r/m16 right imm8
times.

REX + C0 /1 ib ROR r/m8*,
imm8

Valid N.E. Rotate 8 bits r/m16 right imm8
times.

D1 /1 ROR r/m16, 1 Valid Valid Rotate 16 bits r/m16 right once.

D3 /1 ROR r/m16, CL Valid Valid Rotate 16 bits r/m16 right CL times.

C1 /1 ib ROR r/m16,
imm8

Valid Valid Rotate 16 bits r/m16 right imm8
times.

D1 /1 ROR r/m32, 1 Valid Valid Rotate 32 bits r/m32 right once.

REX.W + D1 /1 ROR r/m64, 1 Valid N.E. Rotate 64 bits r/m64 right once. Uses
a 6 bit count.

D3 /1 ROR r/m32, CL Valid Valid Rotate 32 bits r/m32 right CL times.

REX.W + D3 /1 ROR r/m64, CL Valid N.E. Rotate 64 bits r/m64 right CL times.
Uses a 6 bit count.

C1 /1 ib ROR r/m32,
imm8

Valid Valid Rotate 32 bits r/m32 right imm8
times.

REX.W + C1 /1
ib

ROR r/m64,
imm8

Valid N.E. Rotate 64 bits r/m64 right imm8
times. Uses a 6 bit count.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
** See IA-32 Architecture Compatibility section below.

4-312 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory loca-
tion; the count operand is an unsigned integer that can be an immediate or a value in
the CL register. In legacy and compatibility mode, the processor restricts the count to
a number between 0 and 31 by masking all the bits in the count operand except the
5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate through
carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit loca-
tion.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into
the CF flag. The RCR instruction shifts the CF flag into the most-significant bit and
shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the
original value of the CF flag is not a part of the result, but the CF flag receives a copy
of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases
(except that a zero-bit rotate does nothing, that is affects no flags). For left rotates,
the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the most-
significant bit of the result. For right rotates, the OF flag is set to the exclusive OR of
the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Use of REX.W promotes the first operand to 64 bits and causes
the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting
in a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)
SIZE ← OperandSize;
CASE (determine count) OF

SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;
SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;
SIZE ← 32: tempCOUNT ← COUNT AND 1FH;

Vol. 2B 4-313

INSTRUCTION SET REFERENCE, N-Z

RCL/RCR/ROL/ROR-—Rotate

SIZE ← 64: tempCOUNT ← COUNT AND 3FH;
ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + CF;
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* RCR instruction operation *)
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (CF * 2SIZE);
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;

(* ROL and ROR instructions *)
SIZE ← OperandSize;
CASE (determine count) OF

SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 8; (* Mask count before MOD *)
SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 16;
SIZE ← 32: tempCOUNT ← (COUNT AND 1FH) MOD 32;
SIZE ← 64: tempCOUNT ← (COUNT AND 1FH) MOD 64;

ESAC;

(* ROL instruction operation *)
IF (tempCOUNT > 0) (* Prevents updates to CF *)

WHILE (tempCOUNT ≠ 0)
DO

4-314 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← LSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
FI;

(* ROR instruction operation *)
IF tempCOUNT > 0) (* Prevent updates to CF *)

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← MSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;
FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The
SF, ZF, AF, and PF flags are not affected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Vol. 2B 4-315

INSTRUCTION SET REFERENCE, N-Z

RCL/RCR/ROL/ROR-—Rotate

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-316 Vol. 2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

Description

Performs a SIMD computation of the approximate reciprocals of the four packed
single-precision floating-point values in the source operand (second operand) stores
the packed single-precision floating-point results in the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-
precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← APPROXIMATE(1.0/(SRC[31:0]));
DEST[63:32] ← APPROXIMATE(1.0/(SRC[63:32]));
DEST[95:64] ← APPROXIMATE(1.0/(SRC[95:64]));
DEST[127:96] ← APPROXIMATE(1.0/(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent

RCCPS __m128 _mm_rcp_ps(__m128 a)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 53 /r RCPPS xmm1,
xmm2/m128

Valid Valid Computes the approximate reciprocals
of the packed single-precision floating-
point values in xmm2/m128 and stores
the results in xmm1.

Vol. 2B 4-317

INSTRUCTION SET REFERENCE, N-Z

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

4-318 Vol. 2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Vol. 2B 4-319

INSTRUCTION SET REFERENCE, N-Z

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

Description

Computes of an approximate reciprocal of the low single-precision floating-point
value in the source operand (second operand) and stores the single-precision
floating-point result in the destination operand. The source operand can be an XMM
register or a 32-bit memory location. The destination operand is an XMM register.
The three high-order doublewords of the destination operand remain unchanged.
See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point oper-
ation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to |1.11111111110100000000000B∗2125| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← APPROX (1.0/(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

RCPSS __m128 _mm_rcp_ss(__m128 a)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F 53
/r

RCPSS xmm1,
xmm2/m32

Valid Valid Computes the approximate reciprocal of
the scalar single-precision floating-point
value in xmm2/m32 and stores the result
in xmm1.

4-320 Vol. 2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Vol. 2B 4-321

INSTRUCTION SET REFERENCE, N-Z

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-322 Vol. 2B RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, N-Z

RDMSR—Read from Model Specific Register

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the MSR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) will be generated. Specifying a reserved
or unimplemented MSR address in ECX will also cause a general protection excep-
tion.

The MSRs control functions for testability, execution tracing, performance-moni-
toring, and machine check errors. Appendix B, “Model-Specific Registers (MSRs),” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
all the MSRs that can be read with this instruction and their addresses. Note that
each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced
into the IA-32 Architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

EDX:EAX ← MSR[ECX];

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR Valid Valid Read MSR specified by ECX into
EDX:EAX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Vol. 2B 4-323

INSTRUCTION SET REFERENCE, N-Z

RDMSR—Read from Model Specific Register

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or unimple-
mented MSR address.

#UD If the LOCK prefix is used.

4-324 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

RDPMC—Read Performance-Monitoring Counters

Description

Loads the performance-monitoring counter specified in the ECX register into regis-
ters EDX:EAX. (On processors that support the Intel 64 architecture, the high-order
32 bits of RCX are ignored.) The EDX register is loaded with the high-order 8 bits of
the counter and the EAX register is loaded with the low-order 32 bits. (On processors
that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX
are cleared.) See below for the treatment of the EDX register for “fast” reads.

The ECX register selects one of two type of performance counters, specifies the index
relative to the base of each counter type, and selects “fast” read mode if supported.
The two counter types are :

• General-purpose or special-purpose performance counters: The number of
general-purpose counters is model specific if the processor does not support
architectural performance monitoring, see Chapter 18 of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Special-purpose
counters are available only in selected processor members, see Section 18.19,
18.20 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B. This counter type is selected if ECX[30] is clear.

• Fixed-function performance counter. The number fixed-function performance
counters is enumerated by CPUID 0AH leaf. See Chapter 18 of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B. This counter type
is selected if ECX[30] is set.

ECX[29:0] specifies the index. The width of general-purpose performance counters
are 40-bits for processors that do not support architectural performance monitoring
counters.The width of special-purpose performance counters are implementation
specific. The width of fixed-function performance counters and general-purpose
performance counters on processor supporting architectural performance monitoring
are reported by CPUID 0AH leaf.

Table 4-2 lists valid indices of the general-purpose and special-purpose performance
counters according to the derived displayed_family/displayed_model values of
CPUID encoding for each processor family.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.

Vol. 2B 4-325

INSTRUCTION SET REFERENCE, N-Z

RDPMC—Read Performance-Monitoring Counters

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow”
(40-bit) reads on the first 18 performance counters. Selected this option using
ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected perfor-
mance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX
and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and Intel
Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25
are 32-bit counters. EDX is cleared after executing RDPMC for these counters. On
Intel Xeon processor 7100 series with L3, performance counters with indices 18-25
are also 32-bit counters.

Table 4-2. Valid General and Special Purpose Performance Counter Index Range for
RDPMC

Processor Family Displayed_Family_Dis
played_Model/ Other
Signatures

Valid PMC
Index Range

General-
purpose
Counters

P6 06H_01H, 06H_03H,
06H_05H, 06H_06H,
06H_07H, 06H_08H,
06H_0AH, 06H_0BH

0, 1 0, 1

Pentium® 4, Intel® Xeon
processors

0FH_00H, 0FH_01H,
0FH_02H

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon processors (0FH_03H, 0FH_04H,
0FH_06H) and (L3 is
absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors 06H_09H, 06H_0DH 0, 1 0, 1

64-bit Intel Xeon processors
with L3

0FH_03H, 0FH_04H)
and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel®
Core™ Duo processors, Dual-core
Intel® Xeon® processor LV

06H_0EH 0, 1 0, 1

Intel® Core™2 Duo processor,
Intel Xeon processor 3000,
5100, 5300, 7300 Series -
general-purpose PMC

06H_0FH 0, 1 0, 1

Intel Xeon processors 7100
series with L3

(0FH_06H) and (L3 is
present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™2 Duo processor
family, Intel Xeon processor
family - general-purpose PMC

06H_17H 0, 1 0, 1

Intel® Atom™ processor family 06H_1CH 0, 1 0, 1

Intel® Core™i7 processor 06H_1AH 0-3 0, 1, 2, 3

4-326 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, and 5300 series,
the fixed-function performance counters are 40-bits wide; they can be accessed by
RDMPC with ECX between from 4000_0000H and 4000_0002H.

When in protected or virtual 8086 mode, the performance-monitoring counters
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as
follows. When the PCE flag is set, the RDPMC instruction can be executed at any priv-
ilege level; when the flag is clear, the instruction can only be executed at privilege
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed
to count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads. Appendix A, “Performance Monitoring Events,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
the events that can be counted for various processors in the Intel 64 and IA-32
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that
all the events caused by the preceding instructions have been completed or that
events caused by subsequent instructions have not begun. If an exact event count is
desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPMC instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads,
a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the
event count is stored in the full EAX and EDX registers. The RDPMC instruction was
introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.

Operation

(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300 series*)

Most significant counter bit (MSCB) = 39

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0and ECX[29:0] in valid general-purpose counter range)
EAX ← PMC(ECX[30:0])[31:0];
EDX ← PMC(ECX[30:0])[MSCB:32];

Vol. 2B 4-327

INSTRUCTION SET REFERENCE, N-Z

RDPMC—Read Performance-Monitoring Counters

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN

EAX ← PMC(ECX)[31:0];
EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;
(* Processors with CPUID family 15 *)
IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30:0] = 0:17)
THEN IF ECX[31] = 0

THEN
EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX ← PMC(ECX[30:0])[39:32];

ELSE (* ECX[31] = 1*)
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*Intel Xeon processor 7100 series with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-5. *)

GP(0);
FI;

ELSE (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

4-328 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4

register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified (see

Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4

register is clear.

If an invalid performance counter index is specified in ECX[30:0]
(see Table 4-2).

#UD If the LOCK prefix is used.

Vol. 2B 4-329

INSTRUCTION SET REFERENCE, N-Z

RDTSC—Read Time-Stamp Counter

RDTSC—Read Time-Stamp Counter

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the
MSR and the EAX register is loaded with the low-order 32 bits. (On processors that
support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter”
in Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag
is clear, the RDTSC instruction can be executed at any privilege level; when the flag
is set, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when
executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily
wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the read operation is
performed.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)
THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC Valid Valid Read time-stamp counter into
EDX:EAX.

4-330 Vol. 2B RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than

0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-331

INSTRUCTION SET REFERENCE, N-Z

RDTSCP—Read Time-Stamp Counter and Processor ID

RDTSCP—Read Time-Stamp Counter and Processor ID

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers and also loads the IA32_TSC_AUX MSR (address
C000_0103H) into the ECX register. The EDX register is loaded with the high-order
32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of
the IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of
IA32_TSC_AUX MSR. On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter”
in Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSCP instruction as follows. When the TSD
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the
flag is set, the instruction can only be executed at privilege level 0. (When in real-
address mode, the RDTSCP instruction is always enabled.)

The RDTSCP instruction waits until all previous instructions have been executed
before reading the counter. However, subsequent instructions may begin execution
before the read operation is performed.

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001H, EDX
bit 27. If the bit is set to 1 then RDTSCP is present on the processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)
THEN

EDX:EAX ← TimeStampCounter;
ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP Valid Valid Read 64-bit time-stamp counter
and 32-bit IA32_TSC_AUX value
into EDX:EAX and ECX.

4-332 Vol. 2B RDTSCP—Read Time-Stamp Counter and Processor ID

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than

0.

#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.

#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-333

INSTRUCTION SET REFERENCE, N-Z

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

F3 6C REP INS m8, DX Valid Valid Input (E)CX bytes from port DX
into ES:[(E)DI].

F3 6C REP INS m8, DX Valid N.E. Input RCX bytes from port DX
into [RDI].

F3 6D REP INS m16, DX Valid Valid Input (E)CX words from port DX
into ES:[(E)DI.]

F3 6D REP INS m32, DX Valid Valid Input (E)CX doublewords from
port DX into ES:[(E)DI].

F3 6D REP INS r/m32, DX Valid N.E. Input RCX default size from port
DX into [RDI].

F3 A4 REP MOVS m8, m8 Valid Valid Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 Valid N.E. Move RCX bytes from [RSI] to
[RDI].

F3 A5 REP MOVS m16,
m16

Valid Valid Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32,
m32

Valid Valid Move (E)CX doublewords from
DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A5 REP MOVS m64,
m64

Valid N.E. Move RCX quadwords from [RSI]
to [RDI].

F3 6E REP OUTS DX, r/m8 Valid Valid Output (E)CX bytes from
DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX,
r/m8*

Valid N.E. Output RCX bytes from [RSI] to
port DX.

F3 6F REP OUTS DX,
r/m16

Valid Valid Output (E)CX words from
DS:[(E)SI] to port DX.

F3 6F REP OUTS DX,
r/m32

Valid Valid Output (E)CX doublewords from
DS:[(E)SI] to port DX.

F3 REX.W 6F REP OUTS DX,
r/m32

Valid N.E. Output RCX default size from
[RSI] to port DX.

F3 AC REP LODS AL Valid Valid Load (E)CX bytes from DS:[(E)SI]
to AL.

F3 REX.W AC REP LODS AL Valid N.E. Load RCX bytes from [RSI] to
AL.

F3 AD REP LODS AX Valid Valid Load (E)CX words from DS:[(E)SI]
to AX.

4-334 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z

F3 AD REP LODS EAX Valid Valid Load (E)CX doublewords from
DS:[(E)SI] to EAX.

F3 REX.W AD REP LODS RAX Valid N.E. Load RCX quadwords from [RSI]
to RAX.

F3 AA REP STOS m8 Valid Valid Fill (E)CX bytes at ES:[(E)DI] with
AL.

F3 REX.W AA REP STOS m8 Valid N.E. Fill RCX bytes at [RDI] with AL.

F3 AB REP STOS m16 Valid Valid Fill (E)CX words at ES:[(E)DI]
with AX.

F3 AB REP STOS m32 Valid Valid Fill (E)CX doublewords at
ES:[(E)DI] with EAX.

F3 REX.W AB REP STOS m64 Valid N.E. Fill RCX quadwords at [RDI] with
RAX.

F3 A6 REPE CMPS m8, m8 Valid Valid Find nonmatching bytes in
ES:[(E)DI] and DS:[(E)SI].

F3 REX.W A6 REPE CMPS m8, m8 Valid N.E. Find non-matching bytes in
[RDI] and [RSI].

F3 A7 REPE CMPS m16,
m16

Valid Valid Find nonmatching words in
ES:[(E)DI] and DS:[(E)SI].

F3 A7 REPE CMPS m32,
m32

Valid Valid Find nonmatching doublewords
in ES:[(E)DI] and DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64,
m64

Valid N.E. Find non-matching quadwords
in [RDI] and [RSI].

F3 AE REPE SCAS m8 Valid Valid Find non-AL byte starting at
ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 Valid N.E. Find non-AL byte starting at
[RDI].

F3 AF REPE SCAS m16 Valid Valid Find non-AX word starting at
ES:[(E)DI].

F3 AF REPE SCAS m32 Valid Valid Find non-EAX doubleword
starting at ES:[(E)DI].

F3 REX.W AF REPE SCAS m64 Valid N.E. Find non-RAX quadword
starting at [RDI].

F2 A6 REPNE CMPS m8,
m8

Valid Valid Find matching bytes in ES:[(E)DI]
and DS:[(E)SI].

F2 REX.W A6 REPNE CMPS m8,
m8

Valid N.E. Find matching bytes in [RDI] and
[RSI].

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

Vol. 2B 4-335

INSTRUCTION SET REFERENCE, N-Z

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Description

Repeats a string instruction the number of times specified in the count register or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of
the string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS,
and STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be
added to the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synon-
ymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP
prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct. All of these
repeat prefixes cause the associated instruction to be repeated until the count in
register is decremented to 0. See Table 4-3.

F2 A7 REPNE CMPS m16,
m16

Valid Valid Find matching words in
ES:[(E)DI] and DS:[(E)SI].

F2 A7 REPNE CMPS m32,
m32

Valid Valid Find matching doublewords in
ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64,
m64

Valid N.E. Find matching doublewords in
[RDI] and [RSI].

F2 AE REPNE SCAS m8 Valid Valid Find AL, starting at ES:[(E)DI].

F2 REX.W AE REPNE SCAS m8 Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 Valid Valid Find AX, starting at ES:[(E)DI].

F2 AF REPNE SCAS m32 Valid Valid Find EAX, starting at ES:[(E)DI].

F2 REX.W AF REPNE SCAS m64 Valid N.E. Find RAX, starting at [RDI].

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

4-336 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state.
When both termination conditions are tested, the cause of a repeat termination can
be determined either by testing the count register with a JECXZ instruction or by
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not
require initialization because both the CMPS and SCAS instructions affect the ZF flag
according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When
this happens, the state of the registers is preserved to allow the string operation to
be resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is
prefixed with REPE or REPNE, the EFLAGS value is restored to the state prior to the
execution of the instruction. Since the SCAS and CMPS instructions do not use
EFLAGS as an input, the processor can resume the instruction after the page fault
handler.

If a debug exception occurs, non-enabled debug breakpoints matched on previous
iterations of the REP operation may or may not be reported in the DR6 register.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle
the rate at which these instructions execute. Note that a REP STOS instruction is the
fastest way to initialize a large block of memory.

In 64-bit mode, default operation size is 32 bits. The default count register is RCX for
REP INS and REP OUTS; it is ECX for other instructions. REX.W does not promote
operation to 64-bit for REP INS and REP OUTS. However, using a REX prefix in the
form of REX.W does promote operation to 64-bit operands for other

Table 4-3. Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:
* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes. In

64-bit mode, if default operation size is 32 bits, the count register becomes RCX when a REX.W
prefix is used.

Vol. 2B 4-337

INSTRUCTION SET REFERENCE, N-Z

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

REP/REPNE/REPZ/REPNZ instructions. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

IF AddressSize = 16
THEN

Use CX for CountReg;
ELSE IF AddressSize = 64 and REX.W used

THEN Use RCX for CountReg; FI;
ELSE

Use ECX for CountReg;
FI;
WHILE CountReg ≠ 0

DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg ← (CountReg – 1);
IF CountReg = 0

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the
EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

4-338 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made
to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to
release parameters from the stack that were passed to the called procedure and are
no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure.
Here, the source operand for the RET instruction must specify the same number of
bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

• Near return — A return to a calling procedure within the current code segment
(the segment currently pointed to by the CS register), sometimes referred to as
an intrasegment return.

• Far return — A return to a calling procedure located in a different segment than
the current code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return — A far return to a different privilege level
than that of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-
mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer
(offset) from the top of the stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from
the top of the stack into the EIP register, then pops the segment selector from the top
of the stack into the CS register. The processor then begins program execution in the
new code segment at the new instruction pointer.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

C3 RET Valid Valid Near return to calling procedure.

CB RET Valid Valid Far return to calling procedure.

C2 iw RET imm16 Valid Valid Near return to calling procedure and pop
imm16 bytes from stack.

CA iw RET imm16 Valid Valid Far return to calling procedure and pop
imm16 bytes from stack.

Vol. 2B 4-339

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of
the code and stack segments being returned to determine if the control transfer is
allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that
are not allowed to be accessed at the new privilege level. Since a stack switch also
occurs on an inter-privilege level return, the ESP and SS registers are loaded from
the stack.

If parameters are passed to the called procedure during an inter-privilege level call,
the optional source operand must be used with the RET instruction to release the
parameters on the return. Here, the parameters are released both from the called
procedure’s stack and the calling procedure’s stack (that is, the stack being returned
to).

In 64-bit mode, the default operation size of this instruction is the stack size, i.e. 64
bits.

Operation

(* Near return *)
IF instruction = Near return

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP ← Pop();

ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

FI;
FI;

4-340 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

IF instruction has immediate operand
THEN IF StackAddressSize = 32

THEN
ESP ← ESP + SRC; (* Release parameters from stack *)

ELSE
IF StackAddressSize = 64

THEN
RSP ← RSP + SRC; (* Release parameters from stack *)

ELSE (* StackAddressSize = 16 *)
SP ← SP + SRC; (* Release parameters from stack *)

FI;
FI;

FI;
FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN
SP ← SP + (SRC AND FFFFH); (* Release parameters from stack *)

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far RET

THEN

Vol. 2B 4-341

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

IF OperandSize = 32
THEN

IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;

ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits

THEN #SS(0); FI;
FI;

IF return code segment selector is NULL
THEN #GP(0); FI;

IF return code segment selector addresses descriptor beyond descriptor table limit
THEN #GP(selector); FI;

Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP ← ESP + SRC; (* Release parameters from stack *)

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
ESP ← ESP + SRC; (* Release parameters from stack *)

4-342 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor
information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment
descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

Vol. 2B 4-343

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)
FI;

OD;

For each of ES, FS, GS, and DS
DO

IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or
readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor’s DPL < CPL or RPL of code segment’s
segment selector

THEN SegmentSelector ← 0; (* Segment selector invalid *)
OD;

ESP ← ESP + SRC; (* Release parameters from calling procedure’s stack *)

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far RET

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

4-344 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI;
FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP ← ESP + SRC; (* Release parameters from stack *)

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
ESP ← ESP + SRC; (* Release parameters from stack *)

Vol. 2B 4-345

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)
ESP ← ESP + SRC; (* Release parameters from stack *)

FI;
FI;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0

THEN #GP(selector);
IF stack segment selector RPL = 3

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor

4-346 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* release parameters from called
procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor information loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s
stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;
FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
FI;

OD;

Vol. 2B 4-347

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

For each of ES, FS, GS, and DS
DO

IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor’s DPL < CPL or RPL of code segment’s segment selector

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
OD;

ESP ESP + SRC; (* Release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code
segment limit

#GP(selector) If the RPL of the return code segment selector is less then the
CPL.

If the return code or stack segment selector index is not within
its descriptor table limits.

If the return code segment descriptor does not indicate a code
segment.

If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s
segment selector

If the return code segment is conforming and the segment
selector’s DPL greater than the RPL of the code segment’s
segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.

If the return stack segment is not present.

#NP(selector) If the return code segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and
alignment checking is enabled.

4-348 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code

segment limit

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code

segment limit

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking
is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code
segment limit.

If the stack segment selector is NULL going back to compatibility
mode.

If the stack segment selector is NULL going back to CPL3 64-bit
mode.

If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.

If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not
indicate it is a code segment.

If the proposed new code segment descriptor has both the D-bit
and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.

If a segment selector index is outside its descriptor table limits.

If a segment descriptor memory address is non-canonical.

If the stack segment is not a writable data segment.

Vol. 2B 4-349

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-350 Vol. 2B ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

ROUNDPD — Round Packed Double Precision Floating-Point Values

Description

Round the 2 double-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A
09 /r ib

ROUNDPD xmm1,
xmm2/m128, imm8

Valid Valid Round packed double precision
floating-point values in
xmm2/m128 and place the result in
xmm1. The rounding mode is
determined by imm8.

Figure 4-13. Bit Control Fields of Immediate Byte for ROUNDxx Instruction

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved

Vol. 2B 4-351

INSTRUCTION SET REFERENCE, N-Z

ROUNDPD — Round Packed Double Precision Floating-Point Values

Operation

IF (imm[2] == ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0] ConvertDPFPToInteger_M(SRC[63:0]);
DEST[127:64] ConvertDPFPToInteger_M(SRC[127:64]);

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] ConvertDPFPToInteger_Imm(SRC[63:0]);
DEST[127:64] ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode);
__m128 mm_floor_pd(__m128d s1);
__m128 mm_ceil_pd(__m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPD.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

Table 4-4. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding
Mode

RC Field
Setting

Description

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two
values are equally close, the result is the even value (i.e., the integer
value with the least-significant bit of zero).

Round down
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise
result.

Round up
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise
result.

Round toward
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the
infinitely precise result.

4-352 Vol. 2B ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CR0 is set.
#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.

Vol. 2B 4-353

INSTRUCTION SET REFERENCE, N-Z

ROUNDPD — Round Packed Double Precision Floating-Point Values

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

4-354 Vol. 2B ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

ROUNDPS — Round Packed Single Precision Floating-Point Values

Description

Round the 4 single-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] == ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0] ConvertSPFPToInteger_M(SRC[31:0]);
DEST[63:32] ConvertSPFPToInteger_M(SRC[63:32]);
DEST[95:64] ConvertSPFPToInteger_M(SRC[95:64]);
DEST[127:96] ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] ConvertSPFPToInteger_Imm(SRC[31:0]);
DEST[63:32] ConvertSPFPToInteger_Imm(SRC[63:32]);
DEST[95:64] ConvertSPFPToInteger_Imm(SRC[95:64]);
DEST[127:96] ConvertSPFPToInteger_Imm(SRC[127:96]);

FI;

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 08
/r ib

ROUNDPS xmm1,
xmm2/m128, imm8

Valid Valid Round packed single precision
floating-point values in
xmm2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8.

Vol. 2B 4-355

INSTRUCTION SET REFERENCE, N-Z

ROUNDPS — Round Packed Single Precision Floating-Point Values

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode);
__m128 mm_floor_ps(__m128 s1);
__m128 mm_ceil_ps(__m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPS.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

4-356 Vol. 2B ROUNDPS — Round Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Vol. 2B 4-357

INSTRUCTION SET REFERENCE, N-Z

ROUNDSD — Round Scalar Double Precision Floating-Point Values

ROUNDSD — Round Scalar Double Precision Floating-Point Values

Description

Round the DP FP value in the lower qword of the source operand (second operand)
using the rounding mode specified in the immediate operand (third operand) and
place the result in the destination operand (first operand). The rounding process
rounds a double-precision floating-point input to an integer value and returns the
integer result as a double precision floating-point value in the lowest position. The
upper double precision floating-point value in the destination is retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] == ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[63:0] ConvertDPFPToInteger_M(SRC[63:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[63:0] ConvertDPFPToInteger_Imm(SRC[63:0]);
FI;
DEST[127:63] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128d s1);
__m128d mm_ceil_sd(__m128d dst, __m128d s1);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0B
/r ib

ROUNDSD xmm1,
xmm2/m64, imm8

Valid Valid Round the low packed double
precision floating-point value in
xmm2/m64 and place the result in
xmm1. The rounding mode is
determined by imm8.

4-358 Vol. 2B ROUNDSD — Round Scalar Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSD.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions
#GP(0) if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

Vol. 2B 4-359

INSTRUCTION SET REFERENCE, N-Z

ROUNDSD — Round Scalar Double Precision Floating-Point Values

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-360 Vol. 2B ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

ROUNDSS — Round Scalar Single Precision Floating-Point Values

Description

Round the single-precision floating-point value in the lowest dword of the source
operand (second operand) using the rounding mode specified in the immediate
operand (third operand) and place the result in the destination operand (first
operand). The rounding process rounds a single-precision floating-point input to an
integer value and returns the result as a single-precision floating-point value in the
lowest position. The upper three single-precision floating-point values in the destina-
tion are retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] == ‘1)
THEN // rounding mode is determined by MXCSR.RC

DEST[31:0] ConvertSPFPToInteger_M(SRC[31:0]);
ELSE // rounding mode is determined by IMM8.RC

DEST[31:0] ConvertSPFPToInteger_Imm(SRC[31:0]);
FI;
DEST[127:32] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

Opcode Instruction 64-bit
Mode

Compat/
Leg Mode

Description

66 0F 3A 0A /r
ib

ROUNDSS xmm1,
xmm2/m32, imm8

Valid Valid Round the low packed single
precision floating-point value
in xmm2/m32 and place the
result in xmm1. The rounding
mode is determined by imm8.

Vol. 2B 4-361

INSTRUCTION SET REFERENCE, N-Z

ROUNDSS — Round Scalar Single Precision Floating-Point Values

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] == ‘0; if imm[3] == ‘1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSS.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault:code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions
#GP if any part of the operand lies outside of the effective address

space from 0 to 0FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-362 Vol. 2B ROUNDSS — Round Scalar Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-363

INSTRUCTION SET REFERENCE, N-Z

RSM—Resume from System Management Mode

RSM—Resume from System Management Mode

Description

Returns program control from system management mode (SMM) to the application
program or operating-system procedure that was interrupted when the processor
received an SMM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause
a shutdown:

• Any reserved bit of CR4 is set to 1.

• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and
CD=0).

• (Intel Pentium and Intel486™ processors only.) The value stored in the state
dump base field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-
64-bit modes and 64-bit mode.

See Chapter 25, “System Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about SMM and the
behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID_DisplayFamily_DisplayModleSignature = 06H_0CH)

THEN
ProcessorState ← Restore(SMMDump(IA-32e SMM STATE MAP));

Else
ProcessorState ← Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

Flags Affected

All.

Opcode Instruction Non-
SMM
Mode

SMM Mode Description

0F AA RSM Invalid Valid Resume operation of interrupted
program.

4-364 Vol. 2B RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#UD If an attempt is made to execute this instruction when the

processor is not in SMM.

If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-365

INSTRUCTION SET REFERENCE, N-Z

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of
the four packed single-precision floating-point values in the source operand (second
operand) and stores the packed single-precision floating-point results in the destina-
tion operand. The source operand can be an XMM register or a 128-bit memory loca-
tion. The destination operand is an XMM register. See Figure 10-5 in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of
a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than −0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← APPROXIMATE(1.0/SQRT(SRC[31:0]));
DEST[63:32] ← APPROXIMATE(1.0/SQRT(SRC[63:32]));
DEST[95:64] ← APPROXIMATE(1.0/SQRT(SRC[95:64]));
DEST[127:96] ← APPROXIMATE(1.0/SQRT(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 52 /r RSQRTPS xmm1,
xmm2/m128

Valid Valid Computes the approximate reciprocals
of the square roots of the packed
single-precision floating-point values
in xmm2/m128 and stores the results
in xmm1.

4-366 Vol. 2B RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

Vol. 2B 4-367

INSTRUCTION SET REFERENCE, N-Z

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-368 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, N-Z

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

Description

Computes an approximate reciprocal of the square root of the low single-precision
floating-point value in the source operand (second operand) stores the single-preci-
sion floating-point result in the destination operand. The source operand can be an
XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an ∞ of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than −0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← APPROXIMATE(1.0/SQRT(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F 52 /r RSQRTSS xmm1,
xmm2/m32

Valid Valid Computes the approximate reciprocal of
the square root of the low single-
precision floating-point value in
xmm2/m32 and stores the results in
xmm1.

Vol. 2B 4-369

INSTRUCTION SET REFERENCE, N-Z

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

4-370 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value

INSTRUCTION SET REFERENCE, N-Z

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-371

INSTRUCTION SET REFERENCE, N-Z

SAHF—Store AH into Flags

SAHF—Store AH into Flags

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3,
and 5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN

IF CPUID.80000001.ECX[0] = 1;
THEN

RFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
ELSE

#UD;
FI

ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

FI;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are unaffected, with the values remaining 1, 0, and 0,
respectively.

Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

9E SAHF Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH
into EFLAGS register.

NOTES:
* Valid in specific steppings. See Description section.

4-372 Vol. 2B SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001.ECX[0] = 0.

If the LOCK prefix is used.

Vol. 2B 4-373

INSTRUCTION SET REFERENCE, N-Z

SAL/SAR/SHL/SHR—Shift

SAL/SAR/SHL/SHR—Shift
Opcode*** Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

D0 /4 SAL r/m8, 1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SAL r/m8**, 1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SAL r/m8, CL Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SAL r/m8**, CL Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SAL r/m8, imm8 Valid Valid Multiply r/m8 by 2, imm8
times.

REX + C0 /4 ib SAL r/m8**, imm8 Valid N.E. Multiply r/m8 by 2, imm8
times.

D1 /4 SAL r/m16, 1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SAL r/m16, CL Valid Valid Multiply r/m16 by 2, CL times.

C1 /4 ib SAL r/m16, imm8 Valid Valid Multiply r/m16 by 2, imm8
times.

D1 /4 SAL r/m32, 1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SAL r/m64, 1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SAL r/m32, CL Valid Valid Multiply r/m32 by 2, CL times.

REX.W + D3 /4 SAL r/m64, CL Valid N.E. Multiply r/m64 by 2, CL times.

C1 /4 ib SAL r/m32, imm8 Valid Valid Multiply r/m32 by 2, imm8
times.

REX.W + C1 /4 ib SAL r/m64, imm8 Valid N.E. Multiply r/m64 by 2, imm8
times.

D0 /7 SAR r/m8, 1 Valid Valid Signed divide* r/m8 by 2,
once.

REX + D0 /7 SAR r/m8**, 1 Valid N.E. Signed divide* r/m8 by 2,
once.

D2 /7 SAR r/m8, CL Valid Valid Signed divide* r/m8 by 2, CL
times.

REX + D2 /7 SAR r/m8**, CL Valid N.E. Signed divide* r/m8 by 2, CL
times.

C0 /7 ib SAR r/m8, imm8 Valid Valid Signed divide* r/m8 by 2,
imm8 time.

REX + C0 /7 ib SAR r/m8**, imm8 Valid N.E. Signed divide* r/m8 by 2,
imm8 times.

D1 /7 SAR r/m16,1 Valid Valid Signed divide* r/m16 by 2,
once.

4-374 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D3 /7 SAR r/m16, CL Valid Valid Signed divide* r/m16 by 2, CL
times.

C1 /7 ib SAR r/m16, imm8 Valid Valid Signed divide* r/m16 by 2,
imm8 times.

D1 /7 SAR r/m32, 1 Valid Valid Signed divide* r/m32 by 2,
once.

REX.W + D1 /7 SAR r/m64, 1 Valid N.E. Signed divide* r/m64 by 2,
once.

D3 /7 SAR r/m32, CL Valid Valid Signed divide* r/m32 by 2, CL
times.

REX.W + D3 /7 SAR r/m64, CL Valid N.E. Signed divide* r/m64 by 2, CL
times.

C1 /7 ib SAR r/m32, imm8 Valid Valid Signed divide* r/m32 by 2,
imm8 times.

REX.W + C1 /7 ib SAR r/m64, imm8 Valid N.E. Signed divide* r/m64 by 2,
imm8 times

D0 /4 SHL r/m8, 1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SHL r/m8**, 1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SHL r/m8, CL Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SHL r/m8**, CL Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SHL r/m8, imm8 Valid Valid Multiply r/m8 by 2, imm8
times.

REX + C0 /4 ib SHL r/m8**, imm8 Valid N.E. Multiply r/m8 by 2, imm8
times.

D1 /4 SHL r/m16,1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SHL r/m16, CL Valid Valid Multiply r/m16 by 2, CL times.

C1 /4 ib SHL r/m16, imm8 Valid Valid Multiply r/m16 by 2, imm8
times.

D1 /4 SHL r/m32,1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SHL r/m64,1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SHL r/m32, CL Valid Valid Multiply r/m32 by 2, CL times.

REX.W + D3 /4 SHL r/m64, CL Valid N.E. Multiply r/m64 by 2, CL times.

C1 /4 ib SHL r/m32, imm8 Valid Valid Multiply r/m32 by 2, imm8
times.

REX.W + C1 /4 ib SHL r/m64, imm8 Valid N.E. Multiply r/m64 by 2, imm8
times.

Vol. 2B 4-375

INSTRUCTION SET REFERENCE, N-Z

SAL/SAR/SHL/SHR—Shift

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D0 /5 SHR r/m8,1 Valid Valid Unsigned divide r/m8 by 2,
once.

REX + D0 /5 SHR r/m8**, 1 Valid N.E. Unsigned divide r/m8 by 2,
once.

D2 /5 SHR r/m8, CL Valid Valid Unsigned divide r/m8 by 2, CL
times.

REX + D2 /5 SHR r/m8**, CL Valid N.E. Unsigned divide r/m8 by 2, CL
times.

C0 /5 ib SHR r/m8, imm8 Valid Valid Unsigned divide r/m8 by 2,
imm8 times.

REX + C0 /5 ib SHR r/m8**, imm8 Valid N.E. Unsigned divide r/m8 by 2,
imm8 times.

D1 /5 SHR r/m16, 1 Valid Valid Unsigned divide r/m16 by 2,
once.

D3 /5 SHR r/m16, CL Valid Valid Unsigned divide r/m16 by 2,
CL times

C1 /5 ib SHR r/m16, imm8 Valid Valid Unsigned divide r/m16 by 2,
imm8 times.

D1 /5 SHR r/m32, 1 Valid Valid Unsigned divide r/m32 by 2,
once.

REX.W + D1 /5 SHR r/m64, 1 Valid N.E. Unsigned divide r/m64 by 2,
once.

D3 /5 SHR r/m32, CL Valid Valid Unsigned divide r/m32 by 2,
CL times.

REX.W + D3 /5 SHR r/m64, CL Valid N.E. Unsigned divide r/m64 by 2,
CL times.

C1 /5 ib SHR r/m32, imm8 Valid Valid Unsigned divide r/m32 by 2,
imm8 times.

REX.W + C1 /5 ib SHR r/m64, imm8 Valid N.E. Unsigned divide r/m64 by 2,
imm8 times.

NOTES:
* Not the same form of division as IDIV; rounding is toward negative infinity.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.
***See IA-32 Architecture Compatibility section below.

4-376 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

Description

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand.

The destination operand can be a register or a memory location. The count operand
can be an immediate value or the CL register. The count is masked to 5 bits (or 6 bits
if in 64-bit mode and REX.W is used). The count range is limited to 0 to 31 (or 63 if
64-bit mode and REX.W is used). A special opcode encoding is provided for a count
of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the
same operation; they shift the bits in the destination operand to the left (toward
more significant bit locations). For each shift count, the most significant bit of the
destination operand is shifted into the CF flag, and the least significant bit is cleared
(see Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits
of the destination operand to the right (toward less significant bit locations). For each
shift count, the least significant bit of the destination operand is shifted into the CF
flag, and the most significant bit is either set or cleared depending on the instruction
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1); the SAR
instruction sets or clears the most significant bit to correspond to the sign (most
significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted
value (see Figure 7-9 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction to shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded
toward zero, whereas the “quotient” of the SAR instruction is rounded toward nega-
tive infinity. This difference is apparent only for negative numbers. For example,
when the IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and
the “remainder” is +3; however, the SAR instruction stores only the most significant
bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR instruc-
tion, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is
set to the most-significant bit of the original operand.

Vol. 2B 4-377

INSTRUCTION SET REFERENCE, N-Z

SAL/SAR/SHL/SHR—Shift

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width
for CL is 5 bits. Using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64-bits and sets the mask width for CL to 6 bits. See the summary chart at the begin-
ning of this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN

countMASK ← 3FH;
ELSE

countMASK ← 1FH;
FI

tempCOUNT ← (COUNT AND countMASK);
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN

CF ← MSB(DEST);
ELSE (* Instruction is SAR or SHR *)

CF ← LSB(DEST);
FI;
IF instruction is SAL or SHL

THEN
DEST ← DEST ∗ 2;

ELSE
IF instruction is SAR

THEN
DEST ← DEST / 2; (* Signed divide, rounding toward negative infinity *)

ELSE (* Instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *)

FI;
FI;
tempCOUNT ← tempCOUNT – 1;

OD;

4-378 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL

THEN
OF ← MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ← 0;

ELSE (* Instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)

OF ← undefined;
FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it
is undefined for SHL and SHR instructions where the count is greater than or equal to
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit
shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Vol. 2B 4-379

INSTRUCTION SET REFERENCE, N-Z

SAL/SAR/SHL/SHR—Shift

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-380 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z

SBB—Integer Subtraction with Borrow

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

1C ib SBB AL, imm8 Valid Valid Subtract with borrow imm8
from AL.

1D iw SBB AX, imm16 Valid Valid Subtract with borrow imm16
from AX.

1D id SBB EAX, imm32 Valid Valid Subtract with borrow imm32
from EAX.

REX.W + 1D id SBB RAX, imm32 Valid N.E. Subtract with borrow sign-
extended imm.32 to 64-bits
from RAX.

80 /3 ib SBB r/m8, imm8 Valid Valid Subtract with borrow imm8
from r/m8.

REX + 80 /3 ib SBB r/m8*, imm8 Valid N.E. Subtract with borrow imm8
from r/m8.

81 /3 iw SBB r/m16, imm16 Valid Valid Subtract with borrow imm16
from r/m16.

81 /3 id SBB r/m32, imm32 Valid Valid Subtract with borrow imm32
from r/m32.

REX.W + 81 /3 id SBB r/m64, imm32 Valid N.E. Subtract with borrow sign-
extended imm32 to 64-bits
from r/m64.

83 /3 ib SBB r/m16, imm8 Valid Valid Subtract with borrow sign-
extended imm8 from r/m16.

83 /3 ib SBB r/m32, imm8 Valid Valid Subtract with borrow sign-
extended imm8 from r/m32.

REX.W + 83 /3 ib SBB r/m64, imm8 Valid N.E. Subtract with borrow sign-
extended imm8 from r/m64.

18 /r SBB r/m8, r8 Valid Valid Subtract with borrow r8
from r/m8.

REX + 18 /r SBB r/m8*, r8 Valid N.E. Subtract with borrow r8
from r/m8.

19 /r SBB r/m16, r16 Valid Valid Subtract with borrow r16
from r/m16.

19 /r SBB r/m32, r32 Valid Valid Subtract with borrow r32
from r/m32.

REX.W + 19 /r SBB r/m64, r64 Valid N.E. Subtract with borrow r64
from r/m64.

Vol. 2B 4-381

INSTRUCTION SET REFERENCE, N-Z

SBB—Integer Subtraction with Borrow

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The
state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a borrow in the signed or unsigned result, respectively. The SF
flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtrac-
tion in which a SUB instruction is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

1A /r SBB r8, r/m8 Valid Valid Subtract with borrow r/m8
from r8.

REX + 1A /r SBB r8*, r/m8* Valid N.E. Subtract with borrow r/m8
from r8.

1B /r SBB r16, r/m16 Valid Valid Subtract with borrow r/m16
from r16.

1B /r SBB r32, r/m32 Valid Valid Subtract with borrow r/m32
from r32.

REX.W + 1B /r SBB r64, r/m64 Valid N.E. Subtract with borrow r/m64
from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

4-382 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST ← (DEST – (SRC + CF));

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Vol. 2B 4-383

INSTRUCTION SET REFERENCE, N-Z

SBB—Integer Subtraction with Borrow

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-384 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

SCAS/SCASB/SCASW/SCASD—Scan String

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte,
word, doubleword or quadword specified using a memory operand with the value in
AL, AX, or EAX. It then sets status flags in EFLAGS recording the results. The memory
operand address is read from ES:(E)DI register (depending on the address-size
attribute of the instruction and the current operational mode). Note that ES cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-
operand form and the no-operands form. The explicit-operand form (specified using
the SCAS mnemonic) allows a memory operand to be specified explicitly. The
memory operand must be a symbol that indicates the size and location of the
operand value. The register operand is then automatically selected to match the size
of the memory operand (AL register for byte comparisons, AX for word comparisons,
EAX for doubleword comparisons). The explicit-operand form is provided to allow
documentation. Note that the documentation provided by this form can be
misleading. That is, the memory operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword) but it does not have to specify the correct
location. The location is always specified by ES:(E)DI.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

AE SCAS m8 Valid Valid Compare AL with byte at ES:(E)DI or RDI,
then set status flags.*

AF SCAS m16 Valid Valid Compare AX with word at ES:(E)DI or
RDI, then set status flags.*

AF SCAS m32 Valid Valid Compare EAX with doubleword at
ES(E)DI or RDI then set status flags.*

REX.W + AF SCAS m64 Valid N.E. Compare RAX with quadword at RDI or
EDI then set status flags.

AE SCASB Valid Valid Compare AL with byte at ES:(E)DI or RDI
then set status flags.*

AF SCASW Valid Valid Compare AX with word at ES:(E)DI or RDI
then set status flags.*

AF SCASD Valid Valid Compare EAX with doubleword at
ES:(E)DI or RDI then set status flags.*

REX.W + AF SCASQ Valid N.E. Compare RAX with quadword at RDI or
EDI then set status flags.

NOTES:
* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode,

only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Vol. 2B 4-385

INSTRUCTION SET REFERENCE, N-Z

SCAS/SCASB/SCASW/SCASD—Scan String

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI
is assumed to be the memory operand and AL, AX, or EAX is assumed to be the
register operand. The size of operands is selected by the mnemonic: SCASB (byte
comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0,
the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decre-
mented. The register is incremented or decremented by 1 for byte operations, by 2
for word operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for
block comparisons of ECX bytes, words, doublewords, or quadwords. Often, however,
these instructions will be used in a LOOP construct that takes some action based on
the setting of status flags. See “RDTSCP—Read Time-Stamp Counter and Processor
ID” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is
supported using the prefix 67H. Using a REX prefix in the form of REX.W promotes
operation on doubleword operand to 64 bits. The 64-bit no-operand mnemonic is
SCASQ. Address of the memory operand is specified in either RDI or EDI, and
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the desti-
nation register is incremented or decremented by the current operand size
(depending on the value of the DF flag). See the summary chart at the beginning of
this section for encoding data and limits.

Operation

Non-64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN

4-386 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;

64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4; FI;

FI;
ELSE IF (Quadword comparison using REX.W)

THEN
temp ← RAX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

F

Vol. 2B 4-387

INSTRUCTION SET REFERENCE, N-Z

SCAS/SCASB/SCASW/SCASD—Scan String

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the
comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the

ES segment.

If the ES register contains a NULL segment selector.

If an illegal memory operand effective address in the ES
segment is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

4-388 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-389

INSTRUCTION SET REFERENCE, N-Z

SETcc—Set Byte on Condition

SETcc—Set Byte on Condition
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

0F 97 SETA r/m8 Valid Valid Set byte if above (CF=0 and
ZF=0).

REX + 0F 97 SETA r/m8* Valid N.E. Set byte if above (CF=0 and
ZF=0).

0F 93 SETAE r/m8 Valid Valid Set byte if above or equal (CF=0).

REX + 0F 93 SETAE r/m8* Valid N.E. Set byte if above or equal (CF=0).

0F 92 SETB r/m8 Valid Valid Set byte if below (CF=1).

REX + 0F 92 SETB r/m8* Valid N.E. Set byte if below (CF=1).

0F 96 SETBE r/m8 Valid Valid Set byte if below or equal (CF=1
or ZF=1).

REX + 0F 96 SETBE r/m8* Valid N.E. Set byte if below or equal (CF=1
or ZF=1).

0F 92 SETC r/m8 Valid Valid Set byte if carry (CF=1).

REX + 0F 92 SETC r/m8* Valid N.E. Set byte if carry (CF=1).

0F 94 SETE r/m8 Valid Valid Set byte if equal (ZF=1).

REX + 0F 94 SETE r/m8* Valid N.E. Set byte if equal (ZF=1).

0F 9F SETG r/m8 Valid Valid Set byte if greater (ZF=0 and
SF=OF).

REX + 0F 9F SETG r/m8* Valid N.E. Set byte if greater (ZF=0 and
SF=OF).

0F 9D SETGE r/m8 Valid Valid Set byte if greater or equal
(SF=OF).

REX + 0F 9D SETGE r/m8* Valid N.E. Set byte if greater or equal
(SF=OF).

0F 9C SETL r/m8 Valid Valid Set byte if less (SF≠ OF).

REX + 0F 9C SETL r/m8* Valid N.E. Set byte if less (SF≠ OF).

0F 9E SETLE r/m8 Valid Valid Set byte if less or equal (ZF=1 or
SF≠ OF).

REX + 0F 9E SETLE r/m8* Valid N.E. Set byte if less or equal (ZF=1 or
SF≠ OF).

0F 96 SETNA r/m8 Valid Valid Set byte if not above (CF=1 or
ZF=1).

REX + 0F 96 SETNA r/m8* Valid N.E. Set byte if not above (CF=1 or
ZF=1).

4-390 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

0F 92 SETNAE r/m8 Valid Valid Set byte if not above or equal
(CF=1).

REX + 0F 92 SETNAE r/m8* Valid N.E. Set byte if not above or equal
(CF=1).

0F 93 SETNB r/m8 Valid Valid Set byte if not below (CF=0).

REX + 0F 93 SETNB r/m8* Valid N.E. Set byte if not below (CF=0).

0F 97 SETNBE r/m8 Valid Valid Set byte if not below or equal
(CF=0 and ZF=0).

REX + 0F 97 SETNBE r/m8* Valid N.E. Set byte if not below or equal
(CF=0 and ZF=0).

0F 93 SETNC r/m8 Valid Valid Set byte if not carry (CF=0).

REX + 0F 93 SETNC r/m8* Valid N.E. Set byte if not carry (CF=0).

0F 95 SETNE r/m8 Valid Valid Set byte if not equal (ZF=0).

REX + 0F 95 SETNE r/m8* Valid N.E. Set byte if not equal (ZF=0).

0F 9E SETNG r/m8 Valid Valid Set byte if not greater (ZF=1 or
SF≠ OF)

REX + 0F 9E SETNG r/m8* Valid N.E. Set byte if not greater (ZF=1 or
SF≠ OF).

0F 9C SETNGE r/m8 Valid Valid Set byte if not greater or equal
(SF≠ OF).

REX + 0F 9C SETNGE r/m8* Valid N.E. Set byte if not greater or equal
(SF≠ OF).

0F 9D SETNL r/m8 Valid Valid Set byte if not less (SF=OF).

REX + 0F 9D SETNL r/m8* Valid N.E. Set byte if not less (SF=OF).

0F 9F SETNLE r/m8 Valid Valid Set byte if not less or equal (ZF=0
and SF=OF).

REX + 0F 9F SETNLE r/m8* Valid N.E. Set byte if not less or equal (ZF=0
and SF=OF).

0F 91 SETNO r/m8 Valid Valid Set byte if not overflow (OF=0).

REX + 0F 91 SETNO r/m8* Valid N.E. Set byte if not overflow (OF=0).

0F 9B SETNP r/m8 Valid Valid Set byte if not parity (PF=0).

REX + 0F 9B SETNP r/m8* Valid N.E. Set byte if not parity (PF=0).

0F 99 SETNS r/m8 Valid Valid Set byte if not sign (SF=0).

REX + 0F 99 SETNS r/m8* Valid N.E. Set byte if not sign (SF=0).

0F 95 SETNZ r/m8 Valid Valid Set byte if not zero (ZF=0).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

Vol. 2B 4-391

INSTRUCTION SET REFERENCE, N-Z

SETcc—Set Byte on Condition

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags
(CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a
byte register or a byte in memory. The condition code suffix (cc) indicates the condi-
tion being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the rela-
tionship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example,
SETG (set byte if greater) and SETNLE (set if not less or equal) have the same
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alter-
nate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS
Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This represen-
tation can be obtained by choosing the logically opposite condition for the SETcc
instruction, then decrementing the result. For example, to test for overflow, use the
SETNO instruction, then decrement the result.

REX + 0F 95 SETNZ r/m8* Valid N.E. Set byte if not zero (ZF=0).

0F 90 SETO r/m8 Valid Valid Set byte if overflow (OF=1)

REX + 0F 90 SETO r/m8* Valid N.E. Set byte if overflow (OF=1).

0F 9A SETP r/m8 Valid Valid Set byte if parity (PF=1).

REX + 0F 9A SETP r/m8* Valid N.E. Set byte if parity (PF=1).

0F 9A SETPE r/m8 Valid Valid Set byte if parity even (PF=1).

REX + 0F 9A SETPE r/m8* Valid N.E. Set byte if parity even (PF=1).

0F 9B SETPO r/m8 Valid Valid Set byte if parity odd (PF=0).

REX + 0F 9B SETPO r/m8* Valid N.E. Set byte if parity odd (PF=0).

0F 98 SETS r/m8 Valid Valid Set byte if sign (SF=1).

REX + 0F 98 SETS r/m8* Valid N.E. Set byte if sign (SF=1).

0F 94 SETZ r/m8 Valid Valid Set byte if zero (ZF=1).

REX + 0F 94 SETZ r/m8* Valid N.E. Set byte if zero (ZF=1).

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

4-392 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform
addressing to additional byte registers. Otherwise, this instruction’s operation is the
same as in legacy mode and compatibility mode.

Operation

IF condition
THEN DEST ← 1;
ELSE DEST ← 0;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Vol. 2B 4-393

INSTRUCTION SET REFERENCE, N-Z

SETcc—Set Byte on Condition

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

4-394 Vol. 2B SFENCE—Store Fence

INSTRUCTION SET REFERENCE, N-Z

SFENCE—Store Fence

Description

Performs a serializing operation on all store-to-memory instructions that were issued
prior the SFENCE instruction. This serializing operation guarantees that every store
instruction that precedes in program order the SFENCE instruction is globally visible
before any store instruction that follows the SFENCE instruction is globally visible.
The SFENCE instruction is ordered with respect store instructions, other SFENCE
instructions, any MFENCE instructions, and any serializing instructions (such as the
CPUID instruction). It is not ordered with respect to load instructions or the LFENCE
instruction.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, write-combining, and write-
collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the
producer of this data. The SFENCE instruction provides a performance-efficient way
of insuring store ordering between routines that produce weakly-ordered results and
routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat
/Leg Mode

Description

0F AE /7 SFENCE Valid Valid Serializes store operations.

Vol. 2B 4-395

INSTRUCTION SET REFERENCE, N-Z

SGDT—Store Global Descriptor Table Register

SGDT—Store Global Descriptor Table Register

Description

Stores the content of the global descriptor table register (GDTR) in the destination
operand. The destination operand specifies a memory location.

In legacy or compatibility mode, the destination operand is a 6-byte memory loca-
tion. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and
the 24-bit base address is stored in bytes 3-5, and byte 6 is zero-filled. If the
operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the
low 2 bytes of the memory location and the 32-bit base address is stored in the high
4 bytes.

In IA-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-
byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in appli-
cation programs without causing an exception to be generated. See
“LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information
on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8
bits are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium
4, Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386™ processors fill
these bits with 0s.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN
DEST[0:15] ← GDTR(Limit);
DEST[16:39] ← GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* Full 32-bit base address stored *)

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /0 SGDT m Valid Valid Store GDTR to m.

NOTES:
* See IA-32 Architecture Compatibility section below.

4-396 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

FI;
ELSE (* 64-bit Operand Size *)

DEST[0:15] ← GDTR(Limit);
DEST[16:79] ← GDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Flags Affected

None.

Protected Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is a register.

If the LOCK prefix is used.

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

Vol. 2B 4-397

INSTRUCTION SET REFERENCE, N-Z

SGDT—Store Global Descriptor Table Register

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#UD If the destination operand is a register.

If the LOCK prefix is used.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-398 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z

SHLD—Double Precision Shift Left

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the right (starting with bit 0 of the destination
operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or in the CL register. If the count operand is CL, the shift count is the
logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode;
only bits 0 through 4 of the count are used. This masks the count to a value between
0 and 31. If a count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F A4 SHLD r/m16, r16,
imm8

Valid Valid Shift r/m16 to left imm8
places while shifting bits
from r16 in from the right.

0F A5 SHLD r/m16, r16, CL Valid Valid Shift r/m16 to left CL places
while shifting bits from r16
in from the right.

0F A4 SHLD r/m32, r32,
imm8

Valid Valid Shift r/m32 to left imm8
places while shifting bits
from r32 in from the right.

REX.W + 0F A4 SHLD r/m64, r64,
imm8

Valid N.E. Shift r/m64 to left imm8
places while shifting bits
from r64 in from the right.

0F A5 SHLD r/m32, r32, CL Valid Valid Shift r/m32 to left CL places
while shifting bits from r32
in from the right.

REX.W + 0F A5 SHLD r/m64, r64, CL Valid N.E. Shift r/m64 to left CL places
while shifting bits from r64
in from the right.

Vol. 2B 4-399

INSTRUCTION SET REFERENCE, N-Z

SHLD—Double Precision Shift Left

to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWN TO COUNT

DO
Bit(DEST, i) ← Bit(DEST, i – COUNT);

OD;
FOR i ← COUNT – 1 DOWN TO 0

DO
BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

4-400 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-401

INSTRUCTION SET REFERENCE, N-Z

SHRD—Double Precision Shift Right

SHRD—Double Precision Shift Right

Description

The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the left (starting with the most significant bit
of the destination operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or the CL register. If the count operand is CL, the shift count is the logical
AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used
(masking the count to a value between 0 and 31). If the count is greater than the
operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F AC SHRD r/m16,
r16, imm8

Valid Valid Shift r/m16 to right imm8 places
while shifting bits from r16 in
from the left.

0F AD SHRD r/m16,
r16, CL

Valid Valid Shift r/m16 to right CL places
while shifting bits from r16 in
from the left.

0F AC SHRD r/m32,
r32, imm8

Valid Valid Shift r/m32 to right imm8 places
while shifting bits from r32 in
from the left.

REX.W + 0F AC SHRD r/m64,
r64, imm8

Valid N.E. Shift r/m64 to right imm8 places
while shifting bits from r64 in
from the left.

0F AD SHRD r/m32,
r32, CL

Valid Valid Shift r/m32 to right CL places
while shifting bits from r32 in
from the left.

REX.W + 0F AD SHRD r/m64,
r64, CL

Valid N.E. Shift r/m64 to right CL places
while shifting bits from r64 in
from the left.

4-402 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, N-Z

to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* Last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i + COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO
BIT[DEST,i] ← BIT[SRC, i + COUNT – SIZE];

OD;
FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Vol. 2B 4-403

INSTRUCTION SET REFERENCE, N-Z

SHRD—Double Precision Shift Right

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-404 Vol. 2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Description

Moves either of the two packed double-precision floating-point values from destina-
tion operand (first operand) into the low quadword of the destination operand;
moves either of the two packed double-precision floating-point values from the
source operand into to the high quadword of the destination operand (see
Figure 4-14). The select operand (third operand) determines which values are
moved to the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bit 0
selects which value is moved from the destination operand to the result (where 0
selects the low quadword and 1 selects the high quadword) and bit 1 selects which
value is moved from the source operand to the result. Bits 2 through 7 of the select
operand are reserved and must be set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F C6 /r ib SHUFPD xmm1,
xmm2/m128, imm8

Valid Valid Shuffle packed double-precision
floating-point values selected by
imm8 from xmm1 and
xmm2/m128 to xmm1.

Figure 4-14. SHUFPD Shuffle Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

SRC

DEST

DEST

Vol. 2B 4-405

INSTRUCTION SET REFERENCE, N-Z

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Operation

IF SELECT[0] = 0
THEN DEST[63:0] ← DEST[63:0];
ELSE DEST[63:0] ← DEST[127:64]; FI;

IF SELECT[1] = 0
THEN DEST[127:64] ← SRC[63:0];
ELSE DEST[127:64] ← SRC[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

4-406 Vol. 2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Vol. 2B 4-407

INSTRUCTION SET REFERENCE, N-Z

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Description

Moves two of the four packed single-precision floating-point values from the destina-
tion operand (first operand) into the low quadword of the destination operand;
moves two of the four packed single-precision floating-point values from the source
operand (second operand) into to the high quadword of the destination operand (see
Figure 4-15). The select operand (third operand) determines which values are
moved to the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bits 0
and 1 select the value to be moved from the destination operand to the low double-
word of the result, bits 2 and 3 select the value to be moved from the destination
operand to the second doubleword of the result, bits 4 and 5 select the value to be
moved from the source operand to the third doubleword of the result, and bits 6 and
7 select the value to be moved from the source operand to the high doubleword of
the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F C6 /r ib SHUFPS xmm1,
xmm2/m128, imm8

Valid Valid Shuffle packed single-precision
floating-point values selected by
imm8 from xmm1 and
xmm1/m128 to xmm1.

Figure 4-15. SHUFPS Shuffle Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST

4-408 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Operation

CASE (SELECT[1:0]) OF
0: DEST[31:0] ← DEST[31:0];
1: DEST[31:0] ← DEST[63:32];
2: DEST[31:0] ← DEST[95:64];
3: DEST[31:0] ← DEST[127:96];

ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] ← DEST[31:0];
1: DEST[63:32] ← DEST[63:32];
2: DEST[63:32] ← DEST[95:64];
3: DEST[63:32] ← DEST[127:96];

ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64] ← SRC[31:0];
1: DEST[95:64] ← SRC[63:32];
2: DEST[95:64] ← SRC[95:64];
3: DEST[95:64] ← SRC[127:96];

ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96] ← SRC[31:0];
1: DEST[127:96] ← SRC[63:32];
2: DEST[127:96] ← SRC[95:64];
3: DEST[127:96] ← SRC[127:96];

ESAC;

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Vol. 2B 4-409

INSTRUCTION SET REFERENCE, N-Z

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-410 Vol. 2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

SIDT—Store Interrupt Descriptor Table Register

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination
operand. The destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of
the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit
is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth,
and fifth byte, with the sixth byte filled with 0s.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte
base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in applica-
tion programs without causing an exception to be generated. See “LGDT/LIDT—Load
Global/Interrupt Descriptor Table Register” in Chapter 3, Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for information on loading the
GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits
are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4,
Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386 processors fill these
bits with 0s.

Operation

IF instruction is SIDT
THEN

IF OperandSize = 16
THEN

DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /1 SIDT m Valid Valid Store IDTR to m.

Vol. 2B 4-411

INSTRUCTION SET REFERENCE, N-Z

SIDT—Store Interrupt Descriptor Table Register

DEST[16:79] ← IDTR(Base); (* Full 64-bit base address stored *)
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-412 Vol. 2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#UD If the destination operand is a register.

If the LOCK prefix is used.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-413

INSTRUCTION SET REFERENCE, N-Z

SLDT—Store Local Descriptor Table Register

SLDT—Store Local Descriptor Table Register

Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the
segment descriptor (located in the GDT) for the current LDT. This instruction can only
be executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared for the Pentium 4, Intel Xeon, and P6 family proces-
sors. They are undefined for Pentium, Intel486, and Intel386 processors. When the
destination operand is a memory location, the segment selector is written to memory
as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared. When the destination operand is a memory loca-
tion, the segment selector is written to memory as a 16-bit quantity, regardless of
the operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the
16-bit selector and store it in the register. If the destination is memory and operand
size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, regard-
less of the operand size

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 Valid Valid Stores segment selector from LDTR
in r/m16.

REX.W + 0F
00 /0

SLDT r64/m16 Valid Valid Stores segment selector from LDTR
in r64/m16.

4-414 Vol. 2B SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-415

INSTRUCTION SET REFERENCE, N-Z

SMSW—Store Machine Status Word

SMSW—Store Machine Status Word

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the
destination operand. The destination operand can be a general-purpose register or a
memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order
16 bits of register CR0 are copied into the low-order 16 bits of the register and the
high-order 16 bits are undefined. When the destination operand is a memory loca-
tion, the low-order 16 bits of register CR0 are written to memory as a 16-bit quantity,
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following
examples:

• SMSW r16 operand size 16, store CR0[15:0] in r16

• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32

• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64

• SMSW m16 operand size 16, store CR0[15:0] in m16

• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)

• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged
instruction and can be used in application programs. The is provided for compatibility
with the Intel 286 processor. Programs and procedures intended to run on the
Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /4 SMSW r/m16 Valid Valid Store machine status word to r/m16.

0F 01 /4 SMSW r32/m16 Valid Valid Store machine status word in low-order
16 bits of r32/m16; high-order 16 bits
of r32 are undefined.

REX.W + 0F
01 /4

SMSW r64/m16 Valid Valid Store machine status word in low-order
16 bits of r64/m16; high-order 16 bits
of r32 are undefined.

4-416 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST ← CR0[15:0];
(* Machine status word *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-417

INSTRUCTION SET REFERENCE, N-Z

SMSW—Store Machine Status Word

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-418 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

SQRTPD—Compute Square Roots of Packed Double-Precision Floating-
Point Values

Description

Performs a SIMD computation of the square roots of the two packed double-precision
floating-point values in the source operand (second operand) stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← SQRT(SRC[63:0]);
DEST[127:64] ← SQRT(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPD __m128d _mm_sqrt_pd (m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 51 /r SQRTPD xmm1,
xmm2/m128

Valid Valid Computes square roots of the
packed double-precision floating-
point values in xmm2/m128 and
stores the results in xmm1.

Vol. 2B 4-419

INSTRUCTION SET REFERENCE, N-Z

SMSW—Store Machine Status Word

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.CR4.OSXMMEXCPT(bit 10) is 1.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

4-420 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Vol. 2B 4-421

INSTRUCTION SET REFERENCE, N-Z

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-
Point Values

Description

Performs a SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← SQRT(SRC[31:0]);
DEST[63:32] ← SQRT(SRC[63:32]);
DEST[95:64] ← SQRT(SRC[95:64]);
DEST[127:96] ← SQRT(SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 51 /r SQRTPS xmm1,
xmm2/m128

Valid Valid Computes square roots of the packed
single-precision floating-point values in
xmm2/m128 and stores the results in
xmm1.

4-422 Vol. 2B SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

Vol. 2B 4-423

INSTRUCTION SET REFERENCE, N-Z

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-424 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

Description

Computes the square root of the low double-precision floating-point value in the
source operand (second operand) and stores the double-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
64-bit memory location. The destination operand is an XMM register. The high quad-
word of the destination operand remains unchanged. See Figure 11-4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← SQRT(SRC[63:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSD __m128d _mm_sqrt_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 51 /r SQRTSD xmm1,
xmm2/m64

Valid Valid Computes square root of the
low double-precision floating-
point value in xmm2/m64 and
stores the results in xmm1.

Vol. 2B 4-425

INSTRUCTION SET REFERENCE, N-Z

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

4-426 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-427

INSTRUCTION SET REFERENCE, N-Z

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

Description

Computes the square root of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
32-bit memory location. The destination operand is an XMM register. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← SQRT (SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F 51 /r SQRTSS xmm1,
xmm2/m32

Valid Valid Computes square root of the low
single-precision floating-point value
in xmm2/m32 and stores the
results in xmm1.

4-428 Vol. 2B SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Vol. 2B 4-429

INSTRUCTION SET REFERENCE, N-Z

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-430 Vol. 2B STC—Set Carry Flag

INSTRUCTION SET REFERENCE, N-Z

STC—Set Carry Flag

Description

Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F9 STC Valid Valid Set CF flag.

Vol. 2B 4-431

INSTRUCTION SET REFERENCE, N-Z

STD—Set Direction Flag

STD—Set Direction Flag

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

FD STD Valid Valid Set DF flag.

4-432 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z

STI—Set Interrupt Flag

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF)
in the EFLAGS register. After the IF flag is set, the processor begins responding to
external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before
returning from a procedure (or subroutine). For instance, if an STI instruction is
followed by an RET instruction, the RET instruction is allowed to execute before
external interrupts are recognized1. If the STI instruction is followed by a CLI instruc-
tion (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of excep-
tions and NMI interrupts. NMI interrupts (and SMIs) may be blocked for one macro-
instruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; STI sets the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-5 indicates the action of the STI instruction depending on the processor’s
mode of operation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

FB STI Valid Valid Set interrupt flag; external, maskable
interrupts enabled at the end of the
next instruction.

1. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a
sequence of STI instructions, only the first instruction in the sequence is guaranteed to delay
interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI
STI
RET

Table 4-5. Decision Table for STI Results
PE VM IOPL CPL PVI VIP VME STI Result

0 X X X X X X IF = 1
1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 0 X VIF = 1

1 0 < CPL < 3 X X X GP Fault

Vol. 2B 4-433

INSTRUCTION SET REFERENCE, N-Z

STI—Set Interrupt Flag

Operation

IF PE = 0 (* Executing in real-address mode *)
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)

IF VM = 0 (* Executing in protected mode*)
THEN

IF IOPL ≥ CPL
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)
THEN

VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0);
FI;

FI;
ELSE (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 1; (* Set Interrupt Flag *)
ELSE

IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN

VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0); (* Trap to virtual-8086 monitor *)
FI;)

FI;

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1
1 1 < 3 X X 0 1 VIF = 1

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

NOTES:
X = This setting has no impact.

Table 4-5. Decision Table for STI Results
PE VM IOPL CPL PVI VIP VME STI Result

4-434 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z

FI;
FI;

Flags Affected

The IF flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the

current program or procedure.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-435

INSTRUCTION SET REFERENCE, N-Z

STMXCSR—Store MXCSR Register State

STMXCSR—Store MXCSR Register State

Description

Stores the contents of the MXCSR control and status register to the destination
operand. The destination operand is a 32-bit memory location. The reserved bits in
the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

m32 ← MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

Exceptions

None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions,
three conditions must be true: CR0.AM[bit 18] = 1,
EFLAGS.AC[bit 18] = 1, current CPL = 3.

#UD If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /3 STMXCSR m32 Valid Valid Store contents of MXCSR register to
m32.

4-436 Vol. 2B STMXCSR—Store MXCSR Register State

INSTRUCTION SET REFERENCE, N-Z

Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective

address space from 0 to 0FFFFH.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#UD If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions,
three conditions must be true: CR0.AM[bit 18] = 1,
EFLAGS.AC[bit 18] = 1, current CPL = 3

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Vol. 2B 4-437

INSTRUCTION SET REFERENCE, N-Z

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the
AL, AX, or EAX register (respectively) into the destination operand. The destination
operand is a memory location, the address of which is read from either the ES:EDI or
ES:DI register (depending on the address-size attribute of the instruction and the
mode of operation). The ES segment cannot be overridden with a segment override
prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the STOS mnemonic) allows the destination operand to be specified explicitly.
Here, the destination operand should be a symbol that indicates the size and location
of the destination value. The source operand is then automatically selected to match
the size of the destination operand (the AL register for byte operands, AX for word
operands, EAX for doubleword operands). The explicit-operands form is provided to
allow documentation; however, note that the documentation provided by this form
can be misleading. That is, the destination operand symbol must specify the correct
type (size) of the operand (byte, word, or doubleword), but it does not have to
specify the correct location. The location is always specified by the ES:(E)DI

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

AA STOS m8 Valid Valid For legacy mode, store AL at address
ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOS m16 Valid Valid For legacy mode, store AX at address
ES:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOS m32 Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 Valid N.E. Store RAX at address RDI or EDI.

AA STOSB Valid Valid For legacy mode, store AL at address
ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOSW Valid Valid For legacy mode, store AX at address
ES:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOSD Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ Valid N.E. Store RAX at address RDI or EDI.

4-438 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z

register. These must be loaded correctly before the store string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and
quadword versions of the STOS instructions. Here also ES:(E)DI is assumed to be the
destination operand and AL, AX, or EAX is assumed to be the source operand. The
size of the destination and source operands is selected by the mnemonic: STOSB
(byte read from register AL), STOSW (word from AX), STOSD (doubleword from
EAX).

After the byte, word, or doubleword is transferred from the register to the memory
location, the (E)DI register is incremented or decremented according to the setting of
the DF flag in the EFLAGS register. If the DF flag is 0, the register is incremented; if
the DF flag is 1, the register is decremented (the register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, by 4 for doubleword oper-
ations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported
using the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The promoted no-operand mnemonic is STOSQ.
STOSQ (and its explicit operands variant) store a quadword from the RAX register
into the destination addressed by RDI or EDI. See the summary chart at the begin-
ning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because data needs to be moved
into the AL, AX, or EAX register before it can be stored. See “RDTSCP—Read Time-
Stamp Counter and Processor ID” in this chapter for a description of the REP prefix.

Operation

Non-64-bit Mode:

IF (Byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;

Vol. 2B 4-439

INSTRUCTION SET REFERENCE, N-Z

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

FI;
ELSE IF (Doubleword store)

THEN
DEST ← EAX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;

64-bit Mode:

IF (Byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4;

FI;
FI;

ELSE IF (Quadword store using REX.W)
THEN

DEST ← RAX;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

4-440 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z

FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the
ES segment.

If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES

segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES

segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-441

INSTRUCTION SET REFERENCE, N-Z

STR—Store Task Register

STR—Store Task Register

Description

Stores the segment selector from the task register (TR) in the destination operand.
The destination operand can be a general-purpose register or a memory location.
The segment selector stored with this instruction points to the task state segment
(TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is
copied into the lower 16 bits of the register and the upper 16 bits of the register are
cleared. When the destination operand is a memory location, the segment selector is
written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16
bits. In register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be
executed in protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a non-

writable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /1 STR r/m16 Valid Valid Stores segment selector from TR in
r/m16.

4-442 Vol. 2B STR—Store Task Register

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-443

INSTRUCTION SET REFERENCE, N-Z

SUB—Subtract

SUB—Subtract
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

2C ib SUB AL, imm8 Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 Valid N.E. Subtract imm32 sign-
extended to 64-bits from
RAX.

80 /5 ib SUB r/m8, imm8 Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m8*, imm8 Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16, imm16 Valid Valid Subtract imm16 from r/m16.

81 /5 id SUB r/m32, imm32 Valid Valid Subtract imm32 from r/m32.

REX.W + 81 /5 id SUB r/m64, imm32 Valid N.E. Subtract imm32 sign-
extended to 64-bits from
r/m64.

83 /5 ib SUB r/m16, imm8 Valid Valid Subtract sign-extended imm8
from r/m16.

83 /5 ib SUB r/m32, imm8 Valid Valid Subtract sign-extended imm8
from r/m32.

REX.W + 83 /5 ib SUB r/m64, imm8 Valid N.E. Subtract sign-extended imm8
from r/m64.

28 /r SUB r/m8, r8 Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r32 Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r8*, r/m8* Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 Valid N.E. Subtract r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

4-444 Vol. 2B SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand
can be a register or a memory location; the source operand can be an immediate,
register, or memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to
the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate an
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign
of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

Operation

DEST ← (DEST – SRC);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

Vol. 2B 4-445

INSTRUCTION SET REFERENCE, N-Z

SUB—Subtract

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-446 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SUBPD—Subtract Packed Double-Precision Floating-Point Values

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in
the source operand (second operand) from the two packed double-precision floating-
point values in the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← DEST[63:0] − SRC[63:0];
DEST[127:64] ← DEST[127:64] − SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent

SUBPD __m128d _mm_sub_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 5C /r SUBPD xmm1,
xmm2/m128

Valid Valid Subtract packed double-precision
floating-point values in
xmm2/m128 from xmm1.

Vol. 2B 4-447

INSTRUCTION SET REFERENCE, N-Z

SUBPD—Subtract Packed Double-Precision Floating-Point Values

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 1.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

4-448 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Vol. 2B 4-449

INSTRUCTION SET REFERENCE, N-Z

SUBPS—Subtract Packed Single-Precision Floating-Point Values

SUBPS—Subtract Packed Single-Precision Floating-Point Values

Description

Performs a SIMD subtract of the four packed single-precision floating-point values in
the source operand (second operand) from the four packed single-precision floating-
point values in the destination operand (first operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point
operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← DEST[31:0] − SRC[31:0];
DEST[63:32] ← DEST[63:32] − SRC[63:32];
DEST[95:64] ← DEST[95:64] − SRC[95:64];
DEST[127:96] ← DEST[127:96] − SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 5C /r SUBPS xmm1
xmm2/m128

Valid Valid Subtract packed single-precision
floating-point values in xmm2/mem
from xmm1.

4-450 Vol. 2B SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Vol. 2B 4-451

INSTRUCTION SET REFERENCE, N-Z

SUBPS—Subtract Packed Single-Precision Floating-Point Values

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-452 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SUBSD—Subtract Scalar Double-Precision Floating-Point Values

Description

Subtracts the low double-precision floating-point value in the source operand
(second operand) from the low double-precision floating-point value in the destina-
tion operand (first operand), and stores the double-precision floating-point result in
the destination operand. The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an XMM register. The high quadword of
the destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← DEST[63:0] − SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

SUBSD __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F2 0F 5C /r SUBSD xmm1,
xmm2/m64

Valid Valid Subtracts the low double-
precision floating-point values in
xmm2/mem64 from xmm1.

Vol. 2B 4-453

INSTRUCTION SET REFERENCE, N-Z

SUBSD—Subtract Scalar Double-Precision Floating-Point Values

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

4-454 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-455

INSTRUCTION SET REFERENCE, N-Z

SUBSS—Subtract Scalar Single-Precision Floating-Point Values

SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Description

Subtracts the low single-precision floating-point value in the source operand (second
operand) from the low single-precision floating-point value in the destination
operand (first operand), and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory
location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← DEST[31:0] − SRC[31:0];
(* DEST[127:96] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

F3 0F 5C /r SUBSS xmm1,
xmm2/m32

Valid Valid Subtract the lower single-precision
floating-point values in xmm2/m32
from xmm1.

4-456 Vol. 2B SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Vol. 2B 4-457

INSTRUCTION SET REFERENCE, N-Z

SUBSS—Subtract Scalar Single-Precision Floating-Point Values

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-458 Vol. 2B SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, N-Z

SWAPGS—Swap GS Base Register

Description

SWAPGS exchanges the current GS base register value with the value contained in
MSR address C0000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be
canonical; so SWAPGS does not perform a canonical check. The SWAPGS instruction
is a privileged instruction intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS
entry point. Neither is there a straightforward method to obtain a pointer to kernel
structures from which the kernel stack pointer could be read. Thus, the kernel can't
save general purpose registers or reference memory.

By design, SWAPGS does not require any general purpose registers or memory oper-
ands. No registers need to be saved before using the instruction. SWAPGS exchanges
the CPL 0 data pointer from the KernelGSbase MSR with the GS base register. The
kernel can then use the GS prefix on normal memory references to access kernel
data structures. Similarly, when the OS kernel is entered using an interrupt or excep-
tion (where the kernel stack is already set up), SWAPGS can be used to quickly get a
pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions.
Those instructions are only accessible at privilege level 0. WRMSR will cause a
#GP(0) if the value to be written to KernelGSbase MSR is non-canonical.

See Table 4-6.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 /7 SWAPGS Valid Invalid Exchanges the current GS base register
value with the value contained in MSR
address C0000102H.

Table 4-6. SWAPGS Operation Parameters

Opcode ModR/M Byte Instruction

MOD REG R/M Not 64-bit
Mode

 64-bit Mode

OF 01 MOD ≠ 11 111 xxx INVLPG INVLPG

11 111 000 #UD SWPGS

11 111 ≠ 000 #UD #UD

Vol. 2B 4-459

INSTRUCTION SET REFERENCE, N-Z

SWAPGS—Swap GS Base Register

Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)
THEN

#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp ← GS(BASE);
GS(BASE) ← KERNELGSbase;
KERNELGSbase ← tmp;

Flags Affected

None

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.

If the LOCK prefix is used.

4-460 Vol. 2B SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

SYSCALL—Fast System Call

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new
RIP from the IA32_LSTAR (64-bit mode). Upon return, SYSRET copies the value
saved in RCX to the RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an
OS-defined value using the IA32_FMASK (MSR C000_0084). The actual mask value
used by the OS is the complement of the value written to the IA32_FMASK MSR.
None of the bits in RFLAGS are automatically cleared (except for RF). SYSRET
restores RFLAGS from R11 (the lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:

• The CS and SS base and limit remain the same for all processes, including the
operating system (the base is 0H and the limit is 0FFFFFFFFH).

• The CS of the SYSCALL target has a privilege level of 0.

• The CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX ← RIP;
RIP ← LSTAR_MSR;
R11 ← EFLAGS;
EFLAGS ← (EFLAGS MASKED BY IA32_FMASK);
CPL ← 0;
CS(SEL) ← IA32_STAR_MSR[47:32];
CS(DPL) ← 0;
CS(BASE) ← 0;
CS(LIMIT) ← 0xFFFFF;
CS(GRANULAR) ← 1;
SS(SEL) ← IA32_STAR_MSR[47:32] + 8;
SS(DPL) ← 0;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL Valid Invalid Fast call to privilege level 0
system procedures.

Vol. 2B 4-461

INSTRUCTION SET REFERENCE, N-Z

SYSCALL—Fast System Call

SS(BASE) ← 0;
SS(LIMIT) ← 0xFFFFF;
SS(GRANULAR) ← 1;

Flags Affected

All.

Protected Mode Exceptions
#UD If Mode ≠ 64-bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

If the LOCK prefix is used.

4-462 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

SYSENTER—Fast System Call

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a
companion instruction to SYSEXIT. The instruction is optimized to provide the
maximum performance for system calls from user code running at privilege level 3 to
operating system or executive procedures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege
level 0 code segment and code entry point, and the privilege level 0 stack segment
and stack pointer by writing values to the following MSRs:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are
the segment selector for the privilege level 0 code segment. This value is also
used to compute the segment selector of the privilege level 0 stack segment.

• IA32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code
segment to the first instruction of the selected operating procedure or routine.

• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level
0 stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register
addresses are listed in Table 4-7. The addresses are defined to remain fixed for future
Intel 64 and IA-32 processors.

When SYSENTER is executed, the processor:

1. Loads the segment selector from the IA32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.

3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

6. Clears the VM flag in the EFLAGS register, if the flag is set.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER Valid Valid Fast call to privilege level 0 system
procedures.

Table 4-7. MSRs Used By the SYSENTER and SYSEXIT Instructions

MSR Address

IA32_SYSENTER_CS 174H

IA32_SYSENTER_ESP 175H

IA32_SYSENTER_EIP 176H

Vol. 2B 4-463

INSTRUCTION SET REFERENCE, N-Z

SYSENTER—Fast System Call

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling
procedure.

The SYSENTER instruction always transfers program control to a protected-mode
code segment with a DPL of 0. The instruction requires that the following conditions
are met by the operating system:

• The segment descriptor for the selected system code segment selects a flat,
32-bit code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected system stack segment selects a flat 32-bit
stack segment of up to 4 GBytes, with read, write, accessed, and expand-up
permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. When executing a SYSENTER instruction, the processor
does not save state information for the user code, and neither the SYSENTER nor the
SYSEXIT instruction supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transi-
tions between privilege level 3 code and privilege level 0 operating system proce-
dures, the following conventions must be followed:

• The segment descriptors for the privilege level 0 code and stack segments and
for the privilege level 3 code and stack segments must be contiguous in the
global descriptor table. This convention allows the processor to compute the
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared
libraries or DLLs) must save the required return IP and processor state
information if a return to the calling procedure is required. Likewise, the
operating system or executive procedures called with SYSENTER instructions
must have access to and use this saved return and state information when
returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

4-464 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF CR0.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
EFLAGS.VM ← 0; (* Insures protected mode execution *)
EFLAGS.IF ← 0; (* Mask interrupts *)
EFLAGS.RF ← 0;

CS.SEL ← SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 0;
CS.SEL.RPL ← 0;
CS.ARbyte.P ← 1;
CPL ← 0;

SS.SEL ← CS.SEL + 8;
(* Set rest of SS to a fixed value *)
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFFH; (* 4-GByte limit *)
SS.ARbyte.G ← 1; (* 4-KByte granularity *)
SS.ARbyte.S ←;
SS.ARbyte.TYPE ← 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 0;
SS.SEL.RPL ← 0;
SS.ARbyte.P ← 1;

ESP ← SYSENTER_ESP_MSR;
EIP ← SYSENTER_EIP_MSR;

IA-32e Mode Operation

In IA-32e mode, SYSENTER executes a fast system calls from user code running at
privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive proce-

Vol. 2B 4-465

INSTRUCTION SET REFERENCE, N-Z

SYSENTER—Fast System Call

dures running at privilege level 0. This instruction is a companion instruction to the
SYSEXIT instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:

• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

• New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit =
FFFFFFFFH.

• Target instruction — Reads 64-bit canonical address from
IA32_SYSENTER_EIP.

• Stack segment — Computed by adding 8 to the value from
IA32_SYSENTER_CS.

• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected

VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-466 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z

SYSEXIT—Fast Return from Fast System Call

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruc-
tion to the SYSENTER instruction. The instruction is optimized to provide the
maximum performance for returns from system procedures executing at protections
levels 0 to user procedures executing at protection level 3. It must be executed from
code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment
and code entry point, and the privilege level 3 stack segment and stack pointer by
writing values into the following MSR and general-purpose registers:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are
the segment selector for the privilege level 0 code segment in which the
processor is currently executing. This value is used to compute the segment
selectors for the privilege level 3 code and stack segments.

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the
first instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using
RDMSR/WRMSR. The register address is listed in Table 4-7. This address is defined to
remain fixed for future Intel 64 and IA-32 processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS
selector register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS
selector register.

4. Loads the stack pointer from the ECX register into the ESP register.

5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using
the SYSENTER and SYSEXIT instructions as companion call and return instructions.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT Valid Valid Fast return to privilege level 3 user code.

REX.W + 0F
35

SYSEXIT Valid Valid Fast return to 64-bit mode privilege level 3
user code.

Vol. 2B 4-467

INSTRUCTION SET REFERENCE, N-Z

SYSEXIT—Fast Return from Fast System Call

The SYSEXIT instruction always transfers program control to a protected-mode code
segment with a DPL of 3. The instruction requires that the following conditions are
met by the operating system:

• The segment descriptor for the selected user code segment selects a flat, 32-bit
code segment of up to 4 GBytes, with execute, read, accessed, and non-
conforming permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit
stack segment of up to 4 GBytes, with expand-up, read, write, and accessed
permissions.

The SYSENTER can be invoked from all operating modes except real-address mode
and virtual 8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processor. The availability of these instructions on a processor is
indicated with the SYSENTER/SYSEXIT present (SEP) feature flag returned to the
EDX register by the CPUID instruction. An operating system that qualifies the SEP
flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

THEN
SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE
SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the
processor returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT
instructions.

Operation

IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CR0.PE = 0 THEN #GP(0); FI;
IF CPL ≠ 0 THEN #GP(0); FI;

CS.SEL ← (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)
CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 3;

4-468 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z

CS.SEL.RPL ← 3;
CS.ARbyte.P ← 1;
CPL ← 3;

SS.SEL ← (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFFH; (* 4-GByte limit *)
SS.ARbyte.G ←1; (* 4-KByte granularity *)
SS.ARbyte.S ← ;
SS.ARbyte.TYPE ← 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 3;
SS.SEL.RPL ← 3;
SS.ARbyte.P ← 1;

ESP ← ECX;
EIP ← EDX;

IA-32e Mode Operation

In IA-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive proce-
dures running at privilege level 0 to user code running at privilege level 3 (in compat-
ibility mode or 64-bit mode). This instruction is a companion instruction to the
SYSENTER instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold
64-bit addresses and must be in canonical form; IA32_SYSENTER_CS must not
contain a NULL selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:

• Target code segment — Computed by adding 32 to the value in the
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 1 (go to 64-bit mode).

• Target instruction — Reads 64-bit canonical address in RDX.

• Stack segment — Computed by adding 8 to the value of CS selector.

• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:

• Target code segment — Computed by adding 16 to the value in
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 0 (go to compatibility mode).

• Target instruction — Fetch the target instruction from 32-bit address in EDX.

Vol. 2B 4-469

INSTRUCTION SET REFERENCE, N-Z

SYSEXIT—Fast Return from Fast System Call

• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

• Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If protected mode is not enabled.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) Always.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.

If ECX or EDX contains a non-canonical address.

#UD If the LOCK prefix is used.

4-470 Vol. 2B SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, N-Z

SYSRET—Return From Fast System Call

Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads
the new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the
value saved in RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8.

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value
is set to MSR IA32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond
to selectors loaded by SYSCALL/SYSRET consistent with the base, limit and attribute
values forced by the these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the
following assumptions made by SYSCALL/SYSRET:

• CS and SS base and limit remain the same for all processes, including the
operating system.

• CS of the SYSCALL target has a privilege level of 0.

• CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L ≠ 1) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0)

THEN #GP(0); FI;
IF (RCX ≠ CANONICAL_ADDRESS)

THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)

THEN (* Return to 64-Bit Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] + 16;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET Valid Invalid Return from fast system call

Vol. 2B 4-471

INSTRUCTION SET REFERENCE, N-Z

SYSRET—Return From Fast System Call

SS(PL) ← 0x3;
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] ;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
EIP ← ECX;

FI;

Flags Affected

VM, IF, RF.

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions
#UD If Mode ≠ 64-Bit.

Compatibility Mode Exceptions
#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE bit = 0.

If the LOCK prefix is used.

#GP(0) If CPL ≠ 0.

If ECX contains a non-canonical address.

4-472 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z

TEST—Logical Compare
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

A8 ib TEST AL, imm8 Valid Valid AND imm8 with AL; set SF, ZF,
PF according to result.

A9 iw TEST AX, imm16 Valid Valid AND imm16 with AX; set SF,
ZF, PF according to result.

A9 id TEST EAX, imm32 Valid Valid AND imm32 with EAX; set SF,
ZF, PF according to result.

REX.W + A9 id TEST RAX, imm32 Valid N.E. AND imm32 sign-extended to
64-bits with RAX; set SF, ZF,
PF according to result.

F6 /0 ib TEST r/m8, imm8 Valid Valid AND imm8 with r/m8; set SF,
ZF, PF according to result.

REX + F6 /0 ib TEST r/m8*, imm8 Valid N.E. AND imm8 with r/m8; set SF,
ZF, PF according to result.

F7 /0 iw TEST r/m16,
imm16

Valid Valid AND imm16 with r/m16; set
SF, ZF, PF according to result.

F7 /0 id TEST r/m32,
imm32

Valid Valid AND imm32 with r/m32; set
SF, ZF, PF according to result.

REX.W + F7 /0 id TEST r/m64,
imm32

Valid N.E. AND imm32 sign-extended to
64-bits with r/m64; set SF, ZF,
PF according to result.

84 /r TEST r/m8, r8 Valid Valid AND r8 with r/m8; set SF, ZF,
PF according to result.

REX + 84 /r TEST r/m8*, r8* Valid N.E. AND r8 with r/m8; set SF, ZF,
PF according to result.

85 /r TEST r/m16, r16 Valid Valid AND r16 with r/m16; set SF,
ZF, PF according to result.

85 /r TEST r/m32, r32 Valid Valid AND r32 with r/m32; set SF,
ZF, PF according to result.

REX.W + 85 /r TEST r/m64, r64 Valid N.E. AND r64 with r/m64; set SF,
ZF, PF according to result.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Vol. 2B 4-473

INSTRUCTION SET REFERENCE, N-Z

TEST—Logical Compare

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the
second operand (source 2 operand) and sets the SF, ZF, and PF status flags according
to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);

IF TEMP = 0
THEN ZF ← 1;
ELSE ZF ← 0;

FI:

PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;
(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the
result (see the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-474 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-475

INSTRUCTION SET REFERENCE, N-Z

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point
Values and Set EFLAGS

Description

Performs and unordered compare of the double-precision floating-point values in the
low quadwords of source operand 1 (first operand) and source operand 2 (second
operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the
result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the
EFLAGS register are set to 0. The unordered result is returned if either source
operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only when a source operand is
an SNaN. The COMISD instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;
GREATER_THAN: ZF, PF, CF ← 000;
LESS_THAN: ZF, PF, CF ← 001;
EQUAL: ZF, PF, CF ← 100;

ESAC;
OF, AF, SF ← 0;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 2E /r UCOMISD xmm1,
xmm2/m64

Valid Valid Compares (unordered) the low double-
precision floating-point values in
xmm1 and xmm2/m64 and set the
EFLAGS accordingly.

4-476 Vol. 2B UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

Vol. 2B 4-477

INSTRUCTION SET REFERENCE, N-Z

UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set
EFLAGS

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-478 Vol. 2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, N-Z

UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point
Values and Set EFLAGS

Description

Performs and unordered compare of the single-precision floating-point values in the
low doublewords of the source operand 1 (first operand) and the source operand 2
(second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according
to the result (unordered, greater than, less than, or equal). In The OF, SF and AF
flags in the EFLAGS register are set to 0. The unordered result is returned if either
source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a
32 bit memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) only when a source operand is
an SNaN. The COMISS instruction signals an invalid operation exception if a source
operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

RESULT ← UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 2E /r UCOMISS xmm1,
xmm2/m32

Valid Valid Compare lower single-precision floating-
point value in xmm1 register with lower
single-precision floating-point value in
xmm2/mem and set the status flags
accordingly.

Vol. 2B 4-479

INSTRUCTION SET REFERENCE, N-Z

UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
GP If any part of the operand lies outside the effective address

space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

4-480 Vol. 2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set
EFLAGS

INSTRUCTION SET REFERENCE, N-Z

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol. 2B 4-481

INSTRUCTION SET REFERENCE, N-Z

UD2—Undefined Instruction

UD2—Undefined Instruction

Description

Generates an invalid opcode. This instruction is provided for software testing to
explicitly generate an invalid opcode. The opcode for this instruction is reserved for
this purpose.

Other than raising the invalid opcode exception, this instruction is the same as the
NOP instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)
#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

0F 0B UD2 Valid Valid Raise invalid opcode exception.

4-482 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

Description

Performs an interleaved unpack of the high double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-16. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← DEST[127:64];
DEST[127:64] ← SRC[127:64];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 15 /r UNPCKHPD xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves double-
precision floating-point values
from high quadwords of xmm1
and xmm2/m128.

Figure 4-16. UNPCKHPD Instruction High Unpack and Interleave Operation

X1 X0

Y1 Y0

Y1 X1

DEST

SRC

DEST

Vol. 2B 4-483

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD__m128d _mm_unpackhi_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-484 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Vol. 2B 4-485

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

Description

Performs an interleaved unpack of the high-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-17. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← DEST[95:64];
DEST[63:32] ← SRC[95:64];
DEST[95:64] ← DEST[127:96];
DEST[127:96] ← SRC[127:96];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 15 /r UNPCKHPS xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves single-
precision floating-point values
from high quadwords of xmm1
and xmm2/mem into xmm1.

Figure 4-17. UNPCKHPS Instruction High Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 X3 Y2 X2

DEST

SRC

DEST

4-486 Vol. 2B UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-487

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-488 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

Description

Performs an interleaved unpack of the low double-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand). See Figure 4-18. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← DEST[63:0];
DEST[127:64] ← SRC[63:0];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 14 /r UNPCKLPD xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves double-
precision floating-point values from
low quadwords of xmm1 and
xmm2/m128.

Figure 4-18. UNPCKLPD Instruction Low Unpack and Interleave Operation

X1 X0

Y1 Y0

Y0 X0

DEST

SRC

DEST

Vol. 2B 4-489

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD__m128d _mm_unpacklo_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-490 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Vol. 2B 4-491

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

Description

Performs an interleaved unpack of the low-order single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand). See Figure 4-19. The source operand can be an XMM register or a 128-bit
memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the
appropriate 64 bits; however, alignment to 16-byte boundary and normal segment
checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← DEST[31:0];
DEST[63:32] ← SRC[31:0];
DEST[95:64] ← DEST[63:32];

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 14 /r UNPCKLPS xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves single-
precision floating-point values from
low quadwords of xmm1 and
xmm2/mem into xmm1.

Figure 4-19. UNPCKLPS Instruction Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST

4-492 Vol. 2B UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

DEST[127:96] ← SRC[63:32];

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-493

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-494 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z

VERR/VERW—Verify a Segment for Reading or Writing

Description

Verifies whether the code or data segment specified with the source operand is read-
able (VERR) or writable (VERW) from the current privilege level (CPL). The source
operand is a 16-bit register or a memory location that contains the segment selector
for the segment to be verified. If the segment is accessible and readable (VERR) or
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments
are never verified as writable. This check cannot be performed on system segments.

To set the ZF flag, the following conditions must be met:

• The segment selector is not NULL.

• The selector must denote a descriptor within the bounds of the descriptor table
(GDT or LDT).

• The selector must denote the descriptor of a code or data segment (not that of a
system segment or gate).

• For the VERR instruction, the segment must be readable.

• For the VERW instruction, the segment must be a writable data segment.

• If the segment is not a conforming code segment, the segment’s DPL must be
greater than or equal to (have less or the same privilege as) both the CPL and the
segment selector's RPL.

The validation performed is the same as is performed when a segment selector is
loaded into the DS, ES, FS, or GS register, and the indicated access (read or write) is
performed. The segment selector's value cannot result in a protection exception,
enabling the software to anticipate possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The
operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))
THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 00 /4 VERR r/m16 Valid Valid Set ZF=1 if segment specified with
r/m16 can be read.

0F 00 /5 VERW r/m16 Valid Valid Set ZF=1 if segment specified with
r/m16 can be written.

Vol. 2B 4-495

INSTRUCTION SET REFERENCE, N-Z

VERR/VERW—Verify a Segment for Reading or Writing

or (SegmentDescriptor(Type) ≠ conforming code segment)
and (CPL > DPL) or (RPL > DPL)

THEN
ZF ← 0;

ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))

THEN
ZF ← 1;

FI;
FI;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable
(VERW); otherwise, it is set to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal
addressing of the source operand.

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The VERR and VERW instructions are not recognized in real-

address mode.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The VERR and VERW instructions are not recognized in virtual-

8086 mode.

If the LOCK prefix is used.

4-496 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Vol. 2B 4-497

INSTRUCTION SET REFERENCE, N-Z

WAIT/FWAIT—Wait

WAIT/FWAIT—Wait

Description

Causes the processor to check for and handle pending, unmasked, floating-point
exceptions before proceeding. (FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code.
Coding a WAIT instruction after a floating-point instruction insures that any
unmasked floating-point exceptions the instruction may raise are handled before the
processor can modify the instruction’s results. See the section titled “Floating-Point
Exception Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information on using the
WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

9B WAIT Valid Valid Check pending unmasked floating-
point exceptions.

9B FWAIT Valid Valid Check pending unmasked floating-
point exceptions.

4-498 Vol. 2B WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-499

INSTRUCTION SET REFERENCE, N-Z

WBINVD—Write Back and Invalidate Cache

WBINVD—Write Back and Invalidate Cache

Description

Writes back all modified cache lines in the processor’s internal cache to main memory
and invalidates (flushes) the internal caches. The instruction then issues a special-
function bus cycle that directs external caches to also write back modified data and
another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches
to complete their write-back and flushing operations before proceeding with instruc-
tion execution. It is the responsibility of hardware to respond to the cache write-back
and flush signals.

The WBINVD instruction is a privileged instruction. When the processor is running in
protected mode, the CPL of a program or procedure must be 0 to execute this
instruction. This instruction is also a serializing instruction (see “Serializing Instruc-
tions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A).

In situations where cache coherency with main memory is not a concern, software
can use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be
implemented differently on future Intel 64 and IA-32 processors. The instruction is
not supported on IA-32 processors earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected

None.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD Valid Valid Write back and flush Internal caches;
initiate writing-back and flushing of
external caches.

4-500 Vol. 2B WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-501

INSTRUCTION SET REFERENCE, N-Z

WRMSR—Write to Model Specific Register

WRMSR—Write to Model Specific Register

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register
(MSR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected MSR and the contents of the EAX
register are copied to low-order 32 bits of the MSR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented MSR address in ECX will also cause a general protection exception.
The processor will also generate a general protection exception if software attempts
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated.
This includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring
and machine check errors. Appendix B, “Model-Specific Registers (MSRs)”, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists all
MSRs that can be read with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in
Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced
into the IA-32 architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR Valid Valid Write the value in EDX:EAX to MSR
specified by ECX.

4-502 Vol. 2B WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, N-Z

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR

address.

If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-503

INSTRUCTION SET REFERENCE, N-Z

XADD—Exchange and Add

XADD—Exchange and Add

Description

Exchanges the first operand (destination operand) with the second operand (source
operand), then loads the sum of the two values into the destination operand. The
destination operand can be a register or a memory location; the source operand is a
register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruc-
tion. If this instruction is used, you should provide an equivalent code sequence that
runs on earlier processors.

Operation

TEMP ← SRC + DEST;
SRC ← DEST;
DEST ← TEMP;

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

0F C0 /r XADD r/m8, r8 Valid Valid Exchange r8 and r/m8; load
sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* Valid N.E. Exchange r8 and r/m8; load
sum into r/m8.

0F C1 /r XADD r/m16, r16 Valid Valid Exchange r16 and r/m16;
load sum into r/m16.

0F C1 /r XADD r/m32, r32 Valid Valid Exchange r32 and r/m32;
load sum into r/m32.

REX.W + 0F C1 /r XADD r/m64, r64 Valid N.E. Exchange r64 and r/m64;
load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

4-504 Vol. 2B XADD—Exchange and Add

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition,
which is stored in the destination operand.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-505

INSTRUCTION SET REFERENCE, N-Z

XADD—Exchange and Add

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-506 Vol. 2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z

XCHG—Exchange Register/Memory with Register

Description

Exchanges the contents of the destination (first) and source (second) operands. The
operands can be two general-purpose registers or a register and a memory location.
If a memory operand is referenced, the processor’s locking protocol is automatically
implemented for the duration of the exchange operation, regardless of the presence

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 Valid Valid Exchange r8 (byte register) with
byte from r/m8.

REX + 86 /r XCHG r/m8*, r8* Valid N.E. Exchange r8 (byte register) with
byte from r/m8.

86 /r XCHG r8, r/m8 Valid Valid Exchange byte from r/m8 with
r8 (byte register).

REX + 86 /r XCHG r8*, r/m8* Valid N.E. Exchange byte from r/m8 with
r8 (byte register).

87 /r XCHG r/m16, r16 Valid Valid Exchange r16 with word from
r/m16.

87 /r XCHG r16, r/m16 Valid Valid Exchange word from r/m16 with
r16.

87 /r XCHG r/m32, r32 Valid Valid Exchange r32 with doubleword
from r/m32.

REX.W + 87 /r XCHG r/m64, r64 Valid N.E. Exchange r64 with quadword
from r/m64.

87 /r XCHG r32, r/m32 Valid Valid Exchange doubleword from
r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 Valid N.E. Exchange quadword from r/m64
with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

Vol. 2B 4-507

INSTRUCTION SET REFERENCE, N-Z

XCHG—Exchange Register/Memory with Register

or absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix
description in this chapter for more information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for
process synchronization. (See “Bus Locking” in Chapter 7 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for more information on bus
locking.)

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit
operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

TEMP ← DEST;
DEST ← SRC;
SRC ← TEMP;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

4-508 Vol. 2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Vol. 2B 4-509

INSTRUCTION SET REFERENCE, N-Z

XGETBV—Get Value of Extended Control Register

XGETBV—Get Value of Extended Control Register

Description

Reads the contents of the extended control register (XCR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the XCR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

Specifying a reserved or unimplemented XCR in ECX causes a general protection
exception.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0).

Operation

EDX:EAX ← XCR[ECX];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If an invalid XCR is specified in ECX.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D0 XGETBV Valid Valid Reads an XCR specified by ECX
into EDX:EAX.

4-510 Vol. 2B XGETBV—Get Value of Extended Control Register

INSTRUCTION SET REFERENCE, N-Z

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 4-511

INSTRUCTION SET REFERENCE, N-Z

XLAT/XLATB—Table Look-up Translation

XLAT/XLATB—Table Look-up Translation

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a
table index, then copies the contents of the table entry back into the AL register. The
index in the AL register is treated as an unsigned integer. The XLAT and XLATB
instructions get the base address of the table in memory from either the DS:EBX or
the DS:BX registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). (The DS segment may be overridden with a segment override
prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operand” form and the “no-operand” form. The explicit-operand form (specified with
the XLAT mnemonic) allows the base address of the table to be specified explicitly
with a symbol. This explicit-operands form is provided to allow documentation;
however, note that the documentation provided by this form can be misleading. That
is, the symbol does not have to specify the correct base address. The base address is
always specified by the DS:(E)BX registers, which must be loaded correctly before
the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here
also the processor assumes that the DS:(E)BX registers contain the base address of
the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is
used to specify the table index (the operand size is fixed at 8 bits). RBX, however, is
used to specify the table’s base address. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

IF AddressSize = 16
THEN

AL ← (DS:BX + ZeroExtend(AL));
ELSE IF (AddressSize = 32)

AL ← (DS:EBX + ZeroExtend(AL)); FI;
ELSE (AddressSize = 64)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

D7 XLAT m8 Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

D7 XLATB Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

REX.W + D7 XLATB Valid N.E. Set AL to memory byte [RBX +
unsigned AL].

4-512 Vol. 2B XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, N-Z

AL ← (RBX + ZeroExtend(AL));
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

Vol. 2B 4-513

INSTRUCTION SET REFERENCE, N-Z

XOR—Logical Exclusive OR

XOR—Logical Exclusive OR
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

34 ib XOR AL, imm8 Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 Valid Valid AX XOR imm16.

35 id XOR EAX, imm32 Valid Valid EAX XOR imm32.

REX.W + 35 id XOR RAX, imm32 Valid N.E. RAX XOR imm32 (sign-
extended).

80 /6 ib XOR r/m8, imm8 Valid Valid r/m8 XOR imm8.

REX + 80 /6 ib XOR r/m8*, imm8 Valid N.E. r/m8 XOR imm8.

81 /6 iw XOR r/m16, imm16 Valid Valid r/m16 XOR imm16.

81 /6 id XOR r/m32, imm32 Valid Valid r/m32 XOR imm32.

REX.W + 81 /6 id XOR r/m64, imm32 Valid N.E. r/m64 XOR imm32 (sign-
extended).

83 /6 ib XOR r/m16, imm8 Valid Valid r/m16 XOR imm8 (sign-
extended).

83 /6 ib XOR r/m32, imm8 Valid Valid r/m32 XOR imm8 (sign-
extended).

REX.W + 83 /6 ib XOR r/m64, imm8 Valid N.E. r/m64 XOR imm8 (sign-
extended).

30 /r XOR r/m8, r8 Valid Valid r/m8 XOR r8.

REX + 30 /r XOR r/m8*, r8* Valid N.E. r/m8 XOR r8.

31 /r XOR r/m16, r16 Valid Valid r/m16 XOR r16.

31 /r XOR r/m32, r32 Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 Valid N.E. r/m64 XOR r64.

32 /r XOR r8, r/m8 Valid Valid r8 XOR r/m8.

REX + 32 /r XOR r8*, r/m8* Valid N.E. r8 XOR r/m8.

33 /r XOR r16, r/m16 Valid Valid r16 XOR r/m16.

33 /r XOR r32, r/m32 Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/m64 Valid N.E. r64 XOR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is

used: AH, BH, CH, DH.

4-514 Vol. 2B XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the
corresponding bits of the operands are different; each bit is 0 if the corresponding
bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64 bits. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

Vol. 2B 4-515

INSTRUCTION SET REFERENCE, N-Z

XOR—Logical Exclusive OR

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-516 Vol. 2B XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

Description

Performs a bitwise logical exclusive-OR of the two packed double-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] ← DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

66 0F 57 /r XORPD xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmm2/m128 and xmm1.

Vol. 2B 4-517

INSTRUCTION SET REFERENCE, N-Z

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

4-518 Vol. 2B XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

Description

Performs a bitwise logical exclusive-OR of the four packed single-precision floating-
point values from the source operand (second operand) and the destination operand
(first operand), and stores the result in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] ← DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 57 /r XORPS xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmm2/m128 and xmm1.

Vol. 2B 4-519

INSTRUCTION SET REFERENCE, N-Z

XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

4-520 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

XRSTOR—Restore Processor Extended States

Description

Performs a full or partial restore of the enabled processor states using the state infor-
mation stored in the memory address specified by the source operand. The implicit
EDX:EAX register pair specifies a 64-bit restore mask.

The format of the XSAVE/XRSTOR area is shown in Table 4-8. The memory layout of
the XSAVE/XRSTOR area may have holes between save areas written by the
processor as a result of the processor not supporting certain processor extended
states or system software not supporting certain processor extended states.

XRSTOR operates on each subset of the processor state or a processor extended
state in one of three ways (depending on the corresponding bit in the
XFEATURE_ENABLED_MASK register (XCR0), the restore mask EDX:EAX, and the
save mask XSAVE.HEADER.XSTATE_BV in memory):

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem Valid Valid Restore processor extended
states from memory. The
states are specified by
EDX:EAX

Table 4-8. General Layout of XSAVE/XRSTOR Save Area

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea1

NOTES:
1. Bytes 464:511 are available for software use. XRSTOR ignores the value contained in bytes

464:511 of an XSAVE SAVE image.

0 512

Header 512 64

Reserved
(Ext_Save_Area_2)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Reserved(Ext_Save_A
rea_3)

CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX

Reserved(Ext_Save_A
rea_4)

CPUID.(EAX=0DH, ECX=4):EBX CPUID.(EAX=0DH, ECX=4):EAX

Reserved(...)

Vol. 2B 4-521

INSTRUCTION SET REFERENCE, N-Z

XRSTOR—Restore Processor Extended States

• Updates the processor state component using the state information stored in the
respective save area (see Table 4-8) of the source operand, if the corresponding
bit in XCR0, EDX:EAX, and XSAVE.HEADER.XSTATE_BV are all 1.

• Writes certain registers in the processor state component using processor-
supplied values (see Table 4-10) without using state information stored in
respective save area of the memory region, if the corresponding bit in XCR0 and
EDX:EAX are both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is
0.

• The processor state component is unchanged, if the corresponding bit in XCR0 or
EDX:EAX is 0.

The format of the header section (XSAVE.HEADER) of the XSAVE/XRSTOR area is
shown in Table 4-9.

If a processor state component is not enabled in XCR0 but the corresponding save
mask bit in XSAVE.HEADER.XSTATE_BV is 1, an attempt to execute XRSTOR will
cause a #GP(0) exception. Software may specify all 1’s in the implicit restore mask
EDX:EAX, so that all the enabled processors states in XCR0 are restored from state
information stored in memory or from processor supplied values.

An attempt to restore processor states with writing 1s to reserved bits in certain
registers (see Table 4-11) will cause a #GP(0) exception.

Because bit 63 of the XFEATURE_ENABLED_MASK register is reserved for future bit
vector expansion, it will not be used for any future processor state feature, and
XRSTOR will ignore bit 63 of EDX:EAX (EDX[31].

Table 4-9. XSAVE.HEADER Layout

15 8 7 0 Byte Offset
from Header

Byte Offset from
XSAVE/XRSTOR Area

Rsrvd (Must be 0) XSTATE_BV 0 512

Reserved Rsrvd (Must be 0) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560

Table 4-10. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H;
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1 If 64-bit Mode: XMM0-XMM15 ← 0H;

Else XMM0-XMM7 ← 0H

4-522 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

A source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) will
result in a general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of
RDX and RAX are ignored.

Operation

/* The alignment of the x87 and SSE fields in the XSAVE area is the same as in FXSAVE area*/

RS_TMP_MASK[62:0] ← (EDX[30:0] << 32) OR EAX[31:0];
ST_TMP_MASK[62:0] ← SRCMEM.HEADER.XSTATE_BV[62:0];
IF (((XCR0[62:0] XOR 7FFFFFFF_FFFFFFFFH) AND ST_TMP_MASK[62:0]))

THEN
#GP(0)

ELSE
FOR i = 0, 62 STEP 1

IF (RS_TMP_MASK[i] and XCR0[i])
THEN

IF (ST_TMP_MASK[i])
CASE (i) OF
0: Processor state[x87 FPU] ← SRCMEM. FPUSSESave_Area[FPU];
1: Processor state[SSE] ← SRCMEM. FPUSSESave_Area[SSE];

// MXCSR is loaded as part of the SSE state
DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH

Processor state[i] ← SRCMEM. Ext_Save_Area[i];
ESAC;

ELSE
Processor extended state[i] ← Processor supplied values; (see Table 4-10)
CASE (i) OF
1: MXCSR ← SRCMEM. FPUSSESave_Area[SSE];
ESAC;

FI;
FI;

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by

XRSTOR from state information stored in XSAVE/XRSTOR area.

Table 4-11. Reserved Bit Checking and XRSTOR

Processor State Component Reserved Bit Checking

X87 FPU State None

SSE State Reserved bits of MXCSR

Vol. 2B 4-523

INSTRUCTION SET REFERENCE, N-Z

XRSTOR—Restore Processor Extended States

NEXT;
FI;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.

If bytes 23:8 of HEADER is not zero.

If attempting to write any reserved bits of the MXCSR register
with 1.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If a bit in XCR0 is 0 and the corresponding bit in
HEADER.XSTATE_BV field of the source operand is 1.

If bytes 23:8 of HEADER is not zero.

If attempting to write any reserved bits of the MXCSR register
with 1.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

4-524 Vol. 2B XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

If a bit in XCR0 is 0 and the corresponding bit in
XSAVE.HEADER.XSTATE_BV is 1.

If bytes 23:8 of HEADER is not zero.

If attempting to write any reserved bits of the MXCSR register
with 1.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Vol. 2B 4-525

INSTRUCTION SET REFERENCE, N-Z

XSAVE—Save Processor Extended States

XSAVE—Save Processor Extended States

Description

Performs a full or partial save of the enabled processor state components to a
memory address specified in the destination operand. A full or partial save of the
processor states is specified by an implicit mask operand via the register pair,
EDX:EAX. The destination operand is a memory location that must be 64-byte
aligned.

The implicit 64-bit mask operand in EDX:EAX specifies the subset of enabled
processor state components to save into the XSAVE/XRSTOR save area. The
XSAVE/XRSTOR save area comprises of individual save area for each processor state
components and a header section, see Table 4-8. Each component save area is
written if both the corresponding bits in the save mask operand and in the
XFEATURE_ENABLED_MASK (XCR0) register are 1. A processor state component
save area is not updated if either one of the corresponding bits in the mask operand
or the XFEATURE_ENABLED_MASK register is 0. If the mask operand (EDX:EAX)
contains all 1's, all enabled processor state components in
XFEATURE_ENABLED_MASK is written to the respective component save area.

The bit assignment used for the EDX:EAX register pair matches the
XFEATURE_ENABLED_MASK register (see chapter 2 of Vol. 3B). For the XSAVE
instruction, software can specify "1" in any bit position of EDX:EAX, irrespective of
whether the corresponding bit position in XFEATURE_ENABLED_MASK is valid for the
processor. The bit vector in EDX:EAX is "anded" with the XFEATURE_ENABLED_MASK
to determine which save area will be written.

The content layout of the XSAVE/XRSTOR save area is architecturally defined to be
extendable and enumerated via the sub-leaves of CPUID.0DH leaf. The extendable
framework of the XSAVE/XRSTOR layout is depicted by Table 4-8. The layout of the
XSAVE/XRSTOR save area is fixed and may contain non-contiguous individual save
areas. The XSAVE/XRSTOR save area is not compacted if some features are not
saved or are not supported by the processor and/or by system software.

The layout of the register fields of first 512 bytes of the XSAVE/XRSTOR is the same
as the FXSAVE/FXRSTOR area. But XSAVE/XRSTOR organizes the 512 byte area as
x87 FPU states (including FPU operation states, x87/MMX data registers), MXCSR
(including MXCSR_MASK), and XMM registers (see Table 4-12). For details of indi-
vidual FPU register layout, refer to the FXSAVE instruction.

Bytes 464:511 are available for software use. The processor does not write to bytes
464:511 when executing XSAVE.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem Valid Valid Save processor extended
states to memory. The states
are specified by EDX:EAX

4-526 Vol. 2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

The processor writes 1 or 0 to each.HEADER.XSTATE_BV[i] bit field of an enabled
processor state component in a manner that is consistent to XRSTOR's interaction
with HEADER.XSTATE_BV (see the operation section of XRSTOR instruction). If a
processor implementation discern that a processor state component is in its initial-
ized state (according to Table 4-10) it may modify the corresponding bit in the
HEADER.XSTATE_BV as ‘0’.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit
modes) will result in a general-protection (#GP) exception being generated. In 64-bit
mode, the upper 32 bits of RDX and RAX are ignored.

Operation

TMP_MASK[62:0] ← ((EDX[30:0] << 32) OR EAX[31:0]) AND XFEATURE_ENABLE_MASK[62:0];
FOR i = 0, 62 STEP 1

IF (TMP_MASK[i] = 1) THEN
THEN

CASE (i) of
0: DEST.FPUSSESAVE_Area[x87 FPU] ← processor state[x87 FPU];

Table 4-12. XSAVE Save Area Layout for x87 FPU and SSE State

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

MXCSR and MASK x87 FPU operation states (see FXSAVE instruction) 0

x87/MMX data registers (see FXSAVE instruction) 32

x87/MMX data registers (see FXSAVE instruction) 64

x87/MMX data registers (see FXSAVE instruction) 96

x87/MMX data registers (see FXSAVE instruction) 128

XMM1 XMM0 160

XMM3 XMM2 192

XMM5 XMM4 224

XMM7 XMM6 256

XMM9 XMM8 288

XMM11 XMM10 320

XMM13 XMM12 352

XMM15 XMM14 384

Reserved Reserved 416

Available Reserved 448

Available Available 480

Vol. 2B 4-527

INSTRUCTION SET REFERENCE, N-Z

XSAVE—Save Processor Extended States

1: DEST.FPUSSESAVE_Area[SSE] ← processor state[SSE];
// SSE state include MXCSR

DEFAULT: // i corresponds to a valid sub-leaf index of CPUID leaf 0DH
DEST.Ext_Save_Area[i] ← processor state[i] ;

ESAC:
DEST.HEADER.XSTATE_BV[i] ← INIT_FUNCTION[i];

FI;
NEXT;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If a memory operand is not aligned on a 64-byte boundary,

regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

4-528 Vol. 2B XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.

#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary,
regardless of segment.

#PF(fault-code) If a page fault occurs.

#NM If CR0.TS[bit 3] = 1.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Vol. 2B 4-529

INSTRUCTION SET REFERENCE, N-Z

XSETBV—Set Extended Control Register

XSETBV—Set Extended Control Register

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register
(XCR) specified in the ECX register. (On processors that support the Intel 64 archi-
tecture, the high-order 32 bits of RCX are ignored.) The contents of the EDX register
are copied to high-order 32 bits of the selected XCR and the contents of the EAX
register are copied to low-order 32 bits of the XCR. (On processors that support the
Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are ignored.)
Undefined or reserved bits in an XCR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) is generated. Specifying a reserved or
unimplemented XCR in ECX will also cause a general protection exception. The
processor will also generate a general protection exception if software attempts to
write to reserved bits in an XCR.

Currently, only XCR0 (the XFEATURE_ENABLED_MASK register) is supported. Thus,
all other values of ECX are reserved and will cause a #GP(0). Note that bit 0 of
XFEATURE_ENABLED_MASK (corresponding to x87 state) must be set to 1; the
instruction will cause a #GP(0) if an attempt is made to clear this bit.

Operation

XCR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.

If an attempt is made to clear bit 0 of
XFEATURE_ENABLED_MASK.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 D1 XSETBV Valid Valid Write the value in EDX:EAX to
the XCR specified by ECX.

4-530 Vol. 2B XSETBV—Set Extended Control Register

INSTRUCTION SET REFERENCE, N-Z

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions
#GP If an invalid XCR is specified in ECX.

If the value in EDX:EAX sets bits that are reserved in the XCR
specified by ECX.

If an attempt is made to clear bit 0 of
XFEATURE_ENABLED_MASK.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.

If the LOCK prefix is used.

If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Vol. 2B 5-1

CHAPTER 5
VMX INSTRUCTION REFERENCE

5.1 OVERVIEW
This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and
IA-32 architectures. VMX is intended to support virtualization of processor hardware
and a system software layer acting as a host to multiple guest software environ-
ments. The virtual-machine extensions (VMX) includes five instructions that manage
the virtual-machine control structure (VMCS) and five instruction that manage VMX
operation. Additional details of VMX are described in IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 3B.

The behavior of the VMCS-maintenance instructions is summarized below:

• VMPTRLD — This instruction takes a single 64-bit source operand that is in
memory. It makes the referenced VMCS active and current, loading the current-
VMCS pointer with this operand and establishes the current VMCS based on the
contents of VMCS-data area in the referenced VMCS region. Because this makes
the referenced VMCS active, a logical processor may start maintaining on the
processor some of the VMCS data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in
memory. The current-VMCS pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory.
The instruction sets the launch state of the VMCS referenced by the operand to
“clear”, renders that VMCS inactive, and ensures that data for the VMCS have
been written to the VMCS-data area in the referenced VMCS region. If the
operand is the same as the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from the VMCS (the encoding of
that field is given in a register operand) and stores it into a destination operand
that may be a register or in memory.

• VMWRITE — This instruction writes a component to the VMCS (the encoding of
that field is given in a register operand) from a source operand that may be a
register or in memory.

The behavior of the VMX management instructions is summarized below:

• VMCALL — This instruction allows a guest in VMX non-root operation to call the
VMM for service. A VM exit occurs, transferring control to the VMM.

• VMLAUNCH — This instruction launches a virtual machine managed by the
VMCS. A VM entry occurs, transferring control to the VM.

• VMRESUME — This instruction resumes a virtual machine managed by the
VMCS. A VM entry occurs, transferring control to the VM.

• VMXOFF — This instruction causes the processor to leave VMX operation.

5-2 Vol. 2B

VMX INSTRUCTION REFERENCE

• VMXON — This instruction takes a single 64-bit source operand that is in
memory. It causes a logical processor to enter VMX root operation and to use the
memory referenced by the operand to support VMX operation.

Only VMCALL can be executed in compatibility mode (causing a VM exit). The other
VMX instructions generate invalid-opcode exceptions if executed in compatibility
mode.

The behavior of the VMX-specific TLB-management instructions is summarized
below:

• INVEPT — This instruction invalidates entries in the TLBs and paging-structure
caches that were derived from Extended Page Tables (EPT).

• INVVPID — This instruction invalidates entries in the TLBs and paging-structure
caches based on a Virtual-Processor Identifier (VPID).

5.2 CONVENTIONS
The operation sections for the VMX instructions in Section 5.3 use the pseudo-func-
tion VMexit, which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail,
VMfailInvalid, and VMfailValid. These pseudo-functions signal instruction success or
failure by setting or clearing bits in RFLAGS and, in some cases, by writing the
VM-instruction error field. The following pseudocode fragments detail these func-
tions:

VMsucceed:
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid

THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF ← 1;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;

Vol. 2B 5-3

VMX INSTRUCTION REFERENCE

OF ← 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 1;
SF ← 0;
OF ← 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 5.4, “VM
Instruction Error Numbers”.

5.3 VMX INSTRUCTIONS
This section provides detailed descriptions of the VMX instructions.

5-4 Vol. 2B INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE

INVEPT— Invalidate Translations Derived from EPT

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches that were derived from extended page tables (EPT). (See Chapter
“Support for Address Translation” in IA-32 Intel Architecture Software Developer’s
Manual, Volume 3B.) Invalidation is based on the INVEPT type specified in the
register operand and the INVEPT descriptor specified in the memory operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D. In 64-bit mode, the register operand has 64 bits; however, if bits 63:32 of
the register operand are not zero, INVEPT will fail due to an attempt to use an unsup-
ported INVEPT type (see below).

The INVEPT types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix “VMX Capability Reporting Facility” in
IA-32 Intel Architecture Software Developer’s Manual, Volume 3B). There are two
INVEPT types currently defined:

• Single-context invalidation. If the INVEPT type is 1, the logical processor
invalidates all mappings tagged with the EPT pointer (EPTP) specified in the
INVEPT descriptor. In some cases, it may invalidate mappings for other EPTPs as
well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates all
mappings tagged with any EPT EPTP.

If an unsupported INVEPT type is specified, the instruction fails.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in
bits 63:0 (see Figure 5-1).

Opcode Instruction Description

66 0F 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (in 64-bit mode)

66 0F 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and
paging-structure caches (outside 64-bit mode)

Figure 5-1. INVEPT Descriptor

0127 64 63

Reserved EPT pointer (EPTP)

Vol. 2B 5-5

VMX INSTRUCTION REFERENCE

INVEPT— Invalidate Translations Derived from EPT

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVEPT_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC ← value of memory operand;
EPTP ← INVEPT_DESC[63:0];
CASE INVEPT_TYPE OF

1: // single-context invalidation
IF VM entry with the “enable EPT“ VM execution control set to 1
would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate mappings tagged with EPTP;
VMsucceed;

FI;
BREAK;

2: // global invalidation
Invalidate mappings tagged with all EPTPs;
VMsucceed;
BREAK;

ESAC;
FI;

FI;

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code
segment.

5-6 Vol. 2B INVEPT— Invalidate Translations Derived from EPT

VMX INSTRUCTION REFERENCE

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVEPT instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.

If the logical processor does not support EPT
(IA32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT
(IA32_VMX_PROCBASED_CTLS2[33]=1) but does not support
the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Vol. 2B 5-7

VMX INSTRUCTION REFERENCE

INVVPID— Invalidate Translations Based on VPID

INVVPID— Invalidate Translations Based on VPID

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-struc-
ture caches based on virtual-processor identifier (VPID). (See Chapter “Support
for Address Translation” in IA-32 Intel Architecture Software Developer’s Manual,
Volume 3B.) Invalidation is based on the INVVPID type specified in the register
operand and the INVVPID descriptor specified in the memory operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value
of CS.D. In 64-bit mode, the register operand has 64 bits; however, if bits 63:32 of
the register operand are not zero, INVVPID will fail due to an attempt to use an
unsupported INVVPID type (see below).

The INVVPID types supported by a logical processors are reported in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix “VMX Capability Reporting Facility” in
IA-32 Intel Architecture Software Developer’s Manual, Volume 3B). There are four
INVVPID types currently defined:

• Individual-address invalidation: If the INVVPID type is 0, the logical processor
invalidates mappings for a single linear address and tagged with the VPID
specified in the INVVPID descriptor. In some cases, it may invalidate mappings
for other linear addresses (or with other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor
invalidates all mappings tagged with the VPID specified in the INVVPID
descriptor. In some cases, it may invalidate mappings for other VPIDs as well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor
invalidates all mappings tagged with all VPIDs except VPID 0000H. In some
cases, it may invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is
3, the logical processor invalidates all mappings tagged with the VPID specified in
the INVVPID descriptor except global translations. In some cases, it may
invalidate global translations (and mappings with other VPIDs) as well.

If an unsupported INVVPID type is specified, the instruction fails.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear
address as shown in Figure 5-2.

Opcode Instruction Description

66 0F 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (in 64-bit mode)

66 0F 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure
caches based on VPID (outside 64-bit mode)

5-8 Vol. 2B INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF CPL > 0
THEN #GP(0);
ELSE

INVVPID_TYPE ← value of register operand;
IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support
INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC ← value of memory operand;
IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

CASE INVVPID_TYPE OF
0: // individual-address invalidation

VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

GL_ADDR ← INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)

THEN
VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
Invalidate mappings for GL_ADDR tagged

with VPID;
VMsucceed;

FI;
FI;

Figure 5-2. INVVPID Descriptor

0127 64 63

Linear address Reserved VPID

1615

Vol. 2B 5-9

VMX INSTRUCTION REFERENCE

INVVPID— Invalidate Translations Based on VPID

BREAK;
1: // single-context invalidation

VPID_CTX ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID;
VMsucceed;

FI;
BREAK;

2: // all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;

3: // single-context invalidation retaining globals
VPID ← INVVPID_DESC[15:0];
IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE

Invalidate all mappings tagged with VPID except
global translations;

VMsucceed;
FI;
BREAK;

ESAC;
FI;

FI;
FI;

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS
segment limit.

5-10 Vol. 2B INVVPID— Invalidate Translations Based on VPID

VMX INSTRUCTION REFERENCE

If the SS register contains an unusable segment.

#UD If not in VMX operation.

If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the INVVPID instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory destination operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.

If the logical processor does not support VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs
(IA32_VMX_PROCBASED_CTLS2[37]=1) but does not support
the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Vol. 2B 5-11

VMX INSTRUCTION REFERENCE

VMCALL—Call to VM Monitor

VMCALL—Call to VM Monitor

Description

This instruction allows guest software can make a call for service into an underlying
VM monitor. The details of the programming interface for such calls are VMM-specific;
this instruction does nothing more than cause a VM exit, registering the appropriate
exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section
24.16.2 in IA-32 Intel Architecture Software Developer’s Manual, Volume 3B). This
invocation will activate the dual-monitor treatment of system-management interrupts
(SMIs) and system-management mode (SMM) if it is not already active (see Section
24.16.6 in IA-32 Intel Architecture Software Developer’s Manual, Volume 3B).

Operation

IF not in VMX operation
THEN #UD;

ELSIF in VMX non-root operation
THEN VM exit;

ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF CPL > 0
THEN #GP(0);

ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and
SMM or the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 24.16.2
 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields are not valid (see Section 24.16.6.1 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;
read revision identifier in MSEG;

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.

5-12 Vol. 2B VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE

IF revision identifier does not match that supported by processor
THEN

leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field in MSEG (see Section 24.16.6.2,
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 24.16.6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B);

FI;
FI;

FI;

Flags Affected
See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is

in VMX root operation.

#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMCALL instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX non-root operation.

Vol. 2B 5-13

VMX INSTRUCTION REFERENCE

VMCLEAR—Clear Virtual-Machine Control Structure

VMCLEAR—Clear Virtual-Machine Control Structure

Description

This instruction applies to the VMCS whose VMCS region resides at the physical
address contained in the instruction operand. The instruction ensures that VMCS
data for that VMCS (some of these data may be currently maintained on the
processor) are copied to the VMCS region in memory. It also initializes parts of the
VMCS region (for example, it sets the launch state of that VMCS to clear). See
Chapter 20, “Virtual-Machine Control Structures,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

The operand of this instruction is always 64 bits and is always in memory. If the
operand is the current-VMCS pointer, then that pointer is made invalid (set to
FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to
memory; the data may be already resident in memory before the VMCLEAR is
executed.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
(processor supports Intel 64 architecture and
addr sets any bits beyond the physical-address width) OR
(processor does not support Intel 64 architecture, addr sets any bits in the range 63:32)

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand ← “clear”

Opcode Instruction Description

66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.

5-14 Vol. 2B VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

IF operand addr = current-VMCS pointer
THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;

FI;
VMsucceed;

FI;
FI;

Flags Affected
See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMCLEAR instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

Vol. 2B 5-15

VMX INSTRUCTION REFERENCE

VMCLEAR—Clear Virtual-Machine Control Structure

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.

If not in VMX operation.

5-16 Vol. 2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description

Effects a VM entry managed by the current VMCS.

• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the
instruction is successful, it sets the launch state to “launched.”

• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency
checks as detailed in Chapter 22, “VM Entries,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B. Failure to pass checks on the VMX
controls or on the host-state area passes control to the instruction following the
VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state
area fail, the logical processor loads state from the host-state area of the VMCS,
passing control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither
VMLAUNCH nor VMRESUME should be used immediately after either MOV to SS or
POP to SS.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.

0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.

Vol. 2B 5-17

VMX INSTRUCTION REFERENCE

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 22.7, in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails (see Section 22.7, in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B);

ELSE
IF VMLAUNCH

THEN launch state of VMCS ← “launched”;
FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMX pointer

THEN current-VMCS pointer ←
VMCS-link pointer;
ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;

5-18 Vol. 2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE

Further details of the operation of the VM-entry appear in Chapter 22 of IA-32 Intel
Architecture Software Developer’s Manual, Volume 3B.

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMLAUNCH and VMRESUME instructions are
not recognized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized

in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized

in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If executed outside VMX operation.

Vol. 2B 5-19

VMX INSTRUCTION REFERENCE

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the
instruction operand. The instruction fails if its operand is not properly aligned, sets
unsupported physical-address bits, or is equal to the VMXON pointer. In addition, the
instruction fails if the 32 bits in memory referenced by the operand do not match the
VMCS revision identifier supported by this processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
(processor supports Intel 64 architecture and
addr sets any bits beyond the processor’s physical-address width) OR
processor does not support Intel 64 architecture and addr sets any bits in the range 63:32

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision iden-
tifier supported by this processor (see Appendix G, “VMX Capability Reporting Facility,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B).

5-20 Vol. 2B VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

FI;
FI;

FI;

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the memory source operand effective address is outside the
SS segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMPTRLD instruction is not recognized
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

Vol. 2B 5-21

VMX INSTRUCTION REFERENCE

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

#SS(0) If the source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.

If not in VMX operation.

5-22 Vol. 2B VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description

Stores the current-VMCS pointer into a specified memory address. The operand of
this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

64-bit in-memory destination operand ← current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside
the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.

#SS(0) If the memory destination operand effective address is outside
the SS segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Opcode Instruction Description

0F C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.

Vol. 2B 5-23

VMX INSTRUCTION REFERENCE

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMPTRST instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination
operand.

#SS(0) If the destination operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.

If not in VMX operation.

5-24 Vol. 2B VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

VMREAD—Read Field from Virtual-Machine Control Structure

Description

Reads a specified field from the VMCS and stores it into a specified destination
operand (register or memory).

The specific VMCS field is identified by the VMCS-field encoding contained in the
register source operand. Outside IA-32e mode, the source operand has 32 bits,
regardless of the value of CS.D. In 64-bit mode, the source operand has 64 bits;
however, if bits 63:32 of the source operand are not zero, VMREAD will fail due to an
attempt to access an unsupported VMCS component (see operation section).

The effective size of the destination operand, which may be a register or in memory,
is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with respect to
operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the source
operand is shorter than this effective operand size, the high bits of the destination
operand are cleared to 0. If the VMCS field is longer, then the high bits of the field are
not read.

Note that any faults resulting from accessing a memory destination operand can
occur only after determining, in the operation section below, that the VMCS pointer is
valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;
ELSIF register source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

DEST ← contents of VMCS field indexed by register source operand;
VMsucceed;

FI;

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).

Vol. 2B 5-25

VMX INSTRUCTION REFERENCE

VMREAD—Read Field from Virtual-Machine Control Structure

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data
segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.

#SS(0) If a memory destination operand effective address is outside the
SS segment limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMREAD instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or
GS segments and the memory address is in a non-canonical
form.

#PF(fault-code) If a page fault occurs in accessing a memory destination
operand.

#SS(0) If the memory destination operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.

5-26 Vol. 2B VMRESUME—Resume Virtual Machine

VMX INSTRUCTION REFERENCE

VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.

Vol. 2B 5-27

VMX INSTRUCTION REFERENCE

VMWRITE—Write Field to Virtual-Machine Control Structure

VMWRITE—Write Field to Virtual-Machine Control Structure

Description

Writes to a specified field in the VMCS specified by a secondary source operand
(register only) using the contents of a primary source operand (register or memory).

The VMCS field is identified by the VMCS-field encoding contained in the register
secondary source operand. Outside IA-32e mode, the secondary source operand is
always 32 bits, regardless of the value of CS.D. In 64-bit mode, the secondary source
operand has 64 bits; however, if bits 63:32 of the secondary source operand are not
zero, VMWRITE will fail due to an attempt to access an unsupported VMCS compo-
nent (see operation section).

The effective size of the primary source operand, which may be a register or in
memory, is always 32 bits outside IA-32e mode (the setting of CS.D is ignored with
respect to operand size) and 64 bits in 64-bit mode. If the VMCS field specified by the
secondary source operand is shorter than this effective operand size, the high bits of
the primary source operand are ignored. If the VMCS field is longer, then the high bits
of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after
determining, in the operation section below, that the VMCS pointer is valid but before
determining if the destination VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF register destination operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);

ELSIF VMCS field indexed by register destination operand is read-only)
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

VMCS field indexed by register destination operand ← SRC;
VMsucceed;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)

5-28 Vol. 2B VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

FI;

Flags Affected
See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS,
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If a memory source operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMWRITE instruction is not recognized
outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086

mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility

mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If the memory source operand is in the SS segment and the
memory address is in a non-canonical form.

#UD If not in VMX operation.

Vol. 2B 5-29

VMX INSTRUCTION REFERENCE

VMXOFF—Leave VMX Operation

VMXOFF—Leave VMX Operation

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally
re-enables A20M, and clears any address-range monitoring.1

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIF CPL > 0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
IF outside SMX operation2

THEN unblock and enable A20M;
FI;
clear address-range monitoring;
VMsucceed;

FI;

Flags Affected

See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.

#UD If executed outside VMX operation.

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

1. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if
GETSEC[SEXIT] was executed after the last execution of GETSEC[SENTER]. See Chapter 6, “Safer
Mode Extensions Reference.”

5-30 Vol. 2B VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX

operation and the VMXOFF instruction is not recognized outside
VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.

#UD If executed outside VMX operation.

Vol. 2B 5-31

VMX INSTRUCTION REFERENCE

VMXON—Enter VMX Operation

VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT
signals, disables A20M, and clears any address-range monitoring established by the
MONITOR instruction.1

The operand of this instruction is a 4KB-aligned physical address (the VMXON
pointer) that references the VMXON region, which the logical processor may use to
support VMX operation. This operand is always 64 bits and is always in memory.

Operation

IF (register operand) or (CR4.VMXE = 0) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF not in VMX operation

THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are not supported in VMX operation2) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation3 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
(processor supports Intel 64 architecture and
addr sets any bits beyond the VMX physical-address width) or
(processor does not support Intel 64 architecture and
addr sets any bits in the range 63:32)

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

1. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Management,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B.

3. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

5-32 Vol. 2B VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE

THEN VMfailInvalid;
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 5.2.

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid

CR0 or CR4 fixed bits.

If executed in A20M mode.

If the memory source operand effective address is outside the
CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code
segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the memory source operand effective address is outside the
SS segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If executed with CR4.VMXE = 0.

Vol. 2B 5-33

VMX INSTRUCTION REFERENCE

VMXON—Enter VMX Operation

Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid

CR0 or CR4 fixed bits.

If executed in A20M mode.

If the source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If operand is a register.

If executed with CR4.VMXE = 0.

5-34 Vol. 2B VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE

5.4 VM INSTRUCTION ERROR NUMBERS
For certain error conditions, the VM-instruction error field is loaded with an error
number to indicate the source of the error. Table 5-1 lists VM-instruction error
numbers.

Table 5-1. VM-Instruction Error Numbers
Error Number Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME with a corrupted VMCS (indicates corruption of the current VMCS)

7 VM entry with invalid control field(s)1,2

8 VM entry with invalid host-state field(s)1

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointer1

17 VM entry with non-launched executive VMCS1

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to
deactivate the dual-monitor treatment of SMIs and SMM)1

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor
treatment of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the
dual-monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-
monitor treatment of SMIs and SMM)

Vol. 2B 5-35

VMX INSTRUCTION REFERENCE

VMXON—Enter VMX Operation

25 VM entry with invalid VM-execution control fields in executive VMCS (when
attempting to return from SMM)1,2

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.

NOTES:
1. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an

indication by error number of one cause does not imply that there are not also other errors. Differ-
ent processors may give different error numbers for the same VMCS.

2. Error number 7 is not used for VM entries that return from SMM that fail due to invalid
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

Table 5-1. VM-Instruction Error Numbers (Contd.)
Error Number Description

5-36 Vol. 2B VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE

Vol. 2B 6-1

CHAPTER 6
SAFER MODE EXTENSIONS REFERENCE

6.1 OVERVIEW
This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32
architectures. Safer Mode Extensions (SMX) provide a programming interface for
system software to establish a measured environment within the platform to support
trust decisions by end users. The measured environment includes:

• Measured launch of a system executive, referred to as a Measured Launched
Environment (MLE)1. The system executive may be based on a Virtual Machine
Monitor (VMM), a measured VMM is referred to as MVMM2.

• Mechanisms to ensure the above measurement is protected and stored in a
secure location in the platform.

• Protection mechanisms that allow the VMM to control attempts to modify the
VMM

The measurement and protection mechanisms used by a measured environment are
supported by the capabilities of an Intel® Trusted Execution Technology (Intel®
TXT) platform:

• The SMX are the processor’s programming interface in an Intel TXT platform;

• The chipset in an Intel TXT platform provides enforcement of the protection
mechanisms;

• Trusted Platform Module (TPM) 1.2 in the platform provides platform configu-
ration registers (PCRs) to store software measurement values.

6.2 SMX FUNCTIONALITY
SMX functionality is provided in an Intel 64 processor through the GETSEC instruc-
tion via leaf functions. The GETSEC instruction supports multiple leaf functions. Leaf
functions are selected by the value in EAX at the time GETSEC is executed. Each
GETSEC leaf function is documented separately in the reference pages with a unique
mnemonic (even though these mnemonics share the same opcode, 0F 37).

1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See Intel®
Trusted Execution Technology Measured Launched Environment Programming Guide

6-2 Vol. 2B

SAFER MODE EXTENSIONS REFERENCE

6.2.1 Detecting and Enabling SMX
Software can detect support for SMX operation using the CPUID instruction. If soft-
ware executes CPUID with 1 in EAX, a value of 1 in bit 6 of ECX indicates support for
SMX operation (GETSEC is available), see CPUID instruction for the layout of feature
flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before
attempting to execute GETSEC. Otherwise, execution of GETSEC results in the
processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set
CR4.SMXE[Bit 14] results in a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits
that configure operation of VMX and SMX. These bits are documented in Table 6-1.

• Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause
a general-protection exception. Attempting to execute GETSEC[SENTER] when
the lock bit is clear will also cause a general-protection exception. If the lock bit
is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-
protection exception. Once the lock bit is set, the MSR cannot be modified until a
power-on reset. System BIOS can use this bit to provide a setup option for BIOS
to disable support for VMX, SMX or both VMX and SMX.

• Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT
leaves of GETSEC). If this bit is clear, an attempt to execute VMXON in SMX will
cause a general-protection exception if executed in SMX operation. Attempts to
set this bit on logical processors that do not support both VMX operation (Chapter
6, “Safer Mode Extensions Reference”) and SMX operation cause general-
protection exceptions.

Table 6-1. Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (0 = unlocked, 1 = locked). When set to '1' further writes to this MSR
are blocked.

1 Enable VMX in SMX operation

2 Enable VMX outside SMX operation

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an
enable control for a corresponding SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of
GETSEC[SENTER]

63:16 Reserved

Vol. 2B 6-3

SAFER MODE EXTENSIONS REFERENCE

• Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to
execute VMXON will cause a general-protection exception if executed outside
SMX operation. Attempts to set this bit on logical processors that do not support
VMX operation cause general-protection exceptions.

• Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each
bit in the field represents an enable control for a corresponding SENTER function.
Only enabled SENTER leaf functionality can be used when executing SENTER.

• Bits 15 specify global enable of all SENTER functionalities.

6.2.2 SMX Instruction Summary
System software must first query for available GETSEC leaf functions by executing
GETSEC[CAPABILITIES]. The CAPABILITIES leaf function returns a bit map of avail-
able GETSEC leaves. An attempt to execute an unsupported leaf index results in an
undefined opcode (#UD) exception.

6.2.2.1 GETSEC[CAPABILITIES]
The SMX functionality provides an architectural interface for newer processor gener-
ations to extend SMX capabilities. Specifically, the GETSEC instruction provides a
capability leaf function for system software to discover the available GETSEC leaf
functions that are supported in a processor. Table 6-2 lists the currently available
GETSEC leaf functions.

.

Table 6-2. GETSEC Leaf Functions

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC
instruction

1 Undefined Reserved

2 ENTERACCS Enter

3 EXITAC Exit

4 SENTER Launch an MLE

5 SEXIT Exit the MLE

6 PARAMETERS Return SMX related parameter information

7 SMCTRL SMX mode control

8 WAKEUP Wake up sleeping processors in safer mode

9 - (4G-1) Undefined Reserved

6-4 Vol. 2B

SAFER MODE EXTENSIONS REFERENCE

6.2.2.2 GETSEC[ENTERACCS]
The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The
ENTERACCS leaf function performs an authenticated code module load using the
chipset public key as the signature verification. ENTERACCS requires the existence of
an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset
private configuration register space after successful authentication of the loaded
module. The physical base address and size of the authenticated code module are
specified as input register values in EBX and ECX, respectively.

While in the authenticated code execution mode, certain processor state properties
change. For this reason, the time in which the processor operates in authenticated
code execution mode should be limited to minimize impact on external system
events.

Upon entry into , the previous paging context is disabled (since the authenticated
code module image is specified with physical addresses and can no longer rely upon
external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the
logical processor issuing GETSEC[ENTERACCS] is the boot-strap processor (BSP), as
indicated by IA32_APIC_BASE.BSP = 1. System software must ensure other logical
processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different
authenticated code modules to perform functions related to different aspects of a
measured environment, for example system software and Intel® TXT enabled BIOS
may use more than one authenticated code modules.

6.2.2.3 GETSEC[EXITAC]
GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed,
the contents of the authenticated code execution area are scrubbed and control is
transferred to the non-authenticated context defined by a near pointer passed with
the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of
GETSEC[EXITAC]. RBX (or EBX) holds the address of the near absolute indirect
target to be taken.

6.2.2.4 GETSEC[SENTER]
The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to
launch an MLE. GETSEC[SENTER] can be considered a superset of the ENTERACCS
leaf, because it enters as part of the measured environment launch.

Measured environment startup consists of the following steps:

• the ILP rendezvous the responding logical processors (RLPs) in the platform into
a controlled state (At the completion of this handshake, all the RLPs except for

Vol. 2B 6-5

SAFER MODE EXTENSIONS REFERENCE

the ILP initiating the measured environment launch are placed in a newly defined
SENTER sleep state).

• Load and authenticate the authenticated code module required by the measured
environment, and enter authenticated code execution mode.

• Verify and lock certain system configuration parameters.

• Measure the dynamic root of trust and store into the PCRs in TPM.

• Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the plat-
form’s TPM is ready for access and the ILP is the boot-strap processor (BSP), as indi-
cated by IA32_APIC_BASE.BSP. System software must ensure other logical
processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing
a proper authenticate code module address when executing GETSEC[SENTER]. The
AC module responsible for the launch of a measured environment and loaded by
GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology
Measured Launched Environment Programming Guide for additional information on
system software requirements prior to executing GETSEC[SENTER].

6.2.2.5 GETSEC[SEXIT]
System software exits the measured environment by executing the instruction
GETSEC[SEXIT] on the ILP. This instruction rendezvous the responding logical
processors in the platform for exiting from the measured environment. External
events (if left masked) are unmasked and Intel® TXT-capable chipset’s private
configuration space is re-locked.

6.2.2.6 GETSEC[PARAMETERS]
The GETSEC[PARAMETERS] leaf function is used to report attributes, options and
limitations of SMX operation. Software uses this leaf to identify operating limits or
additional options.

The information reported by GETSEC[PARAMETERS] may require executing the leaf
multiple times using EBX as an index. If the GETSEC[PARAMETERS] instruction leaf
or if a specific parameter field is not available, then SMX operation should be inter-
preted to use the default limits of respective GETSEC leaves or parameter fields
defined in the GETSEC[PARAMETERS] leaf.

6.2.2.7 GETSEC[SMCTRL]
The GETSEC[SMCTRL] leaf function is used for providing additional control over
specific conditions associated with the SMX architecture. An input register is
supported for selecting the control operation to be performed. See the specific leaf
description for details on the type of control provided.

6-6 Vol. 2B

SAFER MODE EXTENSIONS REFERENCE

6.2.2.8 GETSEC[WAKEUP]
Responding logical processors (RLPs) are placed in the SENTER sleep state after the
initiating logical processor executes GETSEC[SENTER]. The ILP can wake up RLPs to
join the measured environment by using GETSEC[WAKEUP].When the RLPs in
SENTER sleep state wake up, these logical processors begin execution at the entry
point defined in a data structure held in system memory (pointed to by an chipset
register LT.MLE.JOIN) in TXT configuration space.

6.2.3 Measured Environment and SMX
This section gives a simplified view of a representative life cycle of a measured envi-
ronment that is launched by a system executive using SMX leaf functions. Intel®
Trusted Execution Technology Measured Launched Environment Programming Guide
provides more detailed examples of using SMX and chipset resources (including
chipset registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth)
loading the MLE and SINIT AC module into available system memory. The system
executive must validate and parpare the platform for the measured launch. When the
platform is properly configured, the system executive executes GETSEC[SENTER] on
the initiating logical processor (ILP) to rendezvous the responding logical processors
into an SENTER sleep state, the ILP then enters into using the SINIT AC module. In
a multi-threaded or multi-processing environment, the system executive must
ensure that other logical processors are already in an idle loop, or asleep (such as
after executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical
processors in the platform, the ILP loads the chipset authenticated code module
(SINIT) and performs an authentication check. If the check passes, the processor
hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches
execution context to the SINIT AC module. The SINIT AC module will perform a
number of platfom operations, including: verifying the system configuration,
protecting the system memory used by the MLE from I/O devices capable of DMA,
producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other
operations. When SINIT completes execution, it executes the GETSEC[EXITAC]
instruction and transfers control the MLE at the designated entry point.

Upon receiving control from the SINIT AC module, the MLE must establish its protec-
tion and isolation controls before enabling DMA and interrupts and transferring
control to other software modules. It must also wakeup the RLPs from their SENTER
sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection
and isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Plat-
form Module (TPM) in locality 2. The MVMM has complete access to all TPM
commands and may use the TPM to report current measurement values or use the
measurement values to protect information such that only when the platform config-

Vol. 2B 6-7

SAFER MODE EXTENSIONS REFERENCE

uration registers (PCRs) contain the same value is the information released from the
TPM. This protection mechanism is known as sealing.

A measured environment shutdown is ultimately completed by executing
GETSEC[SEXIT]. Prior to this step system software is responsible for scrubbing
sensitive information left in the processor caches, system memory.

6.3 GETSEC LEAF FUNCTIONS
This section provides detailed descriptions of each leaf function of the GETSEC
instruction. GETSEC is available only if CPUID.01H:ECX[Bit 6] = 1. This indicates the
availability of SMX and the GETSEC instruction. Before GETSEC can be executed,
SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the
GETSEC[CAPABILITIES] function. Attempts to access a GETSEC leaf index not
supported by the processor, or if CR4.SMXE is 0, results in the signaling of an unde-
fined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility
sub-mode of IA-32e mode and the 64-bit sub-mode of IA-32e mode. Unless other-
wise noted, the behavior of all GETSEC functions and interactions related to the
measured environment are independent of IA-32e mode. This also applies to the
interpretation of register widths1 passed as input parameters to GETSEC functions
and to register results returned as output parameters.

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel®
TXT capable-chipset to be present in the platform. The GETSEC[CAPABILITIES]
returned bit vector in position 0 indicates an Intel® TXT-capable chipset has been
sampled present2 by the processor.

The processor's operating mode also affects the execution of the following GETSEC
leaf functions: SMCTRL, ENTERACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These
functions are only allowed in protected mode at CPL = 0. They are not allowed while
in SMM in order to prevent potential intra-mode conflicts. Further execution qualifica-
tions exist to prevent potential architectural conflicts (for example: nesting of the
measured environment or authenticated code execution mode). See the definitions
of the GETSEC leaf functions for specific requirements.

1. This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers
because processors that support SMX also support Intel 64 Architecture. The MVMM can be
launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor registers also
refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as
EAX is used to refer specifically to lower 32 bits of the indicated register

2. Sampled present means that the processor sent a message to the chipset and the chipset
responded that it (a) knows about the message and (b) is capable of executing SENTER. This
means that the chipset CAN support Intel® TXT, and is configured and WILLING to support it.

6-8 Vol. 2B

SAFER MODE EXTENSIONS REFERENCE

For the purpose of performance monitor counting, the execution of GETSEC functions
is counted as a single instruction with respect to retired instructions. The response by
a responding logical processor (RLP) to messages associated with GETSEC[SENTER]
or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.

Vol. 2B 6-9

SAFER MODE EXTENSIONS REFERENCE

GETSEC[CAPABILITIES] - Report the SMX Capabilities

GETSEC[CAPABILITIES] - Report the SMX Capabilities

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf
functions. The CAPABILITIES leaf of GETSEC is selected with EAX set to 0 at entry.
EBX is used as the selector for returning the bit vector field in EAX. GETSEC[CAPABIL-
ITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an
undefined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector
representing status on the presence of a Intel® TXT-capable chipset and the first 30
available GETSEC leaf functions. The format of the returned bit vector is provided in
Table 6-3.

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by
the processor. If bits in the range of 1-30 are set, then the corresponding GETSEC leaf
function is available. If the bit value at a given bit index is 0, then the GETSEC leaf
function corresponding to that index is unsupported and attempted execution results
in a #UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit
31 is set, then additional leaf functions are accessed by repeating GETSEC[CAPABILI-
TIES] with EBX incremented by one. When the most significant bit of EAX is not set,
then additional GETSEC leaf functions are not supported; indexing EBX to a higher
value results in EAX returning zero.

Opcode Instruction Description

0F 37

(EAX = 0)

GETSEC[CAPA
BILITIES]

Report the SMX capabilities.

The capabilities index is input in EBX with the result returned in
EAX.

Table 6-3. Getsec Capability Result Encoding (EBX = 0)

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present

Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available

EXITAC 3 GETSEC[EXITAC] is available

SENTER 4 GETSEC[SENTER] is available

SEXIT 5 GETSEC[SEXIT] is available

6-10 Vol. 2B GETSEC[CAPABILITIES] - Report the SMX Capabilities

SAFER MODE EXTENSIONS REFERENCE

Operation
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
IF (EBX=0) THEN

BitVector← 0;
IF (TXT chipset present)

BitVector[Chipset present]← 1;
IF (ENTERACCS Available)

THEN BitVector[ENTERACCS]← 1;
IF (EXITAC Available)

THEN BitVector[EXITAC]← 1;
IF (SENTER Available)

THEN BitVector[SENTER]← 1;
IF (SEXIT Available)

THEN BitVector[SEXIT]← 1;
IF (PARAMETERS Available)

THEN BitVector[PARAMETERS]← 1;
IF (SMCTRL Available)

THEN BitVector[SMCTRL]← 1;
IF (WAKEUP Available)

THEN BitVector[WAKEUP]← 1;
EAX← BitVector;

ELSE
EAX← 0;

END;;

Flags Affected
None

PARAMETERS 6 GETSEC[PARAMETERS] is available

SMCTRL 7 GETSEC[SMCTRL] is available

WAKEUP 8 GETSEC[WAKEUP] is available

Undefined 30:9 Reserved

Extended Leafs 31 Reserved for extended information reporting of
GETSEC capabilities

Table 6-3. Getsec Capability Result Encoding (EBX = 0) (Contd.)

Field Bit position Description

Vol. 2B 6-11

SAFER MODE EXTENSIONS REFERENCE

GETSEC[CAPABILITIES] - Report the SMX Capabilities

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD IF CR4.SMXE = 0.

Real-Address Mode Exceptions
#UD IF CR4.SMXE = 0.

Virtual-8086 Mode Exceptions
#UD IF CR4.SMXE = 0.

Compatibility Mode Exceptions
#UD IF CR4.SMXE = 0.

64-Bit Mode Exceptions
#UD IF CR4.SMXE = 0.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.

6-12 Vol. 2B GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenti-
cated code module using an Intel® TXT platform chipset's public key. The ENTER-
ACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the
GETSEC[ENTERACCS] instruction:

• Execution is not allowed unless the processor is in protected mode or IA-32e
mode with CPL = 0 and EFLAGS.VM = 0.

• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW
bits must be 0.

• For processor packages containing more than one logical processor, CR0.CD is
checked to ensure consistency between enabled logical processors.

• For enforcing consistency of operation with numeric exception reporting using
Interrupt 16, CR0.NE must be set.

• An Intel TXT-capable chipset must be present as communicated to the processor
by sampling of the power-on configuration capability field after reset.

• The processor can not already be in authenticated code execution mode as
launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction
without a subsequent exiting using GETSEC[EXITAC]).

• To avoid potential operability conflicts between modes, the processor is not
allowed to execute this instruction if it currently is in SMM or VMX operation.

• To insure consistent handling of SIPI messages, the processor executing the
GETSEC[ENTERACCS] instruction must also be designated the BSP (boot-strap
processor) as defined by A32_APIC_BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general
protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e. RLPs, in the
platform must be:

• idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for
non-BSP designated processors), or

• in the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating
logical processor (ILP).

Opcode Instruction Description

0F 37

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base
address. ECX holds the authenticated code module size
(bytes).

Vol. 2B 6-13

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

If other logical processor(s) in the same package are not idle in one of these states,
execution of ENTERACCS signals a general protection exception. The same require-
ment and action applies if the other logical processor(s) of the same package do not
have CR0.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated
code execution mode. Prior to reaching this point, the processor performs several
checks. These include:

• Establish and check the location and size of the specified authenticated code
module to be executed by the processor.

• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.

• Broadcast a message to enable protection of memory and I/O from other
processor agents.

• Load the designated code module into an authenticated code execution area.

• Isolate the contents of the authenticated code execution area from further state
modification by external agents.

• Authenticate the authenticated code module.

• Initialize the initiating logical processor state based on information contained in
the authenticated code module header.

• Unlock the Intel® TXT-capable chipset private configuration space and TPM
locality 3 space.

• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the
general purpose registers EBX and ECX. EBX holds the authenticated code (AC)
module physical base address (the AC module must reside below 4 GBytes in phys-
ical address space) and ECX holds the AC module size (in bytes). The physical base
address and size are used to retrieve the code module from system memory and load
it into the internal authenticated code execution area. The base physical address is
checked to verify it is on a modulo-4096 byte boundary. The size is verified to be a
multiple of 64, that it does not exceed the internal authenticated code execution area
capacity (as reported by GETSEC[CAPABILITIES]), and that the top address of the AC
module does not exceed 32 bits. An error condition results in an abort of the authen-
ticated code execution launch and the signaling of a general protection exception.

As an integrity check for proper processor hardware operation, execution of
GETSEC[ENTERACCS] will also check the contents of all the machine check status
registers (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable
error condition. In addition, the global machine check status register
IA32_MCG_STATUS MCIP bit must be cleared and the IERR processor package pin
(or its equivalent) must not be asserted, indicating that no machine check exception
processing is currently in progress. These checks are performed prior to initiating the
load of the authenticated code module. Any outstanding valid uncorrectable machine
check error condition present in these status registers at this point will result in the
processor signaling a general protection violation.

6-14 Vol. 2B GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

The ILP masks the response to the assertion of the external signals INIT#, A20M,
NMI#,and SMI#. This masking remains active until optionally unmasked by
GETSEC[EXITAC] (this defined unmasking behavior assumes GETSEC[ENTERACCS]
was not executed by a prior GETSEC[SENTER]). The purpose of this masking control
is to prevent exposure to existing external event handlers that may not be under the
control of the authenticated code module..

The ILP sets an internal flag to indicate it has entered authenticated code execution
mode. The state of the A20M pin is likewise masked and forced internally to a de-
asserted state so that any external assertion is not recognized during authenticated
code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in
authenticated code execution mode, memory (excluding implicit write-back transac-
tions) access and I/O originating from other processor agents are blocked. This
protection starts when the ILP enters into authenticated code execution mode. Only
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting
authenticated code execution mode is done by executing GETSEC[EXITAC]. The
protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS]
or GETSEC[SENTER], the processor’s MTRRs (Memory Type Range Registers) must
first be initialized to map out the authenticated RAM addresses as WB (writeback).
Failure to do so may affect the ability for the processor to maintain isolation of the
loaded authenticated code module. If the processor detected this requirement is not
met, it will signal an Intel® TXT reset condition with an error code during the loading
of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the
memory type for locations outside of the module boundaries must be mapped to one
of the supported memory types as returned by GETSEC[PARAMETERS] (or UC as
default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory
type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte
granular blocks. If an AC module size as specified in ECX is not a multiple of 4096
then the processor will allocate up to the next 4096 byte boundary for mapping as
ACRAM with indeterminate data. This pad area will not be visible to the authenticated
code module as external memory nor can it depend on the value of the data used to
fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the
processor is partially initialized from contents held in the header of the authenticated
code module. The processor GDTR, CS, and DS selectors are initialized from fields
within the authenticated code module. Since the authenticated code module must be
relocatable, all address references must be relative to the authenticated code module
base address in EBX. The processor GDTR base value is initialized to the AC module
header field GDTBasePtr + module base address held in EBX and the GDTR limit is set
to the value in the GDTLimit field. The CS selector is initialized to the AC module
header SegSel field, while the DS selector is initialized to CS + 8. The segment

Vol. 2B 6-15

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

descriptor fields are implicitly initialized to BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1,
S=1, read/write access for DS, and execute/read access for CS. The processor
begins the authenticated code module execution with the EIP set to the AC module
header EntryPoint field + module base address (EBX). The AC module based fields
used for initializing the processor state are checked for consistency and any failure
results in a shutdown condition.

A summary of the register state initialization after successful completion of
GETSEC[ENTERACCS] is given for the processor in Table 6-4. The paging is disabled
upon entry into authenticated code execution mode. The authenticated code module
is loaded and initially executed using physical addresses. It is up to the system soft-
ware after execution of GETSEC[ENTERACCS] to establish a new (or restore its
previous) paging environment with an appropriate mapping to meet new protection
requirements. EBP is initialized to the authenticated code module base physical
address for initial execution in the authenticated environment. As a result, the
authenticated code can reference EBP for relative address based references, given
that the authenticated code module must be position independent.

Table 6-4. Register State Initialization after GETSEC[ENTERACCS]

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others
unchanged

Paging, Alignment Check, Write-
protection are disabled

CR4 MCE←0: Others unchanged Machine Check Exceptions Disabled

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled

EIP AC.base + EntryPoint AC.base is in EBX as input to
GETSEC[ENTERACCS]

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP
prior to GETSEC[ENTERACCS]

Carry forward 64-bit processor
state across GETSEC[ENTERACCS]

ECX Pre-ENTERACCS state:
[31:16]=GDTR.limit; [15:0]=CS.sel

Carry forward processor state
across GETSEC[ENTERACCS]

[E|R]DX Pre-ENTERACCS state:
GDTR base

Carry forward 64-bit processor
state across GETSEC[ENTERACCS]

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh,
G=1, D=1, AR=9BH

DS Sel=[SegSel] +8, base=0,
limit=FFFFFh, G=1, D=1, AR=93H

6-16 Vol. 2B GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

The segmentation related processor state that has not been initialized by
GETSEC[ENTERACCS] requires appropriate initialization before use. Since a new GDT
context has been established, the previous state of the segment selector values held
in ES, SS, FS, GS, TR, and LDTR might not be valid.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state
initialized by ENTERACCS. Since paging is disabled upon entering authenticated code
execution mode, a new paging environment will have to be reestablished in order to
establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of
GETSEC[ENTERACCS]. This is achieved by resetting DR7, TF in EFLAGs, and the MSR
IA32_DEBUGCTL. These debug functions are free to be re-enabled once supporting
exception handler(s), descriptor tables, and debug registers have been properly
initialized following entry into authenticated code execution mode. Also, any pending
single-step trap condition will have been cleared upon entry into this mode.

The IA32_MISC_ENABLES MSR is initialized upon entry into authenticated execution
mode. Certain bits of this MSR are preserved because preserving these bits may be
important to maintain previously established platform settings (See the footnote for
Table 6-5.). The remaining bits are cleared for the purpose of establishing a more
consistent environment for the execution of authenticated code modules. One of the
impacts of initializing this MSR is any previous condition established by the MONITOR
instruction will be cleared.

To support the possible return to the processor architectural state prior to execution
of GETSEC[ENTERACCS], certain critical processor state is captured and stored in the
general- purpose registers at instruction completion. [E|R]BX holds effective address
([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS],
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and
[E|R]DX holds the GDTR base field. The subsequent authenticated code can preserve
the contents of these registers so that this state can be manually restored if needed,
prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the
processor state after exiting authenticated code execution mode, see the description
of GETSEC[SEXIT].

GDTR Base= AC.base (EBX) + [GDTBasePtr],
Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENA
BLES

see Table 6-5 for example The number of initialized fields may
change due.to processor
implementation

Table 6-4. Register State Initialization after GETSEC[ENTERACCS] (Contd.)

Register State Initialization Status Comment

Vol. 2B 6-17

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

The IDTR will also require reloading with a new IDT context after entering authenti-
cated code execution mode, before any exceptions or the external interrupts INTR
and NMI can be handled. Since external interrupts are re-enabled at the completion
of authenticated code execution mode (as terminated with EXITAC), it is recom-
mended that a new IDT context be established before this point. Until such a new IDT
context is established, the programmer must take care in not executing an INT n
instruction or any other operation that would result in an exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful
authentication of the AC module, the private configuration space of the Intel TXT
chipset is unlocked. The authenticated code module alone can gain access to this
normally restricted chipset state for the purpose of securing the platform.

Table 6-5. IA32_MISC_ENALBES MSR Initialization1 by ENTERACCS and SENTER

NOTES:
1. The number of IA32_MISC_ENABLES fields that are initialized may vary due to processor imple-

mentations.

Field Bit position Description

Fast strings enable 0 Clear to 0

FOPCODE compatibility
mode enable

2 Clear to 0

Thermal monitor
enable

3 Set to 1 if other thermal monitor capability is not
enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a
minimum level is enabled. If thermal throttling is already enabled when executing one of these
GETSEC leaves, then no change in the thermal throttling control settings will occur. If thermal
throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a
result of executing these GETSEC leaves.

Split-lock disable 4 Clear to 0

Bus lock on cache line
splits disable

8 Clear to 0

Hardware prefetch
disable

9 Clear to 0

GV1/2 legacy enable 15 Clear to 0

MONITOR/MWAIT s/m
enable

18 Clear to 0

Adjacent sector
prefetch disable

19 Clear to 0

6-18 Vol. 2B GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

Once the authenticated code module is launched at the completion of
GETSEC[ENTERACCS], it is free to enable interrupts by setting EFLAGS.IF and enable
NMI by execution of IRET. This presumes that it has re-established interrupt handling
support through initialization of the IDT, GDT, and corresponding interrupt handling
code.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF (IA32_MC[I]_STATUS← uncorrectable error)
THEN #GP(0);

OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64)!= 0) or (ACSIZE < minimum module size) OR
(ACSIZE > authenticated RAM capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG← 1;
SignalTXTMessage(ProcessorHold);

Vol. 2B 6-19

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version isnot supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
 (* Authenticate the AC Module and shutdown with an error if it fails *)
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← READ(TXT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
IF (SIGNATURE<>COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on
ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on
ACRAM load))

THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];
ELSE

ACEntryPoint← ACBASE+ACRAM[EntryPoint];
IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN
TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL!=0))

THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP]← 0;

6-20 Vol. 2B GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

CR4.MCE← 0;
EFLAGS← 00000002h;
IA32_EFER← 0h;
[E|R]BX← [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX← Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX← Pre-GETSEC[ENTERACCS] GDT.base;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
DR6.BS← 0;
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

Flags Affected
All flags are cleared.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

Vol. 2B 6-21

SAFER MODE EXTENSIONS REFERENCE

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or
CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.

If in VMX root operation.

If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.

If the processor is already in authenticated code execution
mode.

If the processor is in SMM.

If a valid uncorrectable machine check error is logged in
IA32_MC[I]_STATUS.

If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor internal authenti-
cated code area capacity.

If the authenticated code size is not modulo 64.

If other enabled logical processor(s) of the same package
CR0.CD = 1.

If other enabled logical processor(s) of the same package are
not in the wait-for-SIPI or SENTER sleep state.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below
2^32 -1.

6-22 Vol. 2B GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

64-Bit Mode Exceptions
All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below
2^32 -1.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.

Vol. 2B 6-23

SAFER MODE EXTENSIONS REFERENCE

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution
mode established by GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of
GETSEC is selected with EAX set to 3 at entry. EBX (or RBX, if in 64-bit mode) holds
the near jump target offset for where the processor execution resumes upon exiting
authenticated code execution mode. EDX contains additional parameter control
information. Currently only an input value of 0 in EDX is supported. All other EDX
settings are considered reserved and result in a general protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL
= 0 and EFLAGS.VM = 0. The processor must also be in authenticated code execution
mode. To avoid potential operability conflicts between modes, the processor is not
allowed to execute this instruction if it is in SMM or in VMX operation. A violation of
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks
responses to external event signals INIT#, NMI#, and SMI#. This unmasking is
performed conditionally, based on whether the authenticated code execution mode
was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the
processor is in authenticated code execution mode due to the execution of
GETSEC[SENTER], then these external event signals will remain masked. In this
case, A20M is kept disabled in the measured environment until the measured envi-
ronment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC.
Note that any events that are pending, but have been blocked while in authenticated
code execution mode, will be recognized at the completion of the GETSEC[EXITAC]
instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI#
masked is to support the completion of a measured environment bring-up that
makes use of VMX. In this envisioned security usage scenario, these events will
remain masked until an appropriate virtual machine has been established in order to
field servicing of these events in a safer manner. Details on when and how events are
masked and unmasked in VMX operation are described in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B. It should be cautioned that if no
VMX environment is to be activated following GETSEC[EXITAC], that these events
will remain masked until the measured environment is exited with GETSEC[SEXIT].
If this is not desired then the GETSEC function SMCTRL(0) can be used for
unmasking SMI# in this context. NMI# can be correspondingly unmasked by execu-
tion of IRET.

Opcode Instruction Description

0F 37

(EAX=3)

GETSEC[EXITA
C]

Exit authenticated code execution mode.

RBX holds the Near Absolute Indirect jump target and EDX hold
the exit parameter flags

6-24 Vol. 2B GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

A successful exit of the authenticated code execution mode requires the ILP to
perform additional steps as outlined below:

• Invalidate the contents of the internal authenticated code execution area.

• Invalidate processor TLBs.

• Clear the internal processor AC Mode indicator flag.

• Re-lock the TPM locality 3 space.

• Unlock the Intel® TXT-capable chipset memory and I/O protections to allow
memory and I/O activity by other processor agents.

• Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in
order to protect it from further use or visibility. This internal processor storage area
can no longer be used or relied upon after GETSEC[EXITAC]. Data structures need to
be re-established outside of the authenticated code execution area if they are to be
referenced after EXITAC. Since addressed memory content formerly mapped to the
authenticated code execution area may no longer be coherent with external system
memory after EXITAC, processor TLBs in support of linear to physical address trans-
lation are also invalidated.

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed
with EIP loaded with the contents of EBX (based on the current operating mode size).
In 64-bit mode, all 64 bits of RBX are loaded into RIP if REX.W precedes
GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode.
Conventional CS limit checking is performed as part of this control transfer. Any
exception conditions generated as part of this control transfer will be directed to the
existing IDT; thus it is recommended that an IDTR should also be established prior to
execution of the EXITAC function if there is a need for fault handling. In addition, any
segmentation related (and paging) data structures to be used after EXITAC should be
re-established or validated by the authenticated code prior to EXITAC.

In addition, any segmentation related (and paging) data structures to be used after
EXITAC need to be re-established and mapped outside of the authenticated RAM
designated area by the authenticated code prior to EXITAC. Any data structure held
within the authenticated RAM allocated area will no longer be accessible after
completion by EXITAC.

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSIF (GETSEC leaf unsupported)

THEN #UD;
ELSIF ((in VMX operation) or ((in 64-bit mode) and (RBX is non-canonical))

Vol. 2B 6-25

SAFER MODE EXTENSIONS REFERENCE

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX != 0))
THEN #GP(0);

IF (OperandSize = 32)
THEN tempEIP← EBX;

ELSIF (OperandSize = 64)
THEN tempEIP← RBX;

ELSE
tempEIP← EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)
THEN #GP(0);

Invalidate ACRAM contents;
Invalidate processor TLB(s);
Drain outgoing messages;
SignalTXTMsg(CloseLocality3);
SignalTXTMsg(LockSMRAM);
SignalTXTMsg(ProcessorRelease);
Unmask INIT;
IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;
ACMODEFLAG← 0;
EIP← tempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX.W Sets 64-bit mode Operand size attribute

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.

If in VMX root operation.

6-26 Vol. 2B GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

SAFER MODE EXTENSIONS REFERENCE

If the processor is not currently in authenticated code execution
mode.

If the processor is in SMM.

If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.

Vol. 2B 6-27

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment
and places the initiating logical processor (ILP) into the authenticated code execution
mode. The SENTER leaf of GETSEC is selected with EAX set to 4 at execution. The
physical base address of the AC module to be loaded and authenticated is specified in
EBX. The size of the module in bytes is specified in ECX. EDX controls the level of
functionality supported by the measured environment launch. To enable the full func-
tionality of the protected environment launch, EDX must be initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to
the GETSEC[SENTER] instruction using EBX and ECX respectively. The ILP evaluates
the contents of these registers according to the rules for the AC module address in
GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is
clear before executing the GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the
GETSEC[SENTER] instruction:

• Execution is not allowed unless the processor is in protected mode or IA-32e
mode with CPL = 0 and EFLAGS.VM = 0.

• Processor cache must be available and not disabled using the CR0.CD and NW
bits.

• For enforcing consistency of operation with numeric exception reporting using
Interrupt 16, CR0.NE must be set.

• An Intel TXT-capable chipset must be present as communicated to the processor
by sampling of the power-on configuration capability field after reset.

• The processor can not be in authenticated code execution mode or already in a
measured environment (as launched by a previous GETSEC[ENTERACCS] or
GETSEC[SENTER] instruction).

• To avoid potential operability conflicts between modes, the processor is not
allowed to execute this instruction if it currently is in SMM or VMX operation.

Opcode Instruction Description

0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment

EBX holds the SINIT authenticated code module physical
base address.

ECX holds the SINIT authenticated code module size
(bytes).

EDX controls the level of functionality supported by the
measured environment launch.

6-28 Vol. 2B GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

• To insure consistent handling of SIPI messages, the processor executing the
GETSEC[SENTER] instruction must also be designated the BSP (boot-strap
processor) as defined by A32_APIC_BASE.BSP (Bit 8).

• EDX must be initialized to a setting supportable by the processor. Unless
enumeration by the GETSEC[PARAMETERS] leaf reports otherwise, only a value
of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general
protection violation.

This instruction leaf starts the launch of a measured environment by initiating a
rendezvous sequence for all logical processors in the platform. The rendezvous
sequence involves the initiating logical processor sending a message (by executing
GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging
the message, thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the
bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and enter an SENTER
sleep state. In this sleep state, RLPs enter an idle processor condition while waiting
to be activated after a measured environment has been established by the system
executive. RLPs in the SENTER sleep state can only be activated by the GETSEC leaf
function WAKEUP in a measured environment.

A successful launch of the measured environment results in the initiating logical
processor entering the authenticated code execution mode. Prior to reaching this
point, the ILP performs the following steps internally:

• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.

• Establish and check the location and size of the authenticated code module to be
executed by the ILP.

• Check for the existence of an Intel® TXT-capable chipset.

• Verify the current power management configuration is acceptable.

• Broadcast a message to enable protection of memory and I/O from activities
from other processor agents.

• Load the designated AC module into authenticated code execution area.

• Isolate the content of authenticated code execution area from further state
modification by external agents.

• Authenticate the AC module.

• Updated the Trusted Platform Module (TPM) with the authenticated code
module's hash.

• Initialize processor state based on the authenticated code module header infor-
mation.

• Unlock the Intel® TXT-capable chipset private configuration register space and
TPM locality 3 space.

• Begin execution in the authenticated code module at the defined entry point.

Vol. 2B 6-29

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

As an integrity check for proper processor hardware operation, execution of
GETSEC[SENTER] will also check the contents of all the machine check status regis-
ters (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable error
condition. In addition, the global machine check status register IA32_MCG_STATUS
MCIP bit must be cleared and the IERR processor package pin (or its equivalent)
must be not asserted, indicating that no machine check exception processing is
currently in-progress. These checks are performed twice: once by the ILP prior to the
broadcast of the rendezvous message to RLPs, and later in response to RLPs
acknowledging the rendezvous message. Any outstanding valid uncorrectable
machine check error condition present in the machine check status registers at the
first check point will result in the ILP signaling a general protection violation. If an
outstanding valid uncorrectable machine check error condition is present at the
second check point, then this will result in the corresponding logical processor
signaling the more severe TXT-shutdown condition with an error code of 12.

Before loading and authentication of the target code module is performed, the
processor also checks that the current voltage and bus ratio encodings correspond to
known good values supportable by the processor. The MSR IA32_PERF_STATUS
values are compared against either the processor supported maximum operating
target setting, system reset setting, or the thermal monitor operating target. If the
current settings do not meet any of these criteria then the SENTER function will
attempt to change the voltage and bus ratio select controls in a processor-specific
manner. This adjustment may be to the thermal monitor, minimum (if different), or
maximum operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may
be overridden by SENTER. The measured environment software may need to take
responsibility for restoring such settings that are deemed to be safe, but not neces-
sarily recognized by SENTER. If an adjustment is not possible when an out of range
setting is discovered, then the processor will abort the measured launch. This may be
the case for chipset controlled settings of these values or if the controllability is not
enabled on the processor. In this case it is the responsibility of the external software
to program the chipset voltage ID and/or bus ratio select settings to known good
values recognized by the processor, prior to executing SENTER.

NOTE
For a mobile processor, an adjustment can be made according to the
thermal monitor operating target. For a quad-core processor the
SENTER adjustment mechanism may result in a more conservative
but non-uniform voltage setting, depending on the pre-SENTER
settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#,
A20M, NMI#, and SMI#. The purpose of this masking control is to prevent exposure
to existing external event handlers until a protected handler has been put in place to
directly handle these events. Masked external pin events may be unmasked condi-
tionally or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT],
GETSEC[SMCTRL] or for specific VMX related operations such as a VM entry or the

6-30 Vol. 2B GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B for more details).The state of the
A20M pin is masked and forced internally to a de-asserted state so that external
assertion is not recognized. A20M masking as set by GETSEC[SENTER] is undone
only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the
responsibility of system software to control the processor response to INTR through
appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in
authenticated code execution mode, memory (excluding implicit write-back transac-
tions) and I/O activities originating from other processor agents are blocked. This
protection starts when the ILP enters into authenticated code execution mode. Only
memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting
authenticated code execution mode is done by executing GETSEC[EXITAC]. The
protection of memory and I/O activities remains in effect until the ILP executes
GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code
execution area, it is protected against further modification from external bus snoops.
There is also a requirement that the memory type for the authenticated code module
address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor
will force a TXT system reset (after writing an error code to the chipset LT.ERROR-
CODE register). This action is referred to as a Intel® TXT reset condition. It is
performed when it is considered unreliable to signal an error through the conven-
tional exception reporting mechanism.

To conform to the minimum granularity of MTRR MSRs for specifying the memory
type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte
granular blocks. If an AC module size as specified in ECX is not a multiple of 4096
then the processor will allocate up to the next 4096 byte boundary for mapping as
ACRAM with indeterminate data. This pad area will not be visible to the authenticated
code module as external memory nor can it depend on the value of the data used to
fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is
stored in the TPM at PCR17 after this register is implicitly reset. PCR17 is a dedicated
register for holding the computed hash of the authenticated code module loaded and
subsequently executed by the GETSEC[SENTER]. As part of this process, the
dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for
registration of code and data modules. After successful execution of SENTER, PCR17
contains the measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the
Intel® TXT-capable chipset is unlocked so that the authenticated code module and
measured environment software can gain access to this normally restricted chipset
state. The Intel® TXT-capable chipset private configuration space can be locked later
by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally
using the GETSEC[SEXIT] instruction.

Vol. 2B 6-31

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

The SENTER leaf function also initializes some processor architecture state for the ILP
from contents held in the header of the authenticated code module. Since the
authenticated code module is relocatable, all address references are relative to the
base address passed in via EBX. The ILP GDTR base value is initialized to EBX +
[GDTBasePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the
value held in the AC module header field SegSel, while the DS, SS, and ES selectors
are initialized to CS+8. The segment descriptor fields are initialized implicitly with
BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and
ES, while execute/read/accessed for CS. Execution in the authenticated code module
for the ILP begins with the EIP set to EBX + [EntryPoint]. AC module defined fields
used for initializing processor state are consistency checked with a failure resulting in
an TXT-shutdown condition.

Table 6-6 provides a summary of processor state initialization for the ILP and RLP(s)
after successful completion of GETSEC[SENTER]. For both ILP and RLP(s), paging is
disabled upon entry to the measured environment. It is up to the ILP to establish a
trusted paging environment, with appropriate mappings, to meet protection require-
ments established during the launch of the measured environment. RLP state initial-
ization is not completed until a subsequent wake-up has been signaled by execution
of the GETSEC[WAKEUP] function by the ILP.

Table 6-6. Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others
unchanged

PG←0, CD←0, NW←0, AM←0, WP←0;
PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1] [LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0,
limit=FFFFFh, G=1, D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit
= FFFFFH, G = 1, D = 1, AR = 9BH

DS, ES, SS Sel=[SINIT SegSel] +8, base=0,
limit=FFFFFh, G=1, D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0,
limit = FFFFFH, G = 1, D = 1, AR = 93H

6-32 Vol. 2B GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

Segmentation related processor state that has not been initialized by
GETSEC[SENTER] requires appropriate initialization before use. Since a new GDT
context has been established, the previous state of the segment selector values held
in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading
with a new IDT context after launching the measured environment before exceptions
or the external interrupts INTR and NMI can be handled. In the meantime, the
programmer must take care in not executing an INT n instruction or any other condi-
tion that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of
GETSEC[SENTER]. This is achieved by clearing DR7, TF in EFLAGs, and the MSR
IA32_DEBUGCTL as defined in Table 6-6. These can be re-enabled once supporting
exception handler(s), descriptor tables, and debug registers have been properly re-
initialized following SENTER. Also, any pending single-step trap condition will be
cleared at the completion of SENTER for both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of
execution of SENTER on both the ILP and RLP. This implies any active performance
counters at the time of SENTER execution will be disabled. To reactive the processor
performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in
CR4 upon execution of SENTER processing, any enabled machine check error condi-
tion that occurs will result in the processor performing the TXT-shutdown action. This
also applies to an RLP while in the SENTER sleep state. For each logical processor
CR4.MCE must be reestablished with a valid machine check exception handler to
otherwise avoid an TXT-shutdown under such conditions.

GDTR Base= SINIT.base (EBX) +
[SINIT.GDTBasePtr],
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit =
[LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGC
TL

0H 0H

Performance
counters and
counter control
registers

0H 0H

IA32_MISC_EN
ABLES

see Table 6-5 see Table 6-5

NOTES:
1. See Intel® Trusted Execution Technology Measured Launched Environment Pro-

gramming Guide for MLE header format.

Table 6-6. Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Vol. 2B 6-33

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

The MSR IA32_EFER is also unconditionally cleared as part of the processor state
initialized by SENTER for both the ILP and RLP. Since paging is disabled upon entering
authenticated code execution mode, a new paging environment will have to be re-
established if it is desired to enable IA-32e mode while operating in authenticated
code execution mode.

The miscellaneous feature control MSR, IA32_MISC_ENABLES, is initialized as part of
the measured environment launch. Certain bits of this MSR are preserved because
preserving these bits may be important to maintain previously established platform
settings. See the footnote for Table 6-5 The remaining bits are cleared for the
purpose of establishing a more consistent environment for the execution of authenti-
cated code modules. Among the impact of initializing this MSR, any previous condi-
tion established by the MONITOR instruction will be cleared.

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of
GETSEC[SENTER]. These bits consist of two fields:

• Bit 15: a global enable control for execution of SENTER.

• Bits 14:8: a parameter control field providing the ability to qualify SENTER
execution based on the level of functionality specified with corresponding EDX
parameter bits 6:0.

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 6-1.

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL
MSR must be bit set to affirm the settings to be used. Once the lock bit is set, only a
power-up reset condition will clear this MSR. The IA32_FEATURE_CONTROL MSR
must be configured in accordance to the intended usage at platform initialization.
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise,
IA32_FEATURE_CONTROL is treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide
provides additional details and requirements for programming measured environ-
ment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
(CPL>0) or (EFLAGS.VM=1) or

6-34 Vol. 2B GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or
(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
(TPM interface is not present) or
(EDX != (SENTER_EDX_support_mask & EDX)) or
(IA32_CR_FEATURE_CONTROL[0]=0) or (IA32_CR_FEATURE_CONTROL[15]=0) or
((IA32_CR_FEATURE_CONTROL[14:8] & EDX[6:0]) != EDX[6:0]))

THEN #GP(0);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN #GP(0);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64) != 0) or (ACSIZE < minimum

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error
THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;
OD;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)
THEN

Make product-specific adjustment on operating parameters;
ELSE

TXT-SHUTDOWN(#IIlegalVIDBRatio);
FI;

Vol. 2B 6-35

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32_DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG← 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR← I;
ACRAM[I-ACBASE].DATA← LOAD(I);

OD;
IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];
IF (SIGNATURE != COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on
ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);

6-36 Vol. 2B GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

IF (ACMCONTROL reserved bits are set)
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR
((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
line detected on ACRAM load))
THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE
ACEntryPoint← ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))
THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL!=0))
THEN TXT-SHUTDOWN(#BadACMFormat);

ACRAM[SCRATCH.SIGNATURE_LEN_CONST]← EDX;
WRITE(TPM.HASH.START)← 0;
FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA)← ACRAM[SCRATCH.I];
WRITE(TPM.HASH.END)← 0;
ACMODEFLAG← 1;
CR0.[PG.AM.WP]← 0;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SegSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;

Vol. 2B 6-37

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SENTER]—Enter a Measured Environment

DR7← 00000400h;
IA32_DEBUGCTL← 0;
DR6.BS← 0;
SignalTXTMsg(UnlockSMRAM);
SignalTXTMsg(OpenPrivate);
SignalTXTMsg(OpenLocality3);
EIP← ACEntryPoint;
END;

RLP_SENTER_ROUTINE: (RLP only)
Mask SMI, INIT, A20M, and NMI external pin events
Unmask SignalWAKEUP event;
Wait for SignalSENTERContinue message;
IA32_APIC_BASE.BSP← 0;
GOTO SENTER sleep state;
END;

Flags Affected

All flags are cleared.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or
CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If the initiating processor is not designated as the bootstrap
processor via the MSR bit IA32_APIC_BASE.BSP.

If an Intel® TXT-capable chipset is not present.

6-38 Vol. 2B GETSEC[SENTER]—Enter a Measured Environment

SAFER MODE EXTENSIONS REFERENCE

If an Intel® TXT-capable chipset interface to TPM is not detected
as present.

If a protected partition is already active or the processor is
already in authenticated code mode.

If the processor is in SMM.

If a valid uncorrectable machine check error is logged in
IA32_MC[I]_STATUS.

If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor's authenticated code
execution area storage capacity.

If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below
2^32 -1.

64-Bit Mode Exceptions
All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below
2^32 -1.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.

Vol. 2B 6-39

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SEXIT]—Exit Measured Environment

GETSEC[SEXIT]—Exit Measured Environment

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment estab-
lished by GETSEC[SENTER]. The SEXIT leaf of GETSEC is selected with EAX set to 5
at execution. This instruction leaf sends a message to all logical processors in the
platform to signal the measured environment exit.

There are restrictions enforced by the processor for the execution of the
GETSEC[SEXIT] instruction:

• Execution is not allowed unless the processor is in protected mode (CR0.PE = 1)
with CPL = 0 and EFLAGS.VM = 0.

• The processor must be in a measured environment as launched by a previous
GETSEC[SENTER] instruction, but not still in authenticated code execution mode.

• To avoid potential inter-operability conflicts between modes, the processor is not
allowed to execute this instruction if it currently is in SMM or in VMX operation.

• To insure consistent handling of SIPI messages, the processor executing the
GETSEC[SEXIT] instruction must also be designated the BSP (bootstrap
processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8).

Failure to abide by the above conditions results in the processor signaling a general
protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then
clears the internal processor flag indicating the processor is operating in a measured
environment.

In response to a message signaling the completion of rendezvous, all RLPs restart
execution with the instruction that was to be executed at the time GETSEC[SEXIT]
was recognized. This applies to all processor conditions, with the following excep-
tions:

• If an RLP executed HLT and was in this halt state at the time of the message
initiated by GETSEC[SEXIT], then execution resumes in the halt state.

• If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT]
causes an exit of the MWAIT state, falling through to the next instruction.

• If an RLP was executing an intermediate iteration of a string instruction, then the
processor resumes execution of the string instruction at the point which the
message initiated by GETSEC[SEXIT] was recognized.

• If an RLP is still in the SENTER sleep state (never awakened with
GETSEC[WAKEUP]), it will be sent to the wait-for-SIPI state after first clearing

Opcode Instruction Description

0F 37

(EAX=5)

GETSEC[SEXIT] Exit measured environment

6-40 Vol. 2B GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE

the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any pending
SIPI state. In this case, such RLPs are initialized to an architectural state
consistent with having taken a soft reset using the INIT# pin.

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active
RLPs unmask the response of the external event signals INIT#, A20M, NMI#, and
SMI#. This unmasking is performed unconditionally to recognize pin events which
are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M
pin is not recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-
capable chipset private configuration space. GETSEC[SEXIT] does not affect the
content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruc-
tion. Since EFLAGS and the debug register state are not modified by this instruction,
a pending trap condition is free to be signaled if previously enabled.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
GETSEC[SEXIT] (ILP only):
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
(IA32_APIC_BASE.BSP=0) or
(TXT chipset not present) or
(SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);
SignalTXTMsg(SEXIT);
DO
WHILE (no SignalSEXIT message);

TXT_SEXIT_MSG_EVENT (ILP & RLP):
Mask and clear SignalSEXIT event;
Clear MONITOR FSM;
Unmask SignalSENTER event;
IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);
SignalTXTMsg(SEXITAck);
IF (logical processor is not ILP)

Vol. 2B 6-41

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SEXIT]—Exit Measured Environment

THEN GOTO RLP_SEXIT_ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO

DONE← READ(LT.STS);
WHILE (NOT DONE);
SignalTXTMsg(SEXITContinue);
SignalTXTMsg(ClosePrivate);
SENTERFLAG← 0;
Unmask SMI, INIT, A20M, and NMI external pin events;
END;

RLP_SEXIT_ROUTINE (RLPs only):
Wait for SignalSEXITContinue message;
Unmask SMI, INIT, A20M, and NMI external pin events;
IF (prior execution state = HLT)

THEN reenter HLT state;
IF (prior execution state = SENTER sleep)

THEN
IA32_APIC_BASE.BSP← 0;
Clear pending SIPI state;
Call INIT_PROCESSOR_STATE;
Unmask SIPI event;
GOTO WAIT-FOR-SIPI;

FI;
END;

Flags Affected
ILP: None.

RLPs: all flags are modified for an RLP. returning to wait-for-SIPI state, none other-
wise

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

6-42 Vol. 2B GETSEC[SEXIT]—Exit Measured Environment

SAFER MODE EXTENSIONS REFERENCE

If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If the initiating processor is not designated as the via the MSR
bit IA32_APIC_BASE.BSP.

If an Intel® TXT-capable chipset is not present.

If a protected partition is not already active or the processor is
already in authenticated code mode.

If the processor is in SMM.

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.

Vol. 2B 6-43

SAFER MODE EXTENSIONS REFERENCE

GETSEC[PARAMETERS]—Report the SMX Parameters

GETSEC[PARAMETERS]—Report the SMX Parameters

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for
SMX features supported by the processor. Parameter information is returned in EAX,
EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX
starting at 0, and then reading the returned results in EAX, EBX, and ECX. EAX[4:0]
is designated to return a parameter type field indicating if a parameter is available
and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter
and indicates no more parameters are available.

Table 6-7 defines the parameter types supported in current and future implementa-
tions.

Opcode Instruction Description

0F 37

(EAX=6)

GETSEC[PARAMETERS] Report the SMX Parameters

The parameters index is input in EBX with the result
returned in EAX, EBX, and ECX.

Table 6-7. SMX Reporting Parameters Format

Parameter
Type EAX[4:0]

Parameter
Description EAX[31:5] EBX[31:0] ECX[31:0]

0 NULL Reserved (0
returned)

Reserved
(unmodified)

Reserved
(unmodified)

1 Supported AC
module versions

Reserved (0
returned)

version
comparison
mask

version
numbers
supported

2 Max size of
authenticated
code execution
area

Multiply by 32 for
size in bytes

Reserved
(unmodified)

Reserved
(unmodified)

6-44 Vol. 2B GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

Supported AC module versions (as defined by the AC module HeaderVersion field)
can be determined for a particular SMX capable processor by the type 1 parameter.
Using EBX to index through the available parameters reported by GETSEC[PARAME-
TERS] for each unique parameter set returned for type 1, software can determine the
complete list of AC module version(s) supported.

For each parameter set, EBX returns the comparison mask and ECX returns the avail-
able HeaderVersion field values supported, after AND'ing the target HeaderVersion
with the comparison mask. Software can then determine if a particular AC module
version is supported by following the pseudo-code search routine given below:

parameter_search_index= 0
do {

EBX= parameter_search_index++
EAX= 6
GETSEC
if (EAX[4:0] == 1) {

if ((version_query & EBX) == ECX) {
version_is_supported= 1
break

}
}

} while (EAX[4:0]!= 0)

If only AC modules with a HeaderVersion of 0 are supported by the processor, then
only one parameter set of type 1 will be returned, as follows: EAX = 00000001H,

EBX = FFFFFFFFH and ECX = 00000000H.

3 External memory
types supported
during AC mode

Memory type bit
mask

Reserved
(unmodified)

Reserved
(unmodified)

4 Selective SENTER
functionality
control

EAX[14:8]
correspond to
available SENTER
function disable
controls

Reserved
(unmodified)

Reserved
(unmodified)

5-31 Undefined Reserved
(unmodified)

Reserved
(unmodified)

Reserved
(unmodified)

Table 6-7. SMX Reporting Parameters Format (Contd.)

Parameter
Type EAX[4:0]

Parameter
Description EAX[31:5] EBX[31:0] ECX[31:0]

Vol. 2B 6-45

SAFER MODE EXTENSIONS REFERENCE

GETSEC[PARAMETERS]—Report the SMX Parameters

The maximum capacity for an authenticated code execution area supported by the
processor is reported with the parameter type of 2. The maximum supported size in
bytes is determined by multiplying the returned size in EAX[31:5] by 32. Thus, for a
maximum supported authenticated RAM size of 32KBytes, EAX returns with
00008002H.

Supportable memory types for memory mapped outside of the authenticated code
execution area are reported with the parameter type of 3. While is active, as initiated
by the GETSEC functions SENTER and ENTERACCS and terminated by EXITAC, there
are restrictions on what memory types are allowed for the rest of system memory. It
is the responsibility of the system software to initialize the memory type range
register (MTRR) MSRs and/or the page attribute table (PAT) to only map memory
types consistent with the reporting of this parameter. The reporting of supportable
memory types of external memory is indicated using a bit map returned in
EAX[31:8]. These bit positions correspond to the memory type encodings defined for
the MTRR MSR and PAT programming. See Table 6-8.

The parameter type of 4 is used for enumerating the availability of selective
GETSEC[SENTER] function disable controls. If a 1 is reported in bits 14:8 of the
returned parameter EAX, then this indicates a disable control capability exists with
SENTER for a particular function. The enumerated field in bits 14:8 corresponds to
use of the EDX input parameter bits 6:0 for SENTER. If an enumerated field bit is set
to 1, then the corresponding EDX input parameter bit of EDX may be set to 1 to
disable that designated function. If the enumerated field bit is 0 or this parameter is
not reported, then no disable capability exists with the corresponding EDX input
parameter for SENTER, and EDX bit(s) must be cleared to 0 to enable execution of
SENTER. If no selective disable capability for SENTER exists as enumerated, then the
corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must also be
programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is
required to enable future extensibility of SENTER selective disable capability with
respect to potentially separate software initialization of the MSR.

Table 6-8. External Memory Types Using Parameter 3

EAX Bit Position Parameter Description

8 Uncacheable (UC)

9 Write Combining (WC)

11:10 Reserved

12 Write-through (WT)

13 Write-protected (WP)

14 Write-back (WB)

31:15 Reserved

6-46 Vol. 2B GETSEC[PARAMETERS]—Report the SMX Parameters

SAFER MODE EXTENSIONS REFERENCE

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given
SMX capable processor, then default parameter values should be assumed. These are
defined in Table 6-9.

Operation
(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC
and WC *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
(* example of a processor supporting a 0.0 HeaderVersion *)

IF (EBX=0) THEN
EAX← 00000001h;
EBX← FFFFFFFFh;
ECX← 00000000h;

ELSE IF (EBX=1)
(* example of a processor supporting a 32K ACRAM size *)
THEN EAX← 00008002h;

ESE IF (EBX= 2)
(* example of a processor supporting external memory types of UC and WC *)
THEN EAX← 00000303h;

ELSE
EAX¨ 00000000h;

END;

Flags Affected

None.

Table 6-9. Default Parameter Values

Parameter Type
EAX[4:0]

Default
Setting Parameter Description

1 0.0 only Supported AC module versions

2 32 KBytes Authenticated code execution area size

3 UC only External memory types supported during AC
execution mode

4 None Available SENTER selective disable controls

Vol. 2B 6-47

SAFER MODE EXTENSIONS REFERENCE

GETSEC[PARAMETERS]—Report the SMX Parameters

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by
GETSEC[CAPABILITIES].

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-Exit Condition
Reason (GETSEC) IF in VMX non-root operation.

6-48 Vol. 2B GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SMCTRL]—SMX Mode Control

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific
mode control operations. The operation to be performed is selected through the input
register EBX. Currently only an input value in EBX of 0 is supported. All other EBX
settings will result in the signaling of a general protection violation.

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is
masked by the ILP executing the GETSEC[SENTER] instruction (SMI is also masked
in the responding logical processors in response to SENTER rendezvous messages.).
The determination of when this instruction is allowed and the events that are
unmasked is dependent on the processor context (See Table 6-10). For brevity, the
usage of SMCTRL where EBX=0 will be referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI and INIT
events are masked after GETSEC[SENTER], and remain masked after exiting authen-
ticated execution mode. Unmasking these events should be accompanied by securely
enabling these event handlers. These security concerns can be addressed in VMX
operation by a MVMM.

The VM monitor can choose two approaches:

• In a dual monitor approach, the executive software will set up an SMM monitor in
parallel to the executive VMM (i.e. the MVMM), see Chapter 25, “System
Management” of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B. The SMM monitor is dedicated to handling SMI events
without compromising the security of the MVMM. This usage model of handling
SMI while a measured environment is active does not require the use of
GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is
handled implicitly and through separate VMX based controls.

• If a dedicated SMM monitor will not be established and SMIs are to be handled
within the measured environment, then GETSEC[SMCTRL(0)] can be used by the
executive software to re-enable SMI that has been masked as a result of SENTER.

Table 6-10 defines the processor context in which GETSEC[SMCTRL(0)] can be used
and which events will be unmasked. Note that the events that are unmasked are
dependent upon the currently operating processor context.

Opcode Instruction Description

0F 37 (EAX = 7) GETSEC[SMCTRL] Perform specified SMX mode control as selected
with the input EBX.

Vol. 2B 6-49

SAFER MODE EXTENSIONS REFERENCE

GETSEC[SMCTRL]—SMX Mode Control

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) OR (EFLAGS.VM=1))

THEN #GP(0);
ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and

 (((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)))
THEN unmask SMI;

ELSE
#GP(0);

END

Flags Affected
None.

Use of Prefixes
LOCK Causes #UD

Table 6-10. Supported Actions for GETSEC[SMCTRL(0)]

ILP Mode of Operation SMCTRL execution action

In VMX non-root operation VM exit

SENTERFLAG = 0 #GP(0), illegal context

In authenticated code execution
mode (ACMODEFLAG = 1)

#GP(0), illegal context

SENTERFLAG = 1, not in VMX
operation, not in SMM

Unmask SMI

SENTERFLAG = 1, in VMX root
operation, not in SMM

Unmask SMI if SMM monitor is not configured,
otherwise #GP(0)

SENTERFLAG = 1, In VMX root
operation, in SMM

#GP(0), illegal context

6-50 Vol. 2B GETSEC[SMCTRL]—SMX Mode Control

SAFER MODE EXTENSIONS REFERENCE

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If a protected partition is not already active or the processor is
currently in authenticated code mode.

If the processor is in SMM.

If the SMM monitor is not configured

Real-Address Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.

Vol. 2B 6-51

SAFER MODE EXTENSIONS REFERENCE

GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

GETSEC[WAKEUP]—Wake up sleeping processors in measured
environment

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical
processors currently in the SENTER sleep state. Responding logical processors (RLPs)
enter the SENTER sleep state after completion of the SENTER rendezvous sequence.

The GETSEC[WAKEUP] instruction may only be executed:

• In a measured environment as initiated by execution of GETSEC[SENTER].

• Outside of authenticated code execution mode.

• Execution is not allowed unless the processor is in protected mode with CPL = 0
and EFLAGS.VM = 0.

• In addition, the logical processor must be designated as the boot-strap processor
as configured by setting IA32_APIC_BASE.BSP = 1.

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a
general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP
signal initiated by ILP’s execution of GETSEC[WAKEUP]. The RLP retrieves a pointer
to a data structure that contains information to enable execution from a defined
entry point. This data structure is located using a physical address held in the Intel®
TXT-capable chipset configuration register LT.MLE.JOIN. The register is publicly writ-
able in the chipset by all processors and is not restricted by the Intel® TXT-capable
chipset configuration register lock status. The format of this data structure is defined
in Table 6-11.

Opcode Instruction Description

0F 37

(EAX=8)

GETSEC[WAKE
UP]

Wake up the responding logical processors from the SENTER
sleep state.

Table 6-11. RLP MVMM JOIN Data Structure

Offset Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer

12 EIP

6-52 Vol. 2B GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

SAFER MODE EXTENSIONS REFERENCE

The MLE JOIN data structure contains the information necessary to initialize RLP
processor state and permit the processor to join the measured environment. The
GDTR, LIP, and CS, DS, SS, and ES selector values are initialized using this data
structure. The CS selector index is derived directly from the segment selector initial-
izer field; DS, SS, and ES selectors are initialized to CS+8. The segment descriptor
fields are initialized implicitly with BASE = 0, LIMIT = FFFFFH, G = 1, D = 1, P = 1, S
= 1; read/write/access for DS, SS, and ES; and execute/read/access for CS. It is the
responsibility of external software to establish a GDT pointed to by the MLE JOIN data
structure that contains descriptor entries consistent with the implicit settings initial-
ized by the processor (see Table 6-6). Certain states from the content of Table 6-11
are checked for consistency by the processor prior to execution. A failure of any
consistency check results in the RLP aborting entry into the protected environment
and signaling an Intel® TXT shutdown condition. The specific checks performed are
documented later in this section. After successful completion of processor consis-
tency checks and subsequent initialization, RLP execution in the measured environ-
ment begins from the entry point at offset 12 (as indicated in Table 6-11).

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction
boundary *)
IF (CR4.SMXE=0)

THEN #UD;
ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);
ELSE IF (GETSEC leaf unsupported)

THEN #UD;
ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or
(IN_SMM=0) or (in VMX operation) or (IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);
ELSE

SignalTXTMsg(WAKEUP);
END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP only)
WHILE (no SignalWAKEUP event);
Mask SMI, A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT← LOAD(LT.MLE.JOIN);
TempGDTRBASE← LOAD(LT.MLE.JOIN+4);
TempSegSel← LOAD(LT.MLE.JOIN+8);
TempEIP← LOAD(LT.MLE.JOIN+12);

Vol. 2B 6-53

SAFER MODE EXTENSIONS REFERENCE

GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

IF (TempGDTLimit & FFFF0000h)
THEN TXT-SHUTDOWN(#BadJOINFormat);

IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))
THEN TXT-SHUTDOWN(#BadJOINFormat);

IF ((TempSegSel.TI=1) or (TempSegSel.RPL!=0))
THEN TXT-SHUTDOWN(#BadJOINFormat);

CR0.[PG,CD,W,AM,WP]← 0;
CR0.[NE,PE]← 1;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32_EFER← 0;
GDTR.BASE← TempGDTRBASE;
GDTR.LIMIT← TempGDTRLIMIT;
CS.SEL← TempSegSel;
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G← 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← TempSegSel+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
DS.D← 1;
DS.AR← 93h;
SS← DS;
ES← DS;
DR7← 00000400h;
IA32_DEBUGCTL← 0;
DR6.BS← 0;
EIP← TempEIP;
END;

Flags Affected

None.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Operand size Causes #UD

Segment overrides Ignored

Address size Ignored

6-54 Vol. 2B GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

SAFER MODE EXTENSIONS REFERENCE

REX Ignored

Protected Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX operation.

If a protected partition is not already active or the processor is
currently in authenticated code mode.

If the processor is in SMM.

#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by
GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
All protected mode exceptions apply.

64-Bit Mode Exceptions
All protected mode exceptions apply.

VM-exit Condition
Reason (GETSEC) IF in VMX non-root operation.

Vol. 3B A-1

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret IA-32 and intel 64 architecture
object code. Instructions are divided into encoding groups:

• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system,
MMX technology, SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for
these instructions are given in Table A-2 through Table A-6.

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used
for floating-point instructions. The maps for these instructions are provided in
Table A-7 through Table A-22.

NOTE
All blanks in opcode maps are reserved and must not be used. Do not
depend on the operation of undefined or blank opcodes.

A.1 USING OPCODE TABLES
Tables in this appendix list opcodes of instructions (including required instruction
prefixes, opcode extensions in associated ModR/M byte). Blank cells in the tables
indicate opcodes that are reserved or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of
an opcode byte. For 1-byte encodings (Table A-2), use the four high-order bits of an
opcode to index a row of the opcode table; use the four low-order bits to index a
column of the table. For 2-byte opcodes beginning with 0FH (Table A-3), skip any
instruction prefixes, the 0FH byte (0FH may be preceded by 66H, F2H, or F3H) and
use the upper and lower 4-bit values of the next opcode byte to index table rows and
columns. Similarly, for 3-byte opcodes beginning with 0F38H or 0F3AH (Table A-4),
skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit
values of the third opcode byte to index table rows and columns. See Section A.2.4,
“Opcode Look-up Examples for One, Two, and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode
execution. For information on how an opcode extension in the ModR/M byte modifies
the opcode map in Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high
order bits of opcodes at the top of each page. See Section A.5. If the accompanying
ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top row of the third table on
each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes

A-2 Vol. 3B

OPCODE MAP

outside the range of 00H-BFH are mapped by the bottom two tables on each page of
the section.

A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character,
an uppercase letter, specifies the addressing method; the second character, a lower-
case letter, specifies the type of operand.

A.2.1 Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the
operand is encoded in the instruction. No base register, index register, or
scaling factor can be applied (for example, far JMP (EA)).

C The reg field of the ModR/M byte selects a control register (for example, MOV
(0F20, 0F22)).

D The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is
either a general-purpose register or a memory address. If it is a memory
address, the address is computed from a segment register and any of the
following values: a base register, an index register, a scaling factor, a
displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX
(000)).

I Immediate data: the operand value is encoded in subsequent bytes of the
instruction.

J The instruction contains a relative offset to be added to the instruction
pointer register (for example, JMP (0E9), LOOP).

M The ModR/M byte may refer only to memory (for example, BOUND, LES,
LDS, LSS, LFS, LGS, CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX tech-
nology register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a
word or double word (depending on address size attribute) in the instruction.
No base register, index register, or scaling factor can be applied (for example,
MOV (A0–A3)).

Vol. 3B A-3

OPCODE MAP

P The reg field of the ModR/M byte selects a packed quadword MMX technology
register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is
either an MMX technology register or a memory address. If it is a memory
address, the address is computed from a segment register and any of the
following values: a base register, an index register, a scaling factor, and a
displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for
example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example,
MOV (8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register.

V The reg field of the ModR/M byte selects a 128-bit XMM register.

W A ModR/M byte follows the opcode and specifies the operand. The operand is
either a 128-bit XMM register or a memory address. If it is a memory
address, the address is computed from a segment register and any of the
following values: a base register, an index register, a scaling factor, and a
displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS,
OUTS, or LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS,
INS, STOS, or SCAS).

A.2.2 Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory,
depending on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

ss Scalar element of a 128-bit packed single-precision floating data.

A-4 Vol. 3B

OPCODE MAP

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size
attribute.

w Word, regardless of operand-size attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3 Register Codes
When an opcode requires a specific register as an operand, the register is identified
by name (for example, AX, CL, or ESI). The name indicates whether the register is
64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on
the operand-size attribute. eXX is used when 16 or 32-bit sizes are possible; rXX is
used when 16, 32, or 64-bit sizes are possible. For example: eAX indicates that the
AX register is used when the operand-size attribute is 16 and the EAX register is used
when the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the
opcode, this fact is indicated by adding “/x” to the register name to indicate the addi-
tional possibility. For example, rCX/r9 is used to indicate that the register could either
be rCX or r9. Note that the size of r9 in this case is determined by the operand size
attribute (just as for rCX).

A.2.4 Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions
The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-
byte opcodes is arranged by row (the least-significant 4 bits of the hexadecimal
value) and column (the most-significant 4 bits of the hexadecimal value). Each entry
in the table lists one of the following types of opcodes:

• Instruction mnemonics and operand types using the notations listed in Section
A.2

• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for
interpreting the byte following the primary opcode fall into one of the following
cases:

• A ModR/M byte is required and is interpreted according to the abbreviations listed
in Section A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32

Vol. 3B A-5

OPCODE MAP

Architectures Software Developer’s Manual, Volume 2A. Operand types are listed
according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in
the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that
represent an instruction prefix or entries for instructions without operands that
use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte
opcode map (Table A-2) as follows:

• The first digit (0) of the opcode indicates the table row and the second digit (3)
indicates the table column. This locates an opcode for ADD with two operands.

• The first operand (type Gv) indicates a general register that is a word or
doubleword depending on the operand-size attribute. The second operand (type
Ev) indicates a ModR/M byte follows that specifies whether the operand is a word
or doubleword general-purpose register or a memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement
follows (00000000H). The reg/opcode portion of the ModR/M byte (bits 3-5) is
000, indicating the EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is
00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode
map table). Group numbers indicate that the instruction uses the reg/opcode bits in
the ModR/M byte as an opcode extension (refer to Section A.4).

A.2.4.2 Two-Byte Opcode Instructions
The two-byte opcode map shown in Table A-3 includes primary opcodes that are
either two bytes or three bytes in length. Primary opcodes that are 2 bytes in length
begin with an escape opcode 0FH. The upper and lower four bits of the second
opcode byte are used to index a particular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H,
F2H, or F3H) and the escape opcode (0FH). The upper and lower four bits of the third
byte are used to index a particular row and column in Table A-3 (except when the
second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer
to Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the
primary opcode fall into one of the following cases:

• A ModR/M byte is required and is interpreted according to the abbreviations listed
in Section A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A. The operand types are
listed according to notations listed in Section A.2.

A-6 Vol. 3B

OPCODE MAP

• A ModR/M byte is required and includes an opcode extension in the reg field in
the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that
represent an instruction without operands that are encoded using ModR/M (for
example: 0F77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.

• The opcode is located in row A, column 4. The location indicates a SHLD
instruction with operands Ev, Gv, and Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword
operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.

• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of
ModR/M indicate that a 32-bit displacement is used to locate the first operand in
memory and eAX as the second operand.

• The next part of the opcode is the 32-bit displacement for the destination
memory operand (00000000H). The last byte stores immediate byte that
provides the count of the shift (03H).

• By this breakdown, it has been shown that this opcode represents the
instruction: SHLD DS:00000000H, EAX, 3.

A.2.4.3 Three-Byte Opcode Instructions
The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary
opcodes that are either 3 or 4 bytes in length. Primary opcodes that are 3 bytes in
length begin with two escape bytes 0F38H or 0F3A. The upper and lower four bits of
the third opcode byte are used to index a particular row and column in Table A-4 or
Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H,
F2H, or F3H) and two escape bytes (0F38H or 0F3AH). The upper and lower four bits
of the fourth byte are used to index a particular row and column in Table A-4 or Table
A-5.

For each entry in the opcode map, the rules for interpreting the byte following the
primary opcode fall into the following case:

• A ModR/M byte is required and is interpreted according to the abbreviations listed
in A.1 and Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A. The operand types are listed
according to notations listed in Section A.2.

Vol. 3B A-7

OPCODE MAP

Example A-3. Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row
0, column F indicating a PALIGNR instruction with operands Vdq, Wdq, and Ib.
Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register
or memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.

• The next byte is the ModR/M byte (C1H). The reg field indicates that the first
operand is XMM0. The mod shows that the R/M field specifies a register and the
R/M indicates that the second operand is XMM1.

• The last byte is the immediate byte (08H).

• By this breakdown, it has been shown that this opcode represents the
instruction: PALIGNR XMM0, XMM1, 8.

A.2.5 Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the
following opcode maps by superscripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section
A.4, “Opcode Extensions For One-Byte And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately
trying to generate an invalid opcode exception (#UD).

1C Some instructions added in the Pentium III processor may use the same two-
byte opcode. If the instruction has variations, or the opcode represents
different instructions, the ModR/M byte will be used to differentiate the
instruction. For the value of the ModR/M byte needed to decode the instruction,
see Table A-6.

These instructions include SFENCE, STMXCSR, LDMXCSR, FXRSTOR, and
FXSAVE, as well as PREFETCH and its variations.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-
byte INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF
Grp 4 and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot
encode 32-bit operand size.

A-8 Vol. 3B

OPCODE MAP

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS
See Table A-2 through Table A-5 below. The tables are multiple page presentations.
Rows and columns with sequential relationships are placed on facing pages to make
look-up tasks easier. Note that table footnotes are not presented on each page. Table
footnotes for each table are presented on the last page of the table.

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode
(prefixes that change operand size are ignored for this instruction in 64-bit
mode).

Table A-1. Superscripts Utilized in Opcode Tables
Superscript
Symbol

Meaning of Symbol

Vol. 3B A-9

OPCODE MAP

This page intentionally left blank

A-10 Vol. 3B

OPCODE MAP

Table A-2. One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Xb, Yb

MOVS/W/D/Q
Xv, Yv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A RETNf64

Iw
RETNf64 LESi64

Gz, Mp
LDSi64

Gz, Mp
Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
(Prefix)

REP/REPE
(Prefix)

HLT CMC Unary Grp 31A

Eb Ev

Vol. 3B A-11

OPCODE MAP

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A
POPd64 EvEb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q
d64/
Fv

POPF/D/Q
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, XvAL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

AP
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

A-12 Vol. 3B

OPCODE MAP

Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

0 1 2 3 4 5 6 7

0 Grp 61A Grp 71A LAR
Gv, Ew

LSL
Gv, Ew

 SYSCALLo64 CLTS SYSRETo64

1 movups
Vps, Wps

movss (F3)
Vss, Wss

movupd (66)
Vpd, Wpd

movsd (F2)
Vsd, Wsd

movups
Wps, Vps

movss (F3)
Wss, Vss

movupd (66)
Wpd, Vpd

movsd (F2)
Wsd, Vsd

movlps
Vq, Mq

movlpd (66)
Vq, Mq
movhlps
Vq, Uq

movddup(F2)
Vq, Wq

movsldup(F3)
Vq, Wq

movlps
Mq, Vq

movlpd (66)
Mq, Vq

unpcklps
Vps, Wq

unpcklpd(66)
Vpd, Wq

unpckhps
Vps, Wq

unpckhpd (66)
Vpd, Wq

movhps
Vq, Mq

movhpd (66)
Vq, Mq
movlhps
Vq, Uq

movshdup(F3)
Vq, Wq

movhps
Mq, Vq

movhpd(66)
Mq, Vq

2 MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4 CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5 movmskps
Gd/q, Ups
movmskpd

(66)Gd/q,Upd

sqrtps
Vps, Wps
sqrtss (F3)
Vss, Wss

sqrtpd (66)
Vpd, Wpd
sqrtsd (F2)
Vsd, Wsd

rsqrtps
Vps, Wps

rsqrtss (F3)
Vss, Wss

rcpps
Vps, Wps
rcpss (F3)
Vss, Wss

andps
Vps, Wps

andpd (66)
Vpd, Wpd

andnps
Vps, Wps

andnpd (66)
Vpd, Wpd

orps
Vps, Wps
orpd (66)
Vpd, Wpd

xorps
Vps, Wps
xorpd (66)
Vpd, Wpd

6 punpcklbw
Pq, Qd

punpcklbw (66)
Vdq, Wdq

punpcklwd
Pq, Qd

punpcklwd (66)
Vdq, Wdq

punpckldq
Pq, Qd

punpckldq (66)
Vdq, Wdq

packsswb
Pq, Qq

packsswb (66)
Vdq, Wdq

pcmpgtb
Pq, Qq

pcmpgtb (66)
Vdq, Wdq

pcmpgtw
Pq, Qq

pcmpgtw(66)
Vdq, Wdq

pcmpgtd
Pq, Qq

pcmpgtd (66)
Vdq, Wdq

packuswb
Pq, Qq

packuswb(66)
Vdq, Wdq

7 pshufw
Pq, Qq, Ib
pshufd (66)
Vdq,Wdq,Ib
pshufhw(F3)
Vdq,Wdq,Ib
pshuflw (F2)
Vdq Wdq,Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqb (66)
Vdq, Wdq

pcmpeqw
Pq, Qq

pcmpeqw (66)
Vdq, Wdq

pcmpeqd
Pq, Qq

pcmpeqd (66)
Vdq, Wdq

emms

Vol. 3B A-13

OPCODE MAP

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

8 9 A B C D E F

0 INVD WBINVD 2-byte Illegal
Opcodes
UD21B

NOP Ev

1 Prefetch1C

(Grp 161A)
NOP Ev

2 movaps
Vps, Wps

movapd (66)
Vpd, Wpd

movaps
Wps, Vps

movapd (66)
Wpd, Vpd

cvtpi2ps
Vps, Qpi

cvtsi2ss (F3)
Vss, Ed/q

cvtpi2pd (66)
Vpd, Qpi

cvtsi2sd (F2)
Vsd, Ed/q

movntps
Mps, Vps

movntpd(66)
Mpd, Vpd

cvttps2pi
Ppi, Wps

cvttss2si (F3)
Gd/q, Wss

cvttpd2pi (66)
Ppi, Wpd

cvttsd2si (F2)
Gd/q, Wsd

cvtps2pi
Ppi, Wps

cvtss2si (F3)
Gd/q, Wss

cvtpd2pi (66)
Qpi, Wpd

cvtsd2si (F2)
Gd/q, Wsd

ucomiss
Vss, Wss

ucomisd (66)
Vsd, Wsd

comiss
Vss, Wss

comisd (66)
Vsd, Wsd

3 3-byte escape
(Table A-4)

3-byte escape
(Table A-5)

4 CMOVcc(Gv, Ev) - Conditional Move

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5 addps
Vps, Wps
addss (F3)
Vss, Wss

addpd (66)
Vpd, Wpd
addsd (F2)
Vsd, Wsd

mulps
Vps, Wps
mulss (F3)
Vss, Wss

mulpd (66)
Vpd, Wpd
mulsd (F2)
Vsd, Wsd

cvtps2pd
Vpd, Wps

cvtss2sd(F3)
Vsd, Wss

cvtpd2ps(66)
Vps, Wpd

cvtsd2ss(F2)
Vsd, Wsd

cvtdq2ps
Vps, Wdq

cvtps2dq(66)
Vdq, Wps

cvttps2dq(F3)
Vdq, Wps

subps
Vps, Wps
subss (F3)
Vss, Wss

subpd (66)
Vpd, Wpd
subsd (F2)
Vsd, Wsd

minps
Vps, Wps
minss (F3)
Vss, Wss

minpd (66)
Vpd, Wpd
minsd (F2)
Vsd, Wsd

 divps
Vps, Wps
divss (F3)
Vss, Wss
divpd (66)
Vpd, Wpd
divsd (F2)
Vsd, Wsd

maxps
Vps, Wps

maxss (F3)
Vss, Wss

maxpd (66)
Vpd, Wpd

maxsd (F2)
Vsd, Wsd

6 punpckhbw
Pq, Qd

punpckhbw (66)
Vdq, Wdq

punpckhwd
Pq, Qd

punpckhwd (66)
Vdq, Wdq

punpckhdq
Pq, Qd

punpckhdq (66)
Vdq, Wdq

packssdw
Pq, Qd

packssdw (66)
Vdq, Wdq

punpcklqdq
(66)

Vdq, Wdq

punpckhqdq
(66)

Vdq, Wdq

movd/q/
Pd, Ed/q

movd/q (66)
Vdq, Ed/q

movq
Pq, Qq

movdqa (66)
Vdq, Wdq

movdqu (F3)
Vdq, Wdq

7 VMREAD
Ed/q, Gd/q

VMWRITE
Gd/q, Ed/q

haddps(F2)
Vps, Wps

haddpd(66)
Vpd, Wpd

hsubps(F2)
Vps, Wps

hsubpd(66)
Vpd, Wpd

movd/q
Ed/q, Pd

movd/q (66)
Ed/q, Vdq
movq (F3)

Vq, Wq

movq
Qq, Pq

movdqa (66)
Wdq, Vdq

movdqu (F3)
Wdq, Vdq

A-14 Vol. 3B

OPCODE MAP

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

0 1 2 3 4 5 6 7

8 Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9 SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B CMPXCHG LSS
Gv, Mp

BTR
Ev, Gv

LFS
Gv, Mp

LGS
Gv, Mp

MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C XADD
Eb, Gb

XADD
Ev, Gv

cmpps
Vps, Wps, Ib
cmpss (F3)

Vss, Wss, Ib
cmppd (66)

Vpd, Wpd, Ib
cmpsd (F2)

Vsd, Wsd, Ib

movnti
Md/q, Gd/q

pinsrw
Pq,Rd/q/Mw,Ib

pinsrw (66)
Vdq,Rd/q/Mw,Ib

pextrw
Gd, Nq, Ib
pextrw (66)
Gd, Udq, Ib

shufps
Vps, Wps, Ib
shufpd (66)

Vpd, Wpd, Ib

Grp 91A

D addsubps(F2)
Vps, Wps

addsubpd(66)
Vpd, Wpd

psrlw
Pq, Qq

psrlw (66)
Vdq, Wdq

psrld
Pq, Qq

psrld (66)
Vdq, Wdq

psrlq
Pq, Qq

psrlq (66)
Vdq, Wdq

paddq
Pq, Qq

paddq (66)
Vdq, Wdq

pmullw
Pq, Qq

pmullw (66)
Vdq, Wdq

movq (66)
Wq, Vq

movq2dq (F3)
Vdq, Nq

movdq2q (F2)
Pq, Uq

pmovmskb
Gd, Nq

pmovmskb(66)
Gd, Udq

E pavgb
Pq, Qq

pavgb (66)
Vdq, Wdq

psraw
Pq, Qq

psraw (66)
Vdq, Wdq

psrad
Pq, Qq

psrad (66)
Vdq, Wdq

pavgw
Pq, Qq

pavgw (66)
Vdq, Wdq

pmulhuw
Pq, Qq

pmulhuw(66)
Vdq, Wdq

pmulhw
Pq, Qq

pmulhw (66)
Vdq, Wdq

cvtpd2dq (F2)
Vdq, Wpd

cvttpd2dq(66)
Vdq, Wpd

cvtdq2pd (F3)
Vpd, Wdq

movntq
Mq, Pq

movntdq (66)
Mdq, Vdq

F lddqu (F2)
Vdq, Mdq

psllw
Pq, Qq

psllw (66)
Vdq, Wdq

pslld
Pq, Qq

pslld (66)
Vdq, Wdq

psllq
Pq, Qq

psllq (66)
Vdq, Wdq

pmuludq
Pq, Qq

pmuludq (66)
Vdq, Wdq

pmaddwd
Pq, Qq

pmaddwd(66)
Vdq, Wdq

psadbw
Pq, Qq

psadbw (66)
Vdq, Wdq

maskmovq
Pq, Nq

maskmovdqu
(66) Vdq,Udq

Vol. 3B A-15

OPCODE MAP

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) *

8 9 A B C D E F

8 Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9 SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv
SHRD

Ev, Gv, Ib
SHRD

Ev, Gv, CL
(Grp 151A)1C IMUL

Gv, Ev

B JMPE
(reserved for

emulator on IPF)
POPCNT (F3)

Gv, Ev

Grp 101A

Invalid
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

C BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/
R9/R9D

RDX/EDX/
R10/R10D

RBX/EBX/
R11/R11D

RSP/ESP/
R12/R12D

RBP/EBP/
R13/R13D

RSI/ESI/
R14/R14D

RDI/EDI/
R15/R15D

D psubusb
Pq, Qq

psubusb (66)
Vdq, Wdq

psubusw
Pq, Qq

psubusw (66)
Vdq, Wdq

pminub
Pq, Qq

pminub (66)
Vdq, Wdq

pand
Pq, Qq

pand (66)
Vdq, Wdq

paddusb
Pq, Qq

paddusb (66)
Vdq, Wdq

paddusw
Pq, Qq

paddusw (66)
Vdq, Wdq

pmaxub
Pq, Qq

pmaxub (66)
Vdq, Wdq

pandn
Pq, Qq

pandn (66)
Vdq, Wdq

E psubsb
Pq, Qq

psubsb (66)
Vdq, Wdq

psubsw
Pq, Qq

psubsw (66)
Vdq, Wdq

pminsw
Pq, Qq

pminsw (66)
Vdq, Wdq

por
Pq, Qq
por (66)

Vdq, Wdq

paddsb
Pq, Qq

paddsb (66)
Vdq, Wdq

paddsw
Pq, Qq

paddsw (66)
Vdq, Wdq

pmaxsw
Pq, Qq

pmaxsw (66)
Vdq, Wdq

pxor
Pq, Qq

pxor (66)
Vdq, Wdq

F psubb
Pq, Qq

psubb (66)
Vdq, Wdq

psubw
Pq, Qq

psubw (66)
Vdq, Wdq

psubd
Pq, Qq

psubd (66)
Vdq, Wdq

psubq
Pq, Qq

psubq (66)
Vdq, Wdq

paddb
Pq, Qq

paddb (66)
Vdq, Wdq

paddw
Pq, Qq

paddw (66)
Vdq, Wdq

paddd
Pq, Qq

paddd (66)
Vdq, Wdq

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

A-16 Vol. 3B

OPCODE MAP

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

0 1 2 3 4 5 6 7
0 pshufb

Pq, Qq
pshufb (66)
Vdq, Wdq

phaddw
Pq, Qq

phaddw (66)
Vdq, Wdq

phaddd
Pq, Qq

phaddd (66)
Vdq, Wdq

phaddsw
Pq, Qq

phaddsw(66)
Vdq, Wdq

pmaddubsw
Pq, Qq

pmaddubsw
(66)Vdq,Wdq

phsubw
Pq, Qq

phsubw (66)
Vdq, Wdq

phsubd
Pq, Qq

phsubd (66)
Vdq, Wdq

phsubsw
Pq, Qq

phsubsw (66)
Vdq, Wdq

1 pblendvb(66)
Vdq, Wdq

blendvps(66)
Vdq, Wdq

blendvpd(66)
Vdq, Wdq

ptest (66)
Vdq, Wdq

2 pmovsxbw(66)
Vdq, Udq/Mq

pmovsxbd(66)
Vdq, Udq/Md

pmovsxbq(66)
Vdq, Udq/Mw

pmovsxwd(66)
Vdq, Udq/Mq

pmovsxwq(66)
Vdq, Udq/Md

pmovsxdq(66)
Vdq, Udq/Mq

3 pmovzxbw(66)
Vdq, Udq/Mq

pmovzxbd(66)
Vdq, Udq/Md

pmovzxbq(66)
Vdq, Udq/Mw

pmovzxwd(66)
Vdq, Udq/Mq

pmovzxwq(66)
Vdq, Udq/Md

pmovzxdq(66)
Vdq, Udq/Mq

pcmpgtq (66)
Vdq, Wdq

4 pmulld (66)
Vdq, Wdq

phminposuw
(66) Vdq, Wdq

5
6
7
8 NVEPT (66)

Gd/q, Mdq
NVVPID (66)
Gd/q, Mdq

9
A
B
C
D
E
F MOVBE

Gv, Mv
CRC32 (F2)

Gd, Eb

MOVBE
Mv, Gv

CRC32 (F2)
Gd, Ev

Vol. 3B A-17

OPCODE MAP

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

8 9 A B C D E F
0 psignb

Pq, Qq
psignb (66)
Vdq, Wdq

psignw
Pq, Qq

psignw (66)
Vdq, Wdq

psignd
Pq, Qq

psignd (66)
Vdq, Wdq

pmulhrsw
Pq, Qq

pmulhrsw(66)
Vdq, Wdq

1 pabsb
Pq, Qq

pabsb (66)
Vdq, Wdq

pabsw
Pq, Qq

pabsw (66)
Vdq, Wdq

pabsd
Pq, Qq

pabsd (66)
Vdq, Wdq

2 pmuldq (66)
Vdq, Wdq

pcmpeqq(66)
Vdq, Wdq

movntdqa(66)
Vdq,Mdq

packusdw(66)
Vdq, Wdq

3 pminsb (66)
Vdq, Wdq

pminsd (66)
Vdq, Wdq

pminuw (66)
Vdq, Wdq

pminud (66)
Vdq, Wdq

pmaxsb (66)
Vdq, Wdq

pmaxsd (66)
Vdq, Wdq

pmaxuw (66)
Vdq, Wdq

pmaxud (66)
Vdq, Wdq

4

5
6
7
8

9
A
B
C
D
E
F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-18 Vol. 3B

OPCODE MAP

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

0 1 2 3 4 5 6 7
0

1 pextrb (66)
Rd/Mb, Vdq, Ib

pextrw (66)
Rd/Mw, Vdq, Ib

pextrd/pextrq
(66) Ed/q, Vdq,

Ib

extractps(66)
Ed, Vdq, Ib

2 pinsrb (66)
Vdq,Rd/q/Mb,Ib

insertps (66)
Vdq,Udq/Md,Ib

pinsrd/pinsrq
(66)

Vdq, Ed/q, Ib
3
4 dpps (66)

Vdq, Wdq, Ib
dppd (66)

Vdq, Wdq, Ib
mpsadbw(66)
Vdq, Wdq, Ib

5
6 pcmpestrm(66)

Vdq, Wdq, Ib
pcmpestri(66)
Vdq, Wdq, Ib

pcmpistrm(66)
Vdq, Wdq, Ib

pcmpistri(66)
Vdq, Wdq, Ib

7
8
9
A
B
C
D
E
F

Vol. 3B A-19

OPCODE MAP

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

8 9 A B C D E F
0 roundps(66)

Vdq, Wdq, Ib
roundpd(66)
Vdq, Wdq, Ib

roundss(66)
Vss, Wss, Ib

roundsd(66)
Vsd, Wsd, Ib

blendps(66)
Vdq, Wdq, Ib

blendpd(66)
Vdq, Wdq, Ib

pblendw(66)
Vdq, Wdq, Ib

palignr
Pq, Qq, Ib
palignr(66)

Vdq, Wdq, Ib
1

2

3
4

5
6

7
8
9
A
B
C
D
E
F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-20 Vol. 3B

OPCODE MAP

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-
BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in
Figure A-1) as an extension of the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by
group number. Group numbers (from 1 to 16, second column) provide a table entry
point. The encoding for the r/m field for each instruction can be established using the
third column of the table.

A.4.1 Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-3. Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:

• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte
for this instruction is 000B.

• The r/m field can be encoded to access a register (11B) or a memory address
using a specified addressing mode (for example: mem = 00B, 01B, 10B).

Example A-2. Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3
and Table A-6:

• 0F tells us that this instruction is in the 2-byte opcode map.

• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table
A-6.

• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the
second of the Group 7 rows in Table A-6.

• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for
Group 7.

• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the
VMRESUME instruction.

mod nnn R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

Vol. 3B A-21

OPCODE MAP

A.4.2 Opcode Extension Tables
See Table A-6 below.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in
parenthesis)

000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0, C1 reg,
imm

D0, D1 reg, 1
D2, D3 reg, CL

2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3 mem, 11B TEST
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4 mem, 11B INC
Eb

DEC
Eb

FF 5 mem, 11B INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep
JMPNf64

Ev
JMPF

Ep
PUSHd64

Ev

0F 00 6 mem, 11B SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7 mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL
(001)

VMLAUNCH
(010)

VMRESUME
(011)

VMXOFF
(100)

MONITOR
(000)

MWAIT (001)

XGETBV
(000)

XSETBV
(001)

SWAPGS
o64(000)
RDTSCP

(001)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9 mem CMPXCH8B
Mq

CMPXCHG16B
Mdq

VMPTRLD
Mq

VMCLEAR
(66)
Mq

VMXON (F3)
Mq

VMPTRST
Mq

11B

0F B9 10 mem

11B

C6 11 mem, 11B MOV
Eb, Ib

C7 mem MOV
Ev, Iz

11B

A-22 Vol. 3B

OPCODE MAP

Opcode Group Mod 7,6

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in
parenthesis)

000 001 010 011 100 101 110 111

0F 71 12 mem

11B psrlw
Nq, Ib

psrlw (66)
Udq, Ib

psraw
Nq, Ib

psraw (66)
Udq, Ib

psllw
Nq, Ib

psllw (66)
Udq, Ib

0F 72 13 mem

11B psrld
Nq, Ib

psrld (66)
Udq, Ib

psrad
Nq, Ib

psrad (66)
Udq, Ib

pslld
Nq, Ib

pslld (66)
Udq, Ib

0F 73 14 mem

11B psrlq
Nq, Ib

psrlq (66)
Udq, Ib

psrldq (66)
Udq, Ib

psllq
Nq, Ib

psllq (66)
Udq, Ib

pslldq (66)
Udq, Ib

0F AE 15 mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR clflush

11B lfence mfence sfence

0F 18 16 mem prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Vol. 3B A-23

OPCODE MAP

A.5 ESCAPE OPCODE INSTRUCTIONS
Opcode maps for coprocessor escape instruction opcodes (x87 floating-point
instruction opcodes) are in Table A-7 through Table A-22. These maps are grouped
by the first byte of the opcode, from D8-DF. Each of these opcodes has a ModR/M
byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte
are used as an opcode extension, similar to the technique used for 1-and 2-byte
opcodes (see A.4). If the ModR/M byte is outside the range of 00H through BFH, the
entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
Examples are provided below.

Example A-5. Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:

• The instruction encoded with this opcode can be located in Section . Since the
ModR/M byte (05H) is within the 00H through BFH range, bits 3 through 5 (000)
of this byte indicate the opcode for an FLD double-real instruction (see Table
A-9).

• The double-real value to be loaded is at 00000004H (the 32-bit displacement
that follows and belongs to this opcode).

Example A-3. Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:

• This example illustrates an opcode with a ModR/M byte outside the range of 00H
through BFH. The instruction can be located in Section A.4.

• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD
instruction using ST(0), ST(1) as operands).

A.5.2 Escape Opcode Instruction Tables
Tables are listed below.

A-24 Vol. 3B

OPCODE MAP

A.5.2.1 Escape Opcodes with D8 as First Byte
Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table
A-7 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD single-
real

FMUL single-
real

FCOM single-
real

FCOMP single-
real

FSUB single-
real

FSUBR single-
real

FDIV single-real FDIVR single-
real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Vol. 3B A-25

OPCODE MAP

A.5.2.2 Escape Opcodes with D9 as First Byte
Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9
shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the
nnn field in Figure A-1) selects the instruction.
.

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-9. D9 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD
single-real

FST
single-real

FSTP
single-real

FLDENV
14/28 bytes

FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F

C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-26 Vol. 3B

OPCODE MAP

A.5.2.3 Escape Opcodes with DA as First Byte
Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table
A-11 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-11 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-11. DA Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-12. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Vol. 3B A-27

OPCODE MAP

A.5.2.4 Escape Opcodes with DB as First Byte
Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table
A-13 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP dword-
integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-28 Vol. 3B

OPCODE MAP

A.5.2.5 Escape Opcodes with DC as First Byte
Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table
A-15 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-15. DC Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD double-
real

FMUL double-
real

FCOM
double-real

FCOMP
double-real

FSUB double-
real

FSUBR
double-real

FDIV double-
real

FDIVR
double-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-16. DC Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Vol. 3B A-29

OPCODE MAP

A.5.2.6 Escape Opcodes with DD as First Byte
Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table
A-17 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of
the ModR/M byte selects the table row and the second digit selects the column.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD double-
real

FISTTP
integer64

FST double-
real

FSTP double-
real

FRSTOR
98/108bytes

FSAVE
98/108bytes

FSTSW 2
bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-30 Vol. 3B

OPCODE MAP

A.5.2.7 Escape Opcodes with DE as First Byte
Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH.
Table A-19 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. In this case,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-19. DE Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
word-integer

FIMUL
word-integer

FICOM
word-integer

FICOMP word-
integer

FISUB
word-integer

FISUBR word-
integer

FIDIV
word-integer

FIDIVR
word-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-20. DE Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Vol. 3B A-31

OPCODE MAP

A.5.2.8 Escape Opcodes with DF As First Byte
Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with
DFH. Table A-21 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. Here,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST
word-integer

FISTP
word-integer

FBLD packed-
BCD

FILD
qword-integer

FBSTP packed-
BCD

FISTP
qword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-32 Vol. 3B

OPCODE MAP

Vol. 2B B-1

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instruc-
tions. The first section describes the IA-32 architecture’s machine instruction format.
The remaining sections show the formats and encoding of general-purpose, MMX, P6
family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruc-
tion formats also apply to Intel 64 architecture. Instruction formats used in 64-bit
mode are provided as supersets of the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine
instruction format shown in Figure B-1. Each instruction consists of:

• an opcode

• a register and/or address mode specifier consisting of the ModR/M byte and
sometimes the scale-index-base (SIB) byte (if required)

• a displacement and an immediate data field (if required)

The following sections discuss this format.

Figure B-1. General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6 5-3 2-07-6 5-3 2-0

T T T T T T T T T T T T T T T T

Mod Reg* R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2,
Grp 3, Grp 4

NOTE:

* The Reg Field may be used as an

1, 2, or 3 Byte Opcodes (T = Opcode

B-2 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.1.1 Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are
optional, except when F2H, F3H and 66H are used in new instruction extensions.
Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for more information on legacy prefixes.

B.1.2 REX Prefixes
REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same
opcodes represent the instruction prefix REX and are not treated as individual
instructions.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for more information on REX prefixes.

B.1.3 Opcode Fields
The primary opcode for an instruction is encoded in one to three bytes of the instruc-
tion. Within the primary opcode, smaller encoding fields may be defined. These fields
vary according to the class of operation being performed.

Almost all instructions that refer to a register and/or memory operand have a
register and/or address mode byte following the opcode. This byte, the ModR/M byte,
consists of the mod field (2 bits), the reg field (3 bits; this field is sometimes an
opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte
indicate that a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed
immediately following the ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32
bits. If the instruction specifies an immediate value, the immediate value follows any
displacement bytes. The immediate, if specified, is always the last field of the instruc-
tion.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for more information on opcodes.

B.1.4 Special Fields
Table B-1 lists bit fields that appear in certain instructions, sometimes within the
opcode bytes. All of these fields (except the d bit) occur in the general-purpose
instruction formats in Table B-13.

Vol. 2B B-3

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.1 Reg Field (reg) for Non-64-Bit Modes
The reg field in the ModR/M byte specifies a general-purpose register operand. The
group of registers specified is modified by the presence and state of the w bit in an
encoding (refer to Section B.1.4.3). Table B-2 shows the encoding of the reg field
when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg
field when the w bit is present.

Table B-1. Special Fields Within Instruction Encodings

Field Name Description
Number of

Bits

reg General-register specifier (see Table B-4 or B-5) 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32
bits (see Table B-6)

1

s Specifies sign extension of an immediate field (see Table B-7) 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8) 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8) 3

eee Specifies a special-purpose (control or debug) register (see
Table B-9)

3

tttn For conditional instructions, specifies a condition asserted or
negated (see Table B-12)

4

d Specifies direction of data operation (see Table B-11) 1

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

B-4 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.2 Reg Field (reg) for 64-Bit Mode
Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-
purpose register operand. The group of registers specified is modified by the pres-
ence of and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-4
shows the encoding of the reg field when the w bit is not present in an encoding;
Table B-5 shows the encoding of the reg field when the w bit is present.

Table B-3. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

Table B-4. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected

during
16-Bit Data Operations

Register Selected
during

32-Bit Data Operations

Register Selected
during

64-Bit Data Operations

000 AX EAX RAX

001 CX ECX RCX

010 DX EDX RDX

011 BX EBX RBX

100 SP ESP RSP

101 BP EBP RBP

110 SI ESI RSI

111 DI EDI RDI

Vol. 2B B-5

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.3 Encoding of Operand Size (w) Bit
The current operand-size attribute determines whether the processor is performing
16-bit, 32-bit or 64-bit operations. Within the constraints of the current operand-size
attribute, the operand-size bit (w) can be used to indicate operations on 8-bit oper-
ands or the full operand size specified with the operand-size attribute. Table B-6
shows the encoding of the w bit depending on the current operand-size attribute.

B.1.4.4 Sign-Extend (s) Bit
The sign-extend (s) bit occurs in instructions with immediate data fields that are
being extended from 8 bits to 16 or 32 bits. See Table B-7.

Table B-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH1 SP 100 AH* ESP

101 CH1 BP 101 CH* EBP

110 DH1 SI 110 DH* ESI

111 BH1 DI 111 BH* EDI

NOTES:
1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the

low byte.

Table B-6. Encoding of Operand Size (w) Bit

w Bit
Operand Size When

Operand-Size Attribute is 16 Bits
Operand Size When

Operand-Size Attribute is 32 Bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits

B-6 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.5 Segment Register (sreg) Field
When an instruction operates on a segment register, the reg field in the ModR/M byte
is called the sreg field and is used to specify the segment register. Table B-8 shows
the encoding of the sreg field. This field is sometimes a 2-bit field (sreg2) and other
times a 3-bit field (sreg3).

B.1.4.6 Special-Purpose Register (eee) Field
When control or debug registers are referenced in an instruction they are encoded in
the eee field, located in bits 5 though 3 of the ModR/M byte (an alternate encoding of
the sreg field). See Table B-9.

Table B-7. Encoding of Sign-Extend (s) Bit

s
Effect on 8-Bit

Immediate Data
Effect on 16- or 32-Bit

Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None

Table B-8. Encoding of the Segment Register (sreg) Field

2-Bit sreg2 Field
Segment Register

Selected 3-Bit sreg3 Field
Segment Register

Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved1

111 Reserved

NOTES:
1. Do not use reserved encodings.

Vol. 2B B-7

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.7 Condition Test (tttn) Field
For conditional instructions (such as conditional jumps and set on condition), the
condition test field (tttn) is encoded for the condition being tested. The ttt part of the
field gives the condition to test and the n part indicates whether to use the condition
(n = 0) or its negation (n = 1).

• For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the
opcode byte.

• For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the
second opcode byte.

Table B-10 shows the encoding of the tttn field.

Table B-9. Encoding of Special-Purpose Register (eee) Field

eee Control Register Debug Register

000 CR0 DR0

001 Reserved1 DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved

101 Reserved Reserved

110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.

B-8 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.8 Direction (d) Bit
In many two-operand instructions, a direction bit (d) indicates which operand is
considered the source and which is the destination. See Table B-11.

• When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary
opcode. Note that this bit does not appear as the symbol “d” in Table B-13; the
actual encoding of the bit as 1 or 0 is given.

• When used for floating-point instructions (in Table B-16), the d bit is shown as bit
2 of the first byte of the primary opcode.

Table B-10. Encoding of Conditional Test (tttn) Field
t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

Table B-11. Encoding of Operation Direction (d) Bit

d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field

Vol. 2B B-9

INSTRUCTION FORMATS AND ENCODINGS

B.1.5 Other Notes
Table B-12 contains notes on particular encodings. These notes are indicated in the
tables shown in the following sections by superscripts.

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND
ENCODINGS FOR NON-64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose
instructions in non-64-bit modes.

Table B-12. Notes on Instruction Encoding
Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

B A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

 register1 to register2 0001 000w : 11 reg1 reg2

 register2 to register1 0001 001w : 11 reg1 reg2

 memory to register 0001 001w : mod reg r/m

 register to memory 0001 000w : mod reg r/m

 immediate to register 1000 00sw : 11 010 reg : immediate data

 immediate to AL, AX, or EAX 0001 010w : immediate data

 immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

 register1 to register2 0000 000w : 11 reg1 reg2

 register2 to register1 0000 001w : 11 reg1 reg2

 memory to register 0000 001w : mod reg r/m

 register to memory 0000 000w : mod reg r/m

B-10 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 immediate to register 1000 00sw : 11 000 reg : immediate data

 immediate to AL, AX, or EAX 0000 010w : immediate data

 immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

 register1 to register2 0010 000w : 11 reg1 reg2

 register2 to register1 0010 001w : 11 reg1 reg2

 memory to register 0010 001w : mod reg r/m

 register to memory 0010 000w : mod reg r/m

 immediate to register 1000 00sw : 11 100 reg : immediate data

 immediate to AL, AX, or EAX 0010 010w : immediate data

 immediate to memory 1000 00sw : mod 100 r/m : immediate data

ARPL – Adjust RPL Field of Selector

 from register 0110 0011 : 11 reg1 reg2

 from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : modA reg r/m

BSF – Bit Scan Forward

 register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2

 memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

 register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2

 memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

 register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8
data

 memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8
data

 register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

 memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complement

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2B B-11

INSTRUCTION FORMATS AND ENCODINGS

 register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8
data

 memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8
data

 register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

 memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

 register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8
data

 memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8
data

 register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

 memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

 register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8
data

 memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8
data

 register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

 memory, reg 0000 1111 : 1010 1011 : mod reg r/m

CALL – Call Procedure (in same segment)

 direct 1110 1000 : full displacement

 register indirect 1111 1111 : 11 010 reg

 memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

 direct 1001 1010 : unsigned full offset, selector

 indirect 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-12 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

 register1 with register2 0011 100w : 11 reg1 reg2

 register2 with register1 0011 101w : 11 reg1 reg2

 memory with register 0011 100w : mod reg r/m

 register with memory 0011 101w : mod reg r/m

 immediate with register 1000 00sw : 11 111 reg : immediate data

 immediate with AL, AX, or EAX 0011 110w : immediate data

 immediate with memory 1000 00sw : mod 111 r/m : immediate data

CMPS/CMPSB/CMPSW/CMPSD – Compare
String Operands

1010 011w

CMPXCHG – Compare and Exchange

 register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

 memory, register 0000 1111 : 1011 000w : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

DAS – Decimal Adjust AL after Subtraction 0010 1111

DEC – Decrement by 1

 register 1111 111w : 11 001 reg

 register (alternate encoding) 0100 1 reg

 memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

 AL, AX, or EAX by register 1111 011w : 11 110 reg

 AL, AX, or EAX by memory 1111 011w : mod 110 r/m

HLT – Halt 1111 0100

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2B B-13

INSTRUCTION FORMATS AND ENCODINGS

IDIV – Signed Divide

 AL, AX, or EAX by register 1111 011w : 11 111 reg

 AL, AX, or EAX by memory 1111 011w : mod 111 r/m

IMUL – Signed Multiply

 AL, AX, or EAX with register 1111 011w : 11 101 reg

 AL, AX, or EAX with memory 1111 011w : mod 101 reg

 register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

 register with memory 0000 1111 : 1010 1111 : mod reg r/m

 register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

 memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

IN – Input From Port

 fixed port 1110 010w : port number

 variable port 1110 110w

INC – Increment by 1

 reg 1111 111w : 11 000 reg

 reg (alternate encoding) 0100 0 reg

 memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

IRET/IRETD – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

 8-bit displacement 0111 tttn : 8-bit displacement

 full displacement 0000 1111 : 1000 tttn : full displacement

JCXZ/JECXZ – Jump on CX/ECX Zero
 Address-size prefix differentiates JCXZ

 and JECXZ
1110 0011 : 8-bit displacement

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-14 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

JMP – Unconditional Jump (to same segment)

 short 1110 1011 : 8-bit displacement

 direct 1110 1001 : full displacement

 register indirect 1111 1111 : 11 100 reg

 memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

 direct intersegment 1110 1010 : unsigned full offset, selector

 indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

LAR – Load Access Rights Byte

 from register 0000 1111 : 0000 0010 : 11 reg1 reg2

 from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : modA,B reg r/m

LEA – Load Effective Address 1000 1101 : modA reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : modA,B reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m

LIDT – Load Interrupt Descriptor Table
Register

0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

 LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

 LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

 from register 0000 1111 : 0000 0001 : 11 110 reg

 from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD – Load String
Operand

1010 110w

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2B B-15

INSTRUCTION FORMATS AND ENCODINGS

LOOP – Loop Count 1110 0010 : 8-bit displacement

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not
Zero/Equal

1110 0000 : 8-bit displacement

LSL – Load Segment Limit

 from register 0000 1111 : 0000 0011 : 11 reg1 reg2

 from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m

LTR – Load Task Register

 from register 0000 1111 : 0000 0000 : 11 011 reg

 from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

 register1 to register2 1000 100w : 11 reg1 reg2

 register2 to register1 1000 101w : 11 reg1 reg2

 memory to reg 1000 101w : mod reg r/m

 reg to memory 1000 100w : mod reg r/m

 immediate to register 1100 011w : 11 000 reg : immediate data

 immediate to register (alternate encoding) 1011 w reg : immediate data

 immediate to memory 1100 011w : mod 000 r/m : immediate data

 memory to AL, AX, or EAX 1010 000w : full displacement

 AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

 CR0 from register 0000 1111 : 0010 0010 : 11 000 reg

 CR2 from register 0000 1111 : 0010 0010 : 11 010reg

 CR3 from register 0000 1111 : 0010 0010 : 11 011 reg

 CR4 from register 0000 1111 : 0010 0010 : 11 100 reg

 register from CR0-CR4 0000 1111 : 0010 0000 : 11 eee reg

MOV – Move to/from Debug Registers

 DR0-DR3 from register 0000 1111 : 0010 0011 : 11 eee reg

 DR4-DR5 from register 0000 1111 : 0010 0011 : 11 eee reg

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-16 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 DR6-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg

 register from DR6-DR7 0000 1111 : 0010 0001 : 11 eee reg

 register from DR4-DR5 0000 1111 : 0010 0001 : 11 eee reg

 register from DR0-DR3 0000 1111 : 0010 0001 : 11 eee reg

MOV – Move to/from Segment Registers

 register to segment register 1000 1110 : 11 sreg3 reg

 register to SS 1000 1110 : 11 sreg3 reg

 memory to segment reg 1000 1110 : mod sreg3 r/m

 memory to SS 1000 1110 : mod sreg3 r/m

 segment register to register 1000 1100 : 11 sreg3 reg

 segment register to memory 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

 memory to register 0000 1111 : 0011 1000:1111 0000 : mod reg
r/m

 register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg
r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data
from String to String

1010 010w

MOVSX – Move with Sign-Extend

 memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

 register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

 memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

 AL, AX, or EAX with register 1111 011w : 11 100 reg

 AL, AX, or EAX with memory 1111 011w : mod 100 r/m

NEG – Two's Complement Negation

 register 1111 011w : 11 011 reg

 memory 1111 011w : mod 011 r/m

NOP – No Operation 1001 0000

NOP – Multi-byte No Operation1

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2B B-17

INSTRUCTION FORMATS AND ENCODINGS

 register 0000 1111 0001 1111 : 11 000 reg

 memory 0000 1111 0001 1111 : mod 000 r/m

NOT – One's Complement Negation

 register 1111 011w : 11 010 reg

 memory 1111 011w : mod 010 r/m

OR – Logical Inclusive OR

 register1 to register2 0000 100w : 11 reg1 reg2

 register2 to register1 0000 101w : 11 reg1 reg2

 memory to register 0000 101w : mod reg r/m

 register to memory 0000 100w : mod reg r/m

 immediate to register 1000 00sw : 11 001 reg : immediate data

 immediate to AL, AX, or EAX 0000 110w : immediate data

 immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

 fixed port 1110 011w : port number

 variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

 register 1000 1111 : 11 000 reg

 register (alternate encoding) 0101 1 reg

 memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

 segment register DS, ES 000 sreg2 111

 segment register SS 000 sreg2 111

 segment register FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

POPF/POPFD – Pop Stack into FLAGS or
EFLAGS Register

1001 1101

PUSH – Push Operand onto the Stack

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-18 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 register 1111 1111 : 11 110 reg

 register (alternate encoding) 0101 0 reg

 memory 1111 1111 : mod 110 r/m

 immediate 0110 10s0 : immediate data

PUSH – Push Segment Register onto the
Stack

 segment register CS,DS,ES,SS 000 sreg2 110

 segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

PUSHF/PUSHFD – Push Flags Register onto
the Stack

1001 1100

RCL – Rotate thru Carry Left

 register by 1 1101 000w : 11 010 reg

 memory by 1 1101 000w : mod 010 r/m

 register by CL 1101 001w : 11 010 reg

 memory by CL 1101 001w : mod 010 r/m

 register by immediate count 1100 000w : 11 010 reg : imm8 data

 memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

 register by 1 1101 000w : 11 011 reg

 memory by 1 1101 000w : mod 011 r/m

 register by CL 1101 001w : 11 011 reg

 memory by CL 1101 001w : mod 011 r/m

 register by immediate count 1100 000w : 11 011 reg : imm8 data

 memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring
Counters

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2B B-19

INSTRUCTION FORMATS AND ENCODINGS

RDTSCP – Read Time-Stamp Counter and
Processor ID

0000 1111 : 0000 0001: 1111 1001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same
segment)

 no argument 1100 0011

 adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other
segment)

 intersegment 1100 1011

 adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

 register by 1 1101 000w : 11 000 reg

 memory by 1 1101 000w : mod 000 r/m

 register by CL 1101 001w : 11 000 reg

 memory by CL 1101 001w : mod 000 r/m

 register by immediate count 1100 000w : 11 000 reg : imm8 data

 memory by immediate count 1100 000w : mod 000 r/m : imm8 data

ROR – Rotate Right

 register by 1 1101 000w : 11 001 reg

 memory by 1 1101 000w : mod 001 r/m

 register by CL 1101 001w : 11 001 reg

 memory by CL 1101 001w : mod 001 r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-20 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 register by immediate count 1100 000w : 11 001 reg : imm8 data

 memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management
Mode

0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

 register by 1 1101 000w : 11 111 reg

 memory by 1 1101 000w : mod 111 r/m

 register by CL 1101 001w : 11 111 reg

 memory by CL 1101 001w : mod 111 r/m

 register by immediate count 1100 000w : 11 111 reg : imm8 data

 memory by immediate count 1100 000w : mod 111 r/m : imm8 data

SBB – Integer Subtraction with Borrow

 register1 to register2 0001 100w : 11 reg1 reg2

 register2 to register1 0001 101w : 11 reg1 reg2

 memory to register 0001 101w : mod reg r/m

 register to memory 0001 100w : mod reg r/m

 immediate to register 1000 00sw : 11 011 reg : immediate data

 immediate to AL, AX, or EAX 0001 110w : immediate data

 immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1010 111w

SETcc – Byte Set on Condition

 register 0000 1111 : 1001 tttn : 11 000 reg

 memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

 register by 1 1101 000w : 11 100 reg

 memory by 1 1101 000w : mod 100 r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2B B-21

INSTRUCTION FORMATS AND ENCODINGS

 register by CL 1101 001w : 11 100 reg

 memory by CL 1101 001w : mod 100 r/m

 register by immediate count 1100 000w : 11 100 reg : imm8 data

 memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD – Double Precision Shift Left

 register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

 memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

 register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

 memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

 register by 1 1101 000w : 11 101 reg

 memory by 1 1101 000w : mod 101 r/m

 register by CL 1101 001w : 11 101 reg

 memory by CL 1101 001w : mod 101 r/m

 register by immediate count 1100 000w : 11 101 reg : imm8 data

 memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD – Double Precision Shift Right

 register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

 memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

 register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

 memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table
Register

0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

 to register 0000 1111 : 0000 0000 : 11 000 reg

 to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

 to register 0000 1111 : 0000 0001 : 11 100 reg

 to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-22 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String
Data

1010 101w

STR – Store Task Register

 to register 0000 1111 : 0000 0000 : 11 001 reg

 to memory 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

 register1 to register2 0010 100w : 11 reg1 reg2

 register2 to register1 0010 101w : 11 reg1 reg2

 memory to register 0010 101w : mod reg r/m

 register to memory 0010 100w : mod reg r/m

 immediate to register 1000 00sw : 11 101 reg : immediate data

 immediate to AL, AX, or EAX 0010 110w : immediate data

 immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

 register1 and register2 1000 010w : 11 reg1 reg2

 memory and register 1000 010w : mod reg r/m

 immediate and register 1111 011w : 11 000 reg : immediate data

 immediate and AL, AX, or EAX 1010 100w : immediate data

 immediate and memory 1111 011w : mod 000 r/m : immediate data

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

 register 0000 1111 : 0000 0000 : 11 100 reg

 memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

 register 0000 1111 : 0000 0000 : 11 101 reg

 memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

Vol. 2B B-23

INSTRUCTION FORMATS AND ENCODINGS

WBINVD – Writeback and Invalidate Data
Cache

0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

 register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

 memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with
Register

 register1 with register2 1000 011w : 11 reg1 reg2

 AX or EAX with reg 1001 0 reg

 memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

 register1 to register2 0011 000w : 11 reg1 reg2

 register2 to register1 0011 001w : 11 reg1 reg2

 memory to register 0011 001w : mod reg r/m

 register to memory 0011 000w : mod reg r/m

 immediate to register 1000 00sw : 11 110 reg : immediate data

 immediate to AL, AX, or EAX 0011 010w : immediate data

 immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

 address size 0110 0111

 LOCK 1111 0000

 operand size 0110 0110

 CS segment override 0010 1110

 DS segment override 0011 1110

 ES segment override 0010 0110

 FS segment override 0110 0100

 GS segment override 0110 0101

 SS segment override 0011 0110

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

B-24 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.2.1 General Purpose Instruction Formats and Encodings for
64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose
instructions in 64-bit mode.

NOTES:
1. The multi-byte NOP instruction does not alter the content of the register and will not issue a

memory
operation.

Table B-14. Special Symbols
Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode

Instruction and Format Encoding

ADC – ADD with Carry

 register1 to register2 0100 0R0B : 0001 000w : 11 reg1 reg2

 qwordregister1 to qwordregister2 0100 1R0B : 0001 0001 : 11 qwordreg1
qwordreg2

 register2 to register1 0100 0R0B : 0001 001w : 11 reg1 reg2

 qwordregister1 to qwordregister2 0100 1R0B : 0001 0011 : 11 qwordreg1
qwordreg2

 memory to register 0100 0RXB : 0001 001w : mod reg r/m

 memory to qwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m

 register to memory 0100 0RXB : 0001 000w : mod reg r/m

 qwordregister to memory 0100 1RXB : 0001 0001 : mod qwordreg r/m

 immediate to register 0100 000B : 1000 00sw : 11 010 reg :
immediate

 immediate to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg :
imm32

 immediate to qwordregister 0100 1R0B : 1000 0011 : 11 010 qwordreg :
imm8

 immediate to AL, AX, or EAX 0001 010w : immediate data

Vol. 2B B-25

INSTRUCTION FORMATS AND ENCODINGS

 immediate to RAX 0100 1000 : 0000 0101 : imm32

 immediate to memory 0100 00XB : 1000 00sw : mod 010 r/m :
immediate

 immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m :
imm32

 immediate8 to memory64 0100 10XB : 1000 0031 : mod 010 r/m : imm8

ADD – Add

 register1 to register2 0100 0R0B : 0000 000w : 11 reg1 reg2

 qwordregister1 to qwordregister2 0100 1R0B 0000 0000 : 11 qwordreg1
qwordreg2

 register2 to register1 0100 0R0B : 0000 001w : 11 reg1 reg2

 qwordregister1 to qwordregister2 0100 1R0B 0000 0010 : 11 qwordreg1
qwordreg2

 memory to register 0100 0RXB : 0000 001w : mod reg r/m

 memory64 to qwordregister 0100 1RXB : 0000 0000 : mod qwordreg r/m

 register to memory 0100 0RXB : 0000 000w : mod reg r/m

 qwordregister to memory64 0100 1RXB : 0000 0011 : mod qwordreg r/m

 immediate to register 0100 0000B : 1000 00sw : 11 000 reg :
immediate data

 immediate32 to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg :
imm

 immediate to AL, AX, or EAX 0000 010w : immediate8

 immediate to RAX 0100 1000 : 0000 0101 : imm32

 immediate to memory 0100 00XB : 1000 00sw : mod 000 r/m :
immediate

 immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m :
imm32

 immediate8 to memory64 0100 10XB : 1000 0011 : mod 010 r/m : imm8

AND – Logical AND

 register1 to register2 0100 0R0B 0010 000w : 11 reg1 reg2

 qwordregister1 to qwordregister2 0100 1R0B 0010 0001 : 11 qwordreg1
qwordreg2

 register2 to register1 0100 0R0B 0010 001w : 11 reg1 reg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-26 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 register1 to register2 0100 1R0B 0010 0011 : 11 qwordreg1
qwordreg2

 memory to register 0100 0RXB 0010 001w : mod reg r/m

 memory64 to qwordregister 0100 1RXB : 0010 0011 : mod qwordreg r/m

 register to memory 0100 0RXB : 0010 000w : mod reg r/m

 qwordregister to memory64 0100 1RXB : 0010 0001 : mod qwordreg r/m

 immediate to register 0100 000B : 1000 00sw : 11 100 reg :
immediate

 immediate32 to qwordregister 0100 100B 1000 0001 : 11 100 qwordreg :
imm32

 immediate to AL, AX, or EAX 0010 010w : immediate

 immediate32 to RAX 0100 1000 0010 1001 : imm32

 immediate to memory 0100 00XB : 1000 00sw : mod 100 r/m :
immediate

 immediate32 to memory64 0100 10XB : 1000 0001 : mod 100 r/m :
immediate32

 immediate8 to memory64 0100 10XB : 1000 0011 : mod 100 r/m :
imm8

BSF – Bit Scan Forward

 register1, register2 0100 0R0B 0000 1111 : 1011 1100 : 11 reg1
reg2

 qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1100 : 11
qwordreg1 qwordreg2

 memory, register 0100 0RXB 0000 1111 : 1011 1100 : mod reg
r/m

 memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1100 : mod
qwordreg r/m

BSR – Bit Scan Reverse

 register1, register2 0100 0R0B 0000 1111 : 1011 1101 : 11 reg1
reg2

 qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1101 : 11
qwordreg1 qwordreg2

 memory, register 0100 0RXB 0000 1111 : 1011 1101 : mod reg
r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-27

INSTRUCTION FORMATS AND ENCODINGS

 memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1101 : mod
qwordreg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BSWAP – Byte Swap 0100 100B 0000 1111 : 1100 1 qwordreg

BT – Bit Test

 register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 100
reg: imm8

 qwordregister, immediate8 0100 100B 1111 : 1011 1010 : 11 100
qwordreg: imm8 data

 memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
100 r/m : imm8

 memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
100 r/m : imm8 data

 register1, register2 0100 0R0B 0000 1111 : 1010 0011 : 11 reg2
reg1

 qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 0011 : 11
qwordreg2 qwordreg1

 memory, reg 0100 0RXB 0000 1111 : 1010 0011 : mod reg
r/m

 memory, qwordreg 0100 1RXB 0000 1111 : 1010 0011 : mod
qwordreg r/m

BTC – Bit Test and Complement

 register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 111
reg: imm8

 qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 111
qwordreg: imm8

 memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
111 r/m : imm8

 memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
111 r/m : imm8

 register1, register2 0100 0R0B 0000 1111 : 1011 1011 : 11 reg2
reg1

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-28 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1011 : 11
qwordreg2 qwordreg1

 memory, register 0100 0RXB 0000 1111 : 1011 1011 : mod reg
r/m

 memory, qwordreg 0100 1RXB 0000 1111 : 1011 1011 : mod
qwordreg r/m

BTR – Bit Test and Reset

 register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 110
reg: imm8

 qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 110
qwordreg: imm8

 memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
110 r/m : imm8

 memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
110 r/m : imm8

 register1, register2 0100 0R0B 0000 1111 : 1011 0011 : 11 reg2
reg1

 qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 0011 : 11
qwordreg2 qwordreg1

 memory, register 0100 0RXB 0000 1111 : 1011 0011 : mod reg
r/m

 memory64, qwordreg 0100 1RXB 0000 1111 : 1011 0011 : mod
qwordreg r/m

BTS – Bit Test and Set

 register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101
reg: imm8

 qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 101
qwordreg: imm8

 memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod
101 r/m : imm8

 memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod
101 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-29

INSTRUCTION FORMATS AND ENCODINGS

 register1, register2 0100 0R0B 0000 1111 : 1010 1011 : 11 reg2
reg1

 qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 1011 : 11
qwordreg2 qwordreg1

 memory, register 0100 0RXB 0000 1111 : 1010 1011 : mod reg
r/m

 memory64, qwordreg 0100 1RXB 0000 1111 : 1010 1011 : mod
qwordreg r/m

CALL – Call Procedure (in same segment)

 direct 1110 1000 : displacement32

 register indirect 0100 WR00w 1111 1111 : 11 010 reg

 memory indirect 0100 W0XBw 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

 indirect 1111 1111 : mod 011 r/m

 indirect 0100 10XB 0100 1000 1111 1111 : mod 011
r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword+ 1001 1001

CDQE – RAX, Sign-Extend of EAX 0100 1000 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

 register1 with register2 0100 0R0B 0011 100w : 11 reg1 reg2

 qwordregister1 with qwordregister2 0100 1R0B 0011 1001 : 11 qwordreg1
qwordreg2

 register2 with register1 0100 0R0B 0011 101w : 11 reg1 reg2

 qwordregister2 with qwordregister1 0100 1R0B 0011 101w : 11 qwordreg1
qwordreg2

 memory with register 0100 0RXB 0011 100w : mod reg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-30 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 memory64 with qwordregister 0100 1RXB 0011 1001 : mod qwordreg r/m

 register with memory 0100 0RXB 0011 101w : mod reg r/m

 qwordregister with memory64 0100 1RXB 0011 101w1 : mod qwordreg r/m

 immediate with register 0100 000B 1000 00sw : 11 111 reg : imm

 immediate32 with qwordregister 0100 100B 1000 0001 : 11 111 qwordreg :
imm64

 immediate with AL, AX, or EAX 0011 110w : imm

 immediate32 with RAX 0100 1000 0011 1101 : imm32

 immediate with memory 0100 00XB 1000 00sw : mod 111 r/m : imm

 immediate32 with memory64 0100 1RXB 1000 0001 : mod 111 r/m : imm64

 immediate8 with memory64 0100 1RXB 1000 0011 : mod 111 r/m : imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ –
Compare String Operands

compare string operands [X at DS:(E)SI with Y
at ES:(E)DI]

1010 011w

qword at address RSI with qword at address
RDI

0100 1000 1010 0111

CMPXCHG – Compare and Exchange

 register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

 byteregister1, byteregister2 0100 000B 0000 1111 : 1011 0000 : 11
bytereg2 reg1

 qwordregister1, qwordregister2 0100 100B 0000 1111 : 1011 0001 : 11
qwordreg2 reg1

 memory, register 0000 1111 : 1011 000w : mod reg r/m

 memory8, byteregister 0100 00XB 0000 1111 : 1011 0000 : mod
bytereg r/m

 memory64, qwordregister 0100 10XB 0000 1111 : 1011 0001 : mod
qwordreg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CQO – Sign-Extend RAX 0100 1000 1001 1001

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-31

INSTRUCTION FORMATS AND ENCODINGS

DEC – Decrement by 1

 register 0100 000B 1111 111w : 11 001 reg

 qwordregister 0100 100B 1111 1111 : 11 001 qwordreg

 memory 0100 00XB 1111 111w : mod 001 r/m

 memory64 0100 10XB 1111 1111 : mod 001 r/m

DIV – Unsigned Divide

 AL, AX, or EAX by register 0100 000B 1111 011w : 11 110 reg

 Divide RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 110 qwordreg

 AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 110 r/m

 Divide RDX:RAX by memory64 0100 10XB 1111 0111 : mod 110 r/m

ENTER – Make Stack Frame for High Level
Procedure

1100 1000 : 16-bit displacement : 8-bit level
(L)

HLT – Halt 1111 0100

IDIV – Signed Divide

 AL, AX, or EAX by register 0100 000B 1111 011w : 11 111 reg

 RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 111 qwordreg

 AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 111 r/m

 RDX:RAX by memory64 0100 10XB 1111 0111 : mod 111 r/m

IMUL – Signed Multiply

 AL, AX, or EAX with register 0100 000B 1111 011w : 11 101 reg

 RDX:RAX <- RAX with qwordregister 0100 100B 1111 0111 : 11 101 qwordreg

 AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 101 r/m

 RDX:RAX <- RAX with memory64 0100 10XB 1111 0111 : mod 101 r/m

 register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

qwordregister1 <- qwordregister1 with
qwordregister2

0100 1R0B 0000 1111 : 1010 1111 : 11 :
qwordreg1 qwordreg2

 register with memory 0100 0RXB 0000 1111 : 1010 1111 : mod reg
r/m

qwordregister <- qwordregister
withmemory64

0100 1RXB 0000 1111 : 1010 1111 : mod
qwordreg r/m

register1 with immediate to register2 0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-32 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

qwordregister1 <- qwordregister2 with sign-
extended immediate8

0100 1R0B 0110 1011 : 11 qwordreg1
qwordreg2 : imm8

qwordregister1 <- qwordregister2 with
immediate32

0100 1R0B 0110 1001 : 11 qwordreg1
qwordreg2 : imm32

memory with immediate to register 0100 0RXB 0110 10s1 : mod reg r/m : imm

qwordregister <- memory64 with sign-
extended immediate8

0100 1RXB 0110 1011 : mod qwordreg r/m :
imm8

qwordregister <- memory64 with
immediate32

0100 1RXB 0110 1001 : mod qwordreg r/m :
imm32

IN – Input From Port

 fixed port 1110 010w : port number

 variable port 1110 110w

INC – Increment by 1

 reg 0100 000B 1111 111w : 11 000 reg

 qwordreg 0100 100B 1111 1111 : 11 000 qwordreg

 memory 0100 00XB 1111 111w : mod 000 r/m

 memory64 0100 10XB 1111 1111 : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

IRETO – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

displacements (excluding 16-bit relative
offsets)

0000 1111 : 1000 tttn : displacement32

JCXZ/JECXZ – Jump on CX/ECX Zero

Address-size prefix differentiates JCXZ and
JECXZ

1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-33

INSTRUCTION FORMATS AND ENCODINGS

 short 1110 1011 : 8-bit displacement

 direct 1110 1001 : displacement32

 register indirect 0100 W00Bw : 1111 1111 : 11 100 reg

 memory indirect 0100 W0XBw : 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

 indirect intersegment 0100 00XB : 1111 1111 : mod 101 r/m

 64-bit indirect intersegment 0100 10XB : 1111 1111 : mod 101 r/m

LAR – Load Access Rights Byte

from register 0100 0R0B : 0000 1111 : 0000 0010 : 11
reg1 reg2

from dwordregister to qwordregister, masked
by 00FxFF00H

0100 WR0B : 0000 1111 : 0000 0010 : 11
qwordreg1 dwordreg2

from memory 0100 0RXB : 0000 1111 : 0000 0010 : mod
reg r/m

from memory32 to qwordregister, masked by
00FxFF00H

0100 WRXB 0000 1111 : 0000 0010 : mod
r/m

LEA – Load Effective Address

 in wordregister/dwordregister 0100 0RXB : 1000 1101 : modA reg r/m

 in qwordregister 0100 1RXB : 1000 1101 : modA qwordreg r/m

LEAVE – High Level Procedure Exit 1100 1001

LFS – Load Pointer to FS

FS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0100 : modA
reg r/m

FS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0100 : modA
qwordreg r/m

LGDT – Load Global Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA
010 r/m

LGS – Load Pointer to GS

GS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0101 : modA
reg r/m

GS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0101 : modA
qwordreg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-34 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

LIDT – Load Interrupt Descriptor Table
Register

0100 10XB : 0000 1111 : 0000 0001 : modA
011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0100 000B : 0000 1111 : 0000 0000 : 11 010
reg

 LDTR from memory 0100 00XB :0000 1111 : 0000 0000 : mod
010 r/m

LMSW – Load Machine Status Word

 from register 0100 000B : 0000 1111 : 0000 0001 : 11 110
reg

 from memory 0100 00XB :0000 1111 : 0000 0001 : mod
110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD/LODSQ – Load
String Operand

 at DS:(E)SI to AL/EAX/EAX 1010 110w

 at (R)SI to RAX 0100 1000 1010 1101

LOOP – Loop Count

if count != 0, 8-bit displacement 1110 0010

if count !=0, RIP + 8-bit displacement sign-
extended to 64-bits

0100 1000 1110 0010

LOOPE – Loop Count while Zero/Equal

if count != 0 & ZF =1, 8-bit displacement 1110 0001

if count !=0 & ZF = 1, RIP + 8-bit displacement
sign-extended to 64-bits

0100 1000 1110 0001

LOOPNE/LOOPNZ – Loop Count while not
Zero/Equal

if count != 0 & ZF = 0, 8-bit displacement 1110 0000

if count !=0 & ZF = 0, RIP + 8-bit displacement
sign-extended to 64-bits

0100 1000 1110 0000

LSL – Load Segment Limit

 from register 0000 1111 : 0000 0011 : 11 reg1 reg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-35

INSTRUCTION FORMATS AND ENCODINGS

 from qwordregister 0100 1R00 0000 1111 : 0000 0011 : 11
qwordreg1 reg2

 from memory16 0000 1111 : 0000 0011 : mod reg r/m

 from memory64 0100 1RXB 0000 1111 : 0000 0011 : mod
qwordreg r/m

LSS – Load Pointer to SS

 SS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0010 : modA
reg r/m

 SS:r64 with far pointer from memory 0100 1WXB : 0000 1111 : 1011 0010 : modA
qwordreg r/m

LTR – Load Task Register

 from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011
reg

 from memory 0100 00XB : 0000 1111 : 0000 0000 : mod
011 r/m

MOV – Move Data

 register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2

 qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1
qwordreg2

 register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2

 qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1
qwordreg2

 memory to reg 0100 0RXB : 1000 101w : mod reg r/m

 memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m

 reg to memory 0100 0RXB : 1000 100w : mod reg r/m

 qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m

 immediate to register 0100 000B : 1100 011w : 11 000 reg : imm

 immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg :
imm32

immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm

immediate64 to qwordregister (alternate
encoding)

0100 100B 1011 1000 reg : imm64

 immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-36 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32

 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement

 memory64 to RAX 0100 1000 1010 0001 : displacement64

 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement

 RAX to memory64 0100 1000 1010 0011 : displacement64

MOV – Move to/from Control Registers

 CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee
reg (eee = CR#)

 CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee
qwordreg (Reee = CR#)

 register from CR0-CR4 0100 0R0B : 0000 1111 : 0010 0000 : 11 eee
reg (eee = CR#)

 qwordregister from CRx 0100 1R0B 0000 1111 : 0010 0000 : 11 eee
qwordreg (Reee = CR#)

MOV – Move to/from Debug Registers

 DR0-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg (eee =
DR#)

 DR0-DR7 from quadregister 0100 10OB 0000 1111 : 0010 0011 : 11 eee
reg (eee = DR#)

 register from DR0-DR7 0000 1111 : 0010 0001 : 11 eee reg (eee =
DR#)

 quadregister from DR0-DR7 0100 10OB 0000 1111 : 0010 0001 : 11 eee
quadreg (eee = DR#)

MOV – Move to/from Segment Registers

register to segment register 0100 W00Bw : 1000 1110 : 11 sreg reg

register to SS 0100 000B : 1000 1110 : 11 sreg reg

memory to segment register 0100 00XB : 1000 1110 : mod sreg r/m

memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m

memory to SS 0100 00XB : 1000 1110 : mod sreg r/m

segment register to register 0100 000B : 1000 1100 : 11 sreg reg

segment register to qwordregister (zero
extended)

0100 100B 1000 1100 : 11 sreg qwordreg

segment register to memory 0100 00XB : 1000 1100 : mod sreg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-37

INSTRUCTION FORMATS AND ENCODINGS

segment register to memory64 (zero
extended)

0100 10XB 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

 memory to register 0100 0RXB : 0000 1111 : 0011 1000:1111
0000 : mod reg r/m

 memory64 to qwordregister 0100 1RXB : 0000 1111 : 0011 1000:1111
0000 : mod reg r/m

 register to memory 0100 0RXB :0000 1111 : 0011 1000:1111
0001 : mod reg r/m

 qwordregister to memory64 0100 1RXB :0000 1111 : 0011 1000:1111
0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ –
Move Data from String to String

 Move data from string to string 1010 010w

 Move data from string to string (qword) 0100 1000 1010 0101

MOVSX/MOVSXD – Move with Sign-Extend

 register2 to register1 0100 0R0B : 0000 1111 : 1011 111w : 11
reg1 reg2

 byteregister2 to qwordregister1 (sign-
extend)

0100 1R0B 0000 1111 : 1011 1110 : 11
quadreg1 bytereg2

 wordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 1111 : 11
quadreg1 wordreg2

 dwordregister2 to qwordregister1 0100 1R0B 0110 0011 : 11 quadreg1
dwordreg2

 memory to register 0100 0RXB : 0000 1111 : 1011 111w : mod
reg r/m

 memory8 to qwordregister (sign-extend) 0100 1RXB 0000 1111 : 1011 1110 : mod
qwordreg r/m

 memory16 to qwordregister 0100 1RXB 0000 1111 : 1011 1111 : mod
qwordreg r/m

 memory32 to qwordregister 0100 1RXB 0110 0011 : mod qwordreg r/m

MOVZX – Move with Zero-Extend

 register2 to register1 0100 0R0B : 0000 1111 : 1011 011w : 11
reg1 reg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-38 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 dwordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 0111 : 11
qwordreg1 dwordreg2

 memory to register 0100 0RXB : 0000 1111 : 1011 011w : mod
reg r/m

 memory32 to qwordregister 0100 1RXB 0000 1111 : 1011 0111 : mod
qwordreg r/m

MUL – Unsigned Multiply

 AL, AX, or EAX with register 0100 000B : 1111 011w : 11 100 reg

 RAX with qwordregister (to RDX:RAX) 0100 100B 1111 0111 : 11 100 qwordreg

 AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 100 r/m

 RAX with memory64 (to RDX:RAX) 0100 10XB 1111 0111 : mod 100 r/m

NEG – Two's Complement Negation

 register 0100 000B : 1111 011w : 11 011 reg

 qwordregister 0100 100B 1111 0111 : 11 011 qwordreg

 memory 0100 00XB : 1111 011w : mod 011 r/m

 memory64 0100 10XB 1111 0111 : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

 register 0100 000B : 1111 011w : 11 010 reg

 qwordregister 0100 000B 1111 0111 : 11 010 qwordreg

 memory 0100 00XB : 1111 011w : mod 010 r/m

 memory64 0100 1RXB 1111 0111 : mod 010 r/m

OR – Logical Inclusive OR

 register1 to register2 0000 100w : 11 reg1 reg2

 byteregister1 to byteregister2 0100 0R0B 0000 1000 : 11 bytereg1
bytereg2

 qwordregister1 to qwordregister2 0100 1R0B 0000 1001 : 11 qwordreg1
qwordreg2

 register2 to register1 0000 101w : 11 reg1 reg2

 byteregister2 to byteregister1 0100 0R0B 0000 1010 : 11 bytereg1
bytereg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-39

INSTRUCTION FORMATS AND ENCODINGS

 qwordregister2 to qwordregister1 0100 0R0B 0000 1011 : 11 qwordreg1
qwordreg2

 memory to register 0000 101w : mod reg r/m

 memory8 to byteregister 0100 0RXB 0000 1010 : mod bytereg r/m

 memory8 to qwordregister 0100 0RXB 0000 1011 : mod qwordreg r/m

 register to memory 0000 100w : mod reg r/m

 byteregister to memory8 0100 0RXB 0000 1000 : mod bytereg r/m

 qwordregister to memory64 0100 1RXB 0000 1001 : mod qwordreg r/m

 immediate to register 1000 00sw : 11 001 reg : imm

 immediate8 to byteregister 0100 000B 1000 0000 : 11 001 bytereg :
imm8

 immediate32 to qwordregister 0100 000B 1000 0001 : 11 001 qwordreg :
imm32

 immediate8 to qwordregister 0100 000B 1000 0011 : 11 001 qwordreg :
imm8

 immediate to AL, AX, or EAX 0000 110w : imm

 immediate64 to RAX 0100 1000 0000 1101 : imm64

 immediate to memory 1000 00sw : mod 001 r/m : imm

 immediate8 to memory8 0100 00XB 1000 0000 : mod 001 r/m : imm8

 immediate32 to memory64 0100 00XB 1000 0001 : mod 001 r/m : imm32

 immediate8 to memory64 0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT – Output to Port

 fixed port 1110 011w : port number

 variable port 1110 111w

OUTS – Output to DX Port

 output to DX Port 0110 111w

POP – Pop a Value from the Stack

 wordregister 0101 0101 : 0100 000B : 1000 1111 : 11 000
reg16

 qwordregister 0100 W00BS : 1000 1111 : 11 000 reg64

 wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 1 reg16

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-40 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 qwordregister (alternate encoding) 0100 W00B : 0101 1 reg64

 memory64 0100 W0XBS : 1000 1111 : mod 000 r/m

 memory16 0101 0101 : 0100 00XB 1000 1111 : mod
000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

 segment register FS, GS 0000 1111: 10 sreg3 001

POPF/POPFQ – Pop Stack into FLAGS/RFLAGS
Register

 pop stack to FLAGS register 0101 0101 : 1001 1101

 pop Stack to RFLAGS register 0100 1000 1001 1101

PUSH – Push Operand onto the Stack

 wordregister 0101 0101 : 0100 000B : 1111 1111 : 11 110
reg16

 qwordregister 0100 W00BS : 1111 1111 : 11 110 reg64

 wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 0 reg16

 qwordregister (alternate encoding) 0100 W00BS : 0101 0 reg64

 memory16 0101 0101 : 0100 000B : 1111 1111 : mod
110 r/m

 memory64 0100 W00BS : 1111 1111 : mod 110 r/m

 immediate8 0110 1010 : imm8

 immediate16 0101 0101 : 0110 1000 : imm16

 immediate64 0110 1000 : imm64

PUSH – Push Segment Register onto the
Stack

 segment register FS,GS 0000 1111: 10 sreg3 000

PUSHF/PUSHFD – Push Flags Register onto
the Stack

1001 1100

RCL – Rotate thru Carry Left

 register by 1 0100 000B : 1101 000w : 11 010 reg

 qwordregister by 1 0100 100B 1101 0001 : 11 010 qwordreg

 memory by 1 0100 00XB : 1101 000w : mod 010 r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-41

INSTRUCTION FORMATS AND ENCODINGS

 memory64 by 1 0100 10XB 1101 0001 : mod 010 r/m

 register by CL 0100 000B : 1101 001w : 11 010 reg

 qwordregister by CL 0100 100B 1101 0011 : 11 010 qwordreg

 memory by CL 0100 00XB : 1101 001w : mod 010 r/m

 memory64 by CL 0100 10XB 1101 0011 : mod 010 r/m

 register by immediate count 0100 000B : 1100 000w : 11 010 reg : imm

 qwordregister by immediate count 0100 100B 1100 0001 : 11 010 qwordreg :
imm8

 memory by immediate count 0100 00XB : 1100 000w : mod 010 r/m : imm

 memory64 by immediate count 0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR – Rotate thru Carry Right

 register by 1 0100 000B : 1101 000w : 11 011 reg

 qwordregister by 1 0100 100B 1101 0001 : 11 011 qwordreg

 memory by 1 0100 00XB : 1101 000w : mod 011 r/m

 memory64 by 1 0100 10XB 1101 0001 : mod 011 r/m

 register by CL 0100 000B : 1101 001w : 11 011 reg

 qwordregister by CL 0100 000B 1101 0010 : 11 011 qwordreg

 memory by CL 0100 00XB : 1101 001w : mod 011 r/m

 memory64 by CL 0100 10XB 1101 0011 : mod 011 r/m

 register by immediate count 0100 000B : 1100 000w : 11 011 reg : imm8

 qwordregister by immediate count 0100 100B 1100 0001 : 11 011 qwordreg :
imm8

 memory by immediate count 0100 00XB : 1100 000w : mod 011 r/m : imm8

 memory64 by immediate count 0100 10XB 1100 0001 : mod 011 r/m : imm8

RDMSR – Read from Model-Specific Register

 load ECX-specified register into EDX:EAX 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring
Counters

load ECX-specified performance counter into
EDX:EAX

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-42 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 read time-stamp counter into EDX:EAX 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and
Processor ID

0000 1111 : 0000 0001: 1111 1001

REP INS – Input String

REP LODS – Load String

REP MOVS – Move String

REP OUTS – Output String

REP STOS – Store String

REPE CMPS – Compare String

REPE SCAS – Scan String

REPNE CMPS – Compare String

REPNE SCAS – Scan String

RET – Return from Procedure (to same
segment)

 no argument 1100 0011

 adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other
segment)

 intersegment 1100 1011

 adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

 register by 1 0100 000B 1101 000w : 11 000 reg

 byteregister by 1 0100 000B 1101 0000 : 11 000 bytereg

 qwordregister by 1 0100 100B 1101 0001 : 11 000 qwordreg

 memory by 1 0100 00XB 1101 000w : mod 000 r/m

 memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m

 memory64 by 1 0100 10XB 1101 0001 : mod 000 r/m

 register by CL 0100 000B 1101 001w : 11 000 reg

 byteregister by CL 0100 000B 1101 0010 : 11 000 bytereg

 qwordregister by CL 0100 100B 1101 0011 : 11 000 qwordreg

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-43

INSTRUCTION FORMATS AND ENCODINGS

 memory by CL 0100 00XB 1101 001w : mod 000 r/m

 memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m

 memory64 by CL 0100 10XB 1101 0011 : mod 000 r/m

 register by immediate count 1100 000w : 11 000 reg : imm8

 byteregister by immediate count 0100 000B 1100 0000 : 11 000 bytereg :
imm8

 qwordregister by immediate count 0100 100B 1100 0001 : 11 000 bytereg :
imm8

 memory by immediate count 1100 000w : mod 000 r/m : imm8

 memory8 by immediate count 0100 00XB 1100 0000 : mod 000 r/m : imm8

 memory64 by immediate count 0100 10XB 1100 0001 : mod 000 r/m : imm8

ROR – Rotate Right

 register by 1 0100 000B 1101 000w : 11 001 reg

 byteregister by 1 0100 000B 1101 0000 : 11 001 bytereg

 qwordregister by 1 0100 100B 1101 0001 : 11 001 qwordreg

 memory by 1 0100 00XB 1101 000w : mod 001 r/m

 memory8 by 1 0100 00XB 1101 0000 : mod 001 r/m

 memory64 by 1 0100 10XB 1101 0001 : mod 001 r/m

 register by CL 0100 000B 1101 001w : 11 001 reg

 byteregister by CL 0100 000B 1101 0010 : 11 001 bytereg

 qwordregister by CL 0100 100B 1101 0011 : 11 001 qwordreg

 memory by CL 0100 00XB 1101 001w : mod 001 r/m

 memory8 by CL 0100 00XB 1101 0010 : mod 001 r/m

 memory64 by CL 0100 10XB 1101 0011 : mod 001 r/m

 register by immediate count 0100 000B 1100 000w : 11 001 reg : imm8

 byteregister by immediate count 0100 000B 1100 0000 : 11 001 reg : imm8

 qwordregister by immediate count 0100 100B 1100 0001 : 11 001 qwordreg :
imm8

 memory by immediate count 0100 00XB 1100 000w : mod 001 r/m : imm8

 memory8 by immediate count 0100 00XB 1100 0000 : mod 001 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-44 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 memory64 by immediate count 0100 10XB 1100 0001 : mod 001 r/m : imm8

RSM – Resume from System Management
Mode

0000 1111 : 1010 1010

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

 register by 1 0100 000B 1101 000w : 11 111 reg

 byteregister by 1 0100 000B 1101 0000 : 11 111 bytereg

 qwordregister by 1 0100 100B 1101 0001 : 11 111 qwordreg

 memory by 1 0100 00XB 1101 000w : mod 111 r/m

 memory8 by 1 0100 00XB 1101 0000 : mod 111 r/m

 memory64 by 1 0100 10XB 1101 0001 : mod 111 r/m

 register by CL 0100 000B 1101 001w : 11 111 reg

 byteregister by CL 0100 000B 1101 0010 : 11 111 bytereg

 qwordregister by CL 0100 100B 1101 0011 : 11 111 qwordreg

 memory by CL 0100 00XB 1101 001w : mod 111 r/m

 memory8 by CL 0100 00XB 1101 0010 : mod 111 r/m

 memory64 by CL 0100 10XB 1101 0011 : mod 111 r/m

 register by immediate count 0100 000B 1100 000w : 11 111 reg : imm8

 byteregister by immediate count 0100 000B 1100 0000 : 11 111 bytereg :
imm8

 qwordregister by immediate count 0100 100B 1100 0001 : 11 111 qwordreg :
imm8

 memory by immediate count 0100 00XB 1100 000w : mod 111 r/m : imm8

 memory8 by immediate count 0100 00XB 1100 0000 : mod 111 r/m : imm8

 memory64 by immediate count 0100 10XB 1100 0001 : mod 111 r/m : imm8

SBB – Integer Subtraction with Borrow

 register1 to register2 0100 0R0B 0001 100w : 11 reg1 reg2

 byteregister1 to byteregister2 0100 0R0B 0001 1000 : 11 bytereg1
bytereg2

 quadregister1 to quadregister2 0100 1R0B 0001 1001 : 11 quadreg1
quadreg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-45

INSTRUCTION FORMATS AND ENCODINGS

 register2 to register1 0100 0R0B 0001 101w : 11 reg1 reg2

 byteregister2 to byteregister1 0100 0R0B 0001 1010 : 11 reg1 bytereg2

 byteregister2 to byteregister1 0100 1R0B 0001 1011 : 11 reg1 bytereg2

 memory to register 0100 0RXB 0001 101w : mod reg r/m

 memory8 to byteregister 0100 0RXB 0001 1010 : mod bytereg r/m

 memory64 to byteregister 0100 1RXB 0001 1011 : mod quadreg r/m

 register to memory 0100 0RXB 0001 100w : mod reg r/m

 byteregister to memory8 0100 0RXB 0001 1000 : mod reg r/m

 quadregister to memory64 0100 1RXB 0001 1001 : mod reg r/m

 immediate to register 0100 000B 1000 00sw : 11 011 reg : imm

 immediate8 to byteregister 0100 000B 1000 0000 : 11 011 bytereg :
imm8

 immediate32 to qwordregister 0100 100B 1000 0001 : 11 011 qwordreg :
imm32

 immediate8 to qwordregister 0100 100B 1000 0011 : 11 011 qwordreg :
imm8

 immediate to AL, AX, or EAX 0100 000B 0001 110w : imm

 immediate32 to RAL 0100 1000 0001 1101 : imm32

 immediate to memory 0100 00XB 1000 00sw : mod 011 r/m : imm

 immediate8 to memory8 0100 00XB 1000 0000 : mod 011 r/m : imm8

 immediate32 to memory64 0100 10XB 1000 0001 : mod 011 r/m : imm32

 immediate8 to memory64 0100 10XB 1000 0011 : mod 011 r/m : imm8

SCAS/SCASB/SCASW/SCASD – Scan String

 scan string 1010 111w

 scan string (compare AL with byte at RDI) 0100 1000 1010 1110

 scan string (compare RAX with qword at RDI) 0100 1000 1010 1111

SETcc – Byte Set on Condition

 register 0100 000B 0000 1111 : 1001 tttn : 11 000
reg

 register 0100 0000 0000 1111 : 1001 tttn : 11 000
reg

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-46 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 memory 0100 00XB 0000 1111 : 1001 tttn : mod 000
r/m

 memory 0100 0000 0000 1111 : 1001 tttn : mod 000
r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

 register by 1 0100 000B 1101 000w : 11 100 reg

 byteregister by 1 0100 000B 1101 0000 : 11 100 bytereg

 qwordregister by 1 0100 100B 1101 0001 : 11 100 qwordreg

 memory by 1 0100 00XB 1101 000w : mod 100 r/m

 memory8 by 1 0100 00XB 1101 0000 : mod 100 r/m

 memory64 by 1 0100 10XB 1101 0001 : mod 100 r/m

 register by CL 0100 000B 1101 001w : 11 100 reg

 byteregister by CL 0100 000B 1101 0010 : 11 100 bytereg

 qwordregister by CL 0100 100B 1101 0011 : 11 100 qwordreg

 memory by CL 0100 00XB 1101 001w : mod 100 r/m

 memory8 by CL 0100 00XB 1101 0010 : mod 100 r/m

 memory64 by CL 0100 10XB 1101 0011 : mod 100 r/m

 register by immediate count 0100 000B 1100 000w : 11 100 reg : imm8

 byteregister by immediate count 0100 000B 1100 0000 : 11 100 bytereg :
imm8

 quadregister by immediate count 0100 100B 1100 0001 : 11 100 quadreg :
imm8

 memory by immediate count 0100 00XB 1100 000w : mod 100 r/m : imm8

 memory8 by immediate count 0100 00XB 1100 0000 : mod 100 r/m : imm8

 memory64 by immediate count 0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD – Double Precision Shift Left

 register by immediate count 0100 0R0B 0000 1111 : 1010 0100 : 11 reg2
reg1 : imm8

 qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 0100 : 11
qworddreg2 qwordreg1 : imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-47

INSTRUCTION FORMATS AND ENCODINGS

 memory by immediate count 0100 0RXB 0000 1111 : 1010 0100 : mod reg
r/m : imm8

 memory64 by immediate8 0100 1RXB 0000 1111 : 1010 0100 : mod
qwordreg r/m : imm8

 register by CL 0100 0R0B 0000 1111 : 1010 0101 : 11 reg2
reg1

 quadregister by CL 0100 1R0B 0000 1111 : 1010 0101 : 11
quadreg2 quadreg1

 memory by CL 0100 00XB 0000 1111 : 1010 0101 : mod reg
r/m

 memory64 by CL 0100 1RXB 0000 1111 : 1010 0101 : mod
quadreg r/m

SHR – Shift Right

 register by 1 0100 000B 1101 000w : 11 101 reg

 byteregister by 1 0100 000B 1101 0000 : 11 101 bytereg

 qwordregister by 1 0100 100B 1101 0001 : 11 101 qwordreg

 memory by 1 0100 00XB 1101 000w : mod 101 r/m

 memory8 by 1 0100 00XB 1101 0000 : mod 101 r/m

 memory64 by 1 0100 10XB 1101 0001 : mod 101 r/m

 register by CL 0100 000B 1101 001w : 11 101 reg

 byteregister by CL 0100 000B 1101 0010 : 11 101 bytereg

 qwordregister by CL 0100 100B 1101 0011 : 11 101 qwordreg

 memory by CL 0100 00XB 1101 001w : mod 101 r/m

 memory8 by CL 0100 00XB 1101 0010 : mod 101 r/m

 memory64 by CL 0100 10XB 1101 0011 : mod 101 r/m

 register by immediate count 0100 000B 1100 000w : 11 101 reg : imm8

 byteregister by immediate count 0100 000B 1100 0000 : 11 101 reg : imm8

 qwordregister by immediate count 0100 100B 1100 0001 : 11 101 reg : imm8

 memory by immediate count 0100 00XB 1100 000w : mod 101 r/m : imm8

 memory8 by immediate count 0100 00XB 1100 0000 : mod 101 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-48 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 memory64 by immediate count 0100 10XB 1100 0001 : mod 101 r/m : imm8

SHRD – Double Precision Shift Right

 register by immediate count 0100 0R0B 0000 1111 : 1010 1100 : 11 reg2
reg1 : imm8

 qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 1100 : 11
qwordreg2 qwordreg1 : imm8

 memory by immediate count 0100 00XB 0000 1111 : 1010 1100 : mod reg
r/m : imm8

 memory64 by immediate8 0100 1RXB 0000 1111 : 1010 1100 : mod
qwordreg r/m : imm8

 register by CL 0100 000B 0000 1111 : 1010 1101 : 11 reg2
reg1

 qwordregister by CL 0100 1R0B 0000 1111 : 1010 1101 : 11
qwordreg2 qwordreg1

 memory by CL 0000 1111 : 1010 1101 : mod reg r/m

 memory64 by CL 0100 1RXB 0000 1111 : 1010 1101 : mod
qwordreg r/m

SIDT – Store Interrupt Descriptor Table
Register

0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

 to register 0100 000B 0000 1111 : 0000 0000 : 11 000
reg

 to memory 0100 00XB 0000 1111 : 0000 0000 : mod
000 r/m

SMSW – Store Machine Status Word

 to register 0100 000B 0000 1111 : 0000 0001 : 11 100
reg

 to memory 0100 00XB 0000 1111 : 0000 0001 : mod
100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-49

INSTRUCTION FORMATS AND ENCODINGS

STOS/STOSB/STOSW/STOSD/STOSQ – Store
String Data

 store string data 1010 101w

 store string data (RAX at address RDI) 0100 1000 1010 1011

STR – Store Task Register

 to register 0100 000B 0000 1111 : 0000 0000 : 11 001
reg

 to memory 0100 00XB 0000 1111 : 0000 0000 : mod
001 r/m

SUB – Integer Subtraction

 register1 from register2 0100 0R0B 0010 100w : 11 reg1 reg2

 byteregister1 from byteregister2 0100 0R0B 0010 1000 : 11 bytereg1
bytereg2

 qwordregister1 from qwordregister2 0100 1R0B 0010 1000 : 11 qwordreg1
qwordreg2

 register2 from register1 0100 0R0B 0010 101w : 11 reg1 reg2

 byteregister2 from byteregister1 0100 0R0B 0010 1010 : 11 bytereg1
bytereg2

 qwordregister2 from qwordregister1 0100 1R0B 0010 1011 : 11 qwordreg1
qwordreg2

 memory from register 0100 00XB 0010 101w : mod reg r/m

 memory8 from byteregister 0100 0RXB 0010 1010 : mod bytereg r/m

 memory64 from qwordregister 0100 1RXB 0010 1011 : mod qwordreg r/m

 register from memory 0100 0RXB 0010 100w : mod reg r/m

 byteregister from memory8 0100 0RXB 0010 1000 : mod bytereg r/m

 qwordregister from memory8 0100 1RXB 0010 1000 : mod qwordreg r/m

 immediate from register 0100 000B 1000 00sw : 11 101 reg : imm

 immediate8 from byteregister 0100 000B 1000 0000 : 11 101 bytereg :
imm8

 immediate32 from qwordregister 0100 100B 1000 0001 : 11 101 qwordreg :
imm32

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-50 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 immediate8 from qwordregister 0100 100B 1000 0011 : 11 101 qwordreg :
imm8

 immediate from AL, AX, or EAX 0100 000B 0010 110w : imm

 immediate32 from RAX 0100 1000 0010 1101 : imm32

 immediate from memory 0100 00XB 1000 00sw : mod 101 r/m : imm

 immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8

 immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m : imm32

 immediate8 from memory64 0100 10XB 1000 0011 : mod 101 r/m : imm8

SWAPGS – Swap GS Base Register

 GS base register value for value in MSR
C0000102H

0000 1111 0000 0001 [this one
incomplete]

SYSCALL – Fast System Call

 fast call to privilege level 0 system
procedures

0000 1111 0000 0101

SYSRET – Return From Fast System Call

 return from fast system call 0000 1111 0000 0111

TEST – Logical Compare

 register1 and register2 0100 0R0B 1000 010w : 11 reg1 reg2

 byteregister1 and byteregister2 0100 0R0B 1000 0100 : 11 bytereg1
bytereg2

 qwordregister1 and qwordregister2 0100 1R0B 1000 0101 : 11 qwordreg1
qwordreg2

 memory and register 0100 0R0B 1000 010w : mod reg r/m

 memory8 and byteregister 0100 0RXB 1000 0100 : mod bytereg r/m

 memory64 and qwordregister 0100 1RXB 1000 0101 : mod qwordreg r/m

 immediate and register 0100 000B 1111 011w : 11 000 reg : imm

 immediate8 and byteregister 0100 000B 1111 0110 : 11 000 bytereg :
imm8

 immediate32 and qwordregister 0100 100B 1111 0111 : 11 000 bytereg :
imm8

 immediate and AL, AX, or EAX 0100 000B 1010 100w : imm

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-51

INSTRUCTION FORMATS AND ENCODINGS

 immediate32 and RAX 0100 1000 1010 1001 : imm32

 immediate and memory 0100 00XB 1111 011w : mod 000 r/m : imm

 immediate8 and memory8 0100 1000 1111 0110 : mod 000 r/m : imm8

 immediate32 and memory64 0100 1000 1111 0111 : mod 000 r/m : imm32

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

 register 0100 000B 0000 1111 : 0000 0000 : 11 100
reg

 memory 0100 00XB 0000 1111 : 0000 0000 : mod
100 r/m

VERW – Verify a Segment for Writing

 register 0100 000B 0000 1111 : 0000 0000 : 11 101
reg

 memory 0100 00XB 0000 1111 : 0000 0000 : mod
101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data
Cache

0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register

 write EDX:EAX to ECX specified MSR 0000 1111 : 0011 0000

 write RDX[31:0]:RAX[31:0] to RCX specified
MSR

0100 1000 0000 1111 : 0011 0000

XADD – Exchange and Add

 register1, register2 0100 0R0B 0000 1111 : 1100 000w : 11 reg2
reg1

 byteregister1, byteregister2 0100 0R0B 0000 1111 : 1100 0000 : 11
bytereg2 bytereg1

 qwordregister1, qwordregister2 0100 0R0B 0000 1111 : 1100 0001 : 11
qwordreg2 qwordreg1

 memory, register 0100 0RXB 0000 1111 : 1100 000w : mod
reg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-52 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 memory8, bytereg 0100 1RXB 0000 1111 : 1100 0000 : mod
bytereg r/m

 memory64, qwordreg 0100 1RXB 0000 1111 : 1100 0001 : mod
qwordreg r/m

XCHG – Exchange Register/Memory with
Register

 register1 with register2 1000 011w : 11 reg1 reg2

 AX or EAX with register 1001 0 reg

 memory with register 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation

 AL to byte DS:[(E)BX + unsigned AL] 1101 0111

 AL to byte DS:[RBX + unsigned AL] 0100 1000 1101 0111

XOR – Logical Exclusive OR

 register1 to register2 0100 0RXB 0011 000w : 11 reg1 reg2

 byteregister1 to byteregister2 0100 0R0B 0011 0000 : 11 bytereg1
bytereg2

 qwordregister1 to qwordregister2 0100 1R0B 0011 0001 : 11 qwordreg1
qwordreg2

 register2 to register1 0100 0R0B 0011 001w : 11 reg1 reg2

 byteregister2 to byteregister1 0100 0R0B 0011 0010 : 11 bytereg1
bytereg2

 qwordregister2 to qwordregister1 0100 1R0B 0011 0011 : 11 qwordreg1
qwordreg2

 memory to register 0100 0RXB 0011 001w : mod reg r/m

 memory8 to byteregister 0100 0RXB 0011 0010 : mod bytereg r/m

 memory64 to qwordregister 0100 1RXB 0011 0011 : mod qwordreg r/m

 register to memory 0100 0RXB 0011 000w : mod reg r/m

 byteregister to memory8 0100 0RXB 0011 0000 : mod bytereg r/m

 qwordregister to memory8 0100 1RXB 0011 0001 : mod qwordreg r/m

 immediate to register 0100 000B 1000 00sw : 11 110 reg : imm

 immediate8 to byteregister 0100 000B 1000 0000 : 11 110 bytereg :
imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

Vol. 2B B-53

INSTRUCTION FORMATS AND ENCODINGS

B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION
FORMATS AND ENCODINGS

The following table shows formats and encodings introduced by the Pentium
processor family.

 immediate32 to qwordregister 0100 100B 1000 0001 : 11 110 qwordreg :
imm32

 immediate8 to qwordregister 0100 100B 1000 0011 : 11 110 qwordreg :
imm8

 immediate to AL, AX, or EAX 0100 000B 0011 010w : imm

 immediate to RAX 0100 1000 0011 0101 : immediate data

 immediate to memory 0100 00XB 1000 00sw : mod 110 r/m : imm

 immediate8 to memory8 0100 00XB 1000 0000 : mod 110 r/m : imm8

 immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m : imm32

 immediate8 to memory64 0100 10XB 1000 0011 : mod 110 r/m : imm8

Prefix Bytes

 address size 0110 0111

 LOCK 1111 0000

 operand size 0110 0110

 CS segment override 0010 1110

 DS segment override 0011 1110

 ES segment override 0010 0110

 FS segment override 0110 0100

 GS segment override 0110 0101

 SS segment override 0011 0110

Table B-16. Pentium Processor Family Instruction Formats and Encodings,
Non-64-Bit Modes

Instruction and Format Encoding

CMPXCHG8B – Compare and Exchange 8 Bytes

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

B-54 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD
INSTRUCTION EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3
are covered by applying these rules to Table B-19 through Table B-31. Table B-33
lists special encodings (instructions that do not follow the rules below).

1. The REX instruction has no effect:

• On immediates

• If both operands are MMX registers

• On MMX registers and XMM registers

• If an MMX register is encoded in the reg field of the ModR/M byte

2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and
REX.B may be used for encoding the memory operand.

3. If a general-purpose register is encoded in the r/m field of the ModR/M byte,
REX.B may be used for register encoding and REX.W may be used to encode the
64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R
may be used for register encoding. If an XMM register operand is encoded in the
r/m field of the ModR/M byte, REX.B may be used for register encoding.

 EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

Table B-17. Pentium Processor Family Instruction Formats and Encodings, 64-Bit
Mode

Instruction and Format Encoding

CMPXCHG8B/CMPXCHG16B – Compare and
Exchange Bytes

 EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

 RDX:RAX with memory128 0100 10XB 0000 1111 : 1100 0111 : mod
001 r/m

Table B-16. Pentium Processor Family Instruction Formats and Encodings,
Non-64-Bit Modes

Vol. 2B B-55

INSTRUCTION FORMATS AND ENCODINGS

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS
MMX instructions, except the EMMS instruction, use a format similar to the 2-byte
Intel Architecture integer format. Details of subfield encodings within these formats
are presented below.

B.5.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruc-
tion is operating on. When this field is used, it is located in bits 1 and 0 of the second
opcode byte. Table B-18 shows the encoding of the gg field.

B.5.2 MMX Technology and General-Purpose Register Fields
(mmxreg and reg)

When MMX technology registers (mmxreg) are used as operands, they are encoded
in the ModR/M byte in the reg field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1,
and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is
encoded in the R/M field of the ModR/M byte.

B.5.3 MMX Instruction Formats and Encodings Table
Table B-19 shows the formats and encodings of the integer instructions.

Table B-18. Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-19. MMX Instruction Formats and Encodings

Instruction and Format Encoding

EMMS – Empty MMX technology state 0000 1111:01110111

MOVD – Move doubleword

 reg to mmreg 0000 1111:0110 1110: 11 mmxreg reg

 reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

 mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

B-56 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m

MOVQ – Move quadword

 mmxreg2 to mmxreg1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

 mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2

 mem to mmxreg 0000 1111:0110 1111: mod mmxreg r/m

 mem from mmxreg 0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW1 – Pack dword to word data
(signed with saturation)

 mmxreg2 to mmxreg1 0000 1111:0110 1011: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB1 – Pack word to byte data
(signed with saturation)

 mmxreg2 to mmxreg1 0000 1111:0110 0011: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:0110 0011: mod mmxreg r/m

PACKUSWB1 – Pack word to byte data
(unsigned with saturation)

 mmxreg2 to mmxreg1 0000 1111:0110 0111: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:0110 0111: mod mmxreg r/m

PADD – Add with wrap-around

 mmxreg2 to mmxreg1 0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111: 1111 11gg: mod mmxreg r/m

PADDS – Add signed with saturation

 mmxreg2 to mmxreg1 0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS – Add unsigned with saturation

 mmxreg2 to mmxreg1 0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111: 1101 11gg: mod mmxreg r/m

PAND – Bitwise And

 mmxreg2 to mmxreg1 0000 1111:1101 1011: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:1101 1011: mod mmxreg r/m

PANDN – Bitwise AndNot

 mmxreg2 to mmxreg1 0000 1111:1101 1111: 11 mmxreg1 mmxreg2

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Vol. 2B B-57

INSTRUCTION FORMATS AND ENCODINGS

 memory to mmxreg 0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ – Packed compare for equality

 mmxreg1 with mmxreg2 0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

 mmxreg with memory 0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT – Packed compare greater
(signed)

 mmxreg1 with mmxreg2 0000 1111:0110 01gg: 11 mmxreg1 mmxreg2

 mmxreg with memory 0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD – Packed multiply add

 mmxreg2 to mmxreg1 0000 1111:1111 0101: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:1111 0101: mod mmxreg r/m

PMULHUW – Packed multiplication, store
high word (unsigned)

 mmxreg2 to mmxreg1 0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111: 1110 0100: mod mmxreg r/m

PMULHW – Packed multiplication, store
high word

 mmxreg2 to mmxreg1 0000 1111:1110 0101: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:1110 0101: mod mmxreg r/m

PMULLW – Packed multiplication, store low
word

 mmxreg2 to mmxreg1 0000 1111:1101 0101: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:1101 0101: mod mmxreg r/m

POR – Bitwise Or

 mmxreg2 to mmxreg1 0000 1111:1110 1011: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:1110 1011: mod mmxreg r/m

PSLL2 – Packed shift left logical

 mmxreg1 by mmxreg2 0000 1111:1111 00gg: 11 mmxreg1 mmxreg2

 mmxreg by memory 0000 1111:1111 00gg: mod mmxreg r/m

 mmxreg by immediate 0000 1111:0111 00gg: 11 110 mmxreg: imm8
data

PSRA2 – Packed shift right arithmetic

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-58 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 mmxreg1 by mmxreg2 0000 1111:1110 00gg: 11 mmxreg1 mmxreg2

 mmxreg by memory 0000 1111:1110 00gg: mod mmxreg r/m

 mmxreg by immediate 0000 1111:0111 00gg: 11 100 mmxreg: imm8
data

PSRL2 – Packed shift right logical

 mmxreg1 by mmxreg2 0000 1111:1101 00gg: 11 mmxreg1 mmxreg2

 mmxreg by memory 0000 1111:1101 00gg: mod mmxreg r/m

 mmxreg by immediate 0000 1111:0111 00gg: 11 010 mmxreg: imm8
data

PSUB – Subtract with wrap-around

 mmxreg2 from mmxreg1 0000 1111:1111 10gg: 11 mmxreg1 mmxreg2

 memory from mmxreg 0000 1111:1111 10gg: mod mmxreg r/m

PSUBS – Subtract signed with saturation

 mmxreg2 from mmxreg1 0000 1111:1110 10gg: 11 mmxreg1 mmxreg2

 memory from mmxreg 0000 1111:1110 10gg: mod mmxreg r/m

PSUBUS – Subtract unsigned with
saturation

 mmxreg2 from mmxreg1 0000 1111:1101 10gg: 11 mmxreg1 mmxreg2

 memory from mmxreg 0000 1111:1101 10gg: mod mmxreg r/m

PUNPCKH – Unpack high data to next larger
type

 mmxreg2 to mmxreg1 0000 1111:0110 10gg: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:0110 10gg: mod mmxreg r/m

PUNPCKL – Unpack low data to next larger
type

 mmxreg2 to mmxreg1 0000 1111:0110 00gg: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:0110 00gg: mod mmxreg r/m

PXOR – Bitwise Xor

 mmxreg2 to mmxreg1 0000 1111:1110 1111: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Vol. 2B B-59

INSTRUCTION FORMATS AND ENCODINGS

B.6 PROCESSOR EXTENDED STATE INSTRUCTION
FORMATS AND ENCODINGS

Table B-20 shows the formats and encodings for several instructions that relate to
processor extended state management.

B.7 P6 FAMILY INSTRUCTION FORMATS AND
ENCODINGS

Table B-20 shows the formats and encodings for several instructions that were intro-
duced into the IA-32 architecture in the P6 family processors.

NOTES:
1. The pack instructions perform saturation from signed packed data of one type to signed or

unsigned data of the next smaller type.
2. The format of the shift instructions has one additional format to support shifting by immediate

shift-counts. The shift operations are not supported equally for all data types.

Table B-20. Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format Encoding

XGETBV – Get Value of Extended Control
Register

0000 1111:0000 0001: 1101 0000

XRSTOR – Restore Processor Extended
States1

0000 1111:1010 1110: modA 101 r/m

XSAVE – Save Processor Extended States1 0000 1111:1010 1110: modA 100 r/m

XSETBV – Set Extended Control Register 0000 1111:0000 0001: 1101 0001

NOTES:
1. For XSAVE and XRSTOR, “mod = 11” is reserved.

Table B-21. Formats and Encodings of P6 Family Instructions

Instruction and Format Encoding

CMOVcc – Conditional Move

 register2 to register1 0000 1111: 0100 tttn : 11 reg1 reg2

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-60 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.8 SSE INSTRUCTION FORMATS AND ENCODINGS
The SSE instructions use the ModR/M format and are preceded by the 0FH prefix
byte. In general, operations are not duplicated to provide two directions (that is,
separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and
encodings for the SSE SIMD floating-point, SIMD integer, and cacheability and
memory ordering instructions, respectively. Some SSE instructions require a manda-
tory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are
included in the tables.

 memory to register 0000 1111 : 0100 tttn : mod reg r/m

FCMOVcc – Conditional Move on EFLAG
Register Condition Codes

 move if below (B) 11011 010 : 11 000 ST(i)

 move if equal (E) 11011 010 : 11 001 ST(i)

 move if below or equal (BE) 11011 010 : 11 010 ST(i)

 move if unordered (U) 11011 010 : 11 011 ST(i)

 move if not below (NB) 11011 011 : 11 000 ST(i)

 move if not equal (NE) 11011 011 : 11 001 ST(i)

 move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

 move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

FXRSTOR – Restore x87 FPU, MMX, SSE,
and SSE2 State1

0000 1111:1010 1110: modA 001 r/m

FXSAVE – Save x87 FPU, MMX, SSE, and
SSE2 State1

0000 1111:1010 1110: modA 000 r/m

SYSENTER – Fast System Call 0000 1111:0011 0100

SYSEXIT – Fast Return from Fast System
Call

0000 1111:0011 0101

NOTES:
1. For FXSAVE and FXRSTOR, “mod = 11” is reserved.

Table B-21. Formats and Encodings of P6 Family Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-61

INSTRUCTION FORMATS AND ENCODINGS

Table B-22. Formats and Encodings of SSE Floating-Point Instructions

Instruction and Format Encoding

ADDPS—Add Packed Single-Precision
Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1000: mod xmmreg r/m

ADDSS—Add Scalar Single-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:01011000:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m

ANDNPS—Bitwise Logical AND NOT of
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0101 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0101: mod xmmreg r/m

ANDPS—Bitwise Logical AND of Packed
Single-Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0100: mod xmmreg r/m

CMPPS—Compare Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 0000 1111:1100 0010: mod xmmreg r/m: imm8

CMPSS—Compare Scalar Single-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 1111 0011:0000 1111:1100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg
r/m: imm8

COMISS—Compare Scalar Ordered
Single-Precision Floating-Point Values
and Set EFLAGS

 xmmreg to xmmreg 0000 1111:0010 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1111: mod xmmreg r/m

B-62 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

CVTPI2PS—Convert Packed Doubleword
Integers to Packed Single-Precision
Floating-Point Values

 mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

 mem to xmmreg 0000 1111:0010 1010: mod xmmreg r/m

CVTPS2PI—Convert Packed Single-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1101: mod mmreg r/m

CVTSI2SS—Convert Doubleword Integer
to Scalar Single-Precision Floating-Point
Value

 r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg r32

 mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-
Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m

CVTTPS2PI—Convert with Truncation
Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1100: mod mmreg r/m

CVTTSS2SI—Convert with Truncation
Scalar Single-Precision Floating-Point
Value to Doubleword Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

 mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m

DIVPS—Divide Packed Single-Precision
Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1110: mod xmmreg r/m

DIVSS—Divide Scalar Single-Precision
Floating-Point Values

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-63

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg
r/m

LDMXCSR—Load MXCSR Register State

 m32 to MXCSR 0000 1111:1010 1110:modA 010 mem

MAXPS—Return Maximum Packed
Single-Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m

MAXSS—Return Maximum Scalar
Double-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg
r/m

MINPS—Return Minimum Packed
Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m

MINSS—Return Minimum Scalar Double-
Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg
r/m

MOVAPS—Move Aligned Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0010 1000: mod xmmreg r/m

 xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-64 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

MOVHLPS—Move Packed Single-
Precision Floating-Point Values High to
Low

 xmmreg to xmmreg 0000 1111:0001 0010:11 xmmreg1 xmmreg2

MOVHPS—Move High Packed Single-
Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m

MOVLHPS—Move Packed Single-
Precision Floating-Point Values Low to
High

 xmmreg to xmmreg 0000 1111:00010110:11 xmmreg1 xmmreg2

MOVLPS—Move Low Packed Single-
Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m

MOVMSKPS—Extract Packed Single-
Precision Floating-Point Sign Mask

 xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg

MOVSS—Move Scalar Single-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2
xmmreg1

 mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg
r/m

 xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1
xmmreg2

 xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg
r/m

MOVUPS—Move Unaligned Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

 xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-65

INSTRUCTION FORMATS AND ENCODINGS

MULPS—Multiply Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1001:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1001: mod xmmreg rm

MULSS—Multiply Scalar Single-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg
r/m

ORPS—Bitwise Logical OR of Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0110 mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed
Single-Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0011:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar
Single-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:01010011:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of
Square Roots of Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0010 mode xmmreg r/m

RSQRTSS—Compute Reciprocals of
Square Roots of Scalar Single-Precision
Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 0010 mod xmmreg r/m

SHUFPS—Shuffle Packed Single-
Precision Floating-Point Values

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-66 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg, imm8 0000 1111:1100 0110:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPS—Compute Square Roots of
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0101 0001:11 xmmreg1 xmmreg 2

 mem to xmmreg 0000 1111:0101 0001 mod xmmreg r/m

SQRTSS—Compute Square Root of
Scalar Single-Precision Floating-Point
Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 0001:11 xmmreg1
xmmreg 2

 mem to xmmreg 1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

 MXCSR to mem 0000 1111:1010 1110:modA 011 mem

SUBPS—Subtract Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single-
Precision Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar
Ordered Single-Precision Floating-Point
Values and Set EFLAGS

 xmmreg to xmmreg 0000 1111:0010 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1110 mod xmmreg r/m

UNPCKHPS—Unpack and Interleave
High Packed Single-Precision Floating-
Point Values

 xmmreg to xmmreg 0000 1111:0001 0101:11 xmmreg1 xmmreg2

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-67

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg 0000 1111:0001 0101 mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0001 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0001 0100 mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0111 mod xmmreg r/m

Table B-23. Formats and Encodings of SSE Integer Instructions

Instruction and Format Encoding

PAVGB/PAVGW—Average Packed Integers

 mmreg to mmreg 0000 1111:1110 0000:11 mmreg1 mmreg2

0000 1111:1110 0011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0000 mod mmreg r/m

0000 1111:1110 0011 mod mmreg r/m

PEXTRW—Extract Word

 mmreg to reg32, imm8 0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW—Insert Word

 reg32 to mmreg, imm8 0000 1111:1100 0100:11 mmreg r32: imm8

 m16 to mmreg, imm8 0000 1111:1100 0100 mod mmreg r/m:
imm8

PMAXSW—Maximum of Packed Signed Word
Integers

 mmreg to mmreg 0000 1111:1110 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1110 mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte
Integers

 mmreg to mmreg 0000 1111:1101 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1110 mod mmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-68 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

PMINSW—Minimum of Packed Signed Word
Integers

 mmreg to mmreg 0000 1111:1110 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1010 mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte
Integers

 mmreg to mmreg 0000 1111:1101 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1010 mod mmreg r/m

PMOVMSKB—Move Byte Mask To Integer

 mmreg to reg32 0000 1111:1101 0111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers
and Store High Result

 mmreg to mmreg 0000 1111:1110 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0100 mod mmreg r/m

PSADBW—Compute Sum of Absolute
Differences

 mmreg to mmreg 0000 1111:1111 0110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0110 mod mmreg r/m

PSHUFW—Shuffle Packed Words

 mmreg to mmreg, imm8 0000 1111:0111 0000:11 mmreg1 mmreg2:
imm8

 mem to mmreg, imm8 0000 1111:0111 0000:11 mod mmreg r/m:
imm8

Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering
Instructions

Instruction and Format Encoding

MASKMOVQ—Store Selected Bytes of Quadword

 mmreg to mmreg 0000 1111:1111 0111:11 mmreg1
mmreg2

MOVNTPS—Store Packed Single-Precision Floating-
Point Values Using Non-Temporal Hint

 xmmreg to mem 0000 1111:0010 1011: mod xmmreg
r/m

Table B-23. Formats and Encodings of SSE Integer Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-69

INSTRUCTION FORMATS AND ENCODINGS

B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS
The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix
byte. In general, operations are not duplicated to provide two directions (that is,
separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD
floating-point, SIMD integer, and cacheability instructions, respectively. Some SSE2
instructions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte
opcode. These prefixes are included in the tables.

B.9.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruc-
tion is operating on. When this field is used, it is located in bits 1 and 0 of the second
opcode byte. Table B-25 shows the encoding of this gg field.

MOVNTQ—Store Quadword Using Non-Temporal
Hint

 mmreg to mem 0000 1111:1110 0111: mod mmreg r/m

PREFETCHT0—Prefetch Temporal to All Cache
Levels

0000 1111:0001 1000:modA 001 mem

PREFETCHT1—Prefetch Temporal to First Level
Cache

0000 1111:0001 1000:modA 010 mem

PREFETCHT2—Prefetch Temporal to Second Level
Cache

0000 1111:0001 1000:modA 011 mem

PREFETCHNTA—Prefetch Non-Temporal to All Cache
Levels

0000 1111:0001 1000:modA 000 mem

SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

Table B-25. Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering
Instructions (Contd.)

Instruction and Format Encoding

B-70 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format Encoding

ADDPD—Add Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1000: mod xmmreg r/m

ADDSD—Add Scalar Double-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD—Bitwise Logical AND NOT
of Packed Double-Precision Floating-
Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0101: mod xmmreg r/m

ANDPD—Bitwise Logical AND of Packed
Double-Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0100: mod xmmreg r/m

CMPPD—Compare Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:1100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0010: mod xmmreg r/m:
imm8

CMPSD—Compare Scalar Double-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 1111 0010:0000 1111:1100 0010:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 11110 010:0000 1111:1100 0010: mod xmmreg r/m:
imm8

COMISD—Compare Scalar Ordered
Double-Precision Floating-Point
Values and Set EFLAGS

Vol. 2B B-71

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg 0110 0110:0000 1111:0010 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1111: mod xmmreg r/m

CVTPI2PD—Convert Packed
Doubleword Integers to Packed
Double-Precision Floating-Point
Values

 mmreg to xmmreg 0110 0110:0000 1111:0010 1010:11 xmmreg1
mmreg1

 mem to xmmreg 0110 0110:0000 1111:0010 1010: mod xmmreg r/m

CVTPD2PI—Convert Packed Double-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1101:11 mmreg1
xmmreg1

 mem to mmreg 0110 0110:0000 1111:0010 1101: mod mmreg r/m

CVTSI2SD—Convert Doubleword
Integer to Scalar Double-Precision
Floating-Point Value

 r32 to xmmreg1 1111 0010:0000 1111:0010 1010:11 xmmreg r32

 mem to xmmreg 1111 0010:0000 1111:0010 1010: mod xmmreg r/m

CVTSD2SI—Convert Scalar Double-
Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0010:0000 1111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation
Packed Double-Precision Floating-
Point Values to Packed Doubleword
Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1100:11 mmreg xmmreg

 mem to mmreg 0110 0110:0000 1111:0010 1100: mod mmreg r/m

CVTTSD2SI—Convert with
Truncation Scalar Double-Precision
Floating-Point Value to Doubleword
Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1100:11 r32 xmmreg

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-72 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 mem to r32 1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double-
Precision Floating-Point Values to
Packed Single-Precision Floating-
Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1010: mod xmmreg r/m

CVTPS2PD—Covert Packed Single-
Precision Floating-Point Values to
Packed Double-Precision Floating-
Point Values

 xmmreg to xmmreg 0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1010: mod xmmreg r/m

CVTSD2SS—Covert Scalar Double-
Precision Floating-Point Value to
Scalar Single-Precision Floating-Point
Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1010: mod xmmreg r/m

CVTSS2SD—Covert Scalar Single-
Precision Floating-Point Value to
Scalar Double-Precision Floating-
Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:00001 111:0101 1010: mod xmmreg r/m

CVTPD2DQ—Convert Packed Double-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to xmmreg 1111 0010:0000 1111:1110 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:1110 0110: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-73

INSTRUCTION FORMATS AND ENCODINGS

CVTTPD2DQ—Convert With
Truncation Packed Double-Precision
Floating-Point Values to Packed
Doubleword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0110: mod xmmreg r/m

CVTDQ2PD—Convert Packed
Doubleword Integers to Packed
Single-Precision Floating-Point
Values

 xmmreg to xmmreg 1111 0011:0000 1111:1110 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:1110 0110: mod xmmreg r/m

CVTPS2DQ—Convert Packed Single-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1011: mod xmmreg r/m

CVTTPS2DQ—Convert With
Truncation Packed Single-Precision
Floating-Point Values to Packed
Doubleword Integers

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1011: mod xmmreg r/m

CVTDQ2PS—Convert Packed
Doubleword Integers to Packed
Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0101 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1011: mod xmmreg r/m

DIVPD—Divide Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1110: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-74 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

DIVSD—Divide Scalar Double-
Precision Floating-Point Values

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1110: mod xmmreg r/m

MAXPD—Return Maximum Packed
Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar
Double-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1111: mod xmmreg r/m

MINPD—Return Minimum Packed
Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1101: mod xmmreg r/m

MINSD—Return Minimum Scalar
Double-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1101: mod xmmreg r/m

MOVAPD—Move Aligned Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1001:11 xmmreg2
xmmreg1

 mem to xmmreg1 0110 0110:0000 1111:0010 1001: mod xmmreg r/m

 xmmreg1 to xmmreg2 0110 0110:0000 1111:0010 1000:11 xmmreg1
xmmreg2

 xmmreg1 to mem 0110 0110:0000 1111:0010 1000: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-75

INSTRUCTION FORMATS AND ENCODINGS

MOVHPD—Move High Packed Double-
Precision Floating-Point Values

 mem to xmmreg 0110 0110:0000 1111:0001 0111: mod xmmreg r/m

 xmmreg to mem 0110 0110:0000 1111:0001 0110: mod xmmreg r/m

MOVLPD—Move Low Packed Double-
Precision Floating-Point Values

 mem to xmmreg 0110 0110:0000 1111:0001 0011: mod xmmreg r/m

 xmmreg to mem 0110 0110:0000 1111:0001 0010: mod xmmreg r/m

MOVMSKPD—Extract Packed Double-
Precision Floating-Point Sign Mask

 xmmreg to r32 0110 0110:0000 1111:0101 0000:11 r32 xmmreg

MOVSD—Move Scalar Double-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0001 0001:11 xmmreg2
xmmreg1

 mem to xmmreg1 1111 0010:0000 1111:0001 0001: mod xmmreg r/m

 xmmreg1 to xmmreg2 1111 0010:0000 1111:0001 0000:11 xmmreg1
xmmreg2

 xmmreg1 to mem 1111 0010:0000 1111:0001 0000: mod xmmreg r/m

MOVUPD—Move Unaligned Packed
Double-Precision Floating-Point
Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0001:11 xmmreg2
xmmreg1

 mem to xmmreg1 0110 0110:0000 1111:0001 0001: mod xmmreg r/m

 xmmreg1 to xmmreg2 0110 0110:0000 1111:0001 0000:11 xmmreg1
xmmreg2

 xmmreg1 to mem 0110 0110:0000 1111:0001 0000: mod xmmreg r/m

MULPD—Multiply Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1001: mod xmmreg rm

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-76 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

MULSD—Multiply Scalar Double-
Precision Floating-Point Values

 xmmreg to xmmreg 1111 0010:00001111:01011001:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:00001111:01011001: mod xmmreg r/m

ORPD—Bitwise Logical OR of
Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0110: mod xmmreg r/m

SHUFPD—Shuffle Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:1100 0110:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0110: mod xmmreg r/m:
imm8

SQRTPD—Compute Square Roots of
Packed Double-Precision Floating-
Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0001:11 xmmreg1
xmmreg 2

 mem to xmmreg 0110 0110:0000 1111:0101 0001: mod xmmreg r/m

SQRTSD—Compute Square Root of
Scalar Double-Precision Floating-
Point Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 0001:11 xmmreg1
xmmreg 2

 mem to xmmreg 1111 0010:0000 1111:0101 0001: mod xmmreg r/m

SUBPD—Subtract Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1100: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-77

INSTRUCTION FORMATS AND ENCODINGS

SUBSD—Subtract Scalar Double-
Precision Floating-Point Values

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1100: mod xmmreg r/m

UCOMISD—Unordered Compare
Scalar Ordered Double-Precision
Floating-Point Values and Set
EFLAGS

 xmmreg to xmmreg 0110 0110:0000 1111:0010 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPD—Unpack and Interleave
High Packed Double-Precision
Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0001 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPD—Unpack and Interleave
Low Packed Double-Precision
Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0001 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0100: mod xmmreg r/m

XORPD—Bitwise Logical OR of
Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-78 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

Table B-27. Formats and Encodings of SSE2 Integer Instructions

Instruction and Format Encoding

MOVD—Move Doubleword

 reg to xmmeg 0110 0110:0000 1111:0110 1110: 11 xmmreg reg

 reg from xmmreg 0110 0110:0000 1111:0111 1110: 11 xmmreg reg

 mem to xmmreg 0110 0110:0000 1111:0110 1110: mod xmmreg r/m

 mem from xmmreg 0110 0110:0000 1111:0111 1110: mod xmmreg r/m

MOVDQA—Move Aligned Double
Quadword

 xmmreg to xmmreg 0110 0110:0000 1111:0110 1111:11 xmmreg1
xmmreg2

0110 0110:0000 1111:0111 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 0110 0110:0000 1111:0111 1111: mod xmmreg r/m

MOVDQU—Move Unaligned Double
Quadword

 xmmreg to xmmreg 1111 0011:0000 1111:0110 1111:11 xmmreg1
xmmreg2

1111 0011:0000 1111:0111 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 1111 0011:0000 1111:0111 1111: mod xmmreg r/m

MOVQ2DQ—Move Quadword from
MMX to XMM Register

 mmreg to xmmreg 1111 0011:0000 1111:1101 0110:11 mmreg1
mmreg2

MOVDQ2Q—Move Quadword from
XMM to MMX Register

 xmmreg to mmreg 1111 0010:0000 1111:1101 0110:11 mmreg1
mmreg2

MOVQ—Move Quadword

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0111 1110: 11 xmmreg1
xmmreg2

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1101 0110: 11 xmmreg1
xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0111 1110: mod xmmreg r/m

Vol. 2B B-79

INSTRUCTION FORMATS AND ENCODINGS

 mem from xmmreg 0110 0110:0000 1111:1101 0110: mod xmmreg r/m

PACKSSDW1—Pack Dword To Word
Data (signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1011: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 1011: mod xmmreg r/m

PACKSSWB—Pack Word To Byte Data
(signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0011: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0011: mod xmmreg r/m

PACKUSWB—Pack Word To Byte Data
(unsigned with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0111: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0111: mod xmmreg r/m

PADDQ—Add Packed Quadword
Integers

 mmreg to mmreg 0000 1111:1101 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 0100: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:1101 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 0100: mod xmmreg r/m

PADD—Add With Wrap-around

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1111 11gg: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m

PADDS—Add Signed With Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1110 11gg: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m

PADDUS—Add Unsigned With
Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1101 11gg: 11 xmmreg1
xmmreg2

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

B-80 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 memory to xmmreg 0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m

PAND—Bitwise And

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1011: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1011: mod xmmreg r/m

PANDN—Bitwise AndNot

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1111: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1111: mod xmmreg r/m

PAVGB—Average Packed Integers

 xmmreg to xmmreg 0110 0110:0000 1111:11100 000:11 xmmreg1
xmmreg2

 mem to xmmreg 01100110:00001111:11100000 mod xmmreg r/m

PAVGW—Average Packed Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0011 mod xmmreg r/m

PCMPEQ—Packed Compare For
Equality

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0111 01gg: 11 xmmreg1
xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0111 01gg: mod xmmreg r/m

PCMPGT—Packed Compare Greater
(signed)

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0110 01gg: 11 xmmreg1
xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0110 01gg: mod xmmreg r/m

PEXTRW—Extract Word

 xmmreg to reg32, imm8 0110 0110:0000 1111:1100 0101:11 r32 xmmreg:
imm8

PINSRW—Insert Word

 reg32 to xmmreg, imm8 0110 0110:0000 1111:1100 0100:11 xmmreg r32:
imm8

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-81

INSTRUCTION FORMATS AND ENCODINGS

 m16 to xmmreg, imm8 0110 0110:0000 1111:1100 0100 mod xmmreg r/m:
imm8

PMADDWD—Packed Multiply Add

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0101: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1111 0101: mod xmmreg r/m

PMAXSW—Maximum of Packed
Signed Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 01100110:00001111:11101110 mod xmmreg r/m

PMAXUB—Maximum of Packed
Unsigned Byte Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1101 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1110 mod xmmreg r/m

PMINSW—Minimum of Packed Signed
Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 1010 mod xmmreg r/m

PMINUB—Minimum of Packed
Unsigned Byte Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1101 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1010 mod xmmreg r/m

PMOVMSKB—Move Byte Mask To
Integer

 xmmreg to reg32 0110 0110:0000 1111:1101 0111:11 r32 xmmreg

PMULHUW—Packed multiplication,
store high word (unsigned)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0100: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0100: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

B-82 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

PMULHW—Packed Multiplication,
store high word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0101: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0101: mod xmmreg r/m

PMULLW—Packed Multiplication,
store low word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0101: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 0101: mod xmmreg r/m

PMULUDQ—Multiply Packed Unsigned
Doubleword Integers

 mmreg to mmreg 0000 1111:1111 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0100: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:00001111:1111 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:00001111:1111 0100: mod xmmreg r/m

POR—Bitwise Or

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1011: 11 xmmreg1
xmmreg2

 xmemory to xmmreg 0110 0110:0000 1111:1110 1011: mod xmmreg r/m

PSADBW—Compute Sum of Absolute
Differences

 xmmreg to xmmreg 0110 0110:0000 1111:1111 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 0110: mod xmmreg r/m

PSHUFLW—Shuffle Packed Low
Words

 xmmreg to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 mod xmmreg
r/m: imm8

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-83

INSTRUCTION FORMATS AND ENCODINGS

PSHUFHW—Shuffle Packed High
Words

 xmmreg to xmmreg, imm8 1111 0011:0000 1111:0111 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:0111 0000:11 mod xmmreg
r/m: imm8

PSHUFD—Shuffle Packed
Doublewords

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0111 0000:11 xmmreg1
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0111 0000:11 mod xmmreg
r/m: imm8

PSLLDQ—Shift Double Quadword Left
Logical

 xmmreg, imm8 0110 0110:0000 1111:0111 0011:11 111 xmmreg:
imm8

PSLL—Packed Shift Left Logical

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1111 00gg: 11 xmmreg1
xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1111 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 110 xmmreg:
imm8

PSRA—Packed Shift Right Arithmetic

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1110 00gg: 11 xmmreg1
xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1110 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 100 xmmreg:
imm8

PSRLDQ—Shift Double Quadword
Right Logical

 xmmreg, imm8 0110 0110:00001111:01110011:11 011 xmmreg:
imm8

PSRL—Packed Shift Right Logical

 xmmxreg1 by xmmxreg2 0110 0110:0000 1111:1101 00gg: 11 xmmreg1
xmmreg2

 xmmxreg by memory 0110 0110:0000 1111:1101 00gg: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

B-84 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 xmmxreg by immediate 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg:
imm8

PSUBQ—Subtract Packed Quadword
Integers

 mmreg to mmreg 0000 1111:11111 011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 1011: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:1111 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 1011: mod xmmreg r/m

PSUB—Subtract With Wrap-around

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1111 10gg: 11 xmmreg1
xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1111 10gg: mod xmmreg r/m

PSUBS—Subtract Signed With
Saturation

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1110 10gg: 11 xmmreg1
xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1110 10gg: mod xmmreg r/m

PSUBUS—Subtract Unsigned With
Saturation

 xmmreg2 from xmmreg1 0000 1111:1101 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0000 1111:1101 10gg: mod xmmreg r/m

PUNPCKH—Unpack High Data To
Next Larger Type

 xmmreg to xmmreg 0110 0110:0000 1111:0110 10gg:11 xmmreg1
Xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 10gg: mod xmmreg r/m

PUNPCKHQDQ—Unpack High Data

 xmmreg to xmmreg 0110 0110:0000 1111:0110 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1101: mod xmmreg r/m

PUNPCKL—Unpack Low Data To Next
Larger Type

 xmmreg to xmmreg 0110 0110:0000 1111:0110 00gg:11 xmmreg1
xmmreg2

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-85

INSTRUCTION FORMATS AND ENCODINGS

 mem to xmmreg 0110 0110:0000 1111:0110 00gg: mod xmmreg r/m

PUNPCKLQDQ—Unpack Low Data

 xmmreg to xmmreg 0110 0110:0000 1111:0110 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1100: mod xmmreg r/m

PXOR—Bitwise Xor

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1111: 11 xmmreg1
xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-28. Format and Encoding of SSE2 Cacheability Instructions

Instruction and Format Encoding

MASKMOVDQU—Store Selected Bytes
of Double Quadword

 xmmreg to xmmreg 0110 0110:0000 1111:1111 0111:11 xmmreg1
xmmreg2

CLFLUSH—Flush Cache Line

 mem 0000 1111:1010 1110:mod r/m

MOVNTPD—Store Packed Double-
Precision Floating-Point Values Using
Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:0010 1011: mod xmmreg r/m

MOVNTDQ—Store Double Quadword
Using Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:1110 0111: mod xmmreg r/m

MOVNTI—Store Doubleword Using
Non-Temporal Hint

 reg to mem 0000 1111:1100 0011: mod reg r/m

PAUSE—Spin Loop Hint 1111 0011:1001 0000

LFENCE—Load Fence 0000 1111:1010 1110: 11 101 000

MFENCE—Memory Fence 0000 1111:1010 1110: 11 110 000

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding

B-86 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.10 SSE3 FORMATS AND ENCODINGS TABLE
The tables in this section provide SSE3 formats and encodings. Some SSE3 instruc-
tions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode.
These prefixes are included in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general
purpose and XMM registers to access additional registers. Some instructions require
the REX.W prefix to promote the instruction to 64-bit operation. Instructions that
require the REX.W prefix are listed (with their opcodes) in Section B.12.

Table B-29. Formats and Encodings of SSE3 Floating-Point Instructions

Instruction and Format Encoding

ADDSUBPD—Add /Sub packed DP FP
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:11010000:11 xmmreg1
xmmreg2

mem to xmmreg 01100110:00001111:11010000: mod xmmreg
r/m

ADDSUBPS—Add /Sub packed SP FP
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:11010000:11 xmmreg1
xmmreg2

mem to xmmreg 11110010:00001111:11010000: mod xmmreg
r/m

HADDPD—Add horizontally packed DP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111100:11 xmmreg1
xmmreg2

mem to xmmreg 01100110:00001111:01111100: mod xmmreg
r/m

HADDPS—Add horizontally packed SP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111100:11 xmmreg1
xmmreg2

mem to xmmreg 11110010:00001111:01111100: mod xmmreg
r/m

HSUBPD—Sub horizontally packed DP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111101:11 xmmreg1
xmmreg2

Vol. 2B B-87

INSTRUCTION FORMATS AND ENCODINGS

mem to xmmreg 01100110:00001111:01111101: mod xmmreg
r/m

HSUBPS—Sub horizontally packed SP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111101:11 xmmreg1
xmmreg2

mem to xmmreg 11110010:00001111:01111101: mod xmmreg
r/m

Table B-30. Formats and Encodings for SSE3 Event Management Instructions

Instruction and Format Encoding

MONITOR—Set up a linear address range to
be monitored by hardware

 eax, ecx, edx 0000 1111 : 0000 0001:11 001 000

MWAIT—Wait until write-back store
performed within the range specified by
the instruction MONITOR

 eax, ecx 0000 1111 : 0000 0001:11 001 001

Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions

Instruction and Format Encoding

FISTTP—Store ST in int16 (chop) and pop

 m16int 11011 111 : modA 001 r/m

FISTTP—Store ST in int32 (chop) and pop

 m32int 11011 011 : modA 001 r/m

FISTTP—Store ST in int64 (chop) and pop

 m64int 11011 101 : modA 001 r/m

LDDQU—Load unaligned integer 128-bit

 xmm, m128 11110010:00001111:11110000: modA xmmreg
r/m

MOVDDUP—Move 64 bits representing one
DP data from XMM2/Mem to XMM1 and
duplicate

xmmreg2 to xmmreg1 11110010:00001111:00010010:11 xmmreg1
xmmreg2

Table B-29. Formats and Encodings of SSE3 Floating-Point Instructions (Contd.)

Instruction and Format Encoding

B-88 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.11 SSSE3 FORMATS AND ENCODING TABLE
The tables in this section provide SSSE3 formats and encodings. Some SSSE3
instructions require a mandatory prefix (66H) as part of the three-byte opcode.
These prefixes are included in the table below.

mem to xmmreg 11110010:00001111:00010010: mod xmmreg
r/m

MOVSHDUP—Move 128 bits representing 4
SP data from XMM2/Mem to XMM1 and
duplicate high

xmmreg2 to xmmreg1 11110011:00001111:00010110:11 xmmreg1
xmmreg2

mem to xmmreg 11110011:00001111:00010110: mod xmmreg
r/m

MOVSLDUP—Move 128 bits representing 4
SP data from XMM2/Mem to XMM1 and
duplicate low

xmmreg2 to xmmreg1 11110011:00001111:00010010:11 xmmreg1
xmmreg2

mem to xmmreg 11110011:00001111:00010010: mod xmmreg
r/m

Table B-32. Formats and Encodings for SSSE3 Instructions

Instruction and Format Encoding

PABSB—Packed Absolute
Value Bytes

 mmreg to mmreg 0000 1111:0011 1000: 0001 1100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1100: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1100: mod xmmreg r/m

PABSD—Packed Absolute
Value Double Words

 mmreg to mmreg 0000 1111:0011 1000: 0001 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1110: mod mmreg r/m

Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-89

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1110: mod xmmreg r/m

PABSW—Packed
Absolute Value Words

 mmreg to mmreg 0000 1111:0011 1000: 0001 1101:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0001 1101: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1101: mod xmmreg r/m

PALIGNR—Packed Align
Right

 mmreg to mmreg 0000 1111:0011 1010: 0000 1111:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1010: 0000 1111: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1111: mod xmmreg r/m

PHADDD—Packed
Horizontal Add Double
Words

 mmreg to mmreg 0000 1111:0011 1000: 0000 0010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0010: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0010: mod xmmreg r/m

PHADDSW—Packed
Horizontal Add and
Saturate

 mmreg to mmreg 0000 1111:0011 1000: 0000 0011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0011: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0011: mod xmmreg r/m

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding

B-90 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

PHADDW—Packed
Horizontal Add Words

 mmreg to mmreg 0000 1111:0011 1000: 0000 0001:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0001: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0001: mod xmmreg r/m

PHSUBD—Packed
Horizontal Subtract
Double Words

 mmreg to mmreg 0000 1111:0011 1000: 0000 0110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0110: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0110:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0110: mod xmmreg r/m

PHSUBSW—Packed
Horizontal Subtract and
Saturate

 mmreg to mmreg 0000 1111:0011 1000: 0000 0111:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0111: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0111:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0111: mod xmmreg r/m

PHSUBW—Packed
Horizontal Subtract
Words

 mmreg to mmreg 0000 1111:0011 1000: 0000 0101:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0101: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0101:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0101: mod xmmreg r/m

PMADDUBSW—Multiply
and Add Packed Signed
and Unsigned Bytes

 mmreg to mmreg 0000 1111:0011 1000: 0000 0100:11 mmreg1 mmreg2

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-91

INSTRUCTION FORMATS AND ENCODINGS

 mem to mmreg 0000 1111:0011 1000: 0000 0100: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0100:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0100: mod xmmreg r/m

PMULHRSW—Packed
Multiply HIgn with Round
and Scale

 mmreg to mmreg 0000 1111:0011 1000: 0000 1011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1011: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1011:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1011: mod xmmreg r/m

PSHUFB—Packed Shuffle
Bytes

 mmreg to mmreg 0000 1111:0011 1000: 0000 0000:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 0000: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0000: mod xmmreg r/m

PSIGNB—Packed Sign
Bytes

 mmreg to mmreg 0000 1111:0011 1000: 0000 1000:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1000: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1000:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1000: mod xmmreg r/m

PSIGND—Packed Sign
Double Words

 mmreg to mmreg 0000 1111:0011 1000: 0000 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1010: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1010:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1010: mod xmmreg r/m

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding

B-92 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.12 SPECIAL ENCODINGS FOR 64-BIT MODE
The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to
64-bit operation in IA-32e mode by using REX.W. However, these entries are special
cases that do not follow the general rules (specified in Section B.4).

PSIGNW—Packed Sign
Words

 mmreg to mmreg 0000 1111:0011 1000: 0000 1001:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:0011 1000: 0000 1001: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1001:11 xmmreg1
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1001: mod xmmreg r/m

Table B-33. Special Case Instructions Promoted Using REX.W

Instruction and Format Encoding

CMOVcc—Conditional Move

 register2 to register1 0100 0R0B 0000 1111: 0100 tttn : 11 reg1
reg2

 qwordregister2 to qwordregister1 0100 1R0B 0000 1111: 0100 tttn : 11
qwordreg1 qwordreg2

 memory to register 0100 0RXB 0000 1111 : 0100 tttn : mod reg
r/m

 memory64 to qwordregister 0100 1RXB 0000 1111 : 0100 tttn : mod
qwordreg r/m

CVTSD2SI—Convert Scalar Double-Precision
Floating-Point Value to Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0010:0000 1111:0010
1101:11 r32 xmmreg

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010
1101:11 r64 xmmreg

 mem64 to r32 0100 0R0XB 1111 0010:0000 1111:0010
1101: mod r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010
1101: mod r64 r/m

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding

Vol. 2B B-93

INSTRUCTION FORMATS AND ENCODINGS

CVTSI2SS—Convert Doubleword Integer to
Scalar Single-Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0011:0000 1111:0010
1010:11 xmmreg r32

 r64 to xmmreg1 0100 1R0B 1111 0011:0000 1111:0010
1010:11 xmmreg r64

 mem to xmmreg 0100 0RXB 1111 0011:0000 1111:0010
1010: mod xmmreg r/m

 mem64 to xmmreg 0100 1RXB 1111 0011:0000 1111:0010
1010: mod xmmreg r/m

CVTSI2SD—Convert Doubleword Integer to
Scalar Double-Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0010:0000 1111:0010
1010:11 xmmreg r32

 r64 to xmmreg1 0100 1R0B 1111 0010:0000 1111:0010
1010:11 xmmreg r64

 mem to xmmreg 0100 0RXB 1111 0010:0000 1111:00101
010: mod xmmreg r/m

 mem64 to xmmreg 0100 1RXB 1111 0010:0000 1111:0010
1010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-Precision
Floating-Point Value to Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010
1101:11 r32 xmmreg

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010
1101:11 r64 xmmreg

 mem to r32 0100 0RXB 11110011:00001111:00101101:
mod r32 r/m

 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010
1101: mod r64 r/m

CVTTSD2SI—Convert with Truncation Scalar
Double-Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 0100 0R0B
11110010:00001111:00101100:11 r32
xmmreg

Table B-33. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding

B-94 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010
1100:11 r64 xmmreg

 mem64 to r32 0100 0RXB 1111 0010:0000 1111:0010
1100: mod r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010
1100: mod r64 r/m

CVTTSS2SI—Convert with Truncation Scalar
Single-Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010
1100:11 r32 xmmreg1

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010
1100:11 r64 xmmreg1

 mem to r32 0100 0RXB 1111 0011:0000 1111:0010
1100: mod r32 r/m

 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010
1100: mod r64 r/m

MOVD/MOVQ—Move doubleword

 reg to mmxreg 0100 0R0B 0000 1111:0110 1110: 11
mmxreg reg

 qwordreg to mmxreg 0100 1R0B 0000 1111:0110 1110: 11
mmxreg qwordreg

 reg from mmxreg 0100 0R0B 0000 1111:0111 1110: 11
mmxreg reg

 qwordreg from mmxreg 0100 1R0B 0000 1111:0111 1110: 11
mmxreg qwordreg

 mem to mmxreg 0100 0RXB 0000 1111:0110 1110: mod
mmxreg r/m

 mem64 to mmxreg 0100 1RXB 0000 1111:0110 1110: mod
mmxreg r/m

 mem from mmxreg 0100 0RXB 0000 1111:0111 1110: mod
mmxreg r/m

 mem64 from mmxreg 0100 1RXB 0000 1111:0111 1110: mod
mmxreg r/m

 mmxreg with memory 0100 0RXB 0000 1111:0110 01gg: mod
mmxreg r/m

Table B-33. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding

Vol. 2B B-95

INSTRUCTION FORMATS AND ENCODINGS

MOVMSKPS—Extract Packed Single-Precision
Floating-Point Sign Mask

 xmmreg to r32 0100 0R0B 0000 1111:0101 0000:11 r32
xmmreg

 xmmreg to r64 0100 1R0B 00001111:01010000:11 r64
xmmreg

PEXTRW—Extract Word

 mmreg to reg32, imm8 0100 0R0B 0000 1111:1100 0101:11 r32
mmreg: imm8

 mmreg to reg64, imm8 0100 1R0B 0000 1111:1100 0101:11 r64
mmreg: imm8

 xmmreg to reg32, imm8 0100 0R0B 0110 0110 0000 1111:1100
0101:11 r32 xmmreg: imm8

 xmmreg to reg64, imm8 0100 1R0B 0110 0110 0000 1111:1100
0101:11 r64 xmmreg: imm8

PINSRW—Insert Word

 reg32 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100:11 mmreg
r32: imm8

 reg64 to mmreg, imm8 0100 1R0B 0000 1111:1100 0100:11 mmreg
r64: imm8

 m16 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100 mod
mmreg r/m: imm8

 m16 to mmreg, imm8 0100 1RXB 0000 1111:11000100 mod
mmreg r/m: imm8

 reg32 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100
0100:11 xmmreg r32: imm8

 reg64 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100
0100:11 xmmreg r64: imm8

 m16 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100
0100 mod xmmreg r/m: imm8

 m16 to xmmreg, imm8 0100 1RXB 0110 0110 0000 1111:1100
0100 mod xmmreg r/m: imm8

PMOVMSKB—Move Byte Mask To Integer

 mmreg to reg32 0100 0RXB 0000 1111:1101 0111:11 r32
mmreg

Table B-33. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding

B-96 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.13 SSE4.1 FORMATS AND ENCODING TABLE
The tables in this section provide SSE4.1 formats and encodings. Some SSE4.1
instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte
opcode. These prefixes are included in the tables.

In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W
prefix in the opcode sequence is shown.

 mmreg to reg64 0100 1R0B 0000 1111:1101 0111:11 r64
mmreg

 xmmreg to reg32 0100 0RXB 0110 0110 0000 1111:1101
0111:11 r32 mmreg

 xmmreg to reg64 0110 0110 0000 1111:1101 0111:11 r64
xmmreg

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

BLENDPD — Blend Packed Double-
Precision Floats

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101: mod
xmmreg r/m

BLENDPS — Blend Packed Single-
Precision Floats

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100: mod
xmmreg r/m

BLENDVPD — Variable Blend Packed
Double-Precision Floats

 xmmreg to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101:11
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101: mod
xmmreg r/m

Table B-33. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding

Vol. 2B B-97

INSTRUCTION FORMATS AND ENCODINGS

BLENDVPS — Variable Blend Packed
Single-Precision Floats

 xmmreg to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100:11
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100: mod
xmmreg r/m

DPPD — Packed Double-Precision Dot
Products

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001: mod
xmmreg r/m: imm8

DPPS — Packed Single-Precision Dot
Products

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000: mod
xmmreg r/m: imm8

EXTRACTPS — Extract From Packed
Single-Precision Floats

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111:11 reg
xmmreg: imm8

 mem from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111: mod
r/m xmmreg: imm8

INSERTPS — Insert Into Packed
Single-
Precision Floats

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001: mod
xmmreg r/m: imm8

MOVNTDQA — Load Double
Quadword Non-temporal Aligned

 m128 to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m
xmmreg2

MPSADBW — Multiple Packed Sums of
Absolute Difference

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

B-98 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010: mod
xmmreg r/m: imm8

PACKUSDW — Pack with Unsigned
Saturation

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011: mod
xmmreg r/m

PBLENDVB — Variable Blend Packed
Bytes

 xmmreg to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000:11
xmmreg1 xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000: mod
xmmreg r/m

PBLENDW — Blend Packed Words

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 1110:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1110: mod
xmmreg r/m: imm8

PCMPEQQ — Compare Packed Qword
Data of Equal

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001: mod
xmmreg r/m

PEXTRB — Extract Byte

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0100:11 reg
xmmreg: imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0100: mod
xmmreg r/m: imm8

PEXTRD — Extract DWord

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0110:11 reg
xmmreg: imm8

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

Vol. 2B B-99

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0110: mod
xmmreg r/m: imm8

PEXTRQ — Extract QWord

 r64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001
0110:11 reg xmmreg: imm8

 m64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001
0110: mod xmmreg r/m: imm8

PEXTRW — Extract Word

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101:11 reg
xmmreg: imm8

 mem from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101: mod
xmmreg r/m: imm8

PHMINPOSUW — Packed Horizontal
Word Minimum

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001: mod
xmmreg r/m

PINSRB — Extract Byte

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000:11
xmmreg reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000: mod
xmmreg r/m: imm8

PINSRD — Extract DWord

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010:11
xmmreg reg: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010: mod
xmmreg r/m: imm8

PINSRQ — Extract QWord

 r64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010
0010:11 xmmreg reg: imm8

 m64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010
0010: mod xmmreg r/m: imm8

PMAXSB — Maximum of Packed
Signed Byte Integers

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

B-100 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100: mod
xmmreg r/m

PMAXSD — Maximum of Packed
Signed Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101: mod
xmmreg r/m

PMAXUD — Maximum of Packed
Unsigned Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111: mod
xmmreg r/m

PMAXUW — Maximum of Packed
Unsigned Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110: mod
xmmreg r/m

PMINSB — Minimum of Packed Signed
Byte Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000: mod
xmmreg r/m

PMINSD — Minimum of Packed Signed
Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001: mod
xmmreg r/m

PMINUD — Minimum of Packed
Unsigned Dword Integers

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

Vol. 2B B-101

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011: mod
xmmreg r/m

PMINUW — Minimum of Packed
Unsigned Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010: mod
xmmreg r/m

PMOVSXBD — Packed Move Sign
Extend - Byte to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001: mod
xmmreg r/m

PMOVSXBQ — Packed Move Sign
Extend - Byte to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010: mod
xmmreg r/m

PMOVSXBW — Packed Move Sign
Extend - Byte to Word

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000: mod
xmmreg r/m

PMOVSXWD — Packed Move Sign
Extend - Word to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011: mod
xmmreg r/m

PMOVSXWQ — Packed Move Sign
Extend - Word to Qword

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

B-102 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100: mod
xmmreg r/m

PMOVSXDQ — Packed Move Sign
Extend - Dword to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101: mod
xmmreg r/m

PMOVZXBD — Packed Move Zero
Extend - Byte to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001: mod
xmmreg r/m

PMOVZXBQ — Packed Move Zero
Extend - Byte to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010: mod
xmmreg r/m

PMOVZXBW — Packed Move Zero
Extend - Byte to Word

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000: mod
xmmreg r/m

PMOVZXWD — Packed Move Zero
Extend - Word to Dword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011: mod
xmmreg r/m

PMOVZXWQ — Packed Move Zero
Extend - Word to Qword

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

Vol. 2B B-103

INSTRUCTION FORMATS AND ENCODINGS

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100: mod
xmmreg r/m

PMOVZXDQ — Packed Move Zero
Extend - Dword to Qword

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101: mod
xmmreg r/m

PMULDQ — Multiply Packed Signed
Dword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000: mod
xmmreg r/m

PMULLD — Multiply Packed Signed
Dword Integers, Store low Result

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000: mod
xmmreg r/m

PTEST — Logical Compare

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111: mod
xmmreg r/m

ROUNDPD — Round Packed Double-
Precision Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001: mod
xmmreg r/m: imm8

ROUNDPS — Round Packed Single-
Precision Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000:11
xmmreg1 xmmreg2: imm8

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

B-104 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.14 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2
instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte
opcode. These prefixes are included in the tables. In 64-bit mode, some instructions
requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000: mod
xmmreg r/m: imm8

ROUNDSD — Round Scalar Double-
Precision Value

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011: mod
xmmreg r/m: imm8

ROUNDSS — Round Scalar Single-
Precision Value

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010: mod
xmmreg r/m: imm8

Table B-35. Encodings of SSE4.2 instructions

Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11
reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod
reg r/m

 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111
0000 :11 reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111
0000 : mod reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111
0000 :11 qwreg1 qwreg2

Table B-34. Encodings of SSE4.1 instructions

Instruction and Format Encoding

Vol. 2B B-105

INSTRUCTION FORMATS AND ENCODINGS

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111
0000 : mod qwreg r/m

PCMPESTRI— Packed Compare
Explicit-Length Strings To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod
xmmreg r/m

PCMPESTRM— Packed Compare
Explicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod
xmmreg r/m

PCMPISTRI— Packed Compare
Implicit-Length String To Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod
xmmreg r/m

PCMPISTRM— Packed Compare
Implicit-Length Strings To Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11
xmmreg1 xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod
xmmreg r/m

PCMPGTQ— Packed Compare Greater
Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11
xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod
xmmreg r/m

POPCNT— Return Number of Bits Set to
1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

Table B-35. Encodings of SSE4.2 instructions

Instruction and Format Encoding

B-106 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.15 FLOATING-POINT INSTRUCTION FORMATS AND
ENCODINGS

Table B-35 shows the five different formats used for floating-point instructions. In all
cases, instructions are at least two bytes long and begin with the bit pattern 11011.

The Mod and R/M fields of the ModR/M byte have the same interpretation as the
corresponding fields of the integer instructions. The SIB byte and disp (displace-
ment) are optionally present in instructions that have Mod and R/M fields. Their pres-
ence depends on the values of Mod and R/M, as for integer instructions.

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11
reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod
reg1 r/m

Table B-36. General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Table B-35. Encodings of SSE4.2 instructions

Instruction and Format Encoding

Vol. 2B B-107

INSTRUCTION FORMATS AND ENCODINGS

Table B-36 shows the formats and encodings of the floating-point instructions.

Table B-37. Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add

 ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m

 ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m

 ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

 ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real

 32-bit memory 11011 000 : mod 010 r/m

 64-bit memory 11011 100 : mod 010 r/m

 ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

 32-bit memory 11011 000 : mod 011 r/m

 64-bit memory 11011 100 : mod 011 r/m

 ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer 11011 001 : 1111 0110

FDIV – Divide

 ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

 ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

 ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

B-108 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

FDIVP – Divide and Pop

 ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

 ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

 ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

 ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

 ST(0) ¨ ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

 ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m

 ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

 16-bit memory 11011 110 : mod 010 r/m

 32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

 16-bit memory 11011 110 : mod 011 r/m

 32-bit memory 11011 010 : mod 011 r/m

FIDIV

 ST(0) ← ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

 ST(0) ← ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR

 ST(0) ← 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

 ST(0) ← 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

 16-bit memory 11011 111 : mod 000 r/m

 32-bit memory 11011 011 : mod 000 r/m

 64-bit memory 11011 111 : mod 101 r/m

FIMUL

 ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

Table B-37. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Vol. 2B B-109

INSTRUCTION FORMATS AND ENCODINGS

 ST(0) ← ST(0) × 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

 16-bit memory 11011 111 : mod 010 r/m

 32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

 16-bit memory 11011 111 : mod 011 r/m

 32-bit memory 11011 011 : mod 011 r/m

 64-bit memory 11011 111 : mod 111 r/m

FISUB

 ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

 ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR

 ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

 ST(0) ← 32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

 32-bit memory 11011 001 : mod 000 r/m

 64-bit memory 11011 101 : mod 000 r/m

 80-bit memory 11011 011 : mod 101 r/m

 ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

Table B-37. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-110 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

 ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m

 ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m

 ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

 ST(i) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

 32-bit memory 11011 001 : mod 010 r/m

 64-bit memory 11011 101 : mod 010 r/m

 ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

 32-bit memory 11011 001 : mod 011 r/m

 64-bit memory 11011 101 : mod 011 r/m

 80-bit memory 11011 011 : mod 111 r/m

 ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

Table B-37. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

Vol. 2B B-111

INSTRUCTION FORMATS AND ENCODINGS

 ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m

 ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m

 ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

 ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

FSUBR – Reverse Subtract

 ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m

 ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m

 ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

 ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop
Twice

11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set
EFLAGS

11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set
EFLAGS, and Pop

11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011

Table B-37. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding

B-112 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.16 VMX INSTRUCTIONS
Table B-37 describes virtual-machine extensions (VMX).

Table B-38. Encodings for VMX Instructions
Instruction and Format Encoding

INVEPT—Invalidate Cached EPT Mappings

 Descriptor m128 according to reg 01100110 00001111 00111000 10000000: mod
reg r/m

INVVPID—Invalidate Cached VPID
Mappings

 Descriptor m128 according to reg 01100110 00001111 00111000 10000001: mod
reg r/m

VMCALL—Call to VM Monitor

 Call VMM: causes VM exit. 00001111 00000001 11000001

VMCLEAR—Clear Virtual-Machine Control
Structure

 mem32:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

 mem64:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

VMLAUNCH—Launch Virtual Machine

 Launch VM managed by Current_VMCS 00001111 00000001 11000010

VMRESUME—Resume Virtual Machine

 Resume VM managed by Current_VMCS 00001111 00000001 11000011

VMPTRLD—Load Pointer to Virtual-
Machine Control Structure

 mem32 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

 mem64 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

VMPTRST—Store Pointer to Virtual-
Machine Control Structure

 Current_VMCS_ptr to mem32 00001111 11000111: mod 111 r/m

 Current_VMCS_ptr to mem64 00001111 11000111: mod 111 r/m

VMREAD—Read Field from Virtual-Machine
Control Structure

 r32 (VMCS_fieldn) to r32

 r32 (VMCS_fieldn) to mem32

 r64 (VMCS_fieldn) to r64

 r64 (VMCS_fieldn) to mem64

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r32 r/m

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r64 r/m

Vol. 2B B-113

INSTRUCTION FORMATS AND ENCODINGS

VMWRITE—Write Field to Virtual-Machine
Control Structure

 r32 to r32 (VMCS_fieldn)

 mem32 to r32 (VMCS_fieldn)

 r64 to r64 (VMCS_fieldn)

 mem64 to r64 (VMCS_fieldn)

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r32 r/m

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r64 r/m

VMXOFF—Leave VMX Operation

 Leave VMX. 00001111 00000001 11000100

VMXON—Enter VMX Operation

 Enter VMX. 11110011 000011111 11000111: mod 110 r/m

Table B-38. Encodings for VMX Instructions
Instruction and Format Encoding

B-114 Vol. 2B

INSTRUCTION FORMATS AND ENCODINGS

B.17 SMX INSTRUCTIONS
Table B-38 describes Safer Mode extensions (VMX). GETSEC leaf functions are selected
by a valid value in EAX on input.

Table B-39. Encodings for SMX Instructions
Instruction and Format Encoding

GETSEC—GETSEC leaf functions are
selected by the value in EAX on input

 GETSEC[CAPABILITIES]. 00001111 00110111 (EAX= 0)

 GETSEC[ENTERACCS]. 00001111 00110111 (EAX= 2)

 GETSEC[EXITAC]. 00001111 00110111 (EAX= 3)

 GETSEC[SENTER]. 00001111 00110111 (EAX= 4)

 GETSEC[SEXIT]. 00001111 00110111 (EAX= 5)

 GETSEC[PARAMETERS]. 00001111 00110111 (EAX= 6)

 GETSEC[SMCTRL]. 00001111 00110111 (EAX= 7)

 GETSEC[WAKEUP]. 00001111 00110111 (EAX= 8)

Vol. 2B C-1

APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND

FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and
functional equivalents for the Intel MMX technology, SSE, SSE2, SSE3, and SSSE3
instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is
strongly recommended that the reader reference the compiler documentation for the
complete list of supported intrinsics. Please refer to
http://www.intel.com/support/performancetools/.

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics.
Some intrinsics are “composites” because they require more than one instruction to
implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:

mm<intrin_op>_<suffix>

where:

<intrin_op> Indicates the intrinsics basic operation; for example, add for
addition and sub for subtraction

<suffix> Denotes the type of data operated on by the instruction. The
first one or two letters of each suffix denotes whether the
data is packed (p), extended packed (ep), or scalar (s).

The remaining letters denote the type:

s single-precision floating point

d double-precision floating point

i128 signed 128-bit integer

i64 signed 64-bit integer

u64 unsigned 64-bit integer

i32 signed 32-bit integer

u32 unsigned 32-bit integer

i16 signed 16-bit integer

u16 unsigned 16-bit integer

i8 signed 8-bit integer

u8 unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to
a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r.

C-2 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

The packed values are represented in right-to-left order, with the lowest value being
used for scalar operations. Consider the following example operation:

double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the XMM register that holds the value t will look as follows:

The “scalar” element is 1.0. Due to the nature of the instruction, some intrinsics
require their arguments to be immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where:

data_type Is the return data type, which can be either void, int,
__m64, __m128, __m128d, or __m128i. Only the
_mm_empty intrinsic returns void.

intrinsic_name Is the name of the intrinsic, which behaves like a function
that you can use in your C/C++ code instead of in-lining the
actual instruction.

parameters Represents the parameters required by each intrinsic.

C.1 SIMPLE INTRINSICS

NOTE
For detailed descriptions of the intrinsics in Table C-1, see the corre-
sponding mnemonic in Chapter 3 in the “Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A”, or Chapter 4,
“Instruction Set Reference, N-Z” in the “Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B”.

0127 64 63

2.0 1.0

Vol. 2B C-3

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

Table C-1. Simple Intrinsics
Mnemonic Intrinsic

ADDPD __m128d _mm_add_pd(__m128d a, __m128d b)

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

ADDSD __m128d _mm_add_sd(__m128d a, __m128d b)

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

BLENDPD __m128d _mm_blend_pd(__m128d v1, __m128d v2, const int mask)

BLENDPS __m128 _mm_blend_ps(__m128 v1, __m128 v2, const int mask)

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3)

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3)

CLFLUSH void _mm_clflush(void const *p)

CMPPD __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

__m128d _mm_cmple_pd(__m128d a, __m128d b)

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

__m128d _mm_cmpneq_pd(__m128d a, __m128d b)

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

CMPPS __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

__m128 _mm_cmple_ps(__m128 a, __m128 b)

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

C-4 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

CMPSD __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

__m128d _mm_cmple_sd(__m128d a, __m128d b)

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

__m128 _mm_cmpneq_sd(__m128d a, __m128d b)

__m128 _mm_cmpnlt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSS __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

__m128 _mm_cmple_ss(__m128 a, __m128 b)

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

COMISD int _mm_comieq_sd(__m128d a, __m128d b)

int _mm_comilt_sd(__m128d a, __m128d b)

int _mm_comile_sd(__m128d a, __m128d b)

int _mm_comigt_sd(__m128d a, __m128d b)

int _mm_comige_sd(__m128d a, __m128d b)

int _mm_comineq_sd(__m128d a, __m128d b)

COMISS int _mm_comieq_ss(__m128 a, __m128 b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2B C-5

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

int _mm_comilt_ss(__m128 a, __m128 b)

int _mm_comile_ss(__m128 a, __m128 b)

int _mm_comigt_ss(__m128 a, __m128 b)

int _mm_comige_ss(__m128 a, __m128 b)

int _mm_comineq_ss(__m128 a, __m128 b)

CRC32 unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)

unsigned __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a)

CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a)

CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a)

CVTPD2PI __m64 _mm_cvtpd_pi32(__m128d a)

CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a)

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

CVTPI2PS __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

CVTPS2PI __m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

CVTSD2SI int _mm_cvtsd_si32(__m128d a)

CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SS __m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128 a, int b)

CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b)

CVTSS2SI int _mm_cvt_ss2si(__m128 a)
int _mm_cvtss_si32(__m128 a)

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

CVTTPD2PI __m64 _mm_cvttpd_pi32(__m128d a)

CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a)

CVTTPS2PI __m64 _mm_cvtt_ps2pi(__m128 a)
__m64 _mm_cvttps_pi32(__m128 a)

CVTTSD2SI int _mm_cvttsd_si32(__m128d a)

CVTTSS2SI int _mm_cvtt_ss2si(__m128 a)
int _mm_cvttss_si32(__m128 a)

__m64 _mm_cvtsi32_si64(int i)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-6 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

int _mm_cvtsi64_si32(__m64 m)

DIVPD __m128d _mm_div_pd(__m128d a, __m128d b)

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

DIVSD __m128d _mm_div_sd(__m128d a, __m128d b)

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

DPPD __m128d _mm_dp_pd(__m128d a, __m128d b, const int mask)

DPPS __m128 _mm_dp_ps(__m128 a, __m128 b, const int mask)

EMMS void _mm_empty()

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx)

HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx)

LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

LDMXCSR __mm_setcsr(unsigned int i)

LFENCE void _mm_lfence(void)

MASKMOVDQU void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

MASKMOVQ void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

MAXPD __m128d _mm_max_pd(__m128d a, __m128d b)

MAXPS __m128 _mm_max_ps(__m128 a, __m128 b)

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)

MFENCE void _mm_mfence(void)

MINPD __m128d _mm_min_pd(__m128d a, __m128d b)

MINPS __m128 _mm_min_ps(__m128 a, __m128 b)

MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

MONITOR void _mm_monitor(void const *p, unsigned extensions, unsigned hints)

MOVAPD __m128d _mm_load_pd(double * p)

void_mm_store_pd(double *p, __m128d a)

MOVAPS __m128 _mm_load_ps(float * p)

void_mm_store_ps(float *p, __m128 a)

MOVD __m128i _mm_cvtsi32_si128(int a)

int _mm_cvtsi128_si32(__m128i a)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2B C-7

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

__m64 _mm_cvtsi32_si64(int a)

int _mm_cvtsi64_si32(__m64 a)

MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

MOVDQA __m128i _mm_load_si128(__m128i * p)

void_mm_store_si128(__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128(__m128i * p)

void_mm_storeu_si128(__m128i *p, __m128i a)

MOVDQ2Q __m64 _mm_movepi64_pi64(__m128i a)

MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

MOVHPD __m128d _mm_loadh_pd(__m128d a, double * p)

void _mm_storeh_pd(double * p, __m128d a)

MOVHPS __m128 _mm_loadh_pi(__m128 a, __m64 * p)

void _mm_storeh_pi(__m64 * p, __m128 a)

MOVLPD __m128d _mm_loadl_pd(__m128d a, double * p)

void _mm_storel_pd(double * p, __m128d a)

MOVLPS __m128 _mm_loadl_pi(__m128 a, __m64 *p)

void_mm_storel_pi(__m64 * p, __m128 a)

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

MOVMSKPD int _mm_movemask_pd(__m128d a)

MOVMSKPS int _mm_movemask_ps(__m128 a)

MOVNTDQA __m128i _mm_stream_load_si128(__m128i *p)

MOVNTDQ void_mm_stream_si128(__m128i * p, __m128i a)

MOVNTPD void_mm_stream_pd(double * p, __m128d a)

MOVNTPS void_mm_stream_ps(float * p, __m128 a)

MOVNTI void_mm_stream_si32(int * p, int a)

MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

MOVQ __m128i _mm_loadl_epi64(__m128i * p)

void_mm_storel_epi64(_m128i * p, __m128i a)

__m128i _mm_move_epi64(__m128i a)

MOVQ2DQ __m128i _mm_movpi64_epi64(__m64 a)

MOVSD __m128d _mm_load_sd(double * p)

void_mm_store_sd(double * p, __m128d a)

__m128d _mm_move_sd(__m128d a, __m128d b)

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-8 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

MOVSLDUP __m128 _mm_moveldup_ps(__m128 a)

MOVSS __m128 _mm_load_ss(float * p)

void_mm_store_ss(float * p, __m128 a)

__m128 _mm_move_ss(__m128 a, __m128 b)

MOVUPD __m128d _mm_loadu_pd(double * p)

void_mm_storeu_pd(double *p, __m128d a)

MOVUPS __m128 _mm_loadu_ps(float * p)

void_mm_storeu_ps(float *p, __m128 a)

MPSADBW __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int mask)

MULPD __m128d _mm_mul_pd(__m128d a, __m128d b)

MULPS __m128 _mm_mul_ss(__m128 a, __m128 b)

MULSD __m128d _mm_mul_sd(__m128d a, __m128d b)

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

PABSB __m64 _mm_abs_pi8 (__m64 a)

 __m128i _mm_abs_epi8 (__m128i a)

PABSD __m64 _mm_abs_pi32 (__m64 a)

 __m128i _mm_abs_epi32 (__m128i a)

PABSW __m64 _mm_abs_pi16 (__m64 a)

 __m128i _mm_abs_epi16 (__m128i a)

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSDW __m128i _mm_packs_epi32 (__m128i m1, __m128i m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2)

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PADDB __m128i _mm_add_epi8(__m128i m1, __m128i m2)

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16(__m128i m1, __m128i m2)

PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32(__m128i m1, __m128i m2)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2B C-9

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PADDQ __m128i _mm_add_epi64(__m128i m1, __m128i m2)

PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8(__m128i m1, __m128i m2)

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16(__m128i m1, __m128i m2)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8(__m128i m1, __m128i m2)

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW __m128i _mm_adds_epu16(__m128i m1, __m128i m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

 __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

PAND __m128i _mm_and_si128(__m128i m1, __m128i m2)

PAND __m64 _mm_and_si64(__m64 m1, __m64 m2)

PANDN __m128i _mm_andnot_si128(__m128i m1, __m128i m2)

PANDN __m64 _mm_andnot_si64(__m64 m1, __m64 m2)

PAUSE void _mm_pause(void)

PAVGB __m128i _mm_avg_epu8(__m128i a, __m128i b)

PAVGB __m64 _mm_avg_pu8(__m64 a, __m64 b)

PAVGW __m128i _mm_avg_epu16(__m128i a, __m128i b)

PAVGW __m64 _mm_avg_pu16(__m64 a, __m64 b)

PBLENDVB __m128i _mm_blendv_epi (__m128i v1, __m128i v2, __m128i mask)

PBLENDW __m128i _mm_blend_epi16(__m128i v1, __m128i v2, const int mask)

PCMPEQB __m128i _mm_cmpeq_epi8(__m128i m1, __m128i m2)

PCMPEQB __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i m1, __m128i m2)

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m128i _mm_cmpeq_epi32(__m128i m1, __m128i m2)

PCMPEQD __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

PCMPESTRI int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-10 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPESTRM __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i m1, __m128i m2)

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m128i _mm_cmpgt_epi16(__m128i m1, __m128i m2)

PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)

PCMPGTD __m128i _mm_cmpgt_epi32(__m128i m1, __m128i m2)

PCMPGTD __m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)

PCMPISTRI __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPISTRM __m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode)

int _mm_cmpistra (__m128i a, __m128i b, const int mode)

int _mm_cmpistrc (__m128i a, __m128i b, const int mode)

int _mm_cmpistro (__m128i a, __m128i b, const int mode)

int _mm_cmpistrs (__m128i a, __m128i b, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx)

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx)

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx)

PEXTRW int _mm_extract_epi16(__m128i a, int n)

PEXTRW int _mm_extract_pi16(__m64 a, int n)

int _mm_extract_epi16 (__m128i src, int ndx)

PHADDD __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

 __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2B C-11

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

 __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

__m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHMINPOSUW __m128i _mm_minpos_epu16(__m128i packed_words)

PHSUBD __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

PHSUBW __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PINSRB __m128i _mm_insert_epi8(__m128i s1, int s2, const int ndx)

PINSRD __m128i _mm_insert_epi32(__m128i s2, int s, const int ndx)

PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

PINSRW __m128i _mm_insert_epi16(__m128i a, int d, int n)

PINSRW __m64 _mm_insert_pi16(__m64 a, int d, int n)

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

PMADDWD __m128i _mm_madd_epi16(__m128i m1 __m128i m2)

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMAXSB __m128i _mm_max_epi8(__m128i a, __m128i b)

PMAXSD __m128i _mm_max_epi32(__m128i a, __m128i b)

PMAXSW __m128i _mm_max_epi16(__m128i a, __m128i b)

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8(__m128i a, __m128i b)

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUD __m128i _mm_max_epu32(__m128i a, __m128i b)

PMAXUW __m128i _mm_max_epu16(__m128i a, __m128i b)

PMINSB _m128i _mm_min_epi8(__m128i a, __m128i b)

PMINSD __m128i _mm_min_epi32(__m128i a, __m128i b)

PMINSW __m128i _mm_min_epi16(__m128i a, __m128i b)

PMINSW __m64 _mm_min_pi16(__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b)

PMINUB __m64 _mm_min_pu8(__m64 a, __m64 b)

PMINUD __m128i _mm_min_epu32 (__m128i a, __m128i b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-12 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PMINUW __m128i _mm_min_epu16 (__m128i a, __m128i b)

PMOVMSKB int _mm_movemask_epi8(__m128i a)

PMOVMSKB int _mm_movemask_pi8(__m64 a)

PMOVSXBW __m128i _mm_ cvtepi8_epi16(__m128i a)

PMOVSXBD __m128i _mm_ cvtepi8_epi32(__m128i a)

PMOVSXBQ __m128i _mm_ cvtepi8_epi64(__m128i a)

PMOVSXWD __m128i _mm_ cvtepi16_epi32(__m128i a)

PMOVSXWQ __m128i _mm_ cvtepi16_epi64(__m128i a)

PMOVSXDQ __m128i _mm_ cvtepi32_epi64(__m128i a)

PMOVZXBW __m128i _mm_ cvtepu8_epi16(__m128i a)

PMOVZXBD __m128i _mm_ cvtepu8_epi32(__m128i a)

PMOVZXBQ __m128i _mm_ cvtepu8_epi64(__m128i a)

PMOVZXWD __m128i _mm_ cvtepu16_epi32(__m128i a)

PMOVZXWQ __m128i _mm_ cvtepu16_epi64(__m128i a)

PMOVZXDQ __m128i _mm_ cvtepu32_epi64(__m128i a)

PMULDQ __m128i _mm_mul_epi32(__m128i a, __m128i b)

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

__m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

PMULHUW __m128i _mm_mulhi_epu16(__m128i a, __m128i b)

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHW __m128i _mm_mulhi_epi16(__m128i m1, __m128i m2)

PMULHW __m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b)

PMULLW __m128i _mm_mullo_epi16(__m128i m1, __m128i m2)

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULUDQ __m64 _mm_mul_su32(__m64 m1, __m64 m2)

__m128i _mm_mul_epu32(__m128i m1, __m128i m2)

POPCNT int _mm_popcnt_u32(unsigned int a)

int64_t _mm_popcnt_u64(unsigned __int64 a)

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

PREFETCHh void _mm_prefetch(char *a, int sel)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

PSADBW __m64 _mm_sad_pu8(__m64 a, __m64 b)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2B C-13

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PSHUFB __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

 __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

PSIGNB __m64 _mm_sign_pi8 (__m64 a, __m64 b)

 __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)

 __m128i _mm_sign_epi32 (__m128i a, __m128i b)

PSIGNW __m64 _mm_sign_pi16 (__m64 a, __m64 b)

 __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count)

PSLLW __m128i _mm_slli_epi16(__m128i m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

__m64 _mm_slli_pi16(__m64 m, int count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

__m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

__m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

__m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)

__m128i _mm_slli_epi64(__m128i m, int count)

PSLLDQ __m128i _mm_slli_si128(__m128i m, int imm)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count)

__m128i _mm_srai_epi16(__m128i m, int count)

PSRAW __m64 _mm_sra_pi16(__m64 m, __m64 count)

__m64 _mm_srai_pi16(__m64 m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

__m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)

__m64 _mm_srai_pi32 (__m64 m, int count)

PSRLW _m128i _mm_srl_epi16 (__m128i m, __m128i count)

__m128i _mm_srli_epi16 (__m128i m, int count)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-14 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

__m64 _mm_srl_pi16 (__m64 m, __m64 count)

__m64 _mm_srli_pi16(__m64 m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

__m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

__m64 _mm_srli_pi32 (__m64 m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

__m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

__m64 _mm_srli_si64 (__m64 m, int count)

PSRLDQ __m128i _mm_srli_si128(__m128i m, int imm)

PSUBB __m128i _mm_sub_epi8(__m128i m1, __m128i m2)

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW __m128i _mm_sub_epi16(__m128i m1, __m128i m2)

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m128i _mm_sub_epi32(__m128i m1, __m128i m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PTEST int _mm_testz_si128(__m128i s1, __m128i s2)

int _mm_testc_si128(__m128i s1, __m128i s2)

int _mm_testnzc_si128(__m128i s1, __m128i s2)

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1, __m128i m2)

PUNPCKHDQ ___m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2B C-15

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64(__m128i m1, __m128i m2)

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16(__m128i m1, __m128i m2)

PUNPCKLDQ __m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32(__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64(__m128i m1, __m128i m2)

PXOR __m64 _mm_xor_si64(__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128(__m128i m1, __m128i m2)

RCPPS __m128 _mm_rcp_ps(__m128 a)

RCPSS __m128 _mm_rcp_ss(__m128 a)

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode)

__m128 mm_floor_pd(__m128d s1)

__m128 mm_ceil_pd(__m128d s1)

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SFENCE void_mm_sfence(void)

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SQRTPD __m128d _mm_sqrt_pd(__m128d a)

SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SQRTSD __m128d _mm_sqrt_sd(__m128d a)

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

STMXCSR _mm_getcsr(void)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

C-16 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

C.2 COMPOSITE INTRINSICS

SUBPD __m128d _mm_sub_pd(__m128d a, __m128d b)

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SUBSD __m128d _mm_sub_sd(__m128d a, __m128d b)

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)

Table C-2. Composite Intrinsics
Mnemonic Intrinsic

(composite) __m128i _mm_set_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_set_epi16(short w7,short w6, short w5, short w4, short w3, short w2,
 short w1,short w0)

(composite) __m128i _mm_set_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
 char w9, char w8, char w7,char w6, char w5, char w4, char w3, char w2,char w1, char w0)

(composite) __m128i _mm_set1_epi64(__m64 q)

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic

Vol. 2B C-17

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

(composite) __m128i _mm_set1_epi32(int a)

(composite) __m128i _mm_set1_epi16(short a)

(composite) __m128i _mm_set1_epi8(char a)

(composite) __m128i _mm_setr_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_setr_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w,
short w0)

(composite) __m128i _mm_setr_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
char w9, char w8,char w7, char w6,char w5, char w4, char w3, char w2,char w1,char w0)

(composite) __m128i _mm_setzero_si128()

(composite) __m128 _mm_set_ps1(float w)
__m128 _mm_set1_ps(float w)

(composite) __m128cmm_set1_pd(double w)

(composite) __m128d _mm_set_sd(double w)

(composite) __m128d _mm_set_pd(double z, double y)

(composite) __m128 _mm_set_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setr_pd(double z, double y)

(composite) __m128 _mm_setr_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setzero_pd(void)

(composite) __m128 _mm_setzero_ps(void)

MOVSD +
shuffle

__m128d _mm_load_pd(double * p)
__m128d _mm_load1_pd(double *p)

MOVSS +
shuffle

__m128 _mm_load_ps1(float * p)
__m128 _mm_load1_ps(float *p)

MOVAPD +
shuffle

__m128d _mm_loadr_pd(double * p)

MOVAPS +
shuffle

__m128 _mm_loadr_ps(float * p)

MOVSD +
shuffle

void _mm_store1_pd(double *p, __m128d a)

MOVSS +
shuffle

void _mm_store_ps1(float * p, __m128 a)
void _mm_store1_ps(float *p, __m128 a)

MOVAPD +
shuffle

_mm_storer_pd(double * p, __m128d a)

MOVAPS +
shuffle

_mm_storer_ps(float * p, __m128 a)

Table C-2. Composite Intrinsics (Contd.)
Mnemonic Intrinsic

C-18 Vol. 2B

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

Vol. 2B INDEX-1

INDEX FOR VOLUMES 2A AND 2B

Numerics
0000, B-59
64-bit mode

control and debug registers, 2-15
default operand size, 2-15
direct memory-offset MOVs, 2-13
general purpose encodings, B-24
immediates, 2-14
introduction, 2-9
machine instructions, B-1
reg (reg) field, B-4
REX prefixes, 2-9, B-2
RIP-relative addressing, 2-14
SIMD encodings, B-54
special instruction encodings, B-92
summary table notation, 3-7

A
AAA instruction, 3-26
AAD instruction, 3-28
AAM instruction, 3-30
AAS instruction, 3-32
Access rights, segment descriptor, 3-561
ADC instruction, 3-34, 3-590
ADD instruction, 3-26, 3-37, 3-285, 3-590
ADDPD instruction, 3-40
ADDPS instruction, 3-43
Addressing methods

RIP-relative, 2-14
Addressing, segments, 1-6
ADDSD instruction, 3-46
ADDSS instruction, 3-49
ADDSUBPD instruction, 3-52
ADDSUBPS instruction, 3-56
AND instruction, 3-60, 3-590
ANDNPD instruction, 3-67
ANDNPS instruction, 3-69
ANDPD instruction, 3-63
ANDPS instruction, 3-65
Arctangent, x87 FPU operation, 3-394
ARPL instruction, 3-71
authenticated code execution mode, 6-4

B
B (default stack size) flag, segment descriptor, 4-296
Base (operand addressing), 2-4
BCD integers

packed, 3-285, 3-287, 3-332, 3-334
unpacked, 3-26, 3-28, 3-30, 3-32

Binary numbers, 1-6
Bit order, 1-4
bootstrap proccessor, 6-21
bootstrap processor, 6-28, 6-37, 6-39, 6-40
BOUND instruction, 3-84
BOUND range exceeded exception (#BR), 3-84
Branch hints, 2-2

Brand information, 3-205
processor brand index, 3-208
processor brand string, 3-205

BSF instruction, 3-87
BSR instruction, 3-89
BSWAP instruction, 3-91
BT instruction, 3-93
BTC instruction, 3-96, 3-590
BTR instruction, 3-99, 3-590
BTS instruction, 3-102, 3-590
Byte order, 1-4

C
Cache and TLB information, 3-199
Cache Inclusiveness, 3-183
Caches, invalidating (flushing), 3-527, 4-499
CALL instruction, 3-105
GETSEC, 6-3
CBW instruction, 3-123
CDQ instruction, 3-283
CDQE instruction, 3-123
CF (carry) flag, EFLAGS register, 3-37, 3-93, 3-96,

3-99, 3-102, 3-124, 3-133, 3-289, 3-496,
3-502, 3-746, 4-312, 4-381, 4-398,
4-401, 4-430, 4-444

CLC instruction, 3-124
CLD instruction, 3-125
CLFLUSH instruction, 3-126

CPUID flag, 3-198
CLI instruction, 3-128
CLTS instruction, 3-131
CMC instruction, 3-133
CMOVcc flag, 3-198
CMOVcc instructions, 3-134

CPUID flag, 3-198
CMP instruction, 3-141
CMPPD instruction, 3-144
CMPPS instruction, 3-149
CMPS instruction, 3-154, 4-335
CMPSB instruction, 3-154
CMPSD instruction, 3-154, 3-160
CMPSQ instruction, 3-154
CMPSS instruction, 3-164
CMPSW instruction, 3-154
CMPXCHG instruction, 3-168, 3-590
CMPXCHG16B instruction, 3-171

CPUID bit, 3-194
CMPXCHG8B instruction, 3-171

CPUID flag, 3-197
COMISD instruction, 3-174
COMISS instruction, 3-177
Compatibility mode

introduction, 2-9
see 64-bit mode
summary table notation, 3-7

Compatibility, software, 1-5
compilers

INDEX

INDEX-2 Vol. 2B

documentation, 1-9
Condition code flags, EFLAGS register, 3-134
Condition code flags, x87 FPU status word

flags affected by instructions, 3-14
setting, 3-444, 3-446, 3-449

Conditional jump, 3-542
Conforming code segment, 3-562
Constants (floating point), loading, 3-382
Control registers, moving values to and from, 3-646
Cosine, x87 FPU operation, 3-350, 3-419
CPL, 3-128, 4-494
CPUID instruction, 3-180, 3-198

36-bit page size extension, 3-198
AP-485, 1-9
APIC on-chip, 3-197
basic CPUID information, 3-181
cache and TLB characteristics, 3-181
CLFLUSH flag, 3-198
CLFLUSH instruction cache line size, 3-192
CMPXCHG16B flag, 3-194
CMPXCHG8B flag, 3-197
CPL qualified debug store, 3-193
debug extensions, CR4.DE, 3-197
debug store supported, 3-198
deterministic cache parameters leaf, 3-182,

3-185, 3-186, 3-187
extended function information, 3-187
feature information, 3-196
FPU on-chip, 3-197
FSAVE flag, 3-198
FXRSTOR flag, 3-198
HT technology flag, 3-199
IA-32e mode available, 3-187
input limits for EAX, 3-189
L1 Context ID, 3-194
local APIC physical ID, 3-192
machine check architecture, 3-198
machine check exception, 3-197
memory type range registers, 3-197
MONITOR feature information, 3-204
MONITOR/MWAIT flag, 3-193
MONITOR/MWAIT leaf, 3-183, 3-184, 3-185
MWAIT feature information, 3-204
page attribute table, 3-198
page size extension, 3-197
performance monitoring features, 3-204
physical address bits, 3-189
physical address extension, 3-197
power management, 3-204
processor brand index, 3-192, 3-205
processor brand string, 3-188, 3-205
processor serial number, 3-182, 3-198
processor type field, 3-191
PTE global bit, 3-198
RDMSR flag, 3-197
returned in EBX, 3-192
returned in ECX & EDX, 3-192
self snoop, 3-199

SpeedStep technology, 3-194
SS2 extensions flag, 3-199
SSE extensions flag, 3-199
SSE3 extensions flag, 3-193
SSSE3 extensions flag, 3-194
SYSENTER flag, 3-197
SYSEXIT flag, 3-197
thermal management, 3-204
thermal monitor, 3-194, 3-198, 3-199
time stamp counter, 3-197
using CPUID, 3-180
vendor ID string, 3-189
version information, 3-181, 3-203
virtual 8086 Mode flag, 3-197
virtual address bits, 3-189
WRMSR flag, 3-197

CQO instruction, 3-283
CR0 control register, 4-415
CS register, 3-106, 3-512, 3-531, 3-550, 3-641,

4-204
CVTDQ2PD instruction, 3-214
CVTDQ2PS instruction, 3-220
CVTPD2DQ instruction, 3-223
CVTPD2PI instruction, 3-226
CVTPD2PS instruction, 3-229
CVTPI2PD instruction, 3-232
CVTPI2PS instruction, 3-235
CVTPS2DQ instruction, 3-238
CVTPS2PD instruction, 3-241
CVTPS2PI instruction, 3-244
CVTSD2SI instruction, 3-247
CVTSD2SS instruction, 3-250
CVTSI2SD instruction, 3-253
CVTSI2SS instruction, 3-256
CVTSS2SD instruction, 3-259
CVTSS2SI instruction, 3-262
CVTTPD2DQ instruction, 3-265
CVTTPD2PI instruction, 3-265, 3-268
CVTTPS2DQ instruction, 3-271
CVTTPS2PI instruction, 3-274
CVTTSD2SI instruction, 3-277
CVTTSS2SI instruction, 3-280
CWD instruction, 3-283
CWDE instruction, 3-123
C/C++ compiler intrinsics

compiler functional equivalents, C-1
composite, C-16
description of, 3-11
lists of, C-1
simple, C-2

D
D (default operation size) flag, segment descriptor,

4-204, 4-210, 4-296
DAA instruction, 3-285
DAS instruction, 3-287
Debug registers, moving value to and from, 3-649

Vol. 2B INDEX-3

INDEX FOR VOLUMES 2A AND 2B

DEC instruction, 3-289, 3-590
Denormalized finite number, 3-449
Detecting and Enabling SMX

level 2, 6-2
DF (direction) flag, EFLAGS register, 3-125, 3-156,

3-506, 3-593, 3-716, 4-19, 4-385, 4-431
Displacement (operand addressing), 2-4
DIV instruction, 3-292
Divide error exception (#DE), 3-292
DIVPD instruction, 3-296
DIVPS instruction, 3-299
DIVSD instruction, 3-302
DIVSS instruction, 3-305
DS register, 3-155, 3-570, 3-592, 3-715, 4-18

E
EDI register, 4-384, 4-431, 4-437
Effective address, 3-576
EFLAGS register

condition codes, 3-138, 3-341, 3-347
flags affected by instructions, 3-14
popping, 4-214
popping on return from interrupt, 3-531
pushing, 4-303
pushing on interrupts, 3-512
saving, 4-371
status flags, 3-141, 3-546, 4-391, 4-473

EIP register, 3-106, 3-512, 3-531, 3-550
EMMS instruction, 3-315
Encodings

See machine instructions, opcodes
ENTER instruction, 3-317
GETSEC, 6-4, 6-12
Error numbers

VM-instruction error field, 5-34
ES register, 3-570, 4-18, 4-384, 4-437
ESI register, 3-155, 3-592, 3-593, 3-715, 4-18, 4-431
ESP register, 3-106, 4-204
Exceptions

BOUND range exceeded (#BR), 3-84
notation, 1-6
overflow exception (#OF), 3-512
returning from, 3-531

GETSEC, 6-4, 6-6
Exponent, extracting from floating-point number,

3-467
Extract exponent and significand, x87 FPU operation

, 3-467

F
F2XM1 instruction, 3-324, 3-467
FABS instruction, 3-326
FADD instruction, 3-328
FADDP instruction, 3-328
Far pointer, loading, 3-570
Far return, RET instruction, 4-338

FBLD instruction, 3-332
FBSTP instruction, 3-334
FCHS instruction, 3-337
FCLEX instruction, 3-339
FCMOVcc instructions, 3-341
FCOM instruction, 3-343
FCOMI instruction, 3-347
FCOMIP instruction, 3-347
FCOMP instruction, 3-343
FCOMPP instruction, 3-343
FCOS instruction, 3-350
FDECSTP instruction, 3-352
FDIV instruction, 3-354
FDIVP instruction, 3-354
FDIVR instruction, 3-358
FDIVRP instruction, 3-358
Feature information, processor, 3-180
FFREE instruction, 3-362
FIADD instruction, 3-328
FICOM instruction, 3-363
FICOMP instruction, 3-363
FIDIV instruction, 3-354
FIDIVR instruction, 3-358
FILD instruction, 3-366
FIMUL instruction, 3-389
FINCSTP instruction, 3-368
FINIT instruction, 3-370
FINIT/FNINIT instructions, 3-411
FIST instruction, 3-372
FISTP instruction, 3-372
FISTTP instruction, 3-376
FISUB instruction, 3-436
FISUBR instruction, 3-440
FLD instruction, 3-379
FLD1 instruction, 3-382
FLDCW instruction, 3-384
FLDENV instruction, 3-386
FLDL2E instruction, 3-382
FLDL2T instruction, 3-382
FLDLG2 instruction, 3-382
FLDLN2 instruction, 3-382
FLDPI instruction, 3-382
FLDZ instruction, 3-382
Floating point instructions

machine encodings, B-92
Floating-point exceptions

SSE and SSE2 SIMD, 3-17
x87 FPU, 3-17

Flushing
caches, 3-527, 4-499
TLB entry, 3-529

FMUL instruction, 3-389
FMULP instruction, 3-389
FNCLEX instruction, 3-339
FNINIT instruction, 3-370
FNOP instruction, 3-393
FNSAVE instruction, 3-411
FNSTCW instruction, 3-427

INDEX

INDEX-4 Vol. 2B

FNSTENV instruction, 3-386, 3-430
FNSTSW instruction, 3-433
FPATAN instruction, 3-394
FPREM instruction, 3-397
FPREM1 instruction, 3-400
FPTAN instruction, 3-403
FRNDINT instruction, 3-406
FRSTOR instruction, 3-408
FS register, 3-570
FSAVE instruction, 3-411
FSAVE/FNSAVE instructions, 3-408
FSCALE instruction, 3-415
FSIN instruction, 3-417
FSINCOS instruction, 3-419
FSQRT instruction, 3-422
FST instruction, 3-424
FSTCW instruction, 3-427
FSTENV instruction, 3-430
FSTP instruction, 3-424
FSTSW instruction, 3-433
FSUB instruction, 3-436
FSUBP instruction, 3-436
FSUBR instruction, 3-440
FSUBRP instruction, 3-440
FTST instruction, 3-444
FUCOM instruction, 3-446
FUCOMI instruction, 3-347
FUCOMIP instruction, 3-347
FUCOMP instruction, 3-446
FUCOMPP instruction, 3-446
FXAM instruction, 3-449
FXCH instruction, 3-451
FXRSTOR instruction, 3-453

CPUID flag, 3-198
FXSAVE instruction, 3-456, 4-509, 4-520, 4-525,

4-529
CPUID flag, 3-198

FXTRACT instruction, 3-415, 3-467
FYL2X instruction, 3-469
FYL2XP1 instruction, 3-471

G
GDT (global descriptor table), 3-582, 3-585
GDTR (global descriptor table register), 3-582, 4-395
General-purpose instructions

64-bit encodings, B-24
non-64-bit encodings, B-9

General-purpose registers
moving value to and from, 3-641
popping all, 4-210
pushing all, 4-300

GETSEC, 6-1, 6-3, 6-7
GS register, 3-570

H
HADDPD instruction, 3-473, 3-474

HADDPS instruction, 3-477
Hexadecimal numbers, 1-6
HLT instruction, 3-481
HSUBPD instruction, 3-483
HSUBPS instruction, 3-487
Hyper-Threading Technology

CPUID flag, 3-199

I
IA-32e mode

CPUID flag, 3-187
introduction, 2-9
see 64-bit mode
see compatibility mode

IA32_SYSENTER_CS MSR, 4-465, 4-468, 4-469
IA32_SYSENTER_EIP MSR, 4-465
IA32_SYSENTER_ESP MSR, 4-465
IDIV instruction, 3-491
IDT (interrupt descriptor table), 3-513, 3-582
IDTR (interrupt descriptor table register), 3-582,

4-410
IF (interrupt enable) flag, EFLAGS register, 3-128,

4-432
Immediate operands, 2-4
IMUL instruction, 3-495
IN instruction, 3-500
INC instruction, 3-502, 3-590
Index (operand addressing), 2-4
Initialization x87 FPU, 3-370
initiating logical processor, 6-4, 6-6, 6-12, 6-13, 6-27,

6-28
INS instruction, 3-505, 4-335
INSB instruction, 3-505
INSD instruction, 3-505
instruction encodings, B-88, B-96
Instruction format

base field, 2-4
description of reference information, 3-1
displacement, 2-4
immediate, 2-4
index field, 2-4
Mod field, 2-4
ModR/M byte, 2-4
opcode, 2-3
operands, 1-5
prefixes, 2-1
reg/opcode field, 2-4
r/m field, 2-4
scale field, 2-4
SIB byte, 2-4
See also: machine instructions, opcodes

Instruction reference, nomenclature, 3-1
Instruction set, reference, 3-1
INSW instruction, 3-505
INT 3 instruction, 3-512
Integer, storing, x87 FPU data type, 3-372
Intel 64 architecture

Vol. 2B INDEX-5

INDEX FOR VOLUMES 2A AND 2B

definition of, 1-3
instruction format, 2-1
relation to IA-32, 1-3

Intel developer link, 1-9
Intel NetBurst microarchitecture, 1-2
Intel software network link, 1-9
Intel VTune Performance Analyzer

related information, 1-9
Intel Xeon processor, 1-1
Intel® Trusted Execution Technology, 6-4
Inter-privilege level

call, CALL instruction, 3-106
return, RET instruction, 4-338

Interrupts
interrupt vector 4, 3-512
returning from, 3-531
software, 3-512

INTn instruction, 3-512
INTO instruction, 3-512
Intrinsics

compiler functional equivalents, C-1
composite, C-16
description of, 3-11
list of, C-1
simple, C-2

INVD instruction, 3-527
INVLPG instruction, 3-529
IOPL (I/O privilege level) field, EFLAGS register, 3-128,

4-303, 4-432
IRET instruction, 3-531
IRETD instruction, 3-531

J
Jcc instructions, 3-542
JMP instruction, 3-549
Jump operation, 3-549

L
L1 Context ID, 3-194
LAHF instruction, 3-559
LAR instruction, 3-561
Last branch

interrupt & exception recording
description of, 4-350

LDDQU instruction, 3-565
LDMXCSR instruction, 3-568
LDS instruction, 3-570
LDT (local descriptor table), 3-585
LDTR (local descriptor table register), 3-585, 4-413
LEA instruction, 3-576
LEAVE instruction, 3-579
LES instruction, 3-570
LFENCE instruction, 3-581
LFS instruction, 3-570
LGDT instruction, 3-582
LGS instruction, 3-570

LIDT instruction, 3-582
LLDT instruction, 3-585
LMSW instruction, 3-588
Load effective address operation, 3-576
LOCK prefix, 3-35, 3-38, 3-61, 3-96, 3-99, 3-102,

3-168, 3-289, 3-502, 3-590, 4-2, 4-7,
4-10, 4-381, 4-444, 4-503, 4-507, 4-514

Locking operation, 3-590
LODS instruction, 3-592, 4-335
LODSB instruction, 3-592
LODSD instruction, 3-592
LODSQ instruction, 3-592
LODSW instruction, 3-592
Log epsilon, x87 FPU operation, 3-469
Log (base 2), x87 FPU operation, 3-471
LOOP instructions, 3-596
LOOPcc instructions, 3-596
LSL instruction, 3-599
LSS instruction, 3-570
LTR instruction, 3-603

M
Machine check architecture

CPUID flag, 3-198
description, 3-198

Machine instructions
64-bit mode, B-1
condition test (tttn) field, B-7
direction bit (d) field, B-8
floating-point instruction encodings, B-92
general description, B-1
general-purpose encodings, B-9–B-53
legacy prefixes, B-2
MMX encodings, B-55–B-58
opcode fields, B-2
operand size (w) bit, B-5
P6 family encodings, B-59
Pentium processor family encodings, B-53
reg (reg) field, B-3, B-4
REX prefixes, B-2
segment register (sreg) field, B-6
sign-extend (s) bit, B-5
SIMD 64-bit encodings, B-54
special 64-bit encodings, B-92
special fields, B-2
special-purpose register (eee) field, B-6
SSE encodings, B-60–B-69
SSE2 encodings, B-69–B-85
SSE3 encodings, B-86–B-88
SSSE3 encodings, B-88–B-92
VMX encodings, B-112–B-113, B-114–??
See also: opcodes

Machine status word, CR0 register, 3-588, 4-415
MASKMOVDQU instruction, 3-606
MASKMOVQ instruction, 3-609
MAXPD instruction, 3-612
MAXPS instruction, 3-615

INDEX

INDEX-6 Vol. 2B

MAXSD instruction, 3-618
MAXSS instruction, 3-621
measured environment, 6-1
Measured Launched Environment, 6-1, 6-33
MFENCE instruction, 3-624
MINPD instruction, 3-625
MINPS instruction, 3-628
MINSD instruction, 3-631
MINSS instruction, 3-634
MLE, 6-1
MMX instructions

CPUID flag for technology, 3-198
encodings, B-55

Mod field, instruction format, 2-4
Model & family information, 3-203
ModR/M byte, 2-4

16-bit addressing forms, 2-6
32-bit addressing forms of, 2-7
description of, 2-4

MONITOR instruction, 3-637
CPUID flag, 3-193
feature data, 3-204

MOV instruction, 3-640
MOV instruction (control registers), 3-646
MOV instruction (debug registers), 3-649, 3-657
MOVAPD instruction, 3-651
MOVAPS instruction, 3-654
MOVD instruction, 3-657
MOVDDUP instruction, 3-664
MOVDQ2Q instruction, 3-672
MOVDQA instruction, 3-667
MOVDQU instruction, 3-669
MOVHLPS instruction, 3-674
MOVHPD instruction, 3-676
MOVHPS instruction, 3-679
MOVLHP instruction, 3-682
MOVLHPS instruction, 3-682
MOVLPD instruction, 3-684
MOVLPS instruction, 3-686
MOVMSKPD instruction, 3-689
MOVMSKPS instruction, 3-691
MOVNTDQ instruction, 3-696
MOVNTI instruction, 3-699
MOVNTPD instruction, 3-701
MOVNTPS instruction, 3-704
MOVNTQ instruction, 3-707
MOVQ instruction, 3-657, 3-710
MOVQ2DQ instruction, 3-713
MOVS instruction, 3-715, 4-335
MOVSB instruction, 3-715
MOVSD instruction, 3-715, 3-720
MOVSHDUP instruction, 3-723
MOVSLDUP instruction, 3-726
MOVSQ instruction, 3-715
MOVSS instruction, 3-729
MOVSW instruction, 3-715
MOVSX instruction, 3-732
MOVSXD instruction, 3-732

MOVUPD instruction, 3-734
MOVUPS instruction, 3-737
MOVZX instruction, 3-740
MSRs (model specific registers)

reading, 4-322
MUL instruction, 3-30, 3-746
MULPD instruction, 3-749
MULPS instruction, 3-752
MULSD instruction, 3-755
MULSS instruction, 3-758
Multi-byte no operation, 4-5, B-16
MVMM, 6-1, 6-6, 6-7, 6-48
MWAIT instruction, 3-761

CPUID flag, 3-193
feature data, 3-204

N
NaN. testing for, 3-444
Near

return, RET instruction, 4-338
NEG instruction, 3-590, 4-2
NetBurst microarchitecture (see Intel NetBurst

microarchitecture)
No operation, 4-5, B-16
Nomenclature, used in instruction reference pages,

3-1
NOP instruction, 4-5
NOT instruction, 3-590, 4-7
Notation

bit and byte order, 1-4
exceptions, 1-6
hexadecimal and binary numbers, 1-6
instruction operands, 1-5
reserved bits, 1-5
segmented addressing, 1-6

Notational conventions, 1-4
NT (nested task) flag, EFLAGS register, 3-531

O
OF (carry) flag, EFLAGS register, 3-496
OF (overflow) flag, EFLAGS register, 3-37, 3-512,

3-746, 4-381, 4-398, 4-401, 4-444
Opcode format, 2-3
Opcodes

addressing method codes for, A-2
extensions, A-20
extensions tables, A-21
group numbers, A-20
integers

one-byte opcodes, A-10
two-byte opcodes, A-12

key to abbreviations, A-2
look-up examples, A-4, A-20, A-23
ModR/M byte, A-20
one-byte opcodes, A-4, A-10
opcode maps, A-1

Vol. 2B INDEX-7

INDEX FOR VOLUMES 2A AND 2B

operand type codes for, A-3
register codes for, A-4
superscripts in tables, A-7
two-byte opcodes, A-5, A-6, A-12
VMX instructions, B-112, B-114
x87 ESC instruction opcodes, A-23

Operands, 1-5
OR instruction, 3-590, 4-9
ORPD instruction, 4-12
ORPS instruction, 4-14
OUT instruction, 4-16
OUTS instruction, 4-18, 4-335
OUTSB instruction, 4-18
OUTSD instruction, 4-18
OUTSW instruction, 4-18
Overflow exception (#OF), 3-512

P
P6 family processors

description of, 1-1
machine encodings, B-59

PABSB instruction, 4-23
PABSD instruction, 4-23
PABSW instruction, 4-23
PACKSSDW instruction, 4-27
PACKSSWB instruction, 4-27
PACKUSWB instruction, 4-35
PADDB instruction, 4-39
PADDD instruction, 4-39
PADDQ instruction, 4-43
PADDSB instruction, 4-46
PADDSW instruction, 4-46
PADDUSB instruction, 4-50
PADDUSW instruction, 4-50
PADDW instruction, 4-39
PALIGNR instruction, 4-54
PAND instruction, 4-57
PANDN instruction, 4-60
GETSEC, 6-5
PAUSE instruction, 4-63
PAVGB instruction, 4-64
PAVGW instruction, 4-64
PCE flag, CR4 register, 4-326
PCMPEQB instruction, 4-75
PCMPEQD instruction, 4-75
PCMPEQW instruction, 4-75
PCMPGTB instruction, 4-93
PCMPGTD instruction, 4-93
PCMPGTW instruction, 4-93
PE (protection enable) flag, CR0 register, 3-588
Pending break enable, 3-199
Pentium 4 processor, 1-1
Pentium II processor, 1-2
Pentium III processor, 1-2
Pentium Pro processor, 1-2
Pentium processor, 1-1
Pentium processor family processors

machine encodings, B-53
Performance-monitoring counters

CPUID inquiry for, 3-204
reading, 4-324

PEXTRW instruction, 4-103
PHADDD instruction, 4-107
PHADDSW instruction, 4-110
PHADDW instruction, 4-107
PHSUBD instruction, 4-116
PHSUBSW instruction, 4-119
PHSUBW instruction, 4-116
Pi, 3-382
PINSRW instruction, 4-125, 4-242
PMADDUBSW instruction, 4-128
PMADDUDSW instruction, 4-128
PMADDWD instruction, 4-131
PMAXSW instruction, 4-141
PMAXUB instruction, 4-144
PMINSW instruction, 4-159
PMINUB instruction, 4-162
PMOVMSKB instruction, 4-165
PMULHRSW instruction, 4-184
PMULHUW instruction, 4-187
PMULHW instruction, 4-191
PMULLW instruction, 4-196
PMULUDQ instruction, 4-200
POP instruction, 4-203
POPA instruction, 4-210
POPAD instruction, 4-210
POPF instruction, 4-214
POPFD instruction, 4-214
POPFQ instruction, 4-214
POR instruction, 4-218
PREFETCHh instruction, 4-221
Prefixes

Address-size override prefix, 2-2
Branch hints, 2-2
branch hints, 2-2
instruction, description of, 2-1
legacy prefix encodings, B-2
LOCK, 2-2, 3-590
Operand-size override prefix, 2-2
REP or REPE/REPZ, 2-2
REPNE/REPNZ, 2-2
REP/REPE/REPZ/REPNE/REPNZ, 4-333
REX prefix encodings, B-2
Segment override prefixes, 2-2

PSADBW instruction, 4-223
Pseudo-functions

VMfail, 5-2
VMfailInvalid, 5-2
VMfailValid, 5-2
VMsucceed, 5-2

PSHUFB instruction, 4-227
PSHUFD instruction, 4-231
PSHUFHW instruction, 4-234
PSHUFLW instruction, 4-237
PSHUFW instruction, 4-240

INDEX

INDEX-8 Vol. 2B

PSIGNB instruction, 4-242
PSIGND instruction, 4-242
PSIGNW instruction, 4-242
PSLLD instruction, 4-249
PSLLDQ instruction, 4-247
PSLLQ instruction, 4-249
PSLLW instruction, 4-249
PSRAD instruction, 4-254
PSRAW instruction, 4-254
PSRLD instruction, 4-261
PSRLDQ instruction, 4-259
PSRLQ instruction, 4-261
PSRLW instruction, 4-261
PSUBB instruction, 4-266
PSUBD instruction, 4-266
PSUBQ instruction, 4-270
PSUBSB instruction, 4-273
PSUBSW instruction, 4-273
PSUBUSB instruction, 4-277
PSUBUSW instruction, 4-277
PSUBW instruction, 4-266
PUNPCKHBW instruction, 4-284
PUNPCKHDQ instruction, 4-284
PUNPCKHQDQ instruction, 4-284
PUNPCKHWD instruction, 4-284
PUNPCKLBW instruction, 4-290
PUNPCKLDQ instruction, 4-290
PUNPCKLQDQ instruction, 4-290
PUNPCKLWD instruction, 4-290
PUSH instruction, 4-295
PUSHA instruction, 4-300
PUSHAD instruction, 4-300
PUSHF instruction, 4-303
PUSHFD instruction, 4-303
PXOR instruction, 4-306

R
RC (rounding control) field, x87 FPU control word,

3-373, 3-382, 3-424
RCL instruction, 4-309
RCPPS instruction, 4-316
RCPSS instruction, 4-319
RCR instruction, 4-309
RDMSR instruction, 4-322, 4-326, 4-329

CPUID flag, 3-197
RDPMC instruction, 4-324
RDTSC instruction, 4-329, 4-331
Reg/opcode field, instruction format, 2-4
Related literature, 1-8
Remainder, x87 FPU operation, 3-400
REP/REPE/REPZ/REPNE/REPNZ prefixes, 3-156,

3-506, 4-19, 4-333
Reserved

use of reserved bits, 1-5
Responding logical processor, 6-6
responding logical processor, 6-4, 6-5, 6-6
RET instruction, 4-338

REX prefixes
addressing modes, 2-11
and INC/DEC, 2-10
encodings, 2-10, B-2
field names, 2-11
ModR/M byte, 2-10
overview, 2-9
REX.B, 2-10
REX.R, 2-10
REX.W, 2-10
special encodings, 2-13

RIP-relative addressing, 2-14
ROL instruction, 4-309
ROR instruction, 4-309
Rounding

modes, floating-point operations, 4-351
Rounding control (RC) field

MXCSR register, 4-351
x87 FPU control word, 4-351

Rounding, round to integer, x87 FPU operation, 3-406
RPL field, 3-71
RSM instruction, 4-363
RSQRTPS instruction, 4-365
RSQRTSS instruction, 4-368
R/m field, instruction format, 2-4

S
Safer Mode Extensions, 6-1
SAHF instruction, 4-371
SAL instruction, 4-373
SAR instruction, 4-373
SBB instruction, 3-590, 4-380
Scale (operand addressing), 2-4
Scale, x87 FPU operation, 3-415
Scan string instructions, 4-384
SCAS instruction, 4-335, 4-384
SCASB instruction, 4-384
SCASD instruction, 4-384
SCASW instruction, 4-384
Segment

descriptor, segment limit, 3-599
limit, 3-599
registers, moving values to and from, 3-641
selector, RPL field, 3-71

Segmented addressing, 1-6
Self Snoop, 3-199
GETSEC, 6-2, 6-4, 6-6
SENTER sleep state, 6-12
SETcc instructions, 4-389
GETSEC, 6-5
SF (sign) flag, EFLAGS register, 3-37
SFENCE instruction, 4-394
SGDT instruction, 4-395
SHAF instruction, 4-371
Shift instructions, 4-373
SHL instruction, 4-373
SHLD instruction, 4-398

Vol. 2B INDEX-9

INDEX FOR VOLUMES 2A AND 2B

SHR instruction, 4-373
SHRD instruction, 4-401
SHUFPD instruction, 4-404
SHUFPS instruction, 4-407
SIB byte, 2-4

32-bit addressing forms of, 2-8
description of, 2-4

SIDT instruction, 4-395, 4-410
Significand, extracting from floating-point number,

3-467
SIMD floating-point exceptions, unmasking, effects of

, 3-568
Sine, x87 FPU operation, 3-417, 3-419
SINIT, 6-5
SLDT instruction, 4-413
GETSEC, 6-5
SMSW instruction, 4-415
SpeedStep technology, 3-194
SQRTPD instruction, 4-418
SQRTPS instruction, 4-421
SQRTSD instruction, 4-424
SQRTSS instruction, 4-427
Square root, Fx87 PU operation, 3-422
SS register, 3-570, 3-642, 4-204
SSE extensions

cacheability instruction encodings, B-68
CPUID flag, 3-199
floating-point encodings, B-60
instruction encodings, B-60
integer instruction encodings, B-67
memory ordering encodings, B-68

SSE2 extensions
cacheability instruction encodings, B-85
CPUID flag, 3-199
floating-point encodings, B-70
integer instruction encodings, B-78

SSE3
CPUID flag, 3-193

SSE3 extensions
CPUID flag, 3-193
event mgmt instruction encodings, B-87
floating-point instruction encodings, B-86
integer instruction encodings, B-87, B-88

SSSE3 extensions, B-88, B-96
CPUID flag, 3-194

Stack, pushing values on, 4-296
Status flags, EFLAGS register, 3-138, 3-141, 3-341,

3-347, 3-546, 4-391, 4-473
STC instruction, 4-430
STD instruction, 4-431
Stepping information, 3-203
STI instruction, 4-432
STMXCSR instruction, 4-435
STOS instruction, 4-335, 4-437
STOSB instruction, 4-437
STOSD instruction, 4-437
STOSQ instruction, 4-437
STOSW instruction, 4-437

STR instruction, 4-441
String instructions, 3-154, 3-505, 3-592, 3-715,

4-18, 4-384, 4-437
SUB instruction, 3-32, 3-287, 3-590, 4-443
SUBPD instruction, 4-446
SUBSS instruction, 4-455
Summary table notation, 3-7
SWAPGS instruction, 4-458
SYSCALL instruction, 4-460
SYSENTER instruction, 4-462

CPUID flag, 3-197
SYSEXIT instruction, 4-466

CPUID flag, 3-197
SYSRET instruction, 4-470

T
Tangent, x87 FPU operation, 3-403
Task register

loading, 3-603
storing, 4-441

Task switch
CALL instruction, 3-106
return from nested task, IRET instruction, 3-531

TEST instruction, 4-472
Thermal Monitor

CPUID flag, 3-199
Thermal Monitor 2, 3-194

CPUID flag, 3-194
Time Stamp Counter, 3-197
Time-stamp counter, reading, 4-329, 4-331
TLB entry, invalidating (flushing), 3-529
Trusted Platform Module, 6-6
TS (task switched) flag, CR0 register, 3-131
TSD flag, CR4 register, 4-329, 4-331
TSS, relationship to task register, 4-441

U
UCOMISD instruction, 4-475
UCOMISS instruction, 4-478
UD2 instruction, 4-481
Undefined, format opcodes, 3-444
Unordered values, 3-343, 3-444, 3-446
UNPCKHPD instruction, 4-482
UNPCKHPS instruction, 4-485
UNPCKLPD instruction, 4-488
UNPCKLPS instruction, 4-491

V
VERR instruction, 4-494
Version information, processor, 3-180
VERW instruction, 4-494
Virtual Machine Monitor, 6-1
VM (virtual 8086 mode) flag, EFLAGS register, 3-531
VMCALL instruction, 5-1
VMCLEAR instruction, 5-1
VMCS

INDEX

INDEX-10 Vol. 2B

error numbers, 5-34
VM-instruction error field, 5-34

VMLAUNCH instruction, 5-1
VMM, 6-1
VMPTRLD instruction, 5-1
VMPTRST instruction, 5-1
VMREAD instruction, 5-1
VMRESUME instruction, 5-1, 5-2
VMWRITE instruction, 5-1
VMXOFF instruction, 5-1
VMXON instruction, 5-2

W
WAIT/FWAIT instructions, 4-497
GETSEC, 6-6
WBINVD instruction, 4-499
WBINVD/INVD bit, 3-183
Write-back and invalidate caches, 4-499
WRMSR instruction, 4-501

CPUID flag, 3-197

X
x87 FPU

checking for pending x87 FPU exceptions, 4-497
constants, 3-382
initialization, 3-370
instruction opcodes, A-23

x87 FPU control word
loading, 3-384, 3-386
RC field, 3-373, 3-382, 3-424
restoring, 3-408
saving, 3-411, 3-430
storing, 3-427

x87 FPU data pointer, 3-386, 3-408, 3-411, 3-430
x87 FPU instruction pointer, 3-386, 3-408, 3-411,

3-430
x87 FPU last opcode, 3-386, 3-408, 3-411, 3-430
x87 FPU status word

condition code flags, 3-343, 3-363, 3-444, 3-446,
3-449

loading, 3-386
restoring, 3-408
saving, 3-411, 3-430, 3-433
TOP field, 3-368
x87 FPU flags affected by instructions, 3-14

x87 FPU tag word, 3-386, 3-408, 3-411, 3-430
XADD instruction, 3-590, 4-503
XCHG instruction, 3-590, 4-506
XFEATURE_ENABLED_MASK, 4-509, 4-520, 4-521,

4-525, 4-529, 4-530
XGETBV, 4-509, 4-520, B-59
XLAB instruction, 4-511
XLAT instruction, 4-511
XOR instruction, 3-590, 4-513
XORPD instruction, 4-516
XORPS instruction, 4-518

XRSTOR, 4-525, B-59
XSAVE, 4-509, 4-520, 4-521, 4-522, 4-523, 4-524,

4-525, 4-527, 4-528, 4-529, 4-530, B-59
XSETBV, 4-529, B-59

Z
ZF (zero) flag, EFLAGS register, 3-168, 3-561, 3-596,

3-599, 4-335, 4-494

	Chapter 4 Instruction Set Reference, N-Z
	4.1 Instructions (N-Z)
	NEG-Two's Complement Negation
	NOP-No Operation
	NOT-One's Complement Negation
	OR-Logical Inclusive OR
	ORPD-Bitwise Logical OR of Double-Precision Floating-Point Values
	ORPS-Bitwise Logical OR of Single-Precision Floating-Point Values
	OUT-Output to Port
	OUTS/OUTSB/OUTSW/OUTSD-Output String to Port
	PABSB/PABSW/PABSD - Packed Absolute Value
	PACKSSWB/PACKSSDW-Pack with Signed Saturation
	PACKUSDW - Pack with Unsigned Saturation
	PACKUSWB-Pack with Unsigned Saturation
	PADDB/PADDW/PADDD-Add Packed Integers
	PADDQ-Add Packed Quadword Integers
	PADDSB/PADDSW-Add Packed Signed Integers with Signed Saturation
	PADDUSB/PADDUSW-Add Packed Unsigned Integers with Unsigned Saturation
	PALIGNR - Packed Align Right
	PAND-Logical AND
	PANDN-Logical AND NOT
	PAUSE-Spin Loop Hint
	PAVGB/PAVGW-Average Packed Integers
	PBLENDVB - Variable Blend Packed Bytes
	PBLENDW - Blend Packed Words
	PCMPEQB/PCMPEQW/PCMPEQD- Compare Packed Data for Equal
	PCMPEQQ - Compare Packed Qword Data for Equal
	PCMPESTRI - Packed Compare Explicit Length Strings, Return Index
	PCMPESTRM - Packed Compare Explicit Length Strings, Return Mask
	PCMPISTRI - Packed Compare Implicit Length Strings, Return Index
	PCMPISTRM - Packed Compare Implicit Length Strings, Return Mask
	PCMPGTB/PCMPGTW/PCMPGTD-Compare Packed Signed Integers for Greater Than
	PCMPGTQ - Compare Packed Data for Greater Than
	PEXTRB/PEXTRD/PEXTRQ - Extract Byte/Dword/Qword
	PEXTRW-Extract Word
	PHADDW/PHADDD - Packed Horizontal Add
	PHADDSW - Packed Horizontal Add and Saturate
	PHMINPOSUW - Packed Horizontal Word Minimum
	PHSUBW/PHSUBD - Packed Horizontal Subtract
	PHSUBSW - Packed Horizontal Subtract and Saturate
	PINSRB/PINSRD/PINSRQ - Insert Byte/Dword/Qword
	PINSRW-Insert Word
	PMADDUBSW - Multiply and Add Packed Signed and Unsigned Bytes
	PMADDWD-Multiply and Add Packed Integers
	PMAXSB - Maximum of Packed Signed Byte Integers
	PMAXSD - Maximum of Packed Signed Dword Integers
	PMAXSW-Maximum of Packed Signed Word Integers
	PMAXUB-Maximum of Packed Unsigned Byte Integers
	PMAXUD - Maximum of Packed Unsigned Dword Integers
	PMAXUW - Maximum of Packed Word Integers
	PMINSB - Minimum of Packed Signed Byte Integers
	PMINSD - Minimum of Packed Dword Integers
	PMINSW-Minimum of Packed Signed Word Integers
	PMINUB-Minimum of Packed Unsigned Byte Integers
	PMINUD - Minimum of Packed Dword Integers
	PMINUW - Minimum of Packed Word Integers
	PMOVMSKB-Move Byte Mask
	PMOVSX - Packed Move with Sign Extend
	PMOVZX - Packed Move with Zero Extend
	PMULDQ - Multiply Packed Signed Dword Integers
	PMULHRSW - Packed Multiply High with Round and Scale
	PMULHUW-Multiply Packed Unsigned Integers and Store High Result
	PMULHW-Multiply Packed Signed Integers and Store High Result
	PMULLD - Multiply Packed Signed Dword Integers and Store Low Result
	PMULLW-Multiply Packed Signed Integers and Store Low Result
	PMULUDQ-Multiply Packed Unsigned Doubleword Integers
	POP-Pop a Value from the Stack
	POPA/POPAD-Pop All General-Purpose Registers
	POPCNT - Return the Count of Number of Bits Set to 1
	POPF/POPFD/POPFQ-Pop Stack into EFLAGS Register
	POR-Bitwise Logical OR
	PREFETCHh-Prefetch Data Into Caches
	PSADBW-Compute Sum of Absolute Differences
	PSHUFB - Packed Shuffle Bytes
	PSHUFD-Shuffle Packed Doublewords
	PSHUFHW-Shuffle Packed High Words
	PSHUFLW-Shuffle Packed Low Words
	PSHUFW-Shuffle Packed Words
	PSIGNB/PSIGNW/PSIGND - Packed SIGN
	PSLLDQ-Shift Double Quadword Left Logical
	PSLLW/PSLLD/PSLLQ-Shift Packed Data Left Logical
	PSRAW/PSRAD-Shift Packed Data Right Arithmetic
	PSRLDQ-Shift Double Quadword Right Logical
	PSRLW/PSRLD/PSRLQ-Shift Packed Data Right Logical
	PSUBB/PSUBW/PSUBD-Subtract Packed Integers
	PSUBQ-Subtract Packed Quadword Integers
	PSUBSB/PSUBSW-Subtract Packed Signed Integers with Signed Saturation
	PSUBUSB/PSUBUSW-Subtract Packed Unsigned Integers with Unsigned Saturation
	PTEST- Logical Compare
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ- Unpack High Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ- Unpack Low Data
	PUSH-Push Word, Doubleword or Quadword Onto the Stack
	PUSHA/PUSHAD-Push All General-Purpose Registers
	PUSHF/PUSHFD-Push EFLAGS Register onto the Stack
	PXOR-Logical Exclusive OR
	RCL/RCR/ROL/ROR--Rotate
	RCPPS-Compute Reciprocals of Packed Single-Precision Floating- Point Values
	RCPSS-Compute Reciprocal of Scalar Single-Precision Floating-Point Values
	RDMSR-Read from Model Specific Register
	RDPMC-Read Performance-Monitoring Counters
	RDTSC-Read Time-Stamp Counter
	RDTSCP-Read Time-Stamp Counter and Processor ID
	REP/REPE/REPZ/REPNE/REPNZ-Repeat String Operation Prefix
	RET-Return from Procedure
	ROUNDPD - Round Packed Double Precision Floating-Point Values
	ROUNDPS - Round Packed Single Precision Floating-Point Values
	ROUNDSD - Round Scalar Double Precision Floating-Point Values
	ROUNDSS - Round Scalar Single Precision Floating-Point Values
	RSM-Resume from System Management Mode
	RSQRTPS-Compute Reciprocals of Square Roots of Packed Single- Precision Floating-Point Values
	RSQRTSS-Compute Reciprocal of Square Root of Scalar Single- Precision Floating-Point Value
	SAHF-Store AH into Flags
	SAL/SAR/SHL/SHR-Shift
	SBB-Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD-Scan String
	SETcc-Set Byte on Condition
	SFENCE-Store Fence
	SGDT-Store Global Descriptor Table Register
	SHLD-Double Precision Shift Left
	SHRD-Double Precision Shift Right
	SHUFPD-Shuffle Packed Double-Precision Floating-Point Values
	SHUFPS-Shuffle Packed Single-Precision Floating-Point Values
	SIDT-Store Interrupt Descriptor Table Register
	SLDT-Store Local Descriptor Table Register
	SMSW-Store Machine Status Word
	SQRTPS-Compute Square Roots of Packed Single-Precision Floating- Point Values
	SQRTSD-Compute Square Root of Scalar Double-Precision Floating- Point Value
	SQRTSS-Compute Square Root of Scalar Single-Precision Floating- Point Value
	STC-Set Carry Flag
	STD-Set Direction Flag
	STI-Set Interrupt Flag
	STMXCSR-Store MXCSR Register State
	STOS/STOSB/STOSW/STOSD/STOSQ-Store String
	STR-Store Task Register
	SUB-Subtract
	SUBPD-Subtract Packed Double-Precision Floating-Point Values
	SUBPS-Subtract Packed Single-Precision Floating-Point Values
	SUBSD-Subtract Scalar Double-Precision Floating-Point Values
	SUBSS-Subtract Scalar Single-Precision Floating-Point Values
	SWAPGS-Swap GS Base Register
	SYSCALL-Fast System Call
	SYSENTER-Fast System Call
	SYSEXIT-Fast Return from Fast System Call
	SYSRET-Return From Fast System Call
	TEST-Logical Compare
	UCOMISD-Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS
	UCOMISS-Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
	UD2-Undefined Instruction
	UNPCKHPD-Unpack and Interleave High Packed Double-Precision Floating-Point Values
	UNPCKHPS-Unpack and Interleave High Packed Single-Precision Floating-Point Values
	UNPCKLPD-Unpack and Interleave Low Packed Double-Precision Floating-Point Values
	UNPCKLPS-Unpack and Interleave Low Packed Single-Precision Floating-Point Values
	VERR/VERW-Verify a Segment for Reading or Writing
	WAIT/FWAIT-Wait
	WBINVD-Write Back and Invalidate Cache
	WRMSR-Write to Model Specific Register
	XADD-Exchange and Add
	XCHG-Exchange Register/Memory with Register
	XGETBV-Get Value of Extended Control Register
	XLAT/XLATB-Table Look-up Translation
	XOR-Logical Exclusive OR
	XORPD-Bitwise Logical XOR for Double-Precision Floating-Point Values
	XORPS-Bitwise Logical XOR for Single-Precision Floating-Point Values
	XRSTOR-Restore Processor Extended States
	XSAVE-Save Processor Extended States
	XSETBV-Set Extended Control Register

	Chapter 5 VMX Instruction Reference
	5.1 Overview
	5.2 Conventions
	5.3 VMX Instructions
	INVEPT- Invalidate Translations Derived from EPT
	INVVPID- Invalidate Translations Based on VPID
	VMCALL-Call to VM Monitor
	VMCLEAR-Clear Virtual-Machine Control Structure
	VMLAUNCH/VMRESUME-Launch/Resume Virtual Machine
	VMPTRLD-Load Pointer to Virtual-Machine Control Structure
	VMPTRST-Store Pointer to Virtual-Machine Control Structure
	VMREAD-Read Field from Virtual-Machine Control Structure
	VMRESUME-Resume Virtual Machine
	VMWRITE-Write Field to Virtual-Machine Control Structure
	VMXOFF-Leave VMX Operation
	VMXON-Enter VMX Operation

	5.4 VM Instruction Error Numbers

	Chapter 6 Safer Mode Extensions Reference
	6.1 Overview
	6.2 SMX Functionality
	6.2.1 Detecting and Enabling SMX
	6.2.2 SMX Instruction Summary
	6.2.2.1 GETSEC[CAPABILITIES]
	6.2.2.2 GETSEC[ENTERACCS]
	6.2.2.3 GETSEC[EXITAC]
	6.2.2.4 GETSEC[SENTER]
	6.2.2.5 GETSEC[SEXIT]
	6.2.2.6 GETSEC[PARAMETERS]
	6.2.2.7 GETSEC[SMCTRL]
	6.2.2.8 GETSEC[WAKEUP]

	6.2.3 Measured Environment and SMX

	6.3 GETSEC Leaf Functions
	GETSEC[CAPABILITIES] - Report the SMX Capabilities
	GETSEC[ENTERACCS] - Execute Authenticated Chipset Code
	GETSEC[EXITAC]-Exit Authenticated Code Execution Mode
	GETSEC[SENTER]-Enter a Measured Environment
	GETSEC[SEXIT]-Exit Measured Environment
	GETSEC[PARAMETERS]-Report the SMX Parameters
	GETSEC[SMCTRL]-SMX Mode Control
	GETSEC[WAKEUP]-Wake up sleeping processors in measured environment

	Appendix A Opcode Map
	A.1 Using Opcode Tables
	A.2 Key to Abbreviations
	A.2.1 Codes for Addressing Method
	A.2.2 Codes for Operand Type
	A.2.3 Register Codes
	A.2.4 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes
	A.2.4.1 One-Byte Opcode Instructions
	A.2.4.2 Two-Byte Opcode Instructions
	A.2.4.3 Three-Byte Opcode Instructions

	A.2.5 Superscripts Utilized in Opcode Tables

	A.3 One, Two, and THREE-Byte Opcode Maps
	A.4 Opcode Extensions For One-Byte And Two- byte Opcodes
	A.4.1 Opcode Look-up Examples Using Opcode Extensions
	A.4.2 Opcode Extension Tables

	A.5 Escape Opcode Instructions
	A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
	A.5.2 Escape Opcode Instruction Tables
	A.5.2.1 Escape Opcodes with D8 as First Byte
	A.5.2.2 Escape Opcodes with D9 as First Byte
	A.5.2.3 Escape Opcodes with DA as First Byte
	A.5.2.4 Escape Opcodes with DB as First Byte
	A.5.2.5 Escape Opcodes with DC as First Byte
	A.5.2.6 Escape Opcodes with DD as First Byte
	A.5.2.7 Escape Opcodes with DE as First Byte
	A.5.2.8 Escape Opcodes with DF As First Byte

	Appendix B Instruction Formats and Encodings
	B.1 Machine Instruction Format
	B.1.1 Legacy Prefixes
	B.1.2 REX Prefixes
	B.1.3 Opcode Fields
	B.1.4 Special Fields
	B.1.4.1 Reg Field (reg) for Non-64-Bit Modes
	B.1.4.2 Reg Field (reg) for 64-Bit Mode
	B.1.4.3 Encoding of Operand Size (w) Bit
	B.1.4.4 Sign-Extend (s) Bit
	B.1.4.5 Segment Register (sreg) Field
	B.1.4.6 Special-Purpose Register (eee) Field
	B.1.4.7 Condition Test (tttn) Field
	B.1.4.8 Direction (d) Bit

	B.1.5 Other Notes

	B.2 General-Purpose Instruction Formats and Encodings for Non-64-Bit Modes
	B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode

	B.3 Pentium® Processor Family Instruction Formats and Encodings
	B.4 64-bit Mode Instruction Encodings for SIMD Instruction Extensions
	B.5 MMX Instruction Formats and Encodings
	B.5.1 Granularity Field (gg)
	B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)
	B.5.3 MMX Instruction Formats and Encodings Table

	B.6 Processor ExtendeD State INstruction Formats and EncodIngs
	B.7 P6 Family INstruction Formats and Encodings
	B.8 SSE Instruction Formats and Encodings
	B.9 SSE2 Instruction Formats and Encodings
	B.9.1 Granularity Field (gg)

	B.10 SSE3 Formats and Encodings Table
	B.11 SSsE3 Formats and Encoding Table
	B.12 Special Encodings for 64-Bit Mode
	B.13 SSE4.1 Formats and Encoding Table
	B.14 SSE4.2 Formats and Encoding Table
	B.15 Floating-Point Instruction Formats and Encodings
	B.16 VMX Instructions
	B.17 SMX Instructions

	Appendix C InteL® C/C++ Compiler Intrinsics and Functional Equivalents
	C.1 Simple Intrinsics
	C.2 Composite Intrinsics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents for RR Donnelley.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

