intel)

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 2B:
Instruction Set Reference, N-Z

NOTE: The Intel 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.

Order Number: 253667-029US
November 2008



INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUA-
TION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without no-
tice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology re%uires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an Intel® HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.ntm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer sgéstem with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel®™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trademarks or reg-
istered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*QOther names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation

i Vol. 2B



CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 INSTRUCTIONS (N-2)

Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions
(N-Z). See also: Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Vol.2B 4-1



INSTRUCTION SET REFERENCE, N-Z

NEG—Two’s Complement Negation

Opcode Instruction  64-Bit Mode Compat/ Description
Leg Mode

F6/3 NEG r/m8 Valid Valid Two's complement negate r/m8.

REX +F6 /3 NEG r/m8* Valid N.E. Two's complement negate r/m8.

F7 /3 NEG /m716  Valid Valid Two's complement negate
r/mi16.

F7 /3 NEG r/m32  Valid Valid Two's complement negate
r/m32.

REXW +F7 /3  NEGr/m64  Valid N.E. Two's complement negate
r/mé4.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Replaces the value of operand (the destination operand) with its two's complement.
(This operation is equivalent to subtracting the operand from 0.) The destination
operand is located in a general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFDEST=0
THEN CF « O;
ELSECF « 1;
Fl;
DEST « [- (DEST)]

Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF,
AF, and PF flags are set according to the result.

4-2 Vol.2B NEG—Two's Complement Negation



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

NEG—Two's Complement Negation Vol.2B 4-3



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-4 \ol.2B NEG—Two's Complement Negation



INSTRUCTION SET REFERENCE, N-Z

NOP—No Operation

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
90 NOP Valid Valid One byte no-operation instruction.
OF 1F /0 NOP r/m16 Valid Valid Multi-byte no-operation instruction.
OF 1F /0 NOP r/m32 \Valid Valid Multi-byte no-operation instruction.
Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes
up space in the instruction stream but does not impact machine context, except for
the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
® CPUID.01H.EAX[Bytes 11:8] = 0110Bor 1111B

The multi-byte NOP instruction does not alter the content of a register and will not
issue a memory operation. The instruction’s operation is the same in non-64-bit
modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX
instruction.

The multi-byte NOP instruction performs no operation on supported processors and
generates undefined opcode exception on processors that do not support the multi-
byte NOP instruction.

The memory operand form of the instruction allows software to create a byte
sequence of “no operation” as one instruction. For situations where multiple-byte
NOPs are needed, the recommended operations (32-bit mode and 64-bit mode) are:

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] OF 1F OOH

4 bytes NOP DWORD ptr [EAX + O0H] OF 1F 40 OOH

5 bytes NOP DWORD ptr [EAX + EAX*T + O0H] OF 1F 44 00 OOH

6 bytes 66 NOP DWORD ptr [EAX + EAX*T + O0H] 66 OF 1F 44 00 O0OH

7 bytes NOP DWORD ptr [EAX + 00000000H] OF 1F 80 00 00 00 OOH

NOP—No Operation Vol.2B 4-5



INSTRUCTION SET REFERENCE, N-Z

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction (Contd.)

Length Assembly Byte Sequence
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] OF 1F 84 00 00 00 00 OOH
9 bytes 66 NOP DWORD ptr [EAX + EAX*T + 66 OF 1F 84 00 00 00 00
00000000H] O00H
Flags Affected
None.

Exceptions (All Operating Modes)

#UD

4-6 Vol.2B

If the LOCK prefix is used.

NOP—No Operation



INSTRUCTION SET REFERENCE, N-Z

NOT—One’s Complement Negation

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
F6 /2 NOT r/m8 Valid Valid Reverse each bit of /m8.
REX +F6 /2 NOT r/m8*  Valid N.E. Reverse each bit of /m8.
F7 /2 NOT /m16  Valid Valid Reverse each bit of r/m16.
F7 12 NOT r/m32  Valid Valid Reverse each bit of /m32.
REXW +F7 /2 NOT r/m64 Valid N.E. Reverse each bit of /m64.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the
destination operand and stores the result in the destination operand location. The
destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « NOT DEST;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

NOT—One's Complement Negation Vol.2B 4-7



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-8 Vol.2B NOT—One's Complement Negation



OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

0oCib OR AL, imm8 Valid Valid AL OR imm8.

0D iw OR AX,imm16 Valid Valid AX OR imm16.

oD id OR EAX, imm32 Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 Valid N.E. RAX OR imm32 (sign-
extended).

80/1ib OR r/m8, imm8 Valid Valid r/m8 OR imm8,

REX+80/1 ib OR r/m8%* imm8 Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16,imm16  Valid Valid r/m16 OR imm16.

81/1id OR r/m32, imm32  Valid Valid r/m32 OR imm32.

REXW +81/1id ORr/m64,imm32  Valid N.E. r/m64 OR imm32 (sign-
extended).

83/1ib OR r/m16, imm8 Valid Valid r/m16 OR imm8 (sign-
extended).

83/1ib OR r/m32, imm8 Valid Valid r/m32 OR imm8 (sign-
extended).

REXW +83/1ib  OR r/m64, imm8 Valid N.E. r/m64 OR imm8 (sign-
extended).

08/r OR r/m8, r8 Valid Valid r/m8O0R r8.

REX +08/r OR r/m8*, r8* Valid N.E. r/m8 OR r8.

09/r OR r/m16,r16 Valid Valid r/m16 OR r16.

09/r OR r/m32,r32 Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 Valid N.E. r/m64 OR r64.

OA/r OR 18, r/m8 Valid Valid r8 OR r/m8.

REX+O0A/r OR r8* r/m8* Valid N.E. r8 OR r/m8.

0B /r ORr16,r/m16 Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 Valid Valid r32 OR r/m32.

REXW + 0B /r OR r64, r/m64 Valid N.E. r64 OR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

OR—Logical Inclusive OR

Vol.2B 4-9




INSTRUCTION SET REFERENCE, N-Z

Description

Performs a bitwise inclusive OR operation between the destination (first) and source
(second) operands and stores the result in the destination operand location. The
source operand can be an immediate, a register, or a memory location; the destina-
tion operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result of the OR instruction is
set to 0 if both corresponding bits of the first and second operands are 0; otherwise,
each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST « DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

4-10 Vol.2B OR—Logical Inclusive OR



#UD

INSTRUCTION SET REFERENCE, N-Z

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

OR—Logical Inclusive OR

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2B 4-11



INSTRUCTION SET REFERENCE, N-Z

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Opcode Instruction 64-Bit  Compat/ Description
Mode Leg Mode
66 OF 56 /r  ORPD xmm1, xmm2/m128 Valid Valid Bitwise OR of xmm2/m128
and xmm1.
Description

Performs a bitwise logical OR of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel® C/C++ Compiler Intrinsic Equivalent

ORPD __m128d _mm_or_pd(__m128da, __m128dDb)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-12 Vol.2B ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values Vol.2B 4-13



INSTRUCTION SET REFERENCE, N-Z

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF56/r ORPS xmm1, xmm2/m128  Valid Valid Bitwise OR of
xmmZ2/m128 and
xmm].
Description

Performs a bitwise logical OR of the four packed single-precision floating-point values
from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPS __m128 _mm_or_ps(__m128a,_m128Db)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

4-14 Vol.2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values Vol.2B 4-15



INSTRUCTION SET REFERENCE, N-Z

OUT—Output to Port

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode

E6 ib OUT imm8, AL Valid Valid Output byte in AL to I/0 port
address imm8.

€7 ib OUT imm8, AX Valid Valid Output word in AX to I/0 port
address imm8.

€7 ib OUT imm8, EAX  Valid Valid Output doubleword in EAX 1o I/0
port address imm8.

EE OUT DX, AL Valid Valid Output byte in AL to I/0 port
address in DX.

EF OUT DX, AX Valid Valid Output word in AX to I/0 port
address in DX.

EF OUT DX, EAX Valid Valid Output doubleword in EAX 1o I/0
port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Description

Copies the value from the second operand (source operand) to the I/0 port specified
with the destination operand (first operand). The source operand can be register AL,
AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits,
respectively); the destination operand can be a byte-immediate or the DX register.
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the
DX register as a source operand allows I/0 ports from 0 to 65,535 to be accessed.

The size of the I/0 port being accessed is determined by the opcode for an 8-bit I/O
port or by the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/0 instructions are shorter when accessing 8-bit I/O
ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/0 ports located in the processor’s I/0
address space. See Chapter 13, “Input/Output,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information on accessing I/O
ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor insures that the EWBE#
pin has been sampled active before it begins to execute the next instruction. (Note
that the instruction can be prefetched if EWBE# is not active, but it will not be

4-16 Vol.2B OUT—Output to Port



INSTRUCTION SET REFERENCE, N-Z

executed until the EWBE# pin is sampled active.) Only the Pentium processor family
has the EWBE# pin.

Operation

IF ((PE=1)and ((CPL > IOPL) or (VM =1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/0 Permission Bit for 1/0 port being accessed = 1)
THEN (* I/0 operation is not allowed *)
#GP(0);
ELSE ( * I/0 operation is allowed *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;
ELSE (Real Mode or Protected Mode with CPL < IOPL *)
DEST « SRC; (* Writes to selected I/0 port *)
Fl;

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege
level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/0 port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being
accessed is 1.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.

OUT—Output to Port Vol.2B 4-17



INSTRUCTION SET REFERENCE, N-Z

OUTS/0OUTSB/OUTSW/0OUTSD—Output String to Port

Opcode* Instruction 64-Bit Mode Compat/ Description
Leg Mode
6€E OUTS DX, m8 Valid Valid Output byte from memory

location specified in DS:(E)SI or
RSI to I/0 port specified in DX**.

6F OUTSDX, m16  Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/0 port specified in DX**.

6F OUTSDX, m32  Valid Valid Output doubleword from
memory location specified in
DS:(E)SI or RSI to I/0 port
specified in DX**,

6E OUTSB Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSI to I/0 port specified in DX**.

6F ouTSW Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/0 port specified in DX**.

6F OUTSD Valid Valid Output doubleword from
memory location specified in

DS:(E)Sl or RSI to I/0 port
specified in DX**.

NOTES:
* See |A-32 Architecture Compatibility section below.

**n 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit
mode, only 32-bit (ESI) and 16-bit (Sl) address sizes are supported.

Description

Copies data from the source operand (second operand) to the I/O port specified with
the destination operand (first operand). The source operand is a memory location,
the address of which is read from either the DS:SI, DS:ESI or the RSI registers
(depending on the address-size attribute of the instruction, 16, 32 or 64, respec-
tively). (The DS segment may be overridden with a segment override prefix.) The
destination operand is an I/O port address (from 0 to 65,535) that is read from the
DX register. The size of the I/O port being accessed (that is, the size of the source
and destination operands) is determined by the opcode for an 8-bit I/O port or by the
operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the OUTS mnemonic) allows the source and destination operands to be specified
explicitly. Here, the source operand should be a symbol that indicates the size of the

4-18 Vol.2B OUTS/0UTSB/OUTSW/OUTSD—Output String to Port



INSTRUCTION SET REFERENCE, N-Z

I/0 port and the source address, and the destination operand must be DX. This
explicit-operands form is provided to allow documentation; however, note that the
documentation provided by this form can be misleading. That is, the source operand
symbol must specify the correct type (size) of the operand (byte, word, or double-
word), but it does not have to specify the correct location. The location is always
specified by the DS:(E)SI or RSI registers, which must be loaded correctly before the
OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the OUTS instructions. Here also DS:(E)SI is assumed to be the source
operand and DX is assumed to be the destination operand. The size of the I/O port is
specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD
(doubleword).

After the byte, word, or doubleword is transferred from the memory location to the
I/0 port, the SI/ESI/RSI register is incremented or decremented automatically
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the
(E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decre-
mented.) The SI/ESI/RSI register is incremented or decremented by 1 for byte oper-
ations, by 2 for word operations, and by 4 for doubleword operations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP
prefix for block input of ECX bytes, words, or doublewords. See "REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of
the REP prefix. This instruction is only useful for accessing I/O ports located in the
processor’s I/0O address space. See Chapter 13, “Input/Output,” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information on
accessing I/0 ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by
the use of REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit
address is specified using RSI by default. 32-bit address using ESI is support using
the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium
processor insures that the EWBE# pin has been sampled active before it begins to
execute the next instruction. (Note that the instruction can be prefetched if EWBE#
is not active, but it will not be executed until the EWBE# pin is sampled active.) Only
the Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an
OUTS, OUTSB, OUTSW, or OUTSD instruction, the processor will not execute the next
instruction until the data phase of the transaction is complete.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

OUTS/0UTSB/OUTSW/OUTSD—Output String to Port Vol.2B 4-19



INSTRUCTION SET REFERENCE, N-Z

IF (Any I/0 Permission Bit for I/0 port being accessed = 1)
THEN (* I/0 operation is not allowed *)
#GP(0);
ELSE (* I/0 operation is allowed *)
DEST « SRC; (* Writes to I/0 port *)
Fl;
ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL < IOPL *)
DEST « SRC; (* Writes to I/0 port *)
Fl;

Byte transfer:

IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI <~ RSIRSI + 1;
ELSERSI <« RSlor - 1;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN  ESI<« ESI+1;
ELSE €Sl « ESI-T;
Fl;
Fl;
ELSE
IFDF=0

THEN  (E)SI < (E)SI+1;
ELSE (E)SI « (E)SI - 1;

Fl;
Fl;
Word transfer:;
IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI <~ RSIRSI + 2;
ELSERSI «- RSl or - 2;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0

THEN  ESl « ESI +2;

4-20 Vol.2B OUTS/0UTSB/OUTSW/OUTSD—Output String to Port



ELSE  ESI« ESI-2;

Fl;
Fl;
ELSE
IFDF=0
THEN  (E)SI « (E)SI + 2;
ELSE (E)SI < (E)SI - 2;
Fl;
Fl;
Doubleword transfer:
IF 64-bit mode
Then
IF 64-Bit Address Size
THEN
IFDF=0
THEN RSI <~ RSIRSI + 4;
ELSE RSI < RSl or - 4;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN  ESI« ESI + 4;
ELSE ESI « ESI - 4;
Fl;
Fl;
ELSE
IFDF=0
THEN  (E)SI « (E)SI + 4;
ELSE (E)SI < (E)SI - 4;
Fl;
Fl;
Flags Affected
None.

Protected Mode Exceptions

INSTRUCTION SET REFERENCE, N-Z

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege
level (IOPL) and any of the corresponding I/O permission bits in
TSS for the 1/0 port being accessed is 1.

If a memory operand effective address is outside the limit of the

CS, DS, ES, FS, or GS segment.

If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.

OUTS/0UTSB/OUTSW/OUTSD—Output String to Port

Vol.2B 4-21



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/0 port being
accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege

level (IOPL) and any of the corresponding I/O permission bits in
TSS for the I/0 port being accessed is 1.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

4-22 Vol.2B OUTS/0UTSB/OUTSW/OUTSD—Output String to Port



INSTRUCTION SET REFERENCE, N-Z

PABSB/PABSW/PABSD — Packed Absolute Value

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF381C/r PABSB mm1, Valid Valid Compute the absolute value of
mm2/m64 bytes in mm2/m64 and store
UNSIGNED result in mmT.
66 OF 38 1C/r PABSB xmm1, Valid Valid Compute the absolute value of
xmm2/m128 bytes in xmm2/m128 and store
UNSIGNED result in xmm1.
OF381D/r PABSW mm1, Valid Valid Compute the absolute value of 16-
mm2/m64 bit integers in mm2/m64 and store
UNSIGNED result in mm1.
66 OF 38 1D /r PABSW xmm1, Valid Valid Compute the absolute value of 16-
xmm2/m128 bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.
OF 381E/r PABSD mm1, Valid Valid Compute the absolute value of 32-
mm2/m64 bit integers in mm2/m64 and store
UNSIGNED result in mm1.
66 OF 38 1E/r PABSD xmm1, Valid Valid Compute the absolute value of 32-
xmm2/m128 bit integers in xmm2/m128 and
store UNSIGNED result in xmm1.

Description

PABSB/W/D computes the absolute value of each data element of the source operand
(the second operand) and stores the UNSIGNED results in the destination operand
(the first operand). PABSB operates on signed bytes, PABSW operates on 16-bit
words, and PABSD operates on signed 32-bit integers. The source operand can be an
MMX register or a 64-bit memory location, or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX or an XMM register. Both
operands can be MMX register or XMM registers. When the source operand is a
128-bit memory operand, the operand must be aligned on a 16byte boundary or a
general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.
Operation
PABSB with 64 bit operands

Unsigned DEST[7:0] < ABS(SRC[7:0])
Repeat operation for 2nd through 7th bytes
Unsigned DEST[63:56] «— ABS(SR(C[63:56])

PABSB/PABSW/PABSD — Packed Absolute Value Vol.2B 4-23



INSTRUCTION SET REFERENCE, N-Z

PABSB with 128 bit operands:

Unsigned DEST[7:0] <~ ABS(SR([7:.0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120] <~ ABS(SRC[127:120])

PABSW with 64 bit operands:

Unsigned DEST[15:0] < ABS(SRC[15:0])
Repeat operation for 2nd through 3rd 16-bit words
Unsigned DEST[63:48] «— ABS(SRC[63:48])

PABSW with 128 bit operands:

Unsigned DEST[15:0] <~ ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112] <~ ABS(SRC[127:112])

PABSD with 64 bit operands:

Unsigned DEST[31:0] «— ABS(SRC[31:0])
Unsigned DEST[63:32] < ABS(SRC[63:32])

PABSD with 128 bit operands:

Unsigned DEST[31:0] < ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96] «<— ABS(SRC[127:96])

Intel C/C++ Compiler Intrinsic Equivalents

PABSB __m64 _mm_abs_pi8 (_m64 a)
PABSB __m128i _mm_abs_epi8 (__m128i a)
PABSW  _ m64 _mm_abs_pi16 (__m64 a)
PABSW  __m128i_mm_abs_epi16 (__m128ia)
PABSD __m64 _mm_abs_pi32 (__m64 a)
PABSD __m128i _mm_abs_epi32 (_m128ia)

Protected Mode Exceptions

#GP(0): If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-24 \Vol.2B PABSB/PABSW/PABSD — Packed Absolute Value



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0): If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not alighed on 16-byte boundary,
regardless of segment.

#UD: If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

PABSB/PABSW/PABSD — Packed Absolute Value Vol.2B 4-25



INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-26 Vol.2B PABSB/PABSW/PABSD — Packed Absolute Value



INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Opcode Instruction

OF63/r PACKSSWB mm1,

mmZ2/m64

66 OF 63 /r
xmmZ2/m128

OF 6B /r PACKSSDW mm1,

mmZ2/m64

66 OF 6B /r
xmm2/m128

PACKSSWB xmm1,

PACKSSDW xmm1,

64-Bit
Mode

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid

Valid

Valid

Valid

Description

Converts 4 packed signed word
integers from mm71 and from
mm2/m64 into 8 packed signed
byte integers in mm1 using signed
saturation.

Converts 8 packed signed word
integers from xmm71 and from
xxm2/m128into 16 packed signed
byte integers in xxm1 using signed
saturation.

Converts 2 packed signed
doubleword integers from mm7 and
from mm2/m64 into 4 packed
signed word integers in mm1 using
signed saturation.

Converts 4 packed signed
doubleword integers from xmm1
and from xxm2/m128into 8 packed
signed word integers in xxm1 using
signed saturation.

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB)
or converts packed signed doubleword integers into packed signed word integers

(PACKSSDW), using saturation to handle overflow conditions. See Figure 4-1 for an
example of the packing operation.

64-Bit SRC

D

C

64-Bit DEST

I

B

64-Bit DEST

e

Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination
operand (first operand) and 4 or 8 signed word integers from the source operand

PACKSSWB/PACKSSDW—Pack with Signed Saturation

Vol.2B 4-27




INSTRUCTION SET REFERENCE, N-Z

(second operand) into 8 or 16 signed byte integers and stores the result in the desti-
nation operand. If a signed word integer value is beyond the range of a signed byte
integer (that is, greater than 7FH for a positive integer or greater than 80H for a
negative integer), the saturated signed byte integer value of 7FH or 80H, respec-
tively, is stored in the destination.

The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination
operand (first operand) and 2 or 4 signed doublewords from the source operand
(second operand) into 4 or 8 signed words in the destination operand (see

Figure 4-1). If a sighed doubleword integer value is beyond the range of a signed
word (that is, greater than 7FFFH for a positive integer or greater than 8000H for a
negative integer), the saturated signed word integer value of 7FFFH or 8000H,
respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit
operands. When operating on 64-bit operands, the destination operand must be an
MMX technology register and the source operand can be either an MMX technology
register or a 64-bit memory location. When operating on 128-bit operands, the desti-
nation operand must be an XMM register and the source operand can be either an
XMM register or a 128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKSSWB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] « SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] « SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] < SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] « SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB instruction with 128-bit operands:
DEST[7:0]« SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] <« SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToSignedByte (DEST[47:32));
DEST[31:24] « SaturateSignedWordToSignedByte (DEST[63:48));
DEST[39:32] « SaturateSignedWordToSignedByte (DEST[79:64));

4-28 Vol.2B PACKSSWB/PACKSSDW—Pack with Signed Saturation



INSTRUCTION SET REFERENCE, N-Z

DEST[47:40] < SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] <« SaturateSignedWordToSignedByte (DEST[111:96]);

DEST[63:56] « SaturateSignedWordToSignedByte

DEST[127:112]);

DEST[79:72] < SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] « SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] « SaturateSignedwWordToSignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToSignedByte (SRC[95:801);
DEST[119:112] « SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToSignedByte (SRC[127:112]);

(

(

(
DEST[71:64] « SaturateSignedWordToSignedByte (SRC[15:0]);

(

(

PACKSSDW instruction with 128-bit operands:
DEST[15:0] « SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] « SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] « SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] « SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] « SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] « SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] <« SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] < SaturateSignedDwordToSignedwWord (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB
PACKSSWB
PACKSSDW
PACKSSDW

Flags Affected

None.

__m64 _mm_packs_pi16(_m64 m1, __m64 m2)
__m128i _mm_packs_epi16(_m128i m1,_m128i m2)
__m64 _mm_packs_pi32 (__m64 m1, __m64 m2)
__m128i _mm_packs_epi32(_m128i m1,_m128i m2)

Protected Mode Exceptions

#GP(0)

#55(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

PACKSSWB/PACKSSDW—Pack with Signed Saturation Vol.2B 4-29



INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

4-30 Vol.2B PACKSSWB/PACKSSDW—Pack with Signed Saturation



INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PACKSSWB/PACKSSDW—Pack with Signed Saturation Vol.2B 4-31



INSTRUCTION SET REFERENCE, N-Z

PACKUSDW — Pack with Unsigned Saturation

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF PACKUSDW xmm1, Valid Valid Convert 4 packed signed doubleword integers
382B/r xmmZ2/m128 from xmm1 and 4 packed signed doubleword

integers from xmmZ2/m128 into 8 packed
unsigned word integers in xmm1 using
unsigned saturation.

Description

Converts packed signed doubleword integers into packed unsigned word integers
using unsigned saturation to handle overflow conditions. If the signed doubleword
value is beyond the range of an unsigned word (that is, greater than FFFFH or less
than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively, is stored in the destination.

Operation

TMP[15:0] < (DEST[31:0] < 0) ? 0 : DEST[15:0];

DEST[15:0] < (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] & (DEST[63:32] < 0)? 0: DEST[47:32];
DEST[31:16] & (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16];
TMP[47:32] < (DEST[95:64] < 0)? 0 : DEST[79:64];
DEST[47:32] < (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] < (DEST[127:96] < 0)? 0 : DEST[111:96];
DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[63:48] < (DEST[127:96] < 0)? 0 : DEST[111:96];
DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] < (SRC[31:0] < 0)? 0: SRC[15:0];

DEST[63:48] < (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] < (SRC[63:32] < 0) ? 0 : SRC[47:32];

DEST[95:80] < (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] < (SRC[95:64] < 0) ? 0 : SRC[79:64];
DEST[111:96] < (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] < (SRC[127:96] < 0)? 0: SRC[111:96];
DEST[128:112] < (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

Intel C/C++ Compiler Intrinsic Equivalent
PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2),

4-32 Vol.2B PACKUSDW — Pack with Unsigned Saturation



INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0): For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.SSE4_1(ECX bit 19) = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.SSE4_1(ECX bit 19) = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

PACKUSDW — Pack with Unsigned Saturation Vol.2B 4-33



INSTRUCTION SET REFERENCE, N-Z

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-34 Vol.2B PACKUSDW — Pack with Unsigned Saturation



INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF671/r PACKUSWB mm, Valid Valid Converts 4 signed word integers
mm/m64 from mm and 4 signed word

integers from mm/m64 into 8
unsigned byte integers in mm using
unsigned saturation.

66 OF 67 /r PACKUSWB xmm1, Valid Valid Converts 8 signed word integers
xmmZ2/m128 from xmm1 and 8 signed word
integers from xmm2/m128into 16
unsigned byte integers in xmm1
using unsigned saturation.

Description

Converts 4 or 8 signed word integers from the destination operand (first operand)
and 4 or 8 signed word integers from the source operand (second operand) into 8 or
16 unsigned byte integers and stores the result in the destination operand. (See
Figure 4-1 for an example of the packing operation.) If a signed word integer value is
beyond the range of an unsigned byte integer (that is, greater than FFH or less than
00H), the saturated unsigned byte integer value of FFH or 00H, respectively, is stored
in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When
operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PACKUSWB instruction with 64-bit operands:
DEST[7:0] <« SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] « SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB—Pack with Unsigned Saturation Vol.2B 4-35



INSTRUCTION SET REFERENCE, N-Z

PACKUSWB instruction with 128-bit operands:
DEST[7:0]« SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] « SaturateSignedwWordToUnsignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] « SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] « SaturateSignedWordToUnsignedByte (DEST[79:64])
DEST[47:40] « SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] « SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] « SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] « SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] « SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] « SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] « SaturateSignedWordToUnsignedByte (SRC[63:48));
DEST[103:96] « SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToUnsignedByte (SRC[127:112]);

r

PSS

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB __m64 _mm_packs_pul6(_m64 m1, __m64 m2)
PACKUSWB __m128i _mm_packs_epul16(_m128im1, __m128i m2)
Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-36 Vol.2B PACKUSWB—Pack with Unsigned Saturation



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PACKUSWB—Pack with Unsigned Saturation Vol.2B 4-37



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-38 Vol.2B PACKUSWB—Pack with Unsigned Saturation



INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

Opcode Instruction 64-Bit Compat/  Description
Mode Leg Mode

OFFC/r PADDB mm, Valid Valid Add packed byte integers from
mm/m64 mm/m64 and mm.

66 OF FC/r PADDB xmm1, Valid Valid Add packed byte integers from
xmm2/m128 xmmZ2/m128and xmm1.

OFFD/r PADDW mm, Valid Valid Add packed word integers from
mm/m64 mm/m64 and mm.

66 OF FD/r PADDW xmm1, Valid Valid Add packed word integers from
xmmZ2/m128 xmmZ2/m128and xmm1.

OF FE/r PADDD mm, Valid Valid Add packed doubleword integers from
mm/m64 mm/m64 and mm.

66 OF FE/r PADDD xmmT, Valid Valid Add packed doubleword integers from
xmmZ2/m128 xmmZ2/m128and xmm1.

Description

Performs a SIMD add of the packed integers from the source operand (second

operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too
large to be represented in 8 bits (overflow), the result is wrapped around and the low
8 bits are written to the destination operand (that is, the carry is ignored).

The PADDW instruction adds packed word integers. When an individual result is too
large to be represented in 16 bits (overflow), the result is wrapped around and the
low 16 bits are written to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result
is too large to be represented in 32 bits (overflow), the result is wrapped around and
the low 32 bits are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent

PADDB/PADDW/PADDD—Add Packed Integers Vol.2B 4-39



INSTRUCTION SET REFERENCE, N-Z

undetected overflow conditions, software must control the ranges of values operated
on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDB instruction with 64-bit operands:
DEST[7:0] «<— DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] «- DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:
DEST[7:0] <~ DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] «- DEST[111:120] + SRC[127:120];

PADDW instruction with 64-bit operands:
DEST[15:0] «- DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] «— DEST[63:48] + SR(C[63:48];

PADDW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] «<— DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] <~ DEST[31:0] + SRC[31:0];
DEST[63:32] <~ DEST[63:32] + SRC[63:32];

PADDD instruction with 128-bit operands:
DEST[31:0] «- DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] < DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB  __m64 _mm_add_pi8(_m64 m1, _m64 m2)
PADDB  __m128i _mm_add_epi8 (__m128ia,__m128ib)
PADDW __m64 _mm_add_pi16(_m64 m1, __m64 m2)
PADDW  _ m128i _mm_add_epi16 (_m128ia,__m128ib)
PADDD  __m64 _mm_add_pi32(_m64 m1, _m64 m2)
PADDD _ m128i_mm_add_epi32 (_m128ia,__m128ib)

4-40 Vol.2B PADDB/PADDW/PADDD—Add Packed Integers



INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a nhon-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a nhon-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

PADDB/PADDW/PADDD—Add Packed Integers Vol.2B 4-41



INSTRUCTION SET REFERENCE, N-Z

#AC(0)

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-42 \Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDB/PADDW/PADDD—Add Packed Integers



INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD4/r PADDQ mm1, Valid Valid Add quadword integer
mm2/m64 mmZ2/m64 to mm1.
66 OF D4 /r PADDQ xmm1, Valid Valid Add packed quadword integers
xmm2/m128 xmmZ2/m128to xmm]1.
Description

Adds the first operand (destination operand) to the second operand (source operand)
and stores the result in the destination operand. The source operand can be a quad-
word integer stored in an MMX technology register or a 64-bit memory location, or it
can be two packed quadword integers stored in an XMM register or an 128-bit
memory location. The destination operand can be a quadword integer stored in an
MMX technology register or two packed quadword integers stored in an XMM register.
When packed quadword operands are used, a SIMD add is performed. When a quad-
word result is too large to be represented in 64 bits (overflow), the result is wrapped
around and the low 64 bits are written to the destination element (that is, the carry
is ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PADDQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[63:0] + SRC[63:0];
DEST[127:64] < DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ _ m64 _mm_add_si64 (__m64 a, __m64 b)
PADDQ __m128i _mm_add_epi64 (_m128ia, __m128ib)

Flags Affected
None.

PADDQ—Add Packed Quadword Integers Vol.2B 4-43



INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#55(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

4-44 \ol.2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

PADDQ—Add Packed Quadword Integers



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDQ—Add Packed Quadword Integers Vol. 2B 4-45



INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF EC/r PADDSB mm, Valid Valid Add packed signed byte integers
mm/m64 from mm/m64 and mm and
saturate the results.
66 OF EC/r PADDSB xmm1, Valid Valid Add packed signed byte integers
xmmZ2/m128 from xmmZ2/m128 and xmm1
saturate the results.
OFED/r PADDSW mm, Valid Valid Add packed signed word integers
mm/m64 from mm/m64 and mm and
saturate the results.
66 0FED/r PADDSW xmm1, Valid Valid Add packed signed word integers
xmmZ2/m128 from xmm2/m128 and xmm1
and saturate the results.

Description

Performs a SIMD add of the packed signed integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the Inte/l® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD opera-
tion. Overflow is handled with signed saturation, as described in the following
paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less
than 80H), the saturated value of 7FH or 80H, respectively, is written to the destina-
tion operand.

The PADDSW instruction adds packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or
less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written to
the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-46 Vol.2B PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation



INSTRUCTION SET REFERENCE, N-Z

Operation

PADDSB instruction with 64-bit operands:
DEST[7:0] «— SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte(DEST[63:56] + SRC[63:56] );

PADDSB instruction with 128-bit operands:
DEST[7:0] «SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] «— SaturateToSignedByte (DEST[111:120] + SRC[127:120]));

PADDSW instruction with 64-bit operands
DEST[15:0] «— SaturateToSignedWord(DEST[15:0] + SRC[15:0] );
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord(DEST[63:48] + SRC[63:48] );

PADDSW instruction with 128-bit operands
DEST[15:0] <« SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)
PADDSB __ m128i _mm_adds_epi8 (_m128ia, __m128ib)
PADDSW __m64 _mm_adds_pi16(_m64 m1, __m64 m2)
PADDSW _ m128i _mm_adds_epi16 (_m128ia, __m128ib)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a nhon-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation Vol.2B 4-47



INSTRUCTION SET REFERENCE, N-Z

#NM

#MF
#PF(fault-code)
#AC(0)

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

4-48 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation



#UD

#NM

#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation Vol. 2B 4-49



INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFDC/r PADDUSB mm, Valid Valid Add packed unsigned byte integers
mm/m64 from mm/m64 and mm and
saturate the results.
66 OFDC/r PADDUSB xmmT1, Valid Valid Add packed unsigned byte integers
xmm2/m128 from xmm2/m128 and xmm1
saturate the results.
OF DD /r PADDUSW mm, Valid Valid Add packed unsigned word
mm/m64 integers from mm/m64 and mm
and saturate the results.
66 0FDD /r PADDUSW xmm1, Valid Valid Add packed unsigned word
xmm2/m128 integers from xmmZ2/m128 to
xmm1 and saturate the results.

Description

Performs a SIMD add of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the packed
integer results in the destination operand. See Figure 9-4 in the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD
operation. Overflow is handled with unsigned saturation, as described in the
following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than
FFH), the saturated value of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual
word result is beyond the range of an unsigned word integer (that is, greater than
FFFFH), the saturated value of FFFFH is written to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-50 Vol.2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation



INSTRUCTION SET REFERENCE, N-Z

Operation

PADDUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte(DEST[7:0] + SRC (7:0] );
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] «— SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] «— SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW instruction with 64-bit operands:
DEST[15:0] «— SaturateToUnsignedWord(DEST[15:0] + SRC[15:0] );
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord(DEST[63:48] + SRC[63:48] );

PADDUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] < SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB __m64 _mm_adds_pu8(_m64 m1, __m64 m2)
PADDUSW __m64 _mm_adds_pu16(_m64 m1, __m64 m2)
PADDUSB __m128i _mm_adds_epu8 (__m128ia, __m128ib)
PADDUSW __m128i _mm_adds_epu16 (_m128ia,__m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-51



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

4-52 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation



#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-53



INSTRUCTION SET REFERENCE, N-Z

PALIGNR — Packed Align Right

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 3A OF PALIGNR mm1, Valid Valid Concatenate destination and source
mm2/m64, imm8 operands, extract byte-aligned

result shifted to the right by
constant value in imm8 into mm1.

66 OF 3A OF PALIGNR xmm1, Valid Valid Concatenate destination and source
xmm2/m128, operands, extract byte-aligned
imm8 result shifted to the right by

constant value in imm8 into xmm1

Description

PALIGNR concatenates the destination operand (the first operand) and the source
operand (the second operand) into an intermediate composite, shifts the composite
at byte granularity to the right by a constant immediate, and extracts the right-
aligned result into the destination. The first and the second operands can be an MMX
or an XMM register. The immediate value is considered unsigned. Immediate shift
counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands)
produce a zero result. Both operands can be MMX register or XMM registers. When
the source operand is a 128-bit memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PALIGNR with 64-bit operands:

temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[63:0] = temp1[63:0]

PALIGNR with 128-bit operands:
temp1[255:0] = CONCATENATE(DEST,SRC)>>(imm8*8)
DEST[127:0] = temp1[127:0]

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)
PALIGNR __m128i _mm_alignr_epi8 (_m128ia, __m128ib, intn)

4-54 Vol.2B PALIGNR — Packed Align Right



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PALIGNR — Packed Align Right Vol.2B 4-55



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-56 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a hon-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PALIGNR — Packed Align Right



INSTRUCTION SET REFERENCE, N-Z

PAND—Logical AND

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFDB/r PAND mm, mm/m64 Valid Valid Bitwise AND mm/m64 and
mm.
66 OFDB/r PAND xmm1, xmmZ2/m128 Valid Valid Bitwise AND of
xmm2/m128 and xmm]1.

Description

Performs a bitwise logical AND operation on the source operand (second operand)
and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if the corresponding bits of the first and second operands are 1; otherwise,
it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PAND __m64 _mm_and_si64 (__m64 m1, _m64 m2)
PAND __m128i _mm_and_si128 (_m128ia, _m128ib)
Flags Affected

None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

PAND—Logical AND Vol.2B 4-57




INSTRUCTION SET REFERENCE, N-Z

#55(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

4-58 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

PAND—Logical AND



#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

PAND—Logical AND

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Vol.2B 4-59



INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF DF /r PANDN mm, mm/m64 Valid Valid Bitwise AND NOT of
mm/m64 and mm.
66 OF DF /r  PANDN xmm1, xmm2/m128 Valid Valid Bitwise AND NOT of
xmm2/m128 and
xmm1.
Description

Performs a bitwise logical NOT of the destination operand (first operand), then
performs a bitwise logical AND of the source operand (second operand) and the
inverted destination operand. The result is stored in the destination operand. The
source operand can be an MMX technology register or a 64-bit memory location or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register. Each bit of the result is set to 1 if
the corresponding bit in the first operand is 0 and the corresponding bit in the second
operand is 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent

PANDN  __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)
PANDN  _m128i _mm_andnot_si128 (_m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-60 Vol.2B PANDN—Logical AND NOT



INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a nhon-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PANDN—Logical AND NOT Vol.2B 4-61



INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-62 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PANDN—Logical AND NOT



INSTRUCTION SET REFERENCE, N-Z

PAUSE—Spin Loop Hint

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

F3 90 PAUSE Valid Valid Gives hint to processor that improves
performance of spin-wait loops.

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a
Pentium 4 or Intel Xeon processor suffers a severe performance penalty when exiting
the loop because it detects a possible memory order violation. The PAUSE instruction
provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation in most situations,
which greatly improves processor performance. For this reason, it is recommended
that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by
a Pentium 4 processor while executing a spin loop. The Pentium 4 processor can
execute a spin-wait loop extremely quickly, causing the processor to consume a lot of
power while it waits for the resource it is spinning on to become available. Inserting
a pause instruction in a spin-wait loop greatly reduces the processor’s power
consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compat-
ible with all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction
operates like a NOP instruction. The Pentium 4 and Intel Xeon processors implement
the PAUSE instruction as a pre-defined delay. The delay is finite and can be zero for
some processors. This instruction does not change the architectural state of the
processor (that is, it performs essentially a delaying no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

PAUSE—Spin Loop Hint Vol. 2B 4-63



INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFEOQ/r PAVGB mm1, Valid Valid Average packed unsigned byte
mm2/m64 integers from mm2/m64 and mm1
with rounding.
66 OFEO, /r  PAVGB xmm1,  Valid Valid Average packed unsigned byte
xmm2/m128 integers from xmmZ2/m128 and xmm1
with rounding.
OF E3/r PAVGW mm1, Valid Valid Average packed unsigned word
mm2/m64 integers from mm2/m64 and mm1
with rounding.
66 0FE3/r  PAVGW xmml, Valid Valid Average packed unsigned word
xmm2/m128 integers from xmmZ2/m128 and xmm1

with rounding.

Description

Performs a SIMD average of the packed unsigned integers from the source operand
(second operand) and the destination operand (first operand), and stores the results
in the destination operand. For each corresponding pair of data elements in the first
and second operands, the elements are added together, a 1 is added to the tempo-
rary sum, and that result is shifted right one bit position. The source operand can be
an MMX technology register or a 64-bit memory location or it can be an XMM register
or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruc-
tion operates on packed unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PAVGB instruction with 64-bit operands:
DEST[7:0] « (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
DEST[63:56] «— (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW instruction with 64-bit operands:
DEST[15:0] < (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
DEST[63:48] «<— (SRC[63:48] + DEST[63:48] + 1) >> 1;

4-64 Vol.2B PAVGB/PAVGW—Average Packed Integers



INSTRUCTION SET REFERENCE, N-Z

PAVGB instruction with 128-bit operands:
DEST[7:0] < (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
DEST[127:120] «— (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW instruction with 128-bit operands:
DEST[15:0] «- (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
DEST[127:112] < (SRC[127:112] + DEST[127:112] + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB  __m64 _mm_avg_pu8 (_m64 a, __m64 b)

PAVGW  __ m64 _mm_avg_pul6 (__m64 a, __m64b)
PAVGB __m128i _mm_avg_epu8 (_m128ia,_m128ib)
PAVGW  _ m128i _mm_avg_epul6 (_m128ia,__m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PAVGB/PAVGW—Average Packed Integers Vol.2B 4-65



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-66 Vol.2B PAVGB/PAVGW—Average Packed Integers



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PAVGB/PAVGW—Average Packed Integers Vol.2B 4-67



INSTRUCTION SET REFERENCE, N-Z

PBLENDVB — Variable Blend Packed Bytes

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 10 PBLENDVB xmm1, Valid Valid Select byte values from xmm1 and
Ir xmm2/m128, xmmZ2/m128 from mask specified in
<XMMO> the high bit of each byte in XMMO
and store the values into xmm1.

Description

Conditionally copies byte elements from the source operand (second operand) to the
destination operand (first operand) depending on mask bits defined in the implicit
third register argument, XMMO0. The mask bits are the most significant bit in each
byte element of the XMMO register.

If a mask bit is 1", then the corresponding byte element in the source operand is
copied to the destination, else the byte element in the destination operand is left
unchanged.

The register assignment of the implicit third operand is defined to be the architectural
register XMMO.

Operation

MASK & XMMO;
IF (MASK[7] == 1)
THEN DEST[7:0] € SRC[7:0];
ELSE DEST[7:0] < DEST[7:0]; FI;
IF (MASK[15] == 1)
THEN DEST[15:8] < SRC[15:8];
ELSE DEST[15:8] < DEST[15:8]; FI;
IF (MASK[23] == 1)
THEN DEST[23:16] & SRC[23:16]
ELSE DEST[23:16] < DEST[23:16]; FI;
IF (MASK[31] == 1)
THEN DEST[31:24] < SRC[31:24]
ELSE DEST[31:24] < DEST[31:24]; FI;
IF (MASK[39] == 1)
THEN DEST[39:32] < SR([39:32]
ELSE DEST[39:32] < DEST[39:32]; FI;
IF (MASK[47] == 1)
THEN DEST[47:40] < SRC[47:40]
ELSE DEST[47:40] < DEST[47:40]; FI;

4-68 Vol.2B PBLENDVB — Variable Blend Packed Bytes



IF (MASK[55] == 1)

THEN DEST[55:48] & SRC[55:48]

ELSE DEST[55:48] < DEST[55:48]; Fl;
IF (MASK[63] == 1)

THEN DEST[63:56] < SRC[63:56]

ELSE DEST[63:56] < DEST[63:56]; FI;
IF (MASK[71] == 1)

THEN DEST[71:64] < SRC[71:64]

ELSE DEST[71:64] < DEST[71:64]; FI;
IF (MASK[79] == 1)

THEN DEST[79:72] € SRC[79:72]

ELSE DEST[79:72] € DEST[79:72]; FI;
IF (MASK[87] == 1)

THEN DEST[87:80] < SRC[87:80]

ELSE DEST[87:80] < DEST[87:80]; F;
IF (MASK[95] == 1)

THEN DEST[95:88] < SRC[95:88]

ELSE DEST[95:88] < DEST[95:88]; F;
IF (MASK[103] == 1)

THEN DEST[103:96] < SRC[103:96]

ELSE DEST[103:96] < DEST[103:96]; F;
IF (MASK[111] == 1)

THEN DEST[111:104] €< SRC[111:104]

ELSE DEST[111:104] < DEST[111:104]; FI;

IF (MASK[119] == 1)
THEN DEST[119:112] € SRC[119:112]

ELSE DEST[119:112] < DEST[119:112]; FI;

IF (MASK[127] == 1)
THEN DEST[127:120] € SRC[127:120]

ELSE DEST[127:120] < DEST[127:120]); FI;

Intel C/C++ Compiler Intrinsic Equivalent

INSTRUCTION SET REFERENCE, N-Z

PBLENDVB __m128i _mm_blendv_epi8 (__m128iv1, _m128iv2, __m128i mask);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,

ES, FS, or GS segments.

PBLENDVB — Variable Blend Packed Bytes

Vol.2B 4-69



INSTRUCTION SET REFERENCE, N-Z

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

4-70 Vol.2B PBLENDVB — Variable Blend Packed Bytes



INSTRUCTION SET REFERENCE, N-Z

If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PBLENDVB — Variable Blend Packed Bytes Vol.2B 4-71



INSTRUCTION SET REFERENCE, N-Z

PBLENDW — Blend Packed Words

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A PBLENDW xmm1,  Valid Valid Select words from xmm1 and
OE/rib xmm2/m128, imm8 xmmZ2/m128 from mask specified in
imm8 and store the values into
xmm1.
Description

Conditionally copies word elements from the source operand (second operand) to the
destination operand (first operand) depending on the immediate byte (third
operand). Each bit of Imm8 correspond to a word element.

If a bit is 1", then the corresponding word element in the source operand is copied
to the destination, else the word element in the destination operand is left
unchanged.

Operation

IF (imm8[0] == 1)
THEN DEST[15:0] < SRC[15:0];
ELSE DEST[15:0] < DEST[15:0]; FI;
IF (imm8[1] == 1)
THEN DEST[31:16] < SRC[31:16];
ELSE DEST[31:16] < DEST[31:16]); FI;
IF (imm8[2] == 1)
THEN DEST[47:32] < SRC[47:32];
ELSE DEST[47:32] < DEST[47:32]; FI;
IF (imm8[3] == 1)
THEN DEST[63:48] < SRC[63:48];
ELSE DEST[63:48] < DEST[63:48]; FI;
IF (imm8[4] == 1)
THEN DEST[79:64] < SRC[79:64];
ELSE DEST[79:64] < DEST[79:64]; FI;
IF (imm8[5] == 1)
THEN DEST[95:80] < SRC[95:80];
ELSE DEST[95:80] < DEST[95:80]; FI;
IF (imm8[6] == 1)
THEN DEST[111:96] < SRC[111:96];
ELSE DEST[111:96] < DEST[111:96]; FI;
IF (imm8[7] == 1)

4-72 \Vol.2B PBLENDW — Blend Packed Words



INSTRUCTION SET REFERENCE, N-Z

THEN DEST[127:112] € SRC[127:112];
ELSE DEST[127:112] < DEST[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PBLENDW __m128i _mm_blend_epi16 (__m128iv1, _m128iv2, const int mask);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

PBLENDW — Blend Packed Words Vol.2B 4-73



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-74 \Vol.2B PBLENDW — Blend Packed Words



INSTRUCTION SET REFERENCE, N-Z

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 74 /r PCMPEQB mm, Valid Valid Compare packed bytes in
mm/m64 mm/m64 and mm for equality.
66 OF 74 /r PCMPEQB xmm1, Valid Valid Compare packed bytes in
xmm2/m128 xmmZ2/m128 and xmm1 for
equality.
OF75/r PCMPEQW mm, Valid Valid Compare packed words in
mm/m64 mm/m64 and mm for equality.
66 OF 75/r PCMPEQW xmm1, Valid Valid Compare packed words in
xmmZ2/m128 xmmZ2/m128 and xmm1 for
equality.
OF76/r PCMPEQD mm, Valid Valid Compare packed doublewords in
mm/m64 mm/m64 and mm for equality.
66 OF 76 /r PCMPEQD xmm1, Valid Valid Compare packed doublewords in
xmm2/m128 xmmZ2/m128 and xmm1 for
equality.
Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in
the destination operand (first operand) and the source operand (second operand). If
a pair of data elements is equal, the corresponding data element in the destination
operand is set to all 1s; otherwise, it is set to all 0s. The source operand can be an
MMX technology register or a 64-bit memory location, or it can be an XMM register or
a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and
source operands; the PCMPEQW instruction compares the corresponding words in
the destination and source operands; and the PCMPEQD instruction compares the
corresponding doublewords in the destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PCMPEQB instruction with 64-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) «— FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol.2B 4-75



INSTRUCTION SET REFERENCE, N-Z

IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) < FFH;
ELSE DEST[7:0] «- O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SR([127:120]
THEN DEST[127:120] « FFH;
ELSE DEST[127:120] < O; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «- O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST[63:48] « FFFFH;
ELSE DEST[63:48] «— O; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] «- FFFFH;
ELSE DEST[15:0] < O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112] = SRC[127:112]
THEN DEST[127:112] «— FFFFH;
ELSE DEST[127:112] « O; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] «— FFFFFFFFH;
ELSE DEST[31:0] < O; FI;
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] «— FFFFFFFFH;
ELSE DEST[63:32] «— O; FI;

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] « FFFFFFFFH;
ELSE DEST[31:0] «- O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]

4-76 Vol.2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal



INSTRUCTION SET REFERENCE, N-Z

THEN DEST[127:96] « FFFFFFFFH;
ELSE DEST[127:96] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1, _m64 m2)
PCMPEQW __m64 _mm_cmpeq_pi16 (_m64 m1, __m64 m2)
PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, _m64 m2)
PCMPEQB __m128i _mm_cmpeq_epi8 (__m128ia,__m128ib)
PCMPEQW __m128i _mm_cmpeq_epi16(_m128ia, __ m128ib)
PCMPEQD __m128i _mm_cmpeq_epi32 (_m128ia, __m128ib)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol.2B 4-77



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-78 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal



INSTRUCTION SET REFERENCE, N-Z

PCMPEQQ — Compare Packed Qword Data for Equal

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38  PCMPEQQ xmm1, Valid Valid Compare packed qwords in
29/r xmmZ2/m128 xmmZ2/m128 and xmm1 for
equality.
Description

Performs an SIMD compare for equality of the packed quadwords in the destination
operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

IF (DEST[63:0] = SRC[63:0])
THEN DEST[63:0] € FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] € O; F;

IF (DEST[127:64] = SRC[127:64])
THEN DEST[127:64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] € O; F;

Intel C/C++ Compiler Intrinsic Equivalent

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

PCMPEQQ — Compare Packed Qword Data for Equal Vol.2B 4-79



INSTRUCTION SET REFERENCE, N-Z

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-80 Vol.2B PCMPEQQ — Compare Packed Qword Data for Equal



INSTRUCTION SET REFERENCE, N-Z

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Opcode Instruction 64-Bit Compat/  Description
Mode Leg Mode
66 OF 3A 61 PCMPESTRI Valid Valid Perform a packed comparison of
/rimm8 xmmT, string data with explicit lengths,
xmm2/m128, generating an index, and storing the
imm8 result in ECX.
Description

The instruction compares and processes data from two string fragments based on the
encoded value in the Imm8 Control Byte (see Section 3.1.2, "Imm8 Control Byte
Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM"), and generates
an index stored to ECX.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). The index of the first (or last, according
to imm8[6]) set bit of IntRes2 (see Section 3.1.2.4) is returned in ECX. If no bits are
set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index Vol.2B 4-81



INSTRUCTION SET REFERENCE, N-Z

Effective Operand Size

Operating Operand 1 Operand 2 Length 1 Length 2 Result
mode/size

16 bit Xmm xmm/m128 EAX EDX ECX
32 bit Xmm xmm/m128 EAX EDX ECX
64 bit Xmm xmm/m128 EAX EDX ECX
64 bit + REX.W Xmm xmm/m128 RAX RDX RCX

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpestri (__m128i a, int la, __m128i b, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra (__m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrc (__m128i 3, intla, __m128i b, int Ib, const int mode);
int _mm_cmpestro (__m128ia, intla, __m128ib, int Ib, const int mode);
int _mm_cmpestrs (__m128i 3, intla, __m128i b, int Ib, const int mode);
int _mm_cmpestrz (__m128i g, intla, __m128i b, int Ib, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP Interrupt 13 If any part of the operand lies outside the effective
address space from 0 to FFFFH.

4-82 Vol.2B PCMPESTRI — Packed Compare Explicit Length Strings, Return Index



INSTRUCTION SET REFERENCE, N-Z

#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PCMPESTRI — Packed Compare Explicit Length Strings, Return Index Vol.2B 4-83



INSTRUCTION SET REFERENCE, N-Z

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Opcode Instruction 64-Bit Compat/ Description
Mode Leg
Mode
660F3A60 PCMPESTRM Valid Valid Perform a packed comparison of
/rimm8 xmm1, string data with explicit lengths,
xmmz2/m128, generating a mask, and storing the
imm8 resultin XMMO
Description

The instruction compares data from two string fragments based on the encoded
value in the imm8 contol byte (see Section 3.1.2, "*Imm8 Control Byte Operation for
PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates a mask
stored to XMMO.

Each string fragment is represented by two values. The first value is an xmm (or
possibly m128 for the second operand) which contains the data elements of the
string (byte or word data). The second value is stored in EAX (for xmm1) or EDX (for
xmm2/m128) and represents the number of bytes/words which are valid for the
respective xmm/m128 data.

The length of each input is interpreted as being the absolute-value of the value in
EAX (EDX). The absolute-value computation saturates to 16 (for bytes) and 8 (for
words), based on the value of imm8[bit3] when the value in EAX (EDX) is greater
than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMMO (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes?2 is equal to zero, set otherwise

ZFlag - Set if absolute-value of EDX is < 16 (8), reset otherwise
SFlag - Set if absolute-value of EAX is < 16 (8), reset otherwise
OFlag -IntRes2[0]

AFlag - Reset

PFlag - Reset

4-84 Vol.2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask



Effective Operand Size

INSTRUCTION SET REFERENCE, N-Z

Operating Operand1 Operand2 Length1 Length2 Result
mode/size

16 bit Xmm xmm/m128 EAX EDX XMMO
32 bit Xmm xmm/m128 EAX EDX XMMO
64 bit Xmm xmm/m128 EAX EDX XMMO
64 bit + REXW | xmm xmm/m128 RAX RDX XMMO

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i g, int la, __m128i b, int Ib, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpestra

m128i a, int la, __m128i b, int Ib, const int mode);

(
int _mm_cmpestrc (__m128i a, int la, __m128i b, int Ib, const int mode);
(

int _mm_cmpestro

m128i a, int la, __m128i b, int Ib, const int mode);

int _mm_cmpestrs (__m128i a, int la, __m128i b, int Ib, const int mode);
int  _mm_cmpestrz (_m128i 3, int la, __m128i b, int Ib, const int mode);

SIMD Floating-Point Exceptions

N/A.

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#NM

#SS(0)

#UD

Real-Address Mode Exceptions

#GP

#NM

For an illegal memory operand effective address in the CS, DS,

ES, FS or GS segments.

For a page fault.

If TS in CRO is set.
For an illegal address in the SS segment
If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is O.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Interrupt 13 If any part of the operand lies outside the effective
address space from 0 to FFFFH.

If TS in CRO is set.

PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Vol.2B 4-85




INSTRUCTION SET REFERENCE, N-Z

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-86 Vol.2B PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask



INSTRUCTION SET REFERENCE, N-Z

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 3A PCMPISTRI xmm1, Valid Valid Perform a packed comparison of
63 /rimm8 xmm2/m128, string data with implicit lengths,
imm8 generating an index, and storing
the result in ECX.

Description

The instruction compares data from two strings based on the encoded value in the
Imm8 Control Byte (see Section 3.1.2, "Imm8 Control Byte Operation for PCMPESTRI
/ PCMPESTRM / PCMPISTRI / PCMPISTRM"”), and generates an index stored to ECX.

Each string is represented by a single value. The value is an xmm (or possibly m128
for the second operand) which contains the data elements of the string (byte or word
data). Each input byte/word is augmented with a valid/invalid tag. A byte/word is

considered valid only if it has a lower index than the least significant null byte/word.
(The least significant null byte/word is also considered invalid.)

The comparison and aggregation operations are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). The index of the first (or last, according
to imm8[6] ) set bit of IntRes2 is returned in ECX. If no bits are set in IntRes2, ECX
is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if any byte/word of xmm2/mem128is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag -IntRes2[0]

AFlag - Reset

PFlag - Reset

Effective Operand Size

Operating mode/size | Operand1 Operand2 Result
16 bit Xmm xmm/m128 ECX
32 bit Xmm xmm/m128 ECX
64 bit Xmm xmm/m128 ECX
64 bit + REX.W Xmm xmm/m128 RCX

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index Vol.2B 4-87



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int _mm_cmpistri (__m128ia, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128ib, const int mode);
int _mm_cmpistrc (__m128ia, __m128i b, const int mode);
int _mm_cmpistro (__m128ia, __m128i b, const int mode);
(__m128ia, __m128ib, const int mode);
(__m128ia, __m128ib, const int mode);

int _mm_cmpistrs
int _mm_cmpistrz

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment.
#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP Interrupt 13 If any part of the operand lies outside the effective
address space from 0 to FFFFH.

#NM If TS in CRO is set.

#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

4-88 Vol.2B PCMPISTRI — Packed Compare Implicit Length Strings, Return Index



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.0O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PCMPISTRI — Packed Compare Implicit Length Strings, Return Index Vol. 2B 4-89



INSTRUCTION SET REFERENCE, N-Z

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 3A PCMPISTRM xmm1,  Valid Valid Perform a packed comparison of
62 /rimm8  xmm2/m128, imm8 string data with implicit lengths,
generating a mask, and storing
the result in XMMO.

Description

The instruction compares data from two strings based on the encoded value in the
imm8 byte (see Section 3.1.2, “Imm8 Control Byte Operation for PCMPESTRI /
PCMPESTRM / PCMPISTRI / PCMPISTRM"”) generating a mask stored to XMMO.

Each string is represented by a single value. The The value is an xmm (or possibly
m128 for the second operand) which contains the data elements of the string (byte
or word data). Each input byte/word is augmented with a valid/invalid tag. A
byte/word is considered valid only if it has a lower index than the least significant null
byte/word. (The least significant null byte/word is also considered invalid.)

The comparison and aggregation operation are performed according to the encoded
value of Imm8 bit fields (see Section 3.1.2). As defined by imm8[6], IntRes2 is then
either stored to the least significant bits of XMMO (zero extended to 128 bits) or
expanded into a byte/word-mask and then stored to XMMO.

Note that the Arithmetic Flags are written in a non-standard manner in order to
supply the most relevant information:

CFlag - Reset if IntRes2 is equal to zero, set otherwise

ZFlag - Set if any byte/word of xmm2/mem128is null, reset otherwise
SFlag - Set if any byte/word of xmm1 is null, reset otherwise

OFlag - IntRes2[0]

AFlag - Reset

PFlag - Reset

Effective Operand Size

Operating mode/size Operand1 Operand2 Result
16 bit Xmm xmm/m128 XMMO
32 bit Xmm xmm/m128 XMMO
64 bit Xmm xmm/m128 XMMO
64 bit + REX.W Xmm xmm/m128 XMMO

4-90 Vol.2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int _mm_cmpistra (__m128ia, __m128ib, const int mode);
int _mm_cmpistrc (__m128ia, __m128i b, const int mode);
int _mm_cmpistro (__m128ia, __m128i b, const int mode);
int _mm_cmpistrs (__m128ia, __m128i b, const int mode);

)
int _mm_cmpistrz (__m128ia, __m128i b, const int mode);

SIMD Floating-Point Exceptions
N/A.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.
#SS(0) For an illegal address in the SS segment
#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP Interrupt 13 If any part of the operand lies outside the effective
address space from 0 to FFFFH.

#NM If TS in CRO is set.

#UD If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask Vol.2B 4-91



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-92 Vol.2B PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask



INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for
Greater Than

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF64/r PCMPGTB mm, Valid Valid Compare packed signed byte
mm/m64 integers in mm and mm/m64 for
greater than.
66 OF 64 /r  PCMPGTB xmm1, Valid Valid Compare packed signed byte
xmmZ2/m128 integers in xmm1 and
xmmZ2/m1.28 for greater than.
OF65/r PCMPGTW mm, Valid Valid Compare packed signed word
mm/m64 integers in mm and mm/m64 for
greater than.
66 OF65/r  PCMPGTW xmm1, Valid Valid Compare packed signed word
xmm2/m128 integers in xmm1 and
xmmZ2/m1.28 for greater than.
OF 66 /r PCMPGTD mm, Valid Valid Compare packed signed
mm/mé64 doubleword integers in mm and
mm/m64 for greater than.
66 0OF66/r  PCMPGTD xmm1, Valid Valid Compare packed signed
xmmZ2/m128 doubleword integers in xmm1
and xmmZ2/m1.28 for greater
than.
Description

Performs a SIMD signed compare for the greater value of the packed byte, word, or
doubleword integers in the destination operand (first operand) and the source
operand (second operand). If a data element in the destination operand is greater
than the corresponding date element in the source operand, the corresponding data
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. The
source operand can be an MMX technology register or a 64-bit memory location, or it
can be an XMM register or a 128-bit memory location. The destination operand can
be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the
destination and source operands; the PCMPGTW instruction compares the corre-
sponding signed word integers in the destination and source operands; and the
PCMPGTD instruction compares the corresponding signed doubleword integers in the
destination and source operands.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Vol.2B 4-93



INSTRUCTION SET REFERENCE, N-Z

Operation

PCMPGTB instruction with 64-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) < FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] < FFH;
ELSE DEST[63:56] «- O; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) < FFH;
ELSE DEST[7:0] < O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]
THEN DEST[127:120] «— FFH;
ELSE DEST[127:120] «- O; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «— O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SR([63:48]
THEN DEST[63:48] « FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] «— FFFFH;
ELSE DEST[15:0] «- O; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]
THEN DEST[127:112] < FFFFH;
ELSE DEST[127:112] < O; FI;

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] « FFFFFFFFH;
ELSE DEST[31:0] «- O; FI;
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] «— FFFFFFFFH;
ELSE DEST[63:32] «- O; FI;

4-94 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than



INSTRUCTION SET REFERENCE, N-Z

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] < FFFFFFFFH;
ELSE DEST[31:0] - O; FI;
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]
THEN DEST[127:96] « FFFFFFFFH;
ELSE DEST[127:96] «- O; F;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)
PCMPGTW __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)
DCMPGTD __m64 _mm_pcmpgt_pi32 (__m64 m1, __mb4 m2)
PCMPGTB __m128i _mm_cmpgt_epi8 (_m128ia, __m128ib)
PCMPGTW __m128i _mm_cmpgt_epil16 (_m128ia,__m128iDb)
DCMPGTD __m128i _mm_cmpgt_epi32 (_m128ia,__m128iDb)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Vol.2B 4-95



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

4-96 Vol.2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than Vol.2B 4-97



INSTRUCTION SET REFERENCE, N-Z

PCMPGTQ — Compare Packed Data for Greater Than

Opcode Instruction 64- Compat/  Description
Bit Leg
Mode Mode
66 OF 38 PCMPGTQ Valid Valid Compare packed qwords in
37 /r xmm1,xmm2/m1 xmmZ2/m128 and xmm1 for greater
28 than.
Description

Performs an SIMD compare for the packed quadwords in the destination operand
(first operand) and the source operand (second operand). If the data element in the
first (destination) operand is greater than the corresponding element in the second
(source) operand, the corresponding data element in the destination is set to all 1s;
otherwise, it is set to Os.

Operation

IF (DEST[63-0] > SRC[63-0])
THEN DEST[63-0] < FFFFFFFFFFFFFFFFH;
ELSE DEST[63-0] € O; Fl

IF (DEST[127-64] > SRC[127-64])
THEN DEST[127-64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127-64] € O; Fl

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PCMPGTQ _m128i _mm_cmpgt_epi64(_m128ia, __ m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF (fault-code) For a page fault.
#UD If CRO.EM = 1.
If CR4.0SFXSR(bit9) = 0.
If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

4-98 Vol.2B PCMPGTQ — Compare Packed Data for Greater Than



INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.
#NM If TS bit in CRO is set.

Real Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment.
#UD If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
#NM If TS bit in CRO is set.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF (fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If not aligned on 16-byte boundary, regardless of segment.
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF (fault-code) For a page fault.
#UD If CRO.EM = 1.

If CR4.0SFXSR(bit 9) = 0.

If CPUID.O1H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
#NM If TS bit in CRO is set.

PCMPGTQ — Compare Packed Data for Greater Than Vol. 2B 4-99



INSTRUCTION SET REFERENCE, N-Z

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A 14 PEXTRB reg/m8, Valid Valid Extract a byte integer value from
Irib xmmZ2, imm8 xmmZ2 at the source byte offset

specified by imm8into rreg or
m8. The upper bits of r32 or r64

are zeroed.
66 0F 3A 16 PEXTRD r/m32, Valid Valid Extract a dword integer value
Irib xmmZ2, imm8 from xmmZ at the source dword
offset specified by imm8into
r/m32.
66 REXW OF PEXTRQ r/m64, Valid N. E. Extract a qword integer value
3A16 xmmZ2, imm8 from xmmZ at the source dword
Irib offset specified by imm8into
r/m64.

Description

Copies a data element (byte, dword, quadword) in the source operand (second
operand) specified by the count operand (third operand) to the destination operand
(first operand). The source operand is an XMM register. The destination operand can
be a general-purpose register or a memory address. The count operand is an 8-bit
immediate. When specifying a quadword [dword, byte] element, the [2, 4] least-
significant bit(s) of the count operand specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). PEXTRQ requires REX.W. If the
destination operand is a general-purpose register, the default operand size of
PEXTRB is 64 bits.

Operation
CASE of
PEXTRB: SEL € COUNT[3:0];
TEMP & (Src >> SEL*8) AND FFH;
IF (DEST = Mem8)
THEN
Mem8 < TEMP[7:0];
ELSE IF (64-Bit Mode and 64-bit register selected)
THEN
R64[7:0] < TEMP[7:0];
ré4[63:8] < ZERO_FILL; };
ELSE

4-100 Vol.2B PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword



INSTRUCTION SET REFERENCE, N-Z

R32[7:0] ¢ TEMP[7:0];
r32[31:8] « ZERO_FILL; %
Fl;
PEXTRD:SEL < COUNT[1:0];
TEMP & (Src >> SEL*32) AND FFFF_FFFFH;
DEST <« TEMP;
PEXTRQ: SEL € COUNTI[O];
TEMP & (Src >> SEL*64);
DEST <« TEMP;
EASC:

Intel C/C++ Compiler Intrinsic Equivalent
PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx);
PEXTRQ  __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.
#UD If CRO.EM[bit 2] = 1.

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword Vol.2B 4-101



INSTRUCTION SET REFERENCE, N-Z

#NM

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.
If CRO.TS[bit 3] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)
#AC(0)

For a page fault.

(Dword and gqword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#NM
#UD

#AC(0)

4-102 Vol.2B

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

(Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword



INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFC5/rib PEXTRW reg, mm, Valid Valid Extract the word specified by
imm8 imm8 from mm and move it to

reg, bits 15-0. The upper bits of
r32 or r64 is zeroed.

66 OF C5 /rib PEXTRW reg, Valid Valid Extract the word specified by
xmm, imm8 imm8 from xmm and move it to
reg, bits 15-0. The upper bits of
r32 or r64 is zeroed.

66 OF 3A 15 PEXTRW Valid Valid Extract the word specified by
/rib reg/m16, xmm, imm8 from xmm and copy it to
imm8 lowest 16 bits of reg or m16.

Zero-extend the result in the
destination, r32 or r64.

Description

Copies the word in the source operand (second operand) specified by the count
operand (third operand) to the destination operand (first operand). The source
operand can be an MMX technology register or an XMM register. The destination
operand can be the low word of a general-purpose register or a 16-bit memory
address. The count operand is an 8-bit immediate. When specifying a word location
in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). If the destination operand is a
general-purpose register, the default operand size is 64-bits in 64-bit mode.

Operation

IF (DEST = Mem16)
THEN

SEL < COUNT[2:0];

TEMP & (Src >> SEL*16) AND FFFFH;

Mem16 < TEMP[15:0];
ELSE IF (64-Bit Mode and destination is a general-purpose register)

THEN

FOR (PEXTRW instruction with 64-bit source operand)
{ SEL < COUNT[1:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;

PEXTRW—Extract Word Vol.2B 4-103



INSTRUCTION SET REFERENCE, N-Z

r64[15:0] «- TEMP[15:0];
r64[63:16] < ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)
{ SEL «- COUNT[2:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] «- TEMP[15:0];
r64[63:16] «<— ZERO_FILL; }
ELSE
FOR (PEXTRW instruction with 64-bit source operand)
{ SEL « COUNT[1:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] <« ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)
{ SEL « COUNT[2:0];
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] « ZERO_FILL; };
Fl;
Fl;

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW int _mm_extract_pi16 (_m64 a, int n)
PEXTRW int _mm_extract_epi16 (_m128i a, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) (3 byte opcode only) If a memory operand effective address is
outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) (3 byte opcode only) If a memory operand effective address is
outside the SS segment limit.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-104 Vol.2B PEXTRW—Extract Word



INSTRUCTION SET REFERENCE, N-Z

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) (3 byte opcode only) If a page fault occurs.

#AC(0) (3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (3 byte opcode only) If any part of the operand lies outside of
the effective address space from 0 to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) (3 byte opcode only) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) (3 byte opcode only) If the memory address is in a non-canon-
ical form.
#SS(0) (3 byte opcode only) If a memory address referencing the SS

segment is in a non-canonical form.
#PF(fault-code) (3 byte opcode only) For a page fault.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

PEXTRW—Extract Word Vol.2B 4-105



INSTRUCTION SET REFERENCE, N-Z

(3 byte opcode only) If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

(3 byte opcode only) Either the prefix REP (F3h) or REPN (F2H)

is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (3 byte opcode only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-106 Vol.2B PEXTRW—Extract Word



INSTRUCTION SET REFERENCE, N-Z

PHADDW/PHADDD — Packed Horizontal Add

64-Bit Compat/ Description
Opcode Instruction Mode Leg Mode
OF 3801 /r PHADDW mm1, Valid Valid Add 16-bit signed integers
mmZ2/m64 horizontally, pack to MM1.
66 OF 3801 /r PHADDW xmm1,  Valid Valid Add 16-bit signed integers
xmm2/m128 horizontally, pack to XMMT1.
OF 3802 /r PHADDD mm1, Valid Valid Add 32-bit signed integers
mm2/m64 horizontally, pack to MMT.
66 OF 3802 /r PHADDD xmm1, Valid Valid Add 32-bit signed integers
xmm2/m128 horizontally, pack to XMM1.
Description

PHADDW adds two adjacent 16-bit signed integers horizontally from the source and
destination operands and packs the 16-bit signed results to the destination operand
(first operand). PHADDD adds two adjacent 32-bit signed integers horizontally from
the source and destination operands and packs the 32-bit signed results to the desti-
nation operand (first operand). Both operands can be MMX or XMM registers. When

the source operand is a 128-bit memory operand, the operand must be aligned on a

16-byte boundary or a general-protection exception (#GP) will be generated.
In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHADDW with 64-bit operands:

mm1[15-0] = mm1[31-16] + mm1[15-0];
mm1[31-16] = mm1[63-48] + mm1[47-32];
mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0];
mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32];

PHADDW with 128-bit operands :

xmm1[15-0] = xmm1[31-16] + xmm1[15-0];
xmm1[31-16] = xmm1[63-48] + xmm1[47-32];

xmm1[47-32] = xmm1[95-80] + xmm1[79-64];

xmm1[63-48] = xmm1[127-112] + xmm1[111-96];

xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0];
xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32];
xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64];
xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96];

PHADDW/PHADDD — Packed Horizontal Add Vol. 2B

4-107




INSTRUCTION SET REFERENCE, N-Z

PHADDD with 64-bit operands :

mm1[31-0] = mm1[63-32] + mm1[31-0];
mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0];

PHADDD with 128-bit operands:

xmm1[31-0] = xmm1[63-32] + xmm1[31-0];

xmm1[63-32] = xmm1[127-96] + xmm1[95-64];

xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0];
xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64];

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW _ m64 _mm_hadd_pi16 (__m64 a,

m64 b)

PHADDW __m128i _mm_hadd_epi16 (__m128ia, __m128ib)

PHADDD _ m64 _mm_hadd_pi32 (__m64 a,

m64 b)

PHADDD __m128i_mm_hadd_epi32 (__m128ia, __m128ib)

Protected Mode Exceptions

#GP(0):

#55(0)

#PF(fault-code)
#UD

#NM
#MF
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If CRO.EM(bit 2)= 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0)

4-108 Vol.2B

If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

PHADDW/PHADDD — Packed Horizontal Add



#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)

#AC(0)

If a page fault occurs.

(64-bit operations only). If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PHADDW/PHADDD — Packed Horizontal Add Vol.2B 4-109



INSTRUCTION SET REFERENCE, N-Z

PHADDSW — Packed Horizontal Add and Saturate

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF3803/r PHADDSW mm1,  Valid Valid Add 16-bit signed integers
mm2/m64 horizontally, pack saturated integers
to MM1.
66 OF 3803 /r PHADDSW xmm1, Valid Valid Add 16-bit signed integers
xmm2/m128 horizontally, pack saturated integers
to XMMT.
Description

PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and
destination operands and saturates the signed results; packs the signed, saturated
16-bit results to the destination operand (first operand) Both operands can be MMX
or XMM registers. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHADDSW with 64-bit operands:

mm1[15-0] = SaturateToSignedWord((mm1[31-16] + mm1[15-0]);
mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);
mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]);
mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]);

PHADDSW with 128-bit operands :

xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);

xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);

xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);

xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]);

xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);
xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32));
xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64));
xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]);

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW __m64 _mm_hadds_pi16 (__m64 a, __m64 b)
PHADDSW __m128i _mm_hadds_epi16 (__m128ia, __m128ib)

4-110 Vol.2B PHADDSW — Packed Horizontal Add and Saturate



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0): (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not alighed on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PHADDSW — Packed Horizontal Add and Saturate Vol.2B 4-111



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-112 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a hon-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PHADDSW — Packed Horizontal Add and Saturate



INSTRUCTION SET REFERENCE, N-Z

PHMINPOSUW — Packed Horizontal Word Minimum

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 PHMINPOSUW xmm1, Valid Valid Find the minimum unsigned word in
a1 /r xmmZ2/m128 xmmZ2/m128 and place its value in the
low word of xmm1 and its index in the
second-lowest word of xmm1.

Description

Determine the minimum unsigned word value in the source operand (second
operand) and place the unsigned word in the low word (bits 0-15) of the destination
operand (first operand). The word index of the minimum value is stored in bits 16-
18 of the destination operand. The remaining upper bits of the destination are set to
zero.

Operation

INDEX € O;
MIN € SRC[15:0]
IF (SRC[31:16] < MIN)
THEN INDEX € 1; MIN < SRC[31:16]; FI;
IF (SRC[47:32] < MIN)
THEN INDEX €« 2; MIN < SRC[47:32]; FI;
* Repeat operation for words 3 through 6
IF (SRC[127:112] < MIN)
THEN INDEX €« 7; MIN €« SRC[127:112]; FI;
DEST[15:0] €« MIN;
DEST[18:16] €< INDEX;
DEST[127:19] € 0000000000000000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW  __m128i _mm_minpos_epu16(__m128i packed_words);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

PHMINPOSUW — Packed Horizontal Word Minimum Vol.2B 4-113



INSTRUCTION SET REFERENCE, N-Z

#SS(0)
#PF(fault-code)
#NM

#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0)

#NM
#UD

if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#NM
#UD

4-114 Vol.2B

If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

PHMINPOSUW — Packed Horizontal Word Minimum



INSTRUCTION SET REFERENCE, N-Z

If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PHMINPOSUW — Packed Horizontal Word Minimum Vol.2B 4-115



INSTRUCTION SET REFERENCE, N-Z

PHSUBW/PHSUBD — Packed Horizontal Subtract
64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF3805/r PHSUBW mm1,  Valid Valid Subtract 16-bit signed
mm2/m64 integers horizontally, pack
to MM1.
66 0F 3805 /r PHSUBW xmm1, Valid Valid Subtract 16-bit signed
xmm2/m128 integers horizontally, pack
to XMM1.
OF 3806 /r PHSUBD mm1, Valid Valid Subtract 32-bit signed
mm2/m64 integers horizontally, pack
to MM1.
66 0F 3806 /r PHSUBD xmm1, Valid Valid Subtract 32-bit signed
xmm2/m128 integers horizontally, pack
to XMM1.
Description

PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed inte-
gers by subtracting the most significant word from the least significant word of each
pair in the source and destination operands, and packs the signed 16-bit results to
the destination operand (first operand). PHSUBD performs horizontal subtraction on
each adjacent pair of 32-bit signed integers by subtracting the most significant
doubleword from the least significant doubleword of each pair, and packs the signed
32-bit result to the destination operand. Both operands can be MMX or XMM regis-
ters. When the source operand is a 128-bit memory operand, the operand must be
aligned on a 16-byte boundary or a general-protection exception (#GP) will be
generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHSUBW with 64-bit operands:

mm1[15-0] = mm1[15-0] - mm1[31-16];
mm1[31-16] = mm1[47-32] - mm1[63-48];
mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];
mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48];

PHSUBW with 128-bit operands:

xmm1[15-0] = xmm1[15-0] - xmm1[31-16];
xmm1[31-16] = xmm1[47-32] - xmm1[63-48];
xmm1[47-32] = xmm1[79-64] - xmm1[95-80];

4-116 Vol.2B PHSUBW/PHSUBD — Packed Horizontal Subtract



INSTRUCTION SET REFERENCE, N-Z

xmm1[63-48] = xmm1[111-96] - xmm1[127-112];

xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16];
xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48];
xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80];
xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

PHSUBD with 64-bit operands:

mm1[31-0] = mm1[31-0] - mm1[63-32];
mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];

PHSUBD with 128-bit operands:

xmm1[31-0] = xmm1[31-0] - xmm1[63-32];

xmm1[63-32] = xmm1[95-64] - xmm1[127-96];

xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32];
xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW __m64 _mm_hsub_pi16 (__m64 a, __m64 b)
PHSUBW __m128i _mm_hsub_epi16 (__m128ia, __m128ib)
PHSUBD __m64 _mm_hsub_pi32 (__m64 a, __m64 b)
PHSUBD _ m128i _mm_hsub_epi32 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

PHSUBW/PHSUBD — Packed Horizontal Subtract Vol.2B 4-117



INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0):

#UD:

#NM
#MF

If any part of the operand lies outside of the effective address
space from O to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-118 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PHSUBW/PHSUBD — Packed Horizontal Subtract



INSTRUCTION SET REFERENCE, N-Z

PHSUBSW — Packed Horizontal Subtract and Saturate

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 3807 /r PHSUBSW mm1, Valid Valid Subtract 16-bit signed
mm2/m64 integer horizontally, pack
saturated integers to MM1.
66 OF 3807 /r PHSUBSW Valid Valid Subtract 16-bit signed
xmm1, integer horizontally, pack
xmm2/m128 saturated integers to
XMM1
Description

PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed
integers by subtracting the most significant word from the least significant word of
each pair in the source and destination operands. The signed, saturated 16-bit
results are packed to the destination operand (first operand). Both operands can be
MMX or XMM register. When the source operand is a 128-bit memory operand, the
operand must be aligned on a 16-byte boundary or a general-protection exception
(#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PHSUBSW with 64-bit operands:

mm1[15-0] = SaturateToSignedwWord(mm1[15-0] - mm1[31-16]);

mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48));
mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]));
mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48));

PHSUBSW with 128-bit operands:

xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]);

xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);

xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);

xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);

xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]);
xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]);
xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);
xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

PHSUBSW — Packed Horizontal Subtract and Saturate Vol.2B 4-119



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)
PHSUBSW __m128i _mm_hsubs_epi16 (__m128ia,__m128ib)

Protected Mode Exceptions

#GP(0) if a memory operand effective address is outside the CS, DS, ES,
FS or GS segments.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only).
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF If there is a pending x87 FPU exception (64-bit operations only).

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made while the current privilege level is 3 (64-bit opera-
tions only).

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
(128-bit operations only).

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only).
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF If there is a pending x87 FPU exception (64-bit operations only).

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and unaligned memory refer-
ence is made (64-bit operations only).

4-120 Vol.2B PHSUBSW — Packed Horizontal Subtract and Saturate



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a hon-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PHSUBSW — Packed Horizontal Subtract and Saturate Vol.2B 4-121



INSTRUCTION SET REFERENCE, N-Z

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Opcode Instruction Compat/ 64-bit  Description
Leg Mode Mode
66 OF 3A  PINSRB xmm1,  Valid Valid Insert a byte integer value from r32/m8
20 /rib r32/m8, imm8 into xmm1 at the destination element in
xmm1 specified by imm8.
66 OF 3A  PINSRD xmm1,  Valid Valid Insert a dword integer value from r/m32
22 Irib r/m32, imm8 into the xmm1 at the destination
elements specified by imm8.
66 REXW  PINSRQ xmm1, N.E. Valid Insert a qword integer value from r/m32
OF 3A 22 /r r/m64, imm8 into the xmm1 at the destination
ib elements specified by imm8.
Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it
in the destination operand (first operand) at the location specified with the count
operand (third operand). (The other elements in the destination register are left
untouched.) The source operand can be a general-purpose register or a memory
location. (When the source operand is a general-purpose register, PINSRB copies the
low byte of the register.) The destination operand is an XMM register. The count
operand is an 8-bit immediate. When specifying a qword[dword, byte] location in an
an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the
location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of
64 bit general purpose registers.

Operation
CASE OF
PINSRB: SEL < COUNT[3:0];
MASK < (OFFH << (SEL * 8));
TEMP < (((SRC[7:0] << (SEL *8)) AND MASK);
PINSRD: SEL < COUNT[1:0];
MASK & (OFFFFFFFFH << (SEL * 32));
TEMP < (((SRC << (SEL *32)) AND MASK) ;
PINSRQ: SEL € COUNTI[O]
MASK ¢ (OFFFFFFFFFFFFFFFFH << (SEL * 64));
TEMP < (((SRC << (SEL *32)) AND MASK) ;
ESAC;
DEST < ((DEST AND NOT MASK) OR TEMP);

4-122 Vol.2B PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PINSRB __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD __m128i _mm_insert_epi32 (__m128is2, int s, const int ndx);
PINSRQ __m128i _mm_insert_epi64(__m128is2, __int64 s, const int ndx);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) (Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword Vol.2B 4-123



INSTRUCTION SET REFERENCE, N-Z

#AC(0)

(Dword and gword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#NM
#UD

#AC(0)

4-124 Vol.2B

If the memory address is in a non-canonical form.

If a memory address referencing the SS segment is in a non-
canonical form.

For a page fault.

If TS in CRO is set.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

(Dword and gqword references) If alignment checking is enabled
and an unaligned memory reference is made while the current
privilege level is 3.

PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword



INSTRUCTION SET REFERENCE, N-Z

PINSRW—Insert Word

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFC4/rib PINSRW mm, Valid Valid Insert the low word from
r32/m16, imm8 r32 or from m16into mm

at the word position
specified by imm8

66 OF C4 /rib PINSRW xmm, Valid Valid Move the low word of r32
r32/mi16,imm8 or from m16 into xmm at
the word position specified
by imm8.
Description

Copies a word from the source operand (second operand) and inserts it in the desti-
nation operand (first operand) at the location specified with the count operand (third
operand). (The other words in the destination register are left untouched.) The
source operand can be a general-purpose register or a 16-bit memory location.
(When the source operand is a general-purpose register, the low word of the register
is copied.) The destination operand can be an MMX technology register or an XMM
register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify
the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15).

Operation

PINSRW instruction with 64-bit source operand:
SEL <~ COUNT AND 3H;
CASE (Determine word position) OF

SEL « O: MASK < 000000000000FFFFH;
SEL « 1: MASK <« 00000000FFFFO000H;
SEL « 2: MASK <« 0000FFFFO0000000H;
SEL « 3: MASK « FFFFO00000000000H;

DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL <~ COUNT AND 7H;
CASE (Determine word position) OF
SEL « O: MASK « 0000000000000000000000000000FFFFH;
SEL « 1: MASK « 000000000000000000000000FFFFO000H;
SEL « 2: MASK « 00000000000000000000FFFFO0000000H;
SEL « 3: MASK « 0000000000000000FFFFO00000000000H;

PINSRW—Insert Word Vol.2B 4-125



INSTRUCTION SET REFERENCE, N-Z

SEL< 4.  MASK <« 000000000000FFFFO000000000000000H;
SEL<« 5.  MASK « 00000000FFFFO0000000000000000000H;
SEL<« 6:  MASK « 0000FFFFO00000000000000000000000H;
SEL<« 7:  MASK « FFFFO000000000000000000000000000H;
DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW __m64 _mm_insert_pi16 (__m64 3, intd, intn)
PINSRW  __m128i _mm_insert_epi16 (_m128i a, int b, int imm)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from 0 to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

4-126 Vol.2B PINSRW—Insert Word



#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

PINSRW—Insert Word

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a hon-canonical form.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2B 4-127



INSTRUCTION SET REFERENCE, N-Z

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes
64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 3804 /r PMADDUBSW Valid Valid Multiply signed and
mm1, mm2/m64 unsigned bytes, add

horizontal pair of signed
words, pack saturated
signed-words to MM1.

66 OF 38 04 /r PMADDUBSW Valid Valid Multiply signed and
xmm1, unsigned bytes, add
xmm2/m128 horizontal pair of signed

words, pack saturated
signed-words to XMM1.

Description

PMADDUBSW multiplies vertically each unsigned byte of the destination operand
(first operand) with the corresponding signed byte of the source operand (second
operand), producing intermediate signed 16-bit integers. Each adjacent pair of
signed words is added and the saturated result is packed to the destination operand.
For example, the lowest-order bytes (bits 7-0) in the source and destination oper-
ands are multiplied and the intermediate signed word result is added with the corre-
sponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the
operands; the sign-saturated result is stored in the lowest word of the destination
register (15-0). The same operation is performed on the other pairs of adjacent
bytes. Both operands can be MMX register or XMM registers. When the source
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PMADDUBSW with 64 bit operands:

DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);

DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);
DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);
DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

PMADDUBSW with 128 bit operands:

DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);
// Repeat operation for 2nd through 7th word

4-128 Vol.2B PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes



INSTRUCTION SET REFERENCE, N-Z

SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-
112]* DEST[119-112]);

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)
PMADDUBSW __m128i _mm_maddubs_epi16 (__m128ia, __m128iDb)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0 (128-bit operations only)
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes Vol.2B 4-129



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-130 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a hon-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes



INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF5/r PMADDWD mm, Valid Valid Multiply the packed words in mm
mm/m64 by the packed words in mm/m64,

add adjacent doubleword results,
and store in mm.

66 OF F5 /r PMADDWD xmm1, Valid Valid Multiply the packed word integers
xmmZ2/m128 in xmm1 by the packed word
integers in xmmZ2/m128, add
adjacent doubleword results, and
store in xmm1.

Description

Multiplies the individual signed words of the destination operand (first operand) by
the corresponding signed words of the source operand (second operand), producing
temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-
order words (15-0) and (31-16) in the source and destination operands are multi-
plied by one another and the doubleword results are added together and stored in
the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words. (Figure 4-2 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory loca-
tion. The destination operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of
words being operated on in a group are all 8000H. In this case, the result wraps
around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PMADDWD—Multiply and Add Packed Integers Vol. 2B 4-131



INSTRUCTION SET REFERENCE, N-Z

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 Yo

TEMP X3 % Y3 X2 % Y2 X1 # Y1 X0 * YO
DEST (X3%Y3) + (X25Y2)| (X1%Y1) + (XO%YO)

Figure 4-2. PMADDWD Execution Model Using 64-bit Operands

Operation

PMADDWD instruction with 64-bit operands:
DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] «— (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);

PMADDWD instruction with 128-bit operands:
DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] «— (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48));
DEST[95:64] «— (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:801);
DEST[127:96] «— (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD __m64 _mm_madd_pi16(_m64 m1, __m64 m2)
PMADDWD __m128i _mm_madd_epi16 (_m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-132 Vol.2B PMADDWD—Multiply and Add Packed Integers



INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a nhon-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PMADDWD—Multiply and Add Packed Integers Vol.2B 4-133



INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-134 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMADDWD—Multiply and Add Packed Integers



INSTRUCTION SET REFERENCE, N-Z

PMAXSB — Maximum of Packed Signed Byte Integers

Opcode Instruction 64-bit Compat/
Mode Leg Mode

66 OF 38 PMAXSB xmm]1, Valid Valid
3C/r xmmZ2/m128

Description

Compare packed signed byte integers
in xmm1 and xmmZ2/m128 and store
packed maximum values in xmm]1.

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the maximum for each packed

value in the destination operand.
Operation

IF (DEST[7:0] > SRC[7:0])
THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0]; FI;
IF (DEST[15:8] > SRC[15:8])
THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8]; FI;
IF (DEST[23:16] > SRC[23:16])
THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16]; FI;
IF (DEST[31:24] > SRC[31:24])
THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] € SRC[31:24]; FI;
IF (DEST[39:32] > SRC[39:32])
THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32]; FI;
IF (DEST[47:40] > SRC[47:40])
THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40]; FI;
IF (DEST[55:48] > SRC[55:48])
THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48]; FI;
IF (DEST[63:56] > SRC[63:56])
THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56]; FI;
IF (DEST[71:64] > SRC[71:64])
THEN DEST[71:64] < DEST[71:64];

PMAXSB — Maximum of Packed Signed Byte Integers

Vol.2B 4-135



INSTRUCTION SET REFERENCE, N-Z

ELSE DEST[71:64] < SRC[71:64]; FI;
IF (DEST[79:72] > SRC[79:72])
THEN DEST[79:72] & DEST[79:72];
ELSE DEST[79:72] € SRC[79:72]; FI;
IF (DEST[87:80] > SRC[87:80])
THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80]; FI;
IF (DEST[95:88] > SRC[95:88])
THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88]; FI;
IF (DEST[103:96] > SRC[103:96])
THEN DEST[103:96] < DEST[103:96];
ELSE DEST[103:96] < SRC[103:96]; FI;
IF (DEST[111:104] > SRC[111:104])
THEN DEST[111:104] €< DEST[111:104];
ELSE DEST[111:104] € SRC[111:104]; FI;
IF (DEST[119:112] > SRC[119:112])
THEN DEST[119:112] €< DEST[119:112];
ELSE DEST[119:112] € SRC[119:112]; FI;
IF (DEST[127:120] > SRC[127:120])
THEN DEST[127:120] < DEST[127:120];
ELSE DEST[127:120] € SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSB __m128i _mm_max_epi8 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

4-136 Vol.2B

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

PMAXSB — Maximum of Packed Signed Byte Integers



INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMAXSB — Maximum of Packed Signed Byte Integers Vol.2B 4-137



INSTRUCTION SET REFERENCE, N-Z

PMAXSD — Maximum of Packed Signed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38  PMAXSD xmm1, Valid Valid Compare packed signed dword integers in
3D/r xmmZ2/m128 xmm1and xmmZ2/m128 and store
packed maximum values in xmm1.

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD __m128i _mm_max_epi32 (__m128ia, _m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

4-138 Vol.2B PMAXSD — Maximum of Packed Signed Dword Integers



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

PMAXSD — Maximum of Packed Signed Dword Integers Vol.2B 4-139



INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

4-140 Vol.2B PMAXSD — Maximum of Packed Signed Dword Integers



INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF EE/r PMAXSW mm1, Valid Valid Compare signed word integers in
mm2/m64 mmZ2/m64 and mm1 and return
maximum values.
66 OF EE/r PMAXSW xmm1, Valid Valid Compare signed word integers in
xmm2/m128 xmmZ2/m128and xmm1 and return
maximum values.

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXSW instruction for 64-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN
DEST[63:48] «— DEST[63:48];
ELSE
DEST[63:48] «— SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN
DEST[127:112] «— DEST[127:112];
ELSE

PMAXSW—Maximum of Packed Signed Word Integers Vol. 2B 4-141



INSTRUCTION SET REFERENCE, N-Z

DEST[127:112] « SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW __m64 _mm_max_pi16(_m64 a, __m64 b)
PMAXSW _ m128i _mm_max_epi16 (_m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

4-142 Vol.2B PMAXSW—Maximum of Packed Signed Word Integers



#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMAXSW—Maximum of Packed Signed Word Integers Vol.2B 4-143



INSTRUCTION SET REFERENCE, N-Z

PMAXUB—Maximum of Packed Unsigned Byte Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF DE/r PMAXUB mm1, Valid Valid Compare unsigned byte integers
mm2/m64 in mm2/m64 and mm1 and
returns maximum values.
66 OF DE/r PMAXUB xmm1, Valid Valid Compare unsigned byte integers
xmm2/m128 in xmm2/m128 and xmm1 and
returns maximum values.

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
maximum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMAXUB instruction for 64-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] «— DEST[7:0];
ELSE
DEST[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN
DEST[63:56] «<— DEST[63:56];
ELSE
DEST[63:56] <« SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN
DEST[127:120] «— DEST[127:120];

4-144 \Vol.2B PMAXUB—Maximum of Packed Unsigned Byte Integers



INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[127:120] <« SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB __ m64 _mm_max_pu8(__m64 a, __m64 b)
PMAXUB _ m128i _mm_max_epu8 (__m128ia,__m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

PMAXUB—Maximum of Packed Unsigned Byte Integers Vol.2B 4-145



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-146 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMAXUB—Maximum of Packed Unsigned Byte Integers



INSTRUCTION SET REFERENCE, N-Z

PMAXUD — Maximum of Packed Unsigned Dword Integers

Opcode Instruction 64-bit Mode Compat/ Description
Leg Mode
66 OF 38 PMAXUD xmm1, Valid Valid Compare packed unsigned
3F/r xmm2/m128 dword integers in xmm1 and
xmmZ2/m128 and store packed
maximum values in xmm1.

Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[31:0] > SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] € SRC[31:0]; FI;
IF (DEST[63:32] > SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] € SRC[63:32]; FI;
IF (DEST[95:64] > SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] €< SRC[95:64]; FI;
IF (DEST[127:96] > SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUD __m128i_mm_max_epu32 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

PMAXUD — Maximum of Packed Unsigned Dword Integers Vol. 2B 4-147



INSTRUCTION SET REFERENCE, N-Z

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.

4-148 Vol. 2B PMAXUD — Maximum of Packed Unsigned Dword Integers



INSTRUCTION SET REFERENCE, N-Z

If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMAXUD — Maximum of Packed Unsigned Dword Integers Vol. 2B 4-149



INSTRUCTION SET REFERENCE, N-Z

PMAXUW — Maximum of Packed Word Integers

Opcode Instruction Compat/ 64-bit  Description
LegMode Mode
66 0F 38 PMAXUW xmmT, Valid Valid Compare packed unsigned word
3E/r xmm2/m128 integers in xmm1 and xmmZ2/m128
and store packed maximum values in
xmm1.
Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the maximum for each
packed value in the destination operand.

Operation

IF (DEST[15:0] > SRC[15:0])
THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] < SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16])
THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] € SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32])
THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] € SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48])
THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64])
THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] < SRC[79:64]; FI;

IF (DEST[95:80] > SRC[95:80])
THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96])
THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96]; FI;

IF (DEST[127:112] > SRC[127:112])
THEN DEST[127:112] € DEST[127:112];
ELSE DEST[127:112] €« SRC[127:112]; FI;

4-150 Vol.2B PMAXUW — Maximum of Packed Word Integers



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUW__m128i _mm_max_epul6 (_m128ia,__m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

PMAXUW — Maximum of Packed Word Integers Vol. 2B 4-151



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a nhon-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-152 Vol.2B PMAXUW — Maximum of Packed Word Integers



INSTRUCTION SET REFERENCE, N-Z

PMINSB — Minimum of Packed Signed Byte Integers

Opcode Instruction 64-bit Compat/
Mode Leg Mode

66 0F3838 PMINSB xmm1, Valid Valid
Ir xmmZ2/m128

Description

Compare packed signed byte integers in
xmm1 and xmmZ2/m128 and store packed
minimum values in xmm1.

Description

Compares packed signed byte integers in the destination operand (first operand) and
the source operand (second operand), and returns the minimum for each packed

value in the destination operand.
Operation

IF (DEST[7:0] < SRC[7:0])
THEN DEST[7:0] < DEST[7:0];
ELSE DEST[7:0] < SRC[7:0]; FI;
IF (DEST[15:8] < SRC[15:8])
THEN DEST[15:8] < DEST[15:8];
ELSE DEST[15:8] < SRC[15:8]; FI;
IF (DEST[23:16] < SRC[23:16])
THEN DEST[23:16] < DEST[23:16];
ELSE DEST[23:16] < SRC[23:16]; FI;
IF (DEST[31:24] < SRC[31:24])
THEN DEST[31:24] < DEST[31:24];
ELSE DEST[31:24] € SRC[31:24]; FI;
IF (DEST[39:32] < SRC[39:32])
THEN DEST[39:32] < DEST[39:32];
ELSE DEST[39:32] < SRC[39:32]; FI;
IF (DEST[47:40] < SRC[47:40])
THEN DEST[47:40] < DEST[47:40];
ELSE DEST[47:40] < SRC[47:40]; FI;
IF (DEST[55:48] < SRC[55:48])
THEN DEST[55:48] < DEST[55:48];
ELSE DEST[55:48] < SRC[55:48]; FI;
IF (DEST[63:56] < SRC[63:56])
THEN DEST[63:56] < DEST[63:56];
ELSE DEST[63:56] < SRC[63:56]; FI;
IF (DEST[71:64] < SRC[71:64])
THEN DEST[71:64] < DEST[71:64];

PMINSB — Minimum of Packed Signed Byte Integers

Vol.2B 4-153




INSTRUCTION SET REFERENCE, N-Z

ELSE DEST[71:64] < SRC[71:64]; FI;
IF (DEST[79:72] < SRC[79:72])
THEN DEST[79:72] & DEST[79:72];
ELSE DEST[79:72] € SRC[79:72]; FI;
IF (DEST[87:80] < SRC[87:80])
THEN DEST[87:80] < DEST[87:80];
ELSE DEST[87:80] < SRC[87:80]; FI;
IF (DEST[95:88] < SRC[95:88])
THEN DEST[95:88] < DEST[95:88];
ELSE DEST[95:88] < SRC[95:88]; FI;
IF (DEST[103:96] < SRC[103:96])
THEN DEST[103:96] < DEST[103:96];
ELSE DEST[103:96] < SRC[103:96]; FI;
IF (DEST[111:104] < SRC[111:104])
THEN DEST[111:104] €< DEST[111:104];
ELSE DEST[111:104] € SRC[111:104]; FI;
IF (DEST[119:112] < SRC[119:112])
THEN DEST[119:112] €< DEST[119:112];
ELSE DEST[119:112] € SRC[119:112]; FI;
IF (DEST[127:120] < SRC[127:120])
THEN DEST[127:120] < DEST[127:120];
ELSE DEST[127:120] € SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSB __m128i _mm_min_epi8 (_m128ia,__m128ib);
Flags Affected
None

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

4-154 Vol.2B

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

PMINSB — Minimum of Packed Signed Byte Integers



INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMINSB — Minimum of Packed Signed Byte Integers Vol.2B 4-155



INSTRUCTION SET REFERENCE, N-Z

PMINSD — Minimum of Packed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 0F38 PMINSD xmm1, Valid Valid Compare packed signed dword integers in
39/r xmm2/m128 xmm71 and xmmZ2/m128 and store packed
minimum values in xmm1.

Description

Compares packed signed dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] < SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] < SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] < SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSD __m128i _mm_min_epi32 (_m128ia, __m128ib);
Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

4-156 Vol.2B PMINSD — Minimum of Packed Dword Integers



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

PMINSD — Minimum of Packed Dword Integers Vol. 2B 4-157



INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

4-158 Vol. 2B PMINSD — Minimum of Packed Dword Integers



INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFEA/r PMINSW mmT, Valid Valid Compare signed word integers in
mm2/mé64 mm2/m64 and mm1 and return
minimum values.
66 OF EA/r PMINSW xmm], Valid Valid Compare signed word integers in
xmm2/m128 xmmZ2/m128 and xmm1 and return
minimum values.

Description

Performs a SIMD compare of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of word integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINSW instruction for 64-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] < DEST[15:0];
ELSE
DEST[15:0] « SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN
DEST[63:48] «— DEST[63:48];
ELSE
DEST[63:48] < SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] «— SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN
DEST[127:112] «— DEST[127:112];

PMINSW—Minimum of Packed Signed Word Integers Vol. 2B 4-159



INSTRUCTION SET REFERENCE, N-Z

ELSE

DEST[127:112] « SRC[127:112]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW _ m64 _mm_min_pi16 (__m64 a, __m64 b)
PMINSW __ m128i _mm_min_epi16 (_m128ia,__m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#55(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

4-160 Vol.2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

PMINSW—Minimum of Packed Signed Word Integers



#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMINSW—Minimum of Packed Signed Word Integers Vol.2B 4-161



INSTRUCTION SET REFERENCE, N-Z

PMINUB—Minimum of Packed Unsigned Byte Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFDA/r PMINUB mm1, Valid Valid Compare unsigned byte integers in
mm2/m64 mm2/m64 and mm1 and returns
minimum values.
66 OF DA /r PMINUB xmm1,  Valid Valid Compare unsigned byte integers in
xmm2/m128 xmm2/m128 and xmm1 and
returns minimum values.

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination
operand (first operand) and the source operand (second operand), and returns the
minimum value for each pair of byte integers to the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location, or it can be
an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMINUB instruction for 64-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] «— DEST[7:0];
ELSE
DEST[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN
DEST[63:56] «<— DEST[63:56];
ELSE
DEST[63:56] <« SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[7:0] « SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] «— DEST[127:120];

4-162 Vol.2B PMINUB—Minimum of Packed Unsigned Byte Integers



INSTRUCTION SET REFERENCE, N-Z

ELSE
DEST[127:120] <« SRC[127:120]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB __m64 _m_min_pu8 (__m64 a3, __ m64 b)
PMINUB _ m128i _mm_min_epu8 (_m128ia,__m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

PMINUB—Minimum of Packed Unsigned Byte Integers Vol.2B 4-163



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-164 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMINUB—Minimum of Packed Unsigned Byte Integers



INSTRUCTION SET REFERENCE, N-Z

PMINUD — Minimum of Packed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38  PMINUD xmm1, Valid Valid Compare packed unsigned dword
3B/r xmm2/m128 integers in xmm1 and xmm2/m128
and store packed minimum values in
xmm1.
Description

Compares packed unsigned dword integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[31:0] < SRC[31:0])
THEN DEST[31:0] < DEST[31:0];
ELSE DEST[31:0] € SRC[31:0]; FI;
IF (DEST[63:32] < SRC[63:32])
THEN DEST[63:32] < DEST[63:32];
ELSE DEST[63:32] € SRC[63:32]; FI;
IF (DEST[95:64] < SRC[95:64])
THEN DEST[95:64] < DEST[95:64];
ELSE DEST[95:64] €< SRC[95:64]; FI;
IF (DEST[127:96] < SRC[127:96])
THEN DEST[127:96] < DEST[127:96];
ELSE DEST[127:96] < SRC[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUD _m128i _mm_min_epu32 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

PMINUD — Minimum of Packed Dword Integers Vol.2B 4-165



INSTRUCTION SET REFERENCE, N-Z

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.

4-166 Vol.2B PMINUD — Minimum of Packed Dword Integers



INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMINUD — Minimum of Packed Dword Integers Vol. 2B 4-167



INSTRUCTION SET REFERENCE, N-Z

PMINUW — Minimum of Packed Word Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 3A  PMINUW xmm1, Valid Valid Compare packed unsigned word
Ir xmmz2/m128 integers in xmm1 and xmm2/m128
and store packed minimum values in
xmm1.
Description

Compares packed unsigned word integers in the destination operand (first operand)
and the source operand (second operand), and returns the minimum for each packed
value in the destination operand.

Operation

IF (DEST[15:0] < SRC[15:0])
THEN DEST[15:0] < DEST[15:0];
ELSE DEST[15:0] < SRC[15:0]; FI;

IF (DEST[31:16] < SRC[31:16])
THEN DEST[31:16] < DEST[31:16];
ELSE DEST[31:16] € SRC[31:16]; FI;

IF (DEST[47:32] < SRC[47:32])
THEN DEST[47:32] < DEST[47:32];
ELSE DEST[47:32] € SRC[47:32]; FI;

IF (DEST[63:48] < SRC[63:48])
THEN DEST[63:48] < DEST[63:48];
ELSE DEST[63:48] < SRC[63:48]; FI;

IF (DEST[79:64] < SRC[79:64])
THEN DEST[79:64] < DEST[79:64];
ELSE DEST[79:64] < SRC[79:64]; FI;

IF (DEST[95:80] < SRC[95:80])
THEN DEST[95:80] < DEST[95:80];
ELSE DEST[95:80] < SRC[95:80]; FI;

IF (DEST[111:96] < SRC[111:96])
THEN DEST[111:96] < DEST[111:96];
ELSE DEST[111:96] < SRC[111:96]; FI;

IF (DEST[127:112] < SRC[127:112])
THEN DEST[127:112] € DEST[127:112];
ELSE DEST[127:112] €« SRC[127:112]; FI;

4-168 Vol. 2B PMINUW — Minimum of Packed Word Integers



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PMINUW __m128i _mm_min_epul6 (_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

PMINUW — Minimum of Packed Word Integers Vol. 2B 4-169



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a nhon-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-170 Vol.2B PMINUW — Minimum of Packed Word Integers



INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD7/r PMOVMSKB Valid Valid Move a byte mask of mm to
r32, mm r32.
REXW +OF D7 /r PMOVMSKB Valid N.E. Move a byte mask of mm to
r64, mm the lower 32-bits of r64 and
zero-fill the upper 32-bits.
66 OF D7 /r PMOVMSKB reg, Valid Valid Move a byte mask of xmm
xmm to reg. The upper bits of r32
or r64 are zeroed
Description

Creates a mask made up of the most significant bit of each byte of the source
operand (second operand) and stores the result in the low byte or word of the desti-
nation operand (first operand). The source operand is an MMX technology register or
an XMM register; the destination operand is a general-purpose register. When oper-
ating on 64-bit operands, the byte mask is 8 bits; when operating on 128-bit oper-

ands, the byte mask is 16-bits.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15, R8-15). The default operand size is 64-bit

in 64-bit mode.

Operation

PMOVMSKB instruction with 64-bit source operand and r32:
r32[0] « SRC[7];
r32[1] « SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] <« SRC[63];
r32[31:8] <~ ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] < SRC[7];
r32[1] <« SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] « SRC[127];
r32[31:16] « ZERO_FILL;

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] « SRC[7];
r64[1] « SRC[15];

PMOVMSKB—Move Byte Mask

Vol.2B 4-171



INSTRUCTION SET REFERENCE, N-Z

(* Repeat operation for bytes 2 through 6 *)
r64[7] < SRC[63];
r64[63:8] < ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:

r64[0] « SRC[7];

r64[1] < SRC[15];

(* Repeat operation for bytes 2 through 14 *)
r64[15] < SRC[127];

r64[63:16] <~ ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB int _mm_movemask_pi8(__m64 a)
PMOVMSKB int _mm_movemask_epi8 (_m128i a)
Flags Affected

None.

Numeric Exceptions
None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction

operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-172 Vol.2B

PMOVMSKB—Move Byte Mask



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

Same exceptions as in protected mode.

PMOVMSKB—Move Byte Mask Vol.2B 4-173



INSTRUCTION SET REFERENCE, N-Z

PMOVSX — Packed Move with Sign Extend

Opcode Instruction 64-bit Compat/  Description

Mode Leg Mode
66 Of 38 PMOVSXBW xmm1,  Valid Valid Sign extend 8 packed signed 8-bit
20 /r xmmZ2/m64 integers in the low 8 bytes of

xmmZ2/m64 to 8 packed signed 16-
bit integers in xmm1.

66 Of 38 PMOVSXBD xmm1,  Valid Valid Sign extend 4 packed signed 8-bit

21 1/r xmmZ2/m32 integers in the low 4 bytes of
xmmZ2/m32 to 4 packed signed 32-
bit integers in xmm1.

66 0f 38 PMOVSXBQ xmm1,  Valid Valid Sign extend 2 packed signed 8-bit

221Ir xmmZ2/m16 integers in the low 2 bytes of
xmmZ2/m16 to 2 packed signed 64-
bit integers in xmm1.

66 0f 38 PMOVSXWD xmm1, Valid Valid Sign extend 4 packed signed 16-bit

231/r xmmZ2/m64 integers in the low 8 bytes of
xmmZ2/m64 to 4 packed signed 32-
bit integers in xmm1.

66 0f 38 PMOVSXWQ xmm1, Valid Valid Sign extend 2 packed signed 16-bit

24 Ir xmmZ2/m32 integers in the low 4 bytes of
xmmZ2/m32 to 2 packed signed 64-
bit integers in xmm1.

66 0f 38 PMOVSXDQ xmm1,  Valid Valid Sign extend 2 packed signed 32-bit

25/r xmmZ2/m64 integers in the low 8 bytes of
xmmZ2/m64 to 2 packed signed 64-
bit integers in xmm1.

Description

Sign-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).

Operation

PMOVSXBW
DEST[15:0] < SignExtend(SRC[7:0]);
DEST[31:16] < SignExtend(SRC[15:8]);
DEST[47:32] < SignExtend(SRC[23:16]);
DEST[63:48] < SignExtend(SRC[31:24]);
DEST[79:64] < SignExtend(SRC[39:32]);

4-174 Vol.2B PMOVSX — Packed Move with Sign Extend



INSTRUCTION SET REFERENCE, N-Z

DEST[95:80] € SignExtend(SRC[47:40]);
DEST[111:96] € SignExtend(SRC[55:48]);
DEST[127:112] € SignExtend(SRC[63:56]);

PMOVSXBD
DEST[31:0] < SignExtend(SRC[7:0]);
DEST[63:32] < SignExtend(SRC[15:8]);
DEST[95:64] < SignExtend(SRC[23:16]);
DEST[127:96] < SignExtend(SRC[31:24]);

PMOVSXBQ
DEST[63:0] < SignExtend(SRC[7:01);
DEST[127:64] €< Signextend(SRC[15:8));

PMOVSXWD
DEST[31:0] € SignExtend(SRC[15:0]);
DEST[63:32] < Signextend(SRC[31:16]);
DEST[95:64] < Signextend(SRC[47:32]);
DEST[127:96] < Signextend(SRC[63:48));

PMOVSXWQ
DEST[63:0] < SignExtend(SRC[15:0]);
DEST[127:64] < SignExtend(SRC[31:16]);

PMOVSXDQ
DEST[63:0] < SignExtend(SRC[31:0]);
DEST[127:64] < SignExtend(SRC[63:32]);

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVSXBW __m128i _mm_ cvtepi8_epi16 (_m128i a);
PMOVSXBD __m128i _mm_ cvtepi8_epi32 (_m128i a);
PMOVSXBQ __m128i _mm_ cvtepi8_epi64 (_m128i a);
PMOVSXWD __m128i _mm_ cvtepi16_epi32 (_m128i a);
PMOVSXWQ __m128i _mm_ cvtepi16_epi64 (_m128i a);
PMOVSXDQ __m128i _mm_ cvtepi32_epi6b4 (_m128i a);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
#SS(0) For an illegal address in the SS segment.

PMOVSX — Packed Move with Sign Extend Vol.2B 4-175



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

4-176 Vol.2B PMOVSX — Packed Move with Sign Extend



INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

PMOVSX — Packed Move with Sign Extend Vol.2B 4-177



INSTRUCTION SET REFERENCE, N-Z

PMOVZX — Packed Move with Zero Extend

Opcode Instruction 64-bit Compat/  Description
Mode LegMode

66 0f 38 PMOVZXBW xmm1, Valid Valid Zero extend 8 packed 8-bit integers in the

30 /r xmmZ2/m64 low 8 bytes of xmm2/m64 to 8 packed
16-bit integers in xmm1.

66 0f 38 PMOVZXBD xmm1, Valid Valid Zero extend 4 packed 8-bit integers in the

31/r xmmZ2/m32 low 4 bytes of xmm2/m32 to 4 packed
32-bit integers in xmm1.

66 0f 38 PMOVZXBQ xmm1, Valid Valid Zero extend 2 packed 8-bit integers in the

321/r xmm2/m16 low 2 bytes of xmm2/m16 to 2 packed
64-bit integers in xmm1.

66 0f 38 PMOVZXWD xmm1, Valid Valid Zero extend 4 packed 16-bit integers in

33/r xmmZ2/m64 the low 8 bytes of xmm2/m64 to 4
packed 32-bit integers in xmm71.

66 0f 38 PMOVZXWQ xmm1, Valid Valid Zero extend 2 packed 16-bit integers in

34 /r xmmz2/m32 the low 4 bytes of xmm2/m32 to 2
packed 64-bit integers in xmm71.

66 0f 38 PMOVZXDQ xmm1, Valid Valid Zero extend 2 packed 32-bit integers in

35/r Xxmm2/m64 the low 8 bytes of xmm2/m64 to 2
packed 64-bit integers in xmm1.

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of
the source operand (second operand) to word/dword/qword integers and stored as
packed data in the destination operand (first operand).

Operation

PMOVZXBW
DEST[15:0] € ZeroExtend(SRC[7:0]);

DEST[31:16] €« ZeroExtend(SRC[15:8]);
DEST[47:32] € ZeroExtend(SRC[23:16]);
DEST[63:48] < ZeroExtend(SRC[31:24]);
DEST[79:64] < ZeroExtend(SRC[39:32])
DEST[95:80] <« ZeroExtend(SRC[47:40]);
DEST[111:96] € ZeroExtend(SRC[55:48]);
DEST[127:112] € ZeroExtend(SRC[63:56]);

a

PMOVZXBD

4-178 Vol.2B

DEST[31:0] €« ZeroExtend(SRC[7:0]);

PMOVZX — Packed Move with Zero Extend



INSTRUCTION SET REFERENCE, N-Z

DEST[63:32] €« ZeroExtend(SRC[15:8]);
DEST[95:64] € ZeroExtend(SRC[23:16]);
DEST[127:96] € ZeroExtend(SRC[31:24]);

PMOVZXQB
DEST[63:0] €« ZeroExtend(SRC[7:0]);
DEST[127:64] €« ZeroExtend(SRC[15:8]);

PMOVZXWD
DEST[31:0] € ZeroExtend(SRC[15:0]);
DEST[63:32] ¢ ZeroExtend(SRC[31:16]);
DEST[95:64] ¢ ZeroExtend(SRC[47:32]);
DEST[127:96] € ZeroExtend(SRC[63:48]);

PMOVZXWQ
DEST[63:0] €« ZeroExtend(SRC[15:0]);
DEST[127:64] €« ZeroExtend(SRC[31:16]);

PMOVZXDQ
DEST[63:0] €« ZeroExtend(SRC[31:0]);
DEST[127:64] €« ZeroExtend(SRC[63:32]);

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

PMOVZXBW __m128i _mm_ cvtepuB_epi16 (_m128ia);
PMOVZXBD __m128i _mm_ cvtepu8_epi32 (_m128ia);
PMOVZXBQ __m128i _mm_ cvtepuB8_epi64 (_m128i a);
PMOVZXWD __m128i _mm_ cvtepul6_epi32 (_m128ia);
PMOVZXWQ __m128i _mm_ cvtepul6_epi64 (_m128ia);
PMOVZXDQ __m128i _mm_ cvtepu32_epi64 (_m128ia);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

PMOVZX — Packed Move with Zero Extend Vol.2B 4-179



INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-180 Vol.2B PMOVZX — Packed Move with Zero Extend



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

PMOVZX — Packed Move with Zero Extend Vol. 2B 4-181



INSTRUCTION SET REFERENCE, N-Z

PMULDQ — Multiply Packed Signed Dword Integers

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 0F 38 PMULDQ xmm1, Valid Valid Multiply the packed signed dword
281/r xmm2/m128 integers in xmm1 and xmmZ2/m128 and
store the quadword product in xmm1.

Description

Performs two signed multiplications from two pairs of signed dword integers and
stores two 64-bit products in the destination operand (first operand). The 64-bit
product from the first/third dword element in the destination operand and the
first/third dword element of the source operand (second operand) is stored to the
low/high gqword element of the destination.

If the source is a memory operand then all 128 bits will be fetched from memory but
the second and fourth dwords will not be used in the computation.

Operation

DEST[63:0] = DEST[31:0] * SRC[31:0];
DEST[127:64] = DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent

PMULDQ  __m128i _mm_mul_epi32(__m128ia, _m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

4-182 Vol.2B PMULDQ — Multiply Packed Signed Dword Integers



INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMULDQ — Multiply Packed Signed Dword Integers Vol.2B 4-183



INSTRUCTION SET REFERENCE, N-Z

PMULHRSW — Packed Multiply High with Round and Scale

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF380B/r PMULHRSW Valid Valid Multiply 16-bit signed
mm1, mm2/m64 words, scale and round

signed doublewords, pack
high 16 bits to MM1.

66 OF 380B /r PMULHRSW Valid Valid Multiply 16-bit signed
xmm1, words, scale and round
xmm2/m128 signed doublewords, pack

high 16 bits to XMMT1.

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination
operand (first operand) with the corresponding signed 16-bit integer of the source
operand (second operand), producing intermediate, signed 32-bit integers. Each
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is
always performed by adding 1 to the least significant bit of the 18-bit intermediate
result. The final result is obtained by selecting the 16 bits immediately to the right of
the most significant bit of each 18-bit intermediate result and packed to the destina-
tion operand. Both operands can be MMX register or XMM registers.

When the source operand is a 128-bit memory operand, the operand must be aligned
on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PMULHRSW with 64-bit operands:

temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
DEST[15:0] = tempO[16:1];

DEST[31:16] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

PMULHRSW with 128-bit operand:

tempO[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;

4-184 Vol. 2B PMULHRSW — Packed Multiply High with Round and Scale



INSTRUCTION SET REFERENCE, N-Z

temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;

(
(
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
(
(

="

temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
DEST[15:0] = tempO[16:1];

DEST[31:16] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

DEST[79:64] = temp4[16:1];

DEST[95:80] = temp5[16:1];

DEST[111:96] = temp6[16:1];

DEST[127:112] = temp7[16:1];

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)
PMULHRSW __m128i _mm_mulhrs_epi16 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

PMULHRSW — Packed Multiply High with Round and Scale Vol.2B 4-185



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM = 1.

(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.

If CPUID.SSSE3(ECX bit 9) = 0.

If the LOCK prefix is used.

If TS bit in CRO is set.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-186 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSSE3[bit 9] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULHRSW — Packed Multiply High with Round and Scale



INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFE4/r PMULHUW mm1, Valid Valid Multiply the packed unsigned
mm2/m64 word integers in mm7 register

and mmZ2/m64, and store the
high 16 bits of the results in

mm1.
66 OF E4 /1 PMULHUW xmm1,  Valid Valid Multiply the packed unsigned
xmmZ2/m128 word integers in xmm1 and

xmmZ2/m128, and store the high
16 bits of the results in xmm71.

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the
destination operand (first operand) and the source operand (second operand), and
stores the high 16 bits of each 32-bit intermediate results in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO0

TEMP| Z3=X3+Y3 72=X2 % Y2 Z1=X1+Y1 Z0 = X0 * YO
DEST Z3(31:16]| 22[31:16] | Z1[31:16]| Z0[31:16]

Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

Operation

PMULHUW instruction with 64-bit operands:
TEMPO[31:0] <~ DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] <~ DEST[31:16] * SRC[31:16];
TEMP2[31:0] <~ DEST[47:32] * SRC[47:32];

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol.2B 4-187



TEMP3[31:0] «
DEST[15:0] <

DEST[31:16] «
DEST[47:32] «
DEST[63:48] «

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMP4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] <
TEMP7[31:0] «
DEST[15:0] <
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

INSTRUCTION SET REFERENCE, N-Z

DEST[63:48] * SRC[63:48];
TEMPO[31:16];
TEMP1[31:16];
TEMP2[31:16];
TEMP3[31:16];

PMULHUW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] = SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

TEMP6[31:16];

DEST[127:112] < TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW __m64 _mm_mulhi_pu16(_m64 a, __m64 b)
PMULHUW __m128i _mm_mulhi_epul6 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

#55(0)

4-188 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result



INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol.2B 4-189



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-190 Vol.2B

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result



INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFES/r PMULHW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and
mmZ2/m64, and store the high 16
bits of the results in mm1.
66 0OFE5 /r PMULHW xmm1, Valid Valid Multiply the packed signed word
xmmZ2/m128 integers in xmm1 and
xmmZ2/m128, and store the high 16
bits of the results in xmm1.

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the high 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULHW instruction with 64-bit operands:

TEMPO[31:0] «
TEMP1[31:0]
TEMP2[31:0] «
TEMP3[31:0]
DEST[15:0] «

DEST[31:16] «
DEST[47:32] «
DEST[63:48] «

TEMPO[31:0] <
TEMP1[31:0] «
TEMP2[31:0] <
TEMP3[31:0] «
TEMP4[31:0] <
TEMP5[31:0] <

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];

DEST[47:32] * SRC[47:32];

DEST[63:48] * SRC[63:48];

TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

PMULHW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];

PMULHW—Multiply Packed Signed Integers and Store High Result

Vol.2B 4-191



INSTRUCTION SET REFERENCE, N-Z

TEMP6[31:0] - DEST[111:96] * SRC[111:96];
TEMP7[31:0] - DEST[127:112] * SRC[127:112];
DEST[15:0] -  TEMPO[31:16];
DEST[31:16] « TEMP1[31:16];
DEST[47:32] « TEMP2[31:16];
DEST[63:48] - TEMP3[31:16];
DEST[79:64] - TEMP4[31:16];
DEST[95:80] < TEMP5[31:16];
DEST[111:96] - TEMP6[31:16];
DEST[127:112] < TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW _ m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)
PMULHW __m128i _mm_mulhi_epi16 (_m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-192 Vol.2B PMULHW—Muiltiply Packed Signed Integers and Store High Result



INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULHW—Multiply Packed Signed Integers and Store High Result Vol.2B 4-193



INSTRUCTION SET REFERENCE, N-Z

PMULLD — Multiply Packed Signed Dword Integers and Store Low
Result

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3840 /r PMULLD xmm1, Valid Valid Multiply the packed dword signed
xmmZ2/m128 integers in xmm1 and xmmZ2/m128
and store the low 32 bits of each
product in xmm1.

Description

Performs four signed multiplications from four pairs of signed dword integers and
stores the lower 32 bits of the four 64-bit products in the destination operand (first
operand). Each dword element in the destination operand is multiplied with the
corresponding dword element of the source operand (second operand) to obtain a
64-bit intermediate product.

Operation

TempO[63:0] < DEST[31:0] * SRC[31:0];
Temp1[63:0] < DEST[63:32] * SRC[63:32];
Temp2[63:0] < DEST[95:64] * SRC[95:64];
Temp3[63:0] < DEST[127:96] * SRC[127:96];
DEST[31:0] < TempO[31:0];

DEST[63:32] < Temp1[31:0];

DEST[95:64] < Temp2[31:0];

DEST[127:96] < Temp3[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLUD __m128i _mm_mullo_epi32(_m128ia, __m128ib);

Flags Affected
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

4-194 Vol. 2B PMULLD — Multiply Packed Signed Dword Integers and Store Low Result



INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

PMULLD — Multiply Packed Signed Dword Integers and Store Low Result Vol.2B 4-195



INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD5/r PMULLW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and

mmZ2/m64, and store the low 16
bits of the results in mm1.

66 OFD5/r PMULLW xmm1, Valid Valid Multiply the packed signed word
xmm2/m128 integers in xmm1and xmm2/m128,
and store the low 16 bits of the
results in xmm1.

Description

Performs a SIMD signed multiply of the packed signed word integers in the destina-
tion operand (first operand) and the source operand (second operand), and stores
the low 16 bits of each intermediate 32-bit result in the destination operand.
(Figure 4-3 shows this operation when using 64-bit operands.) The source operand
can be an MMX technology register or a 64-bit memory location, or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX tech-
nology register or an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 Y0

TEMP | Z3=X3+Y3 72 =X2 % Y2 Z1=X1%Y1 Z0=X0 * Y0
DEST Z3015.0] | z2[15:0] | Z1[15:0] | Z0[15:0]

Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands

Operation

PMULLW instruction with 64-bit operands:
TEMPO[31:0] «~ DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] «~ DEST[47:32] = SRC[47:32];
TEMP3[31:0] «~ DEST[63:48] = SRC[63:48];

4-196 Vol.2B PMULLW—Multiply Packed Signed Integers and Store Low Result



DEST[15:0] <
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMP4[31:0] <
TEMP5[31:0] <
TEMP6[31:0] <
TEMP7[31:0] <
DEST[15:0] «
DEST[31:16] «
DEST[47:32] «
DEST[63:48] «
DEST[79:64] «
DEST[95:80] «
DEST[111:96] «

INSTRUCTION SET REFERENCE, N-Z

TEMPO[15:0];
TEMP1[15:0];
TEMP2[15:0];
TEMP3[15:0];

PMULLW instruction with 128-bit operands:

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[15:0];

TEMP1[15:0];

TEMP2[15:0];

TEMP3[15:0];

TEMP4[15:0];

TEMP5[15:0];

TEMP6[15:0];

DEST[127:112] < TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW __m64 _mm_mullo_pi16(_m64 m1, __m64 m2)
PMULLW _ m128i _mm_mullo_epi16 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS

segment limit.

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol.2B 4-197



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

4-198 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

PMULLW—Multiply Packed Signed Integers and Store Low Result



#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol.2B 4-199



INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF4/r PMULUDQ mm1, Valid Valid Multiply unsigned doubleword
mmZ2/m64 integer in mm1 by unsigned

doubleword integer in mm2/mé64,
and store the quadword result in

mm1.
66 OF F4/r  PMULUDQ xmm1,  Valid Valid Multiply packed unsigned
xmmZ2/m128 doubleword integers in xmm1 by

packed unsigned doubleword
integers in xmmZ2/m128, and store
the quadword results in xmm1.

Description

Multiplies the first operand (destination operand) by the second operand (source
operand) and stores the result in the destination operand. The source operand can be
an unsigned doubleword integer stored in the low doubleword of an MMX technology
register or a 64-bit memory location, or it can be two packed unsigned doubleword
integers stored in the first (low) and third doublewords of an XMM register or an
128-bit memory location. The destination operand can be an unsigned doubleword
integer stored in the low doubleword an MMX technology register or two packed
doubleword integers stored in the first and third doublewords of an XMM register. The
result is an unsigned quadword integer stored in the destination an MMX technology
register or two packed unsigned quadword integers stored in an XMM register. When
a quadword result is too large to be represented in 64 bits (overflow), the result is
wrapped around and the low 64 bits are written to the destination element (that is,
the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low
doubleword is used in the computation; for 128-bit memory operands, 128 bits are
fetched from memory, but only the first and third doublewords are used in the
computation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PMULUDQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[31:0] * SRC[31:0];

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] «— DEST[31:0] * SRC[31:0];
DEST[127:64] < DEST[95:64] * SRC[95:64];

4-200 Vol.2B PMULUDQ—Muiltiply Packed Unsigned Doubleword Integers



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)
PMULUDQ __m128i _mm_mul_epu32 (_m128ia,__m128ib)
Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

PMULUDQ—Multiply Packed Unsigned Doubleword Integers Vol.2B 4-201



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-202 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PMULUDQ—Muiltiply Packed Unsigned Doubleword Integers



INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
8F /0 POPr/mi16 Valid Valid Pop top of stack into m16; increment stack
pointer.
8F /0 POPr/m32 NE. Valid Pop top of stack into m32; increment stack
pointer.
8F /0 POPr/m64 Valid N.E. Pop top of stack into m64; increment stack
pointer. Cannot encode 32-bit operand size.
58+ rw POP r16 Valid Valid Pop top of stack into r16; increment stack
pointer.
58+ rd POP r32 N.E. Valid Pop top of stack into r32; increment stack
pointer.
58+ rd POP r64 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand size.
1F POP DS Invalid  Valid Pop top of stack into DS; increment stack
pointer.
07 POP €S Invalid  Valid Pop top of stack into ES; increment stack
pointer.
17 POP SS Invalid  Valid Pop top of stack into SS; increment stack
pointer.
OF A1 POP FS Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.
OF A1 POP FS N.E. Valid Pop top of stack into FS; increment stack
pointer by 32 bits.
OF A1 POP FS Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.
OF A9 POP GS Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.
OF A9 POP GS N.E. Valid Pop top of stack into GS; increment stack
pointer by 32 bits.
OF A9 POP GS Valid N.E. Pop top of stack into GS; increment stack
pointer by 64 bits.
Description

Loads the value from the top of the stack to the location specified with the destina-
tion operand (or explicit opcode) and then increments the stack pointer. The destina-
tion operand can be a general-purpose register, memory location, or segment
register.

POP—Pop a Value from the Stack Vol.2B 4-203



INSTRUCTION SET REFERENCE, N-Z

The address-size attribute of the stack segment determines the stack pointer size
(16, 32, 64 bits) and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is incremented by 4; if they are 16, the 16-bit SP register is
incremented by 2. (The B flag in the stack segment’s segment descriptor determines
the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and
also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the
value loaded into the register must be a valid segment selector. In protected mode,
popping a segment selector into a segment register automatically causes the
descriptor information associated with that segment selector to be loaded into the
hidden (shadow) part of the segment register and causes the selector and the
descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without
causing a general protection fault. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a NULL value causes
a general protection exception (#GP). In this situation, no memory reference occurs
and the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register
from the stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in
memory, the POP instruction computes the effective address of the operand after it
increments the ESP register. For the case of a 16-bit stack where ESP wraps to OH as
a result of the POP instruction, the resulting location of the memory write is
processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top
of stack is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after
execution of the next instruction. This action allows sequential execution of POP SS
and MOV ESP, EBP instructions without the danger of having an invalid stack during
an interrupt!. However, use of the LSS instruction is the preferred method of loading
the SS and ESP registers.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after
a POP SS instruction, the breakpoint may not be triggered. However, in a sequence of instruc-
tions that POP the SS register, only the first instruction in the sequence is guaranteed to delay
an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP

4-204 Vol.2B POP—Pop a Value from the Stack



INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encod-
able and POPs to DS, ES, SS are not valid. See the summary chart at the beginning

of this section for encoding data and limits.

Operation

IF StackAddrSize = 32

THEN
IF OperandSize = 32
THEN
DEST « SS:ESP; (* Copy a doubleword *)
ESP « ESP + 4;
ELSE (* OperandSize = 16%)
DEST « SS:ESP; (* Copy a word *)
ESP « ESP + 2;
Fl;
ELSE IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
DEST « SS:RSP; (* Copy quadword *)
RSP « RSP + 8;
ELSE (* OperandSize = 16%)
DEST « SS:RSP; (* Copy a word *)
RSP « RSP +2;
Fl;
Fl;
ELSE StackAddrSize = 16
THEN
IF OperandSize = 16
THEN
DEST « SS:SP; (* Copy a word *)
SP « SP +2;
ELSE (* OperandSize =32 *)
DEST « SS:SP; (* Copy a doubleword *)
SP « SP + 4;
Fl;

Fl;

Loading a segment register while in protected mode results in special actions, as
described in the following listing. These checks are performed on the segment
selector and the segment descriptor it points to.

POP—Pop a Value from the Stack Vol.2B 4-205



INSTRUCTION SET REFERENCE, N-Z

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «- segment selector;
SegmentRegister «- segment descriptor;

Fl;
Fl;
IF FS, or GS is loaded with a NULL selector;
THEN
SegmentRegister «- segment selector;
SegmentRegister «- segment descriptor;
Fl;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SSis loaded;
THEN

IF segment selector is NULL
THEN #GP(0);

Fl;

IF segment selector index is outside descriptor table limits
or segment selector's RPL = CPL
or segment is not a writable data segment

or DPL = CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;
FI;
Fl;
4-206 Vol. 2B

POP—Pop a Value from the Stack



INSTRUCTION SET REFERENCE, N-Z

IF DS, €S, FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
Fl;
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «- segment selector;
SegmentRegister « segment descriptor;
FI;

Fl;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN
SegmentRegister < segment selector;
SegmentRegister «- segment descriptor;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with NULL segment
selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL
and the segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is not a data or readable code segment.

POP—Pop a Value from the Stack Vol.2B 4-207



INSTRUCTION SET REFERENCE, N-Z

#55(0)

#SS(selector)
#NP

#PF(fault-code)
#AC(0)

#UD

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is a data or nonconforming code segment,
but both the RPL and the CPL are greater than the DPL.

If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS
segment limit.

If the SS register is being loaded and the segment pointed to is
marked not present.

If the DS, ES, FS, or GS register is being loaded and the
segment pointed to is marked not present.

If a page fault occurs.

If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a page fault occurs.

If an unaligned memory reference is made while alignment
checking is enabled.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(U)
#GP(selector)

4-208 Vol.2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL
and the CPL are greater than the DPL.

POP—Pop a Value from the Stack



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#PF(fault-code) If a page fault occurs.

#NP If the FS or GS register is being loaded and the segment pointed
to is marked not present.
#UD If the LOCK prefix is used.

POP—Pop a Value from the Stack Vol.2B 4-209



INSTRUCTION SET REFERENCE, N-Z

POPA/POPAD—Pop All General-Purpose Registers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
61 POPA Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.
61 POPAD Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX, and
EAX.
Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose
registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX,
ECX, and EAX (if the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX
(if the operand-size attribute is 16). (These instructions reverse the operation of the
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is
ignored. Instead, the ESP or SP register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same
opcode. The POPA instruction is intended for use when the operand-size attribute is
16 and the POPAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when POPA is used and to 32 when
POPAD is used (using the operand-size override prefix [66H] if necessary). Others
may treat these mnemonics as synonyms (POPA/POPAD) and use the current setting
of the operand-size attribute to determine the size of values to be popped from the
stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit
mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF OperandSize = 32 (* Instruction = POPAD *)
THEN
EDI « Pop();
ESI « Pop();
EBP « Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX « Pop();
EDX « Pop();
ECX « Pop();
EAX « Pop();

4-210 Vol.2B POPA/POPAD—Pop All General-Purpose Registers



INSTRUCTION SET REFERENCE, N-Z

ELSE (* OperandSize = 16, instruction = POPA *)
DI « Pop();
SI « Pop();
BP « Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX « Pop();
DX « Pop();
CX « Pop();
AX <« Pop();

Fl;

Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#SS If the starting or ending stack address is not within the stack
segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack
segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

POPA/POPAD—Pop All General-Purpose Registers Vol.2B 4-211



INSTRUCTION SET REFERENCE, N-Z

POPCNT — Return the Count of Number of Bits Set to 1

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OFB8/r POPCNT r16, r/m16 Valid Valid POPCNT on r/m16
F3 OFB8/r POPCNT r32, r/m32 Valid Valid POPCNT on r/m32
F3 REX.W OF B8 /r POPCNT r64, r/m64 Valid N.E. POPCNT on r/m64
Description

This instruction calculates of number of bits set to 1 in the second operand (source)
and returns the count in the first operand (a destination register).

Operation

Count = 0;

For (i=0; i < OperandSize; i++)

{ IF (SRC[i] = 1) // i'th bit
THEN Count++; Fl;

}
DEST < Count;

Flags Affected
OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC == 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent
POPCNT int _mm_popcnt_u32(unsigned int a);

POPCNT int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-212 Vol.2B POPCNT — Return the Count of Number of Bits Set to 1



INSTRUCTION SET REFERENCE, N-Z

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

POPCNT — Return the Count of Number of Bits Set to 1 Vol.2B 4-213



INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
9D POPF Valid Valid Pop top of stack into lower 16 bits of
EFLAGS.
aD POPFD N.E. Valid Pop top of stack into EFLAGS.
REXW+9D  POPFQ Valid N.E. Pop top of stack and zero-extend into
RFLAGS.
Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size
attribute is 32) and stores the value in the EFLAGS register, or pops a word from the
top of the stack (if the operand-size attribute is 16) and stores it in the lower 16 bits
of the EFLAGS register (that is, the FLAGS register). These instructions reverse the
operation of the PUSHF/PUSHFD instructions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same
opcode. The POPF instruction is intended for use when the operand-size attribute is
16; the POPFD instruction is intended for use when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD.
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of
the operand-size attribute to determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode
of operation. When the processor is operating in protected mode at privilege level 0
(or in real-address mode, the equivalent to privilege level 0), all non-reserved flags
in the EFLAGS register except RFl, VIP, VIF, and VM may be modified. VIP, VIF and
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than
or equal to IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM.
Here, the IOPL flags are unaffected, the VIP and VIF flags are cleared, and the VM
flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at
least as privileged as the IOPL. If a POPF/POPFD instruction is executed with insuffi-
cient privilege, an exception does not occur but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use
POPF/POPFD instructions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is
less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic
assigned is POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64

1. RFis always zero after the execution of POPF. This is because POPF, like all instructions, clears
RF as it begins to execute.

4-214 Vol.2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register



INSTRUCTION SET REFERENCE, N-Z

bits from the stack, loads the lower 32 bits into RFLAGS, and zero extends the upper
bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the EFLAGS registers.

Operation

IF VM =0 (* Not in Virtual-8086 Mode *)
THENIFCPL=0
THEN
IF OperandSize = 32;

THEN
EFLAGS « Pop(); (* 32-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified;
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize =16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified. *)

Fl;
ELSE (*CPL>0%)
IF OperandSize = 32
THEN
IF CPL > IOPL
THEN
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and
VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)
ELSE
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;
ELSE IF (Operandsize = 64)
IF CPL > IOPL

THEN
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, RF, VIP, and

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol.2B 4-215



INSTRUCTION SET REFERENCE, N-Z

VIF can be modified; IF, IOPL, RF, VM, and all reserved
bits are unaffected; VIP and VIF are cleared. *)
ELSE
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, RF, VIP, and VIF can be
modified; IOPL, RF, VM, and all reserved bits are
unaffected; VIP and VIF are cleared. *)
Fl;
ELSE (* OperandSize = 16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)
Fl;
Fl;
ELSE (* In Virtual-8086 Mode *)
IFIOPL=3
THEN IF OperandSize = 32
THEN
EFLAGS « Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)
ELSE
EFLAGS[15:0] « Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected. *)
ELSE (* IOPL < 3 %)
#GP(0); (* Trap to virtual-8086 monitor. *)
Fl;
Fl;
Fl;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

4-216 Vol.2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register



INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/0O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction
with an operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol.2B 4-217



INSTRUCTION SET REFERENCE, N-Z

POR—Bitwise Logical OR

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF EB/r POR mm, mm/m64 Valid Valid Bitwise OR of mm/m64 and mm.
66 OFEB/r POR xmm1, Valid Valid Bitwise OR of xmmZ2/m128 and
xmmZ2/m128 xmm1.
Description

Performs a bitwise logical OR operation on the source operand (second operand) and
the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register. Each bit of the result
is set to 1 if either or both of the corresponding bits of the first and second operands
are 1; otherwise, itis set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST OR SRC;

Intel C/C++ Compiler Intrinsic Equivalent

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(_m128im1,_m128im2)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

4-218 Vol.2B POR—Bitwise Logical OR



INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a non-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9]
= 0. Execution of 128-bit instructions on a nhon-SSE2 capable
processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

POR—Bitwise Logical OR Vol.2B 4-219



INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-220 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

POR—Bitwise Logical OR



INSTRUCTION SET REFERENCE, N-Z

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 18/1 PREFETCHTO m8 Valid Valid Move data from m8 closer to the
processor using TO hint.
OF18/2  PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.
0F18/3 PREFETCHT2 m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.
OF18/0 PREFETCHNTA m8  Valid Valid Move data from m8 closer to the
processor using NTA hint.

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

®* TO (temporal data)—prefetch data into all levels of the cache hierarchy.
— Pentium lll processor—1st- or 2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

®* T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium lll processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

®* T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

®* NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium Il processor—1st-level cache
— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into
the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any
ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the
processor, no data movement occurs. Prefetches from uncacheable or WC memory
are ignored.

PREFETCHh—Prefetch Data Into Caches Vol. 2B 4-221



INSTRUCTION SET REFERENCE, N-Z

The PREFETCHhA instruction is merely a hint and does not affect program behavior. If
executed, this instruction moves data closer to the processor in anticipation of future
use.

The implementation of prefetch locality hints is implementation-dependent, and can
be overloaded or ignored by a processor implementation. The amount of data
prefetched is also processor implementation-dependent. It will, however, be a
minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from
system memory regions that are assigned a memory-type that permits speculative
reads (that is, the WB, WC, and WT memory types). A PREFETCHA instruction is
considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHhA instruction is
not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or
locked memory references. A PREFETCHhA instruction is also unordered with respect
to CLFLUSH instructions, other PREFETCHA instructions, or any other general instruc-
tion. It is ordered with respect to serializing instructions such as CPUID, WRMSR,
OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to
be prefetched. The value “i” gives a constant (_MM_HINT_TO, _MM_HINT_T1,
_MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of prefetch operation to
be performed.

Numeric Exceptions
None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

4-222 \ol.2B PREFETCHh—Prefetch Data Into Caches



INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF6/r PSADBW mm1, Valid Valid Computes the absolute differences of
mm2/m64 the packed unsigned byte integers

from mmZ2 /m64 and mm71; differences
are then summed to produce an
unsigned word integer result.

66 OF F6/r  PSADBW xmm1, Valid Valid Computes the absolute differences of
xmmZ2/m128 the packed unsigned byte integers
from xmmZ2 /m128 and xmm1; the 8
low differences and 8 high differences
are then summed separately to
produce two unsigned word integer
results.

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the
source operand (second operand) and from the destination operand (first operand).
These 8 differences are then summed to produce an unsigned word integer result
that is stored in the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an
XMM register. Figure 4-5 shows the operation of the PSADBW instruction when using
64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word
of the destination operand, and the remaining bytes in the destination operand are
cleared to all Os.

When operating on 128-bit operands, two packed results are computed. Here, the 8
low-order bytes of the source and destination operands are operated on to produce a
word result that is stored in the low word of the destination operand, and the 8 high-
order bytes are operated on to produce a word result that is stored in bits 64 through
79 of the destination operand. The remaining bytes of the destination operand are
cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PSADBW—Compute Sum of Absolute Differences Vol.2B 4-223



INSTRUCTION SET REFERENCE, N-Z

SRC X7 X6 X5 X4 X3 X2 X1 X0

DEST| v7 Y6 Y5 Y4 Y3 Y2 Y1 YO

TEMP | ABS(X7:Y7)| ABS(X6:Y6)| ABS(X5:Y5)| ABS(X4:Y4) | ABS(X3:Y3)| ABS(X2:Y2) | ABS(X1:Y1)| ABS(X0:YO0)

DEST| ooH 00H 00H 00H 00H 00H | SUM(TEMP7..TEMPO)

Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands

Operation

PSADBW instructions when using 64-bit operands:
TEMPO «— ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 «— ABS(DEST[63:56] — SRC[63:561]);
DEST[15:0] < SUM(TEMPO:TEMP7?);
DEST[63:16] <~ 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMPO « ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 « ABS(DEST[127:120] — SRC[127:120]);
DEST[15:0] <~ SUM(TEMPO:TEMP7?);
DEST[63:16] <~ 000000000000H;
DEST[79:64] < SUM(TEMPB:TEMP15);
DEST[127:80] <~ 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW _ m64 _mm_sad_pu8(_m64 a,__m64 b)
PSADBW _ m128i _mm_sad_epu8(__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions
None.

4-224 \Vol.2B PSADBW—Compute Sum of Absolute Differences



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

PSADBW—Compute Sum of Absolute Differences Vol.2B 4-225



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-226 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSADBW—Compute Sum of Absolute Differences



INSTRUCTION SET REFERENCE, N-Z

PSHUFB — Packed Shuffle Bytes

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 3800 /r PSHUFB mm1, Valid Valid Shuffle bytes in mm1
mm2/m64 according to contents of
mm2/m64.
66 OF 38 00 /r PSHUFB xmm1, Valid Valid Shuffle bytes in xmm1
xmm2/m128 according to contents of
xmm2/m128.
Description

PSHUFB performs in-place shuffles of bytes in the destination operand (the first
operand) according to the shuffle control mask in the source operand (the second
operand). The instruction permutes the data in the destination operand, leaving the
shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle
control mask is set, then constant zero is written in the result byte. Each byte in the
shuffle control mask forms an index to permute the corresponding byte in the desti-
nation operand. The value of each index is the least significant 4 bits (128-bit opera-
tion) or 3 bits (64-bit operation) of the shuffle control byte. Both operands can be
MMX register or XMM registers. When the source operand is a 128-bit memory
operand, the operand must be aligned on a 16-byte boundary or a general-protection
exception (#GP) will be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation
PSHUFB with 64 bit operands:

fori=0to7{
if (SRC[(i * 8)+7]==1) then
DESTI[(i*8)+7..(i*8)+0] < O;
else
index[2..0] «— SRC[(i*8)+2 .. (i*8)+0];
DESTI[(i*8)+7..(i*8)+0] «— DEST[(index*8+7).(index*8+0)];
endif;

}
PSHUFB with 128 bit operands:

fori=0to15¢
if (SRC[(i * 8)+7]==1) then
DESTI[(i*8)+7.(i*8)+0] «- O;

PSHUFB — Packed Shuffle Bytes Vol.2B 4-227




INSTRUCTION SET REFERENCE, N-Z

else
index[3..0] «- SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] «— DEST[(index*8+7).(index*8+0)];

endif
}
MM2
07H 07H FFH 80H 01H 00H 00H 00H
MM1
04H | O1H 07H 03H 02H 02H FFH 01H
K " /
04H 04H 00H 00H FFH 01H 01H 01H

Figure 4-6. PSHUB with 64-Bit Operands

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB  __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)
PSHUFB  __m128i _mm_shuffle_epi8 (_m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

4-228 Vol. 2B PSHUFB — Packed Shuffle Bytes



INSTRUCTION SET REFERENCE, N-Z

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not alighed on 16-byte boundary,
regardless of segment.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.
#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PSHUFB — Packed Shuffle Bytes Vol.2B 4-229



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-230 Vol.2B PSHUFB — Packed Shuffle Bytes



INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 70 /rib  PSHUFD xmmT1, Valid Valid Shuffle the doublewords in
xmm2/m128, imm8 xmmZ2/m128 based on the

encoding in imm8 and store
the result in xmm1.

Description

Copies doublewords from source operand (second operand) and inserts them in the
destination operand (first operand) at the locations selected with the order operand
(third operand). Figure 4-7 shows the operation of the PSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the
contents of one doubleword location in the destination operand. For example, bits 0
and 1 of the order operand select the contents of doubleword 0 of the destination
operand. The encoding of bits 0 and 1 of the order operand (see the field encoding in
Figure 4-7) determines which doubleword from the source operand will be copied to
doubleword 0 of the destination operand.

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

SN ST

Encoding 00B - X0
ORDER of Fields in  01B - X1

ORDER 10B - X2
7654321 0 Goerand 11B- X3

Figure 4-7. PSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a doubleword in the source operand to be copied to more
than one doubleword location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PSHUFD—Shuffle Packed Doublewords Vol. 2B 4-231




INSTRUCTION SET REFERENCE, N-Z

Operation

DEST[31:0] < (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] « (SRC >> (ORDER([3:2] * 32))[31:0];
DEST[95:64] « (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] « (SRC>> (ORDER[7:6] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFD __m128i _mm_shuffle_epi32(_m128i g, int n)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#55(0)

#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP

#UD

#NM

4-232 Vol.2B

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

PSHUFD—Shuffle Packed Doublewords



INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

PSHUFD—Shuffle Packed Doublewords Vol.2B 4-233



INSTRUCTION SET REFERENCE, N-Z

PSHUFHW—Shuffle Packed High Words

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30F70/rib PSHUFHW xmm1, xmmZ2/  Valid Valid Shuffle the high words in
m128, imm8 xmmZ2/m128based on the

encoding in imm8and store
the result in xmm1.

Description

Copies words from the high quadword of the source operand (second operand) and
inserts them in the high quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFHW instruction, each 2-bit field in the order operand selects the contents
of one word location in the high quadword of the destination operand. The binary
encodings of the order operand fields select words (0, 1, 2 or 3, 4) from the high
quadword of the source operand to be copied to the destination operand. The low
quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the high quadword of the source operand to be
copied to more than one word location in the high quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] < SRC[63:0];
DEST[79:64] < (SRC >> (ORDER[1:0] * 16))[79:64];
DEST[95:80] « (SRC >> (ORDER[3:2] * 16))[79:64];
DEST[111:96] <« (SRC >> (ORDER[5:4] * 16))[79:64];
DEST[127:112] < (SRC >> (ORDER[7:6] * 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFHW __m128i _mm_shufflehi_epi16(_m128i a, int n)

Flags Affected
None.

4-234 Vol.2B PSHUFHW—Shuffle Packed High Words



INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

PSHUFHW—Shuffle Packed High Words Vol.2B 4-235



INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

4-236 Vol.2B PSHUFHW—Shuffle Packed High Words



INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F20F 70 /rib  PSHUFLW xmm1, Valid Valid Shuffle the low words in
xmm2/m128, imm8 xmmZ2/m128 based on the

encoding in imm8 and store the
result in xmm1.

Description

Copies words from the low quadword of the source operand (second operand) and
inserts them in the low quadword of the destination operand (first operand) at word
locations selected with the order operand (third operand). This operation is similar to
the operation used by the PSHUFD instruction, which is illustrated in Figure 4-7. For
the PSHUFLW instruction, each 2-bit field in the order operand selects the contents of
one word location in the low quadword of the destination operand. The binary encod-
ings of the order operand fields select words (0, 1, 2, or 3) from the low quadword of
the source operand to be copied to the destination operand. The high quadword of
the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the low quadword of the source operand to be
copied to more than one word location in the low quadword of the destination
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] « (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] < (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] < (SRC >> (ORDER[7:6] * 16))[15:0];
DEST[127:64] <« SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFLW __m128i _mm_shufflelo_epi16(_m128i a, int n)

Flags Affected
None.

PSHUFLW—Shuffle Packed Low Words Vol.2B 4-237



INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

4-238 \ol.2B PSHUFLW—Shuffle Packed Low Words



INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

PSHUFLW—Shuffle Packed Low Words Vol.2B 4-239



INSTRUCTION SET REFERENCE, N-Z

PSHUFW—-Shuffle Packed Words

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 70 /rib  PSHUFW mm1, Valid Valid Shuffle the words in mm2/m64
mmZ2/m64, imm8 based on the encoding in imm8 and
store the result in mm1.

Description

Copies words from the source operand (second operand) and inserts them in the
destination operand (first operand) at word locations selected with the order operand
(third operand). This operation is similar to the operation used by the PSHUFD
instruction, which is illustrated in Figure 4-7. For the PSHUFW instruction, each 2-bit
field in the order operand selects the contents of one word location in the destination
operand. The encodings of the order operand fields select words from the source
operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an MMX technology register. The order operand is an 8-bit
immediate. Note that this instruction permits a word in the source operand to be
copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[15:0] < (SRC >> (ORDER[1:0] * 16))[15:0];
DEST[31:16] « (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] < (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] « (SRC >> (ORDER[7:6] * 16))[15:0];
Intel C/C++ Compiler Intrinsic Equivalent
PSHUFW __m64 _mm_shuffle_pi16(__m64 3, int n)

Flags Affected

None.

Numeric Exceptions

None.

4-240 Vol.2B PSHUFW—Shuffle Packed Words



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

PSHUFW—Shuffle Packed Words Vol. 2B 4-241



INSTRUCTION SET REFERENCE, N-Z

PSIGNB/PSIGNW/PSIGND — Packed SIGN
64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 3808 /r PSIGNB mm1, Valid Valid Negate/zero/preserve packed byte
mmZ2/m64 integers in mm1 depending on the
corresponding sign in mm2/m64
66 OF 38 08 /r PSIGNB xmm1, Valid Valid Negate/zero/preserve packed byte
xmm2/m128 integers in xmm1 depending on the
corresponding sign in xmm2/m128.
OF 3809 /r PSIGNW mm1, Valid Valid Negate/zero/preserve packed word
mm2/m64 integers in mm1 depending on the
corresponding sign in mm2/m128.
66 OF 3809 /r PSIGNW xmm1, Valid Valid Negate/zero/preserve packed word
xmm2/m128 integers in xmm1 depending on the
corresponding sign in xmm2/m128.
OF380A /r PSIGND mm1, Valid Valid Negate/zero/preserve packed
mm2/m64 doubleword integers in mm1
depending on the corresponding sign
in mm2/m128.
66 OF 38 0A /r PSIGND xmm1, Valid Valid Negate/zero/preserve packed
xmm2/m128 doubleword integers in xmm1

depending on the corresponding sign
in xmm2/m128.

Description

PSIGNB/PSIGNW/PSIGND negates each data element of the destination operand
(the first operand) if the signed integer value of the corresponding data element in
the source operand (the second operand) is less than zero. If the signed integer
value of a data element in the source operand is positive, the corresponding data
element in the destination operand is unchanged. If a data element in the source
operand is zero, the corresponding data element in the destination operand is set to
zero.

PSIGNB operates on signed bytes. PSIGNW operates on 16-bit signed words.
PSIGND operates on signed 32-bit integers. Both operands can be MMX register or
XMM registers. When the source operand is a 128bit memory operand, the operand
must be aligned on a 16-byte boundary or a general-protection exception (#GP) will
be generated.

In 64-bit mode, use the REX prefix to access additional registers.

Operation

PSIGNB with 64 bit operands:

4-242 Vol.2B PSIGNB/PSIGNW/PSIGND — Packed SIGN



IF (SRC[7:0] < 0)
DEST[7:0] < Neg(DEST[7:0])
ELSEIF (SRC[7:0] == 0)
DEST[7:0] < O
ELSEIF (SRC[7:0] > 0)
DEST[7:0] <« DEST[7:0]

Repeat operation for 2nd through 7th bytes

IF (SRC[63:56] < 0)
DEST[63:56] « Neg(DEST[63:56])
ELSEIF (SRC[63:56] == 0)
DEST[63:56] « 0
ELSEIF (SRC[63:56] > 0)
DEST[63:56] «— DEST[63:56]

PSIGNB with 128 bit operands:

IF (SRC[7:0]<0)
DEST[7:0] < Neg(DEST[7:0])
ELSEIF (SRC[7:0]1==0)
DEST[7:0]1«0
ELSEIF (SRC[7:0]1>0)
DEST[7:0] « DEST[7:0]

Repeat operation for 2nd through 15th bytes

IF (SRC[127:120] < 0)

DEST[127:120] < Neg(DEST[127:120])

ELSEIF (SRC[127:120]==0)
DEST[127:120] <~ 0

ELSEIF (SRC[127:120] > 0)
DEST[127:120] < DEST[127:120]

PSIGNW with 64 bit operands:

IF (SRC[15:0]<0)
DEST[15:0] < Neg(DEST[15:0])
ELSEIF (SRC[15:0]==0)
DEST[15:0] <O
ELSEIF (SRC[15:0] > 0)
DEST[15:0] <~ DEST[15:0]
Repeat operation for 2nd through 3rd words
IF (SRC[63:48]<0)
DEST[63:48] < Neg(DEST[63:48])
ELSEIF (SRC[63:48]==0)
DEST[63:48] « 0O
ELSEIF (SRC[63:48] > 0)

PSIGNB/PSIGNW/PSIGND — Packed SIGN

INSTRUCTION SET REFERENCE, N-Z

Vol.2B 4-243



INSTRUCTION SET REFERENCE, N-Z

DEST[63:48] «— DEST[63:48]
PSIGNW with 128 bit operands:

IF (SRC[15:0]<0)
DEST[15:0] «— Neg(DEST[15:0])
ELSEIF (SRC[15:0]==0)
DEST[15:.0] «- O
ELSEIF (SRC[15:0] > 0)
DEST[15:0] «- DEST[15:0]
Repeat operation for 2nd through 7th words
IF (SRC[127:112]1<0)
DEST[127:112] <~ Neg(DEST[127:112])
ELSEIF (SRC[127:112]==0)
DEST[127:112] « 0O
ELSEIF (SRC[127:112] > 0)
DEST[127:112] «— DEST[127:112]

PSIGND with 64 bit operands:

IF (SRC[31:0] < 0)
DEST[31:0] < Neg(DEST[31:0])
ELSEIF (SRC[31:0] == 0)
DEST[31:0] « O
ELSEIF (SRC[31:0] > 0)
DEST[31:0] < DEST[31:0]
IF (SRC[63:32] < 0)
DEST[63:32] « Neg(DEST[63:32])
ELSEIF (SRC[63:32] == 0)
DEST[63:32] < 0
ELSEIF (SRC[63:32] > 0)
DEST[63:32] < DEST[63:32]

PSIGND with 128 bit operands:

IF (SRC[31:0]<0)
DEST[31:0] < Neg(DEST[31:0])
ELSEIF (SRC[31:0]==0)
DEST[31:0] «- O
ELSEIF (SRC[31:0] > 0)
DEST[31:0] «— DEST[31:0]
Repeat operation for 2nd through 3rd double words
IF (SRC[127:96]<0)
DEST[127:96] < Neg(DEST[127:96])
ELSEIF (SRC[127:96]1==0)

4-244 Vol.2B PSIGNB/PSIGNW/PSIGND — Packed SIGN



INSTRUCTION SET REFERENCE, N-Z

DEST[127:96] < 0
ELSEIF (SRC[127:96] > 0)
DEST[127:96] < DEST[127:96]

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB  __m64 _mm_sign_pi8 (__m64 a3, __m64 b)

PSIGNB __m128i _mm_sign_epi8 (__m128ia, __m128ib)
PSIGNW  __m64 _mm_sign_pi16 (__m64 a, __m64 b)
PSIGNW  __m128i_mm_sign_epi16 (_m128ia, __m128ib)
PSIGND __m64 _mm_sign_pi32 (__m64 a, __m64 b)
PSIGND __m128i _mm_sign_epi32 (__m128ia, __m128ib)

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#UD If CRO.EM = 1.
(128-bit operations only) If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

#NM If TS bit in CRO is set.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made while the current privilege
level is 3.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If not aligned on 16-byte boundary,
regardless of segment.

#UD (128-bit operations only) If CRO.EM = 1.
If CR4.0SFXSR(bit 9) = 0.
If CPUID.SSSE3(ECX bit 9) = 0.
If the LOCK prefix is used.

PSIGNB/PSIGNW/PSIGND — Packed SIGN Vol. 2B 4-245



INSTRUCTION SET REFERENCE, N-Z

#NM If TS bit in CRO is set.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual 8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a hon-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSSE3[bit 9] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

4-246 Vol. 2B PSIGNB/PSIGNW/PSIGND — Packed SIGN



INSTRUCTION SET REFERENCE, N-Z

PSLLDQ—Shift Double Quadword Left Logical

Opcode Instruction 64-Bit Compat/  Description
Mode Leg Mode
66 OF 73 /7ib  PSLLDQ xmm1, Valid Valid Shift xmm1 left by imm8 bytes
imm8 while shifting in Os.
Description

Shifts the destination operand (first operand) to the left by the number of bytes spec-
ified in the count operand (second operand). The empty low-order bytes are cleared
(set to all 0s). If the value specified by the count operand is greater than 15, the
destination operand is set to all 0s. The destination operand is an XMM register. The
count operand is an 8-bit immediate.

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST << (TEMP * 8);

Intel C/C++ Compiler Intrinsic Equivalent
PSLLDQ _ m128i _mm_slli_si128 (_m128i a, int imm)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

PSLLDQ—Shift Double Quadword Left Logical Vol.2B 4-247



INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

4-248 Vol. 2B

PSLLDQ—Shift Double Quadword Left Logical



INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFF1/r PSLLW mm, mm/m64 Valid Valid Shift words in mm left mm/m64
while shifting in Os.
66 OF F1 /r PSLLW xmm1, Valid Valid Shift words in xmm1 left by
xmm2/m128 xmmZ2/m128 while shifting in Os.
OF71/6ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in Os.
660F71/6ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by
imm8 while shifting in Os.
OFF2/r PSLLD mm, mm/m64 Valid Valid Shift doublewords in mm left by
mm/m64 while shifting in Os.
66 OF F2 /r PSLLD xmm1, Valid Valid Shift doublewords in xmm1 left
xmmZ2/m128 by xmm2/m128 while shifting in
Os.
OF72/6ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left by
imm8 while shifting in Os.
66 0F72/6ib  PSLLD xmm1, imm8  Valid Valid Shift doublewords in xmm1 left
by imm8 while shifting in Os.
OFF3/r PSLLQ mm, mm/m64 Valid Valid Shift quadword in mm left by
mm/m64 while shifting in Os.
66 OF F3 /1 PSLLQ xmmT, Valid Valid Shift quadwords in xmm1 left by
xmm2/m128 xmmZ2/m128 while shifting in Os.
OF73/6ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in Os.
66 OF 73/6ib  PSLLQ xmm1, imm8  Valid Valid Shift quadwords in xmm1 left by
imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the left by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted left,
the empty low-order bits are cleared (set to 0). If the value specified by the count
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quad-
word), then the destination operand is set to all 0s. Figure 4-8 gives an example of

shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Vol.2B 4-249




INSTRUCTION SET REFERENCE, N-Z

tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X1 X0
Shift Left
with Zero 4,
Extension
Y Y \
POSESE@C-}- X3 << COUNT | X2 << COUNT | X1 << COUNT | X0 << COUNT

Figure 4-8. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

The PSLLW instruction shifts each of the words in the destination operand to the left
by the number of bits specified in the count operand; the PSLLD instruction shifts
each of the doublewords in the destination operand; and the PSLLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] <~ 0000000000000000H;
ELSE
DEST[15:0] < ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « ZeroExtend(DEST[63:48] << COUNT);
Fl;

PSLLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] <~ 0000000000000000H;

ELSE
DEST[31:0] «— ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] «— ZeroExtend(DEST[63:32] << COUNT);

Fl;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN

4-250 Vol.2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical




INSTRUCTION SET REFERENCE, N-Z

DEST[64:0] «— 0000000000000000H;
ELSE

DEST « ZeroExtend(DEST << COUNT);
Fl;

PSLLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « ZeroExtend(DEST[127:112] << COUNT);
Fl;

PSLLD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H;
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] <« ZeroExtend(DEST[127:96] << COUNT);
Fl;

PSLLQ instruction with 128-bit operand:

COUNT « COUNT_SOURCE[63:0];

IF (COUNT > 63)

THEN
DEST[128:0] «~ 00000000000000000000000000000000H;

ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] « ZeroExtend(DEST[127:64] << COUNT);

Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW __m64 _mm_sll_pi16(_m64 m, __m64 count)
PSLLW __m128i _mm_slli_pi16(__m64 m, int count)

PSLLW __m128i _mm_slli_pi16(_m128i m, __m128i count)
PSLLD __m64 _mm_slli_pi32(_m64 m, int count)

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol.2B 4-251



INSTRUCTION SET REFERENCE, N-Z

PSLLD __m64 _mm_sll_pi32(_m64 m, __m64 count)
PSLLD __m128i _mm_slli_epi32(_m128im, int count)
PSLLD __m128i _mm_sll_epi32(_m128i m, _m128i count)
PSLLQ __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m64 _mm_sll_si64(_m64 m, __m64 count)
PSLLQ __m128i _mm_slli_epi6b4(_m128i m, int count)
PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

4-252 Vol.2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical



#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol.2B 4-253



INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF E1/r PSRAW mm, Valid Valid Shift words in mm right by
mm/m64 mm/m64 while shifting in sign
bits.
66 OF E1/r PSRAW xmm1, Valid Valid Shift words in xmm1 right by
xmm2/m128 xmmZ2/m128 while shifting in sign
bits.
OF 71 /4ib PSRAW mm, imm8 Valid Valid Shift words in mm right by imm8
while shifting in sign bits
66 0F71/4ib PSRAW xmm1, Valid Valid Shift words in xmm1 right by
imm8 imm8 while shifting in sign bits
OFE2/r PSRAD mm, Valid Valid Shift doublewords in mm right by
mm/m64 mm/m64 while shifting in sign
bits.
66 OF E2 /1 PSRAD xmm1, Valid Valid Shift doubleword in xmm1 right
xmm2/m128 by xmmZ2 /m128 while shifting in
sign bits.
OF 72 /4 ib PSRAD mm, imm8 Valid Valid Shift doublewords in mm right by
imm8 while shifting in sign bits.
66 0F 72 /4ib PSRAD xmm1, Valid Valid Shift doublewords in xmm1 right
imm8 by imm8 while shifting in sign bits.
Description

Shifts the bits in the individual data elements (words or doublewords) in the destina-
tion operand (first operand) to the right by the number of bits specified in the count
operand (second operand). As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data
element. If the value specified by the count operand is greater than 15 (for words) or
31 (for doublewords), each destination data element is filled with the initial value of
the sign bit of the element. (Figure 4-9 gives an example of shifting words in a 64-bit
operand.)

4-254 Vol.2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic



INSTRUCTION SET REFERENCE, N-Z

Pre-Shift
DEST X3 X2 X1 X0

Shift Right L L L L

with Sign
Extension

1 Y / /
Post SR | X3 >> COUNT | X2>> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 4-9. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the
right by the number of bits specified in the count operand, and the PSRAD instruction
shifts each of the doublewords in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)
THEN COUNT « 16;
Fl;
DEST[15:0] « SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « SignExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
DEST[31:0] « SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] « SignExtend(DEST[63:32] >> COUNT);

PSRAW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];

PSRAW/PSRAD—Shift Packed Data Right Arithmetic Vol. 2B 4-255



INSTRUCTION SET REFERENCE, N-Z

IF (COUNT > 15)
THEN COUNT « 16;
Fl;
DEST[15:0] <« SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:01;
IF (COUNT > 31)
THEN COUNT « 32;
FI;
DEST[31:0] <« SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] « SignExtend(DEST[127:96] >>COUNT);

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW  _ m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW  __m64 _mm_sra_pi16 (__m64 m, __m64 count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD  __m64 _mm_sra_pi32 (__m64 m, __m64 count)
PSRAW  __ m128i _mm_srai_epi16(_m128im, int count)
PSRAW  __m128i _mm_sra_epi16(_m128i m, __m128i count))

PSRAD __m128i _mm_srai_epi32 (__m128im, int count)
PSRAD  __m128i _mm_sra_epi32 (__m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-256 Vol.2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic



INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic Vol.2B 4-257



INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-258 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic



INSTRUCTION SET REFERENCE, N-Z

PSRLDQ—Shift Double Quadword Right Logical

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 73/3ib PSRLDQ xmm1, Valid Valid Shift xmm1 right by imm8 while
imm8 shifting in Os.
Description

Shifts the destination operand (first operand) to the right by the humber of bytes
specified in the count operand (second operand). The empty high-order bytes are
cleared (set to all 0s). If the value specified by the count operand is greater than 15,
the destination operand is set to all 0s. The destination operand is an XMM register.
The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST >> (temp * 8);

Intel C/C++ Compiler Intrinsic Equivalents
PSRLDQ __m128i _mm_srli_si128 (_m128i a, int imm)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

PSRLDQ—Shift Double Quadword Right Logical Vol.2B 4-259



INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

Numeric Exceptions
None.

4-260 Vol.2B PSRLDQ—Shift Double Quadword Right Logical



INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Opcode Instruction 64-Bit Compat/  Description
Mode Leg Mode
OFD1/r PSRLW mm, Valid Valid Shift words in mm right by amount
mm/m64 specified in mm/m64 while shifting in
Os.
66 OFD1/r  PSRWW xmm1,  Valid Valid Shift words in xmm1 right by amount
xmm2/m128 specified in xmmZ2/m128 while
shifting in Os.
OF71/2ib PSRLW mm, Valid Valid Shift words in mm right by imm8 while
imm8 shifting in Os.
66 OF 71 /2ib PSRWW xmm1,  Valid Valid Shift words in xmm1 right by imm8
imm8 while shifting in Os.
OFD2/r PSRLD mm, Valid Valid Shift doublewords in mm right by
mm/m64 amount specified in mm/m64 while
shifting in Os.
66 OFD2/r  PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
xmm2/m128 amount specified in xmmZ2 /m128
while shifting in Os.
OF72/2ib PSRLD mm, Valid Valid Shift doublewords in mm right by
imm8 imm8 while shifting in Os.
66 OF 72 /2 ib PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
imm8 imm8 while shifting in Os.
OFD3/r PSRLQ mm, Valid Valid Shift mm right by amount specified in
mm/m64 mm/m64 while shifting in Os.
66 OF D3 /r  PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
xmmZ2/m128 amount specified in xmm2/m128
while shifting in Os.
OF73/2ib PSRLQ mm, Valid Valid Shift mm right by imm8 while shifting
imm8 in Os.
66 OF 73 /2ib PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
imm8 imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in
the destination operand (first operand) to the right by the number of bits specified in
the count operand (second operand). As the bits in the data elements are shifted
right, the empty high-order bits are cleared (set to 0). If the value specified by the
count operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Vol.2B 4-261




INSTRUCTION SET REFERENCE, N-Z

quadword), then the destination operand is set to all Os. Figure 4-10 gives an
example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the
count operand can be either an MMX technology register or an 64-bit memory loca-
tion, an XMM register or a 128-bit memory location, or an 8-bit immediate. Note that
only the first 64-bits of a 128-bit count operand are checked to compute the count.

Pre-Shift
DEST X3 X2 X1 X0

shift Right ‘

with Zero
Extension

POSB?E@} X3 >> COUNT | X2 >> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 4-10. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

The PSRLW instruction shifts each of the words in the destination operand to the right
by the number of bits specified in the count operand; the PSRLD instruction shifts
each of the doublewords in the destination operand; and the PSRLQ instruction shifts
the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSRLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] «~ 0000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] « ZeroExtend(DEST[63:48] >> COUNT);
Fl;

PSRLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] «~ 0000000000000000H

ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] «— ZeroExtend(DEST[63:32] >> COUNT);

Fl;

4-262 Vol.2B PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical



INSTRUCTION SET REFERENCE, N-Z

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] <~ 0000000000000000H
ELSE
DEST « ZeroExtend(DEST >> COUNT);
Fl;

PSRLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « ZeroExtend(DEST[127:112] >> COUNT);
Fl;

PSRLD instruction with 128-bit operand:
COUNT <« COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] <« ZeroExtend(DEST[127:96] >> COUNT);
Fl;

PSRLQ instruction with 128-bit operand:

COUNT « COUNT_SOURCE[63:0];

IF (COUNT > 15)

THEN
DEST[128:0] «~ 00000000000000000000000000000000H

ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] « ZeroExtend(DEST[127:64] >> COUNT);

Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW  __ m64 _mm_srli_pi16(_m64 m, int count)
PSRLW  __m64 _mm_srl_pi16 (__m64 m, __m64 count)

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Vol.2B 4-263



INSTRUCTION SET REFERENCE, N-Z

PSRLW  __m128i _mm_srli_epi16 (__m128i m, int count)
PSRLW  __ m128i _mm_srl_epi16 (_m128i m, _m128i count)

PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, _m64 count)
PSRLD __m128i _mm_srli_epi32 (__m128i m, int count)
PSRLD __m128i _mm_srl_epi32 (_m128i m, __m128i count)
PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)
PSRLQ __m128i _mm_srli_epi64 (__m128im, int count)
PSRLQ __m128i _mm_srl_epi64 (_m128i m, __m128i count)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#55(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-264 Vol. 2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical



INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical Vol.2B 4-265



INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF F8/r PSUBB mm, Valid Valid Subtract packed byte integers in
mm/m64 mm/m64 from packed byte integers in
mm.
66 0FF8/r PSUBB xmm1, Valid Valid Subtract packed byte integers in
xmm2/m128 xmmZ2/m128 from packed byte
integers in xmm1.
OFF9 /r PSUBW mm, Valid Valid Subtract packed word integers in
mm/m64 mm/m64 from packed word integers in
mm.
66 0FF9/r PSUBW xmm1, Valid Valid Subtract packed word integers in
xmmZ2/m128 xmmZ2/m128 from packed word
integers in xmm1.
OF FA /T PSUBD mm, Valid Valid Subtract packed doubleword integers
mm/m64 in mm/m64 from packed doubleword
integers in mm.
66 OF FA/r  PSUBD xmm1, Valid Valid Subtract packed doubleword integers
xmmZ2/m128 in xmmZ2/mem128 from packed
doubleword integers in xmm1.

Description

Performs a SIMD subtract of the packed integers of the source operand (second
operand) from the packed integers of the destination operand (first operand), and
stores the packed integer results in the destination operand. See Figure 9-4 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an
illustration of a SIMD operation. Overflow is handled with wraparound, as described
in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is
too large or too small to be represented in a byte, the result is wrapped around and
the low 8 bits are written to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is
too large or too small to be represented in a word, the result is wrapped around and
the low 16 bits are written to the destination element.

4-266 Vol.2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers



INSTRUCTION SET REFERENCE, N-Z

The PSUBD instruction subtracts packed doubleword integers. When an individual
result is too large or too small to be represented in a doubleword, the result is
wrapped around and the low 32 bits are written to the destination element.

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either
unsigned or signed (two's complement notation) packed integers; however, it does
not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent
undetected overflow conditions, software must control the ranges of values upon
which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBB instruction with 64-bit operands:
DEST[7:0] < DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] «— DEST[63:56] — SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] <~ DEST[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] <~ DEST[111:120] — SRC[127:120];

PSUBW instruction with 64-bit operands:
DEST[15:0] «— DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] «— DEST[63:48] — SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] <~ DEST[127:112] — SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] <~ DEST[31:0] — SRC[31:0];
DEST[63:32] «— DEST[63:32] — SRC[63:32];

PSUBD instruction with 128-bit operands:
DEST[31:0] « DEST[31:0] — SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] < DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents
PSUBB __m64 _mm_sub_pi8(_m64 m1, __m64 m2)

PSUBB/PSUBW/PSUBD—Subtract Packed Integers Vol.2B 4-267



INSTRUCTION SET REFERENCE, N-Z

PSUBW  _ m64 _mm_sub_pi16(_m64 m1,_m64 m2)
PSUBD __m64 _mm_sub_pi32(_m64 m1, __m64 m2)

PSUBB  __m128i _mm_sub_epi8 (_m128ia, __m128ib)
PSUBW  __m128i _mm_sub_epi16 (_m128ia, __m128ib)
PSUBD  _ m128i _mm_sub_epi32 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#55(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP

#UD

4-268 Vol.2B

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one

PSUBB/PSUBW/PSUBD—Subtract Packed Integers



#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSUBB/PSUBW/PSUBD—Subtract Packed Integers Vol.2B 4-269



INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF FB /r PSUBQ mm1, mm2/m64 Valid Valid Subtract quadword integer
in mm1 from mmZ2 /m64.
66 OF FB/r PSUBQ xmm1, xmm2/m128 Valid Valid Subtract packed quadword
integers in xmm71 from
xmmZ2 /m128.
Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The source operand can be
a quadword integer stored in an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed quadword integers stored in an XMM register or an
128-bit memory location. The destination operand can be a quadword integer stored
in an MMX technology register or two packed quadword integers stored in an XMM
register. When packed quadword operands are used, a SIMD subtract is performed.
When a quadword result is too large to be represented in 64 bits (overflow), the
result is wrapped around and the low 64 bits are written to the destination element
(that is, the carry is ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s
complement notation) integers; however, it does not set bits in the EFLAGS register
to indicate overflow and/or a carry. To prevent undetected overflow conditions, soft-
ware must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] <« DEST[63:0] — SRC[63:0];
DEST[127:64] < DEST[127:64] — SR(C[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ _ m64 _mm_sub_si64(_m64 m1, __m64 m2)
PSUBQ  _ m128i _mm_sub_epi64(_m128im1, _m128i m2)

4-270 Vol.2B PSUBQ—Subtract Packed Quadword Integers



INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

PSUBQ—Subtract Packed Quadword Integers Vol. 2B 4-271



INSTRUCTION SET REFERENCE, N-Z

#AC(0)

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-272 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSUBQ—Subtract Packed Quadword Integers



INSTRUCTION SET REFERENCE, N-Z

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFE8/r PSUBSB mm, Valid Valid Subtract signed packed bytes in
mm/m64 mm/m64 from signed packed bytes
in mm and saturate results.
66 OF E8 /r PSUBSB xmm1, Valid Valid Subtract packed signed byte
xmmZ2/m128 integers in xmmZ2/m128 from

packed signed byte integers in
xmm1 and saturate results.

OFE9/r PSUBSW mm, Valid Valid Subtract signed packed words in
mm/m64 mm/m64 from signed packed words
in mm and saturate results.
66 OF E9 /r PSUBSW xmm1, Valid Valid Subtract packed signed word
xmmZ2/m128 integers in xmmZ2/m128 from

packed signed word integers in
xmm1 and saturate results.

Description

Performs a SIMD subtract of the packed signed integers of the source operand
(second operand) from the packed signed integers of the destination operand (first
operand), and stores the packed integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for an illustration of a SIMD operation. Overflow is handled with signed
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual
byte result is beyond the range of a signed byte integer (that is, greater than 7FH or
less than 80H), the saturated value of 7FH or 80H, respectively, is written to the
destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH
or less than 8000H), the saturated value of 7FFFH or 8000H, respectively, is written
to the destination operand.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation Vol.2B 4-273



INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PSUBSB instruction with 64-bit operands:
DEST[7:0] < SaturateToSignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] « SaturateToSignedByte (DEST[63:56] — SRC[63:56] );

PSUBSB instruction with 128-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] — SRC[127:120]);

PSUBSW instruction with 64-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] — SRC[15:0] );
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] < SaturateToSignedWord (DEST[63:48] — SRC[63:48] );

PSUBSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] « SaturateToSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB __m64 _mm_subs_pi8(_m64 m1, __m64 m2)
PSUBSB  __m128i _mm_subs_epi8(_m128im1, __m128i m2)
PSUBSW __m64 _mm_subs_pi16(_m64 m1, __m64 m2)
PSUBSW _ m128i _mm_subs_epi16(_m128im1, __m128i m2)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-274 \Vol.2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation



INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation Vol.2B 4-275



INSTRUCTION SET REFERENCE, N-Z

#55(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-276 Vol. 2B

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If a memory operand effective address is outside the SS
segment limit.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation



INSTRUCTION SET REFERENCE, N-Z

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OFD8/r PSUBUSB mm, Valid Valid Subtract unsigned packed bytes in
mm/m64 mm/m64 from unsigned packed
bytes in mm and saturate result.
66 OF D8 /r  PSUBUSB xmm1, Valid Valid Subtract packed unsigned byte
xmmZ2/m128 integers in xmmZ2/m128 from packed

unsigned byte integers in xmm1 and
saturate result.

OFDS/r PSUBUSW mm, Valid Valid Subtract unsigned packed words in
mm/m64 mm/m64 from unsigned packed
words in mm and saturate result.
66 OFD9/r  PSUBUSW xmm1, Valid Valid Subtract packed unsigned word
xmmZ2/m128 integers in xmmZ2/m128 from packed

unsigned word integers in xmm1 and
saturate result.

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand
(second operand) from the packed unsigned integers of the destination operand (first
operand), and stores the packed unsigned integer results in the destination operand.
See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with
unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating
on 64-bit operands, the destination operand must be an MMX technology register
and the source operand can be either an MMX technology register or a 64-bit
memory location. When operating on 128-bit operands, the destination operand
must be an XMM register and the source operand can be either an XMM register or a
128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an indi-
vidual byte result is less than zero, the saturated value of 00H is written to the desti-
nation operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an indi-
vidual word result is less than zero, the saturated value of 0000H is written to the
destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-277



INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC (7:0] );
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] «— SaturateToUnsignedByte (DEST[63:56] — SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] <« SaturateToUnSignedByte (DEST[127:120] — SRC[127:120]);

PSUBUSW instruction with 64-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0] );
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord (DEST[63:48] — SRC[63:48] );

PSUBUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedword (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] « SaturateToUnSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB __m64 _mm_subs_pu8(_m64 m1, __m64 m2)
PSUBUSB __m128i _mm_subs_epu8(_m128im1,_m128i m2)
PSUBUSW __m64 _mm_subs_pul16(_m64 m1, __m64 m2)
PSUBUSW __m128i _mm_subs_epu16(_m128im1,_m128i m2)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

4-278 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation



INSTRUCTION SET REFERENCE, N-Z

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation Vol.2B 4-279



INSTRUCTION SET REFERENCE, N-Z

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-280 Vol.2B

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation



INSTRUCTION SET REFERENCE, N-Z

PTEST- Logical Compare

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 38 17 /r PTEST xmm1, Valid Valid Set ZF if xmm2/m128 AND xmm1
xmm2/m128 result is all Os. Set CF if xmm2/m128
AND NOT xmm1 result is all Os.

Description

Performs a bitwise AND of the destination operand (first operand) and the source
operand (second operand), then sets the ZF flag only if all bits in the result are 0.
PTEST sets the CF flag if all bits in the result are 0 of the bitwise AND of the source
operand (second operand) and the bitwise logical NOT of the destination operand.

Operation

IF (SRC[127:0] bitwiseAND DEST[127:0] = 0)
THEN ZF € 1;
ELSE ZF < O; FI;
IF (SRC[127:0] bitwiseAND (bitwiseNOT DEST[127:0] ) = Q)
THEN CF < 1;
ELSE CF € O; FI;
DEST[127:0] Unmodified;
AF=0F =PF=SF € 0;

Intel C/C++ Compiler Intrinsic Equivalent

PTEST int_mm_testz_si128 (_m128is1,_m128is2);
int _mm_testc_si128 (__m128is1, _m128is2);
int _mm_testnzc_si128 (_m128is1, _m128is2);

Flags Affected

The OF, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the oper-
ation

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

PTEST- Logical Compare Vol.2B 4-281



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

4-282 Vol.2B PTEST- Logical Compare



INSTRUCTION SET REFERENCE, N-Z

Either the prefix REP (F3h) or REPN (F2H) is used.

PTEST- Logical Compare Vol.2B 4-283



INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack

High Data
Opcode Instruction 64-Bit  Compat/ Description
Mode Leg Mode
OF68/r PUNPCKHBW mm, Valid Valid Unpack and interleave high-order
mm/m64 bytes from mm and mm/m64
into mm.
66 OF 68 /r PUNPCKHBW xmm1, Valid Valid Unpack and interleave high-order
xmmZ2/m128 bytes from xmm1 and
xmmZ2/m128into xmm1.
OF69/r PUNPCKHWD mm, Valid Valid Unpack and interleave high-order
mm/m64 words from mm and mm/m64
into mm.
66 OF 69 /r PUNPCKHWD xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 words from xmm71 and
xmmZ2/m128into xmm]1.
OF6A/r PUNPCKHDQ mm, Valid Valid Unpack and interleave high-order
mm/m64 doublewords from mm and
mm/m64 into mm.
66 OF 6A /r PUNPCKHDQ xmm1, Valid Valid Unpack and interleave high-order
xmmZ2/m128 doublewords from xmm1 and
xmmZ2/m128into xmm1.
66 OF 6D /r PUNPCKHQDQ xmm1,  Valid Valid Unpack and interleave high-order
xmm2/m128 quadwords from xmm1 and
xmmZ2/m128into xmm1.
Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords,
or quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. Figure 4-11 shows the unpack oper-
ation for bytes in 64-bit operands. The low-order data elements are ignored.

4-284 Vol.2B

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data




INSTRUCTION SET REFERENCE, N-Z

SRC| Y7 |Y6 | Y5|Y4|Y3|Y2]|Y1]|YO X7 | X6 | X5| X4 | X3 |X2 | X1|X0 |DEST

DEST| Y7 | X7 | Y6 | X6 | Y5 | X5 |Y4 | X4

Figure 4-11. PUNPCKHBW Instruction Operation Using 64-bit Operands

The source operand can be an MMX technology register or a 64-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but
the instruction uses only the high-order 32 bits. When the source data comes from a
128-bit memory operand, an implementation may fetch only the appropriate 64 bits;
however, alignment to a 16-byte boundary and normal segment checking will still be
enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and
destination operands, the PUNPCKHWD instruction interleaves the high-order words
of the source and destination operands, the PUNPCKHDQ instruction interleaves the
high-order doubleword (or doublewords) of the source and destination operands,
and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the
source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKHBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKHWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] < DEST[39:32];
DEST[15:8] «— SRC[39:32];
DEST[23:16] « DEST[47:40];
DEST[31:24] « SRC[47:40];

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol. 2B 4-285



INSTRUCTION SET REFERENCE, N-Z

DEST[39:32] « DEST[55:48];
DEST[47:40] < SRC[55:48];
DEST[55:48] <« DEST[63:56];
DEST[63:56] «— SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] < DEST[47:32];
DEST[31:16] <~ SRC[47:32];
DEST[47:32] < DEST[63:48];
DEST[63:48] < SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] «— DEST[63:32];
DEST[63:32] «- SRC[63:32];

PUNPCKHBW instruction with 128-bit operands:
DEST[7:0]«— DEST[71:64];
DEST[15:8] « SRC[71:64];
DEST[23:16] « DEST[79:72];
DEST[31:24] < SRC[79:72];
DEST[39:32] « DEST[87:80];
DEST[47:40] « SRC[87:80];
DEST[55:48] < DEST[95:88];
DEST[63:56] «- SRC[95:88];
DEST[71:64] < DEST[103:96];
DEST[79:72] «- SRC[103:96];
DEST[87:80] «— DEST[111:104];
DEST[95:88] «- SRC[111:104];
DEST[103:96] « DEST[119:112];
DEST[111:104] «- SRC[119:112];
DEST[119:112] «— DEST[127:120];
DEST[127:120] «- SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] « DEST[79:64];
DEST[31:16] «- SRC[79:64];
DEST[47:32] < DEST[95:80];
DEST[63:48] «- SRC[95:80];
DEST[79:64] «- DEST[111:96];
DEST[95:80] «- SRC[111:96];
DEST[111:96] « DEST[127:112];
DEST[127:112] «- SRC[127:112];

PUNPCKHDAQ instruction with 128-bit operands:
DEST[31:0] <~ DEST[95:64];
DEST[63:32] « SRC[95:64];

4-286 Vol.2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data



INSTRUCTION SET REFERENCE, N-Z

DEST[95:64] « DEST[127:96];
DEST[127:96] « SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] « DEST[127:64];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW __m64 _mm_unpackhi_pi8(_m64 m1, __m64 m2)
PUNPCKHBW __m128i _mm_unpackhi_epi8(_m128im1, __m128im2)
PUNPCKHWD __m64 _mm_unpackhi_pi16(_m64 m1,__m64 m2)
PUNPCKHWD __m128i _mm_unpackhi_epi16(_m128im1,_m128i m2)
PUNPCKHDQ __m64 _mm_unpackhi_pi32(_m64 m1, __m64 m2)
PUNPCKHDQ __m128i _mm_unpackhi_epi32(_m128im1,_m128im2)

PUNPCKHQDQ  __m128i_mm_unpackhi_epi64 (_m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol.2B 4-287



INSTRUCTION SET REFERENCE, N-Z

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKHQDQ) on a non-SSE2
capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKHQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-288 Vol.2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data Vol.2B 4-289



INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF60/r PUNPCKLBW mm, Valid Valid Interleave low-order bytes from
mm/m32 mm and mm/m32 into mm.
66 OF60/r PUNPCKLBW xmm1, Valid Valid Interleave low-order bytes from
xmm2/m128 xmm1 and xmm2/m128into
xmm1.
OF 61 /r PUNPCKLWD mm, Valid Valid Interleave low-order words from
mm/m32 mm and mm/m32 into mm.
66 OF 61 /r PUNPCKLWD xmm1, Valid Valid Interleave low-order words from
xmmZ2/m128 xmm1 and xmmZ2/m128into
xmm1.
OF 62 /r PUNPCKLDQ mm, Valid Valid Interleave low-order doublewords
mm/m32 from mm and mm/m32 into mm.
66 OF 62 /r PUNPCKLDQ xmm1,  Valid Valid Interleave low-order doublewords
xmm2/m128 from xmm1 and xmmZ2/m128 into
xmm1.
66 OF 6C/r  PUNPCKLQDQ xmm1, Valid Valid Interleave low-order quadword
xmm2/m128 from xmm1 and xmmZ2/m128into
xmm1 register.
Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords,
and quadwords) of the destination operand (first operand) and source operand
(second operand) into the destination operand. (Figure 4-12 shows the unpack oper-
ation for bytes in 64-bit operands.). The high-order data elements are ignored.

SRC| Y7

Y6 | Y5|Y4|Y

0 |DEST

3(Y2|Y1|Y0

DEST

X7 | X6 | X5 X4 | X3 |X2|X1|X
Y3 | X3[Y2|X2|Y1|X1[Y0 | X0

Figure 4-12. PUNPCKLBW Instruction Operation Using 64-bit Operands

4-290 Vol.2B

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data




INSTRUCTION SET REFERENCE, N-Z

The source operand can be an MMX technology register or a 32-bit memory location,
or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register. When the source data comes
from a 128-bit memory operand, an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking
will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and desti-
nation operands, the PUNPCKLWD instruction interleaves the low-order words of the
source and destination operands, the PUNPCKLDQ instruction interleaves the low-
order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and
destination operands.

These instructions can be used to convert bytes to words, words to doublewords,
doublewords to quadwords, and quadwords to double quadwords, respectively, by
placing all Os in the source operand. Here, if the source operand contains all Os, the
result (stored in the destination operand) contains zero extensions of the high-order
data elements from the original value in the destination operand. For example, with
the PUNPCKLBW instruction the high-order bytes are zero extended (that is,
unpacked into unsigned word integers), and with the PUNPCKLWD instruction, the
high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] < SRC[31:24];
DEST[55:48] «— DEST[31:24];
DEST[47:40] < SRC[23:16];
DEST[39:32] «— DEST[23:16];
DEST[31:24] «- SRC[15:8];
DEST[23:16] < DEST[15:8];
DEST[15:8] «- SRC[7:0];
DEST[7:0] < DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] «- SRC[31:16];
DEST[47:32] < DEST[31:16];
DEST[31:16] «- SRC[15:0];
DEST[15:0] «— DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] <~ SRC[31:0];
DEST[31:0] < DEST[31:0];

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data Vol. 2B 4-291



INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0]«— DEST[7:0];
DEST[15:8] <« SRC[7:0];
DEST[23:16] «- DEST[15:8];
DEST[31:24] «- SRC[15:8];
DEST[39:32] «- DEST[23:16];
DEST[47:40] < SRC[23:16];
DEST[55:48] «- DEST[31:24];
DEST[63:56] «- SRC[31:24];
DEST[71:64] «- DEST[39:32];
DEST[79:72] «- SRC[39:32];
DEST[87:80] «- DEST[47:40];
DEST[95:88] «- SRC[47:40];
DEST[103:96] « DEST[55:48];
DEST[111:104] «— SRC[55:48];
DEST[119:112] «— DEST[63:56];
DEST[127:120] < SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] « DEST[15:0];
DEST[31:16] <« SRC[15:0];
DEST[47:32] < DEST[31:16];
DEST[63:48] <~ SRC[31:16];
DEST[79:64] < DEST[47:32];
DEST[95:80] <« SRC[47:32];
DEST[111:96] « DEST[63:48];
DEST[127:112] «- SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] «— DEST[31:0];
DEST[63:32] « SRC[31:0];
DEST[95:64] « DEST[63:32];
DEST[127:96] « SRC[63:32];

PUNPCKLQDQ
DEST[63:0] < DEST[63:0];
DEST[127:64] < SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW __m64 _mm_unpacklo_pi8 (_m64 m1, __m64 m2)
PUNPCKLBW __m128i _mm_unpacklo_epi8 (_m128i m1, __m128i m2)
PUNPCKLWD __m64 _mm_unpacklo_pi16 (_m64 m1, __m64 m2)
PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

4-292 Vol.2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data



INSTRUCTION SET REFERENCE, N-Z

PUNPCKLDQ __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)
PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128im1, _m128im2)
PUNPCKLQDQ  __m128i _mm_unpacklo_epi64 (__m128im1, __m128i m2)
Flags Affected

None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution

of 128-bit instructions (PUNPCKLQDQ) on a non-SSE2 capable

processor (one that is MMX technology capable) will result in the
instruction operating on the mm registers, not #UD.

(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions (except PUNPCKLQDQ) on a non-SSE2

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data Vol.2B 4-293



INSTRUCTION SET REFERENCE, N-Z

#NM
#MF

capable processor (one that is MMX technology capable) will
result in the instruction operating on the mm registers, not #UD.

(PUNPCKLQDQ only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-294 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Low Data



INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode*

FF /6
FF /6
FF /6

50+rw
50+rd
50+rd

6A

68

68

0]S
16
1€
06
OF AO

OF AO

OF AO

OF A8

OF A8

Instruction

PUSH r/m16
PUSH r/m32
PUSH r/m64

PUSH r16
PUSH r32
PUSH r64

PUSH imm8

PUSH imm16

PUSH imm32

PUSH CS
PUSH SS
PUSH DS
PUSH ES
PUSH FS

PUSH FS

PUSH FS

PUSH GS

PUSH GS

64-Bit
Mode

Valid
N.E.
Valid

Valid
N.E.
Valid

Valid

Valid

Valid

Invalid
Invalid
Invalid
Invalid
Valid

N.E.

Valid

Valid

N.E.

Compat/
Leg Mode

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

N.E.

Valid

Valid

Description

Push r/m16.
Push r/m32.

Push r/m64. Default operand size 64-
bits.

Push ri6.
Push r32.

Push r64. Default operand size
64-bits.

Push sign-extended imm8. Stack
pointer is incremented by the size of
stack pointer.

Push sign-extended imm16. Stack
pointer is incremented by the size of
stack pointer.

Push sign-extended imm32. Stack
pointer is incremented by the size of
stack pointer.

Push CS.
Push SS.
Push DS.
Push ES.

Push FS and decrement stack pointer
by 16 bits.

Push FS and decrement stack pointer
by 32 bits.

Push FS. Default operand size 64-bits.
(66H override causes 16-bit
operation).

Push GS and decrement stack pointer
by 16 bits.

Push GS and decrement stack pointer
by 32 bits.

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Vol. 2B 4-295




INSTRUCTION SET REFERENCE, N-Z

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF A8 PUSH GS Valid N.E. Push GS, default operand size 64-bits.
(66H override causes 16-bit
operation).
NOTES:

* See IA-32 Architecture Compatibility section below.

Description

Decrements the stack pointer and then stores the source operand on the top of the
stack. The address-size attribute of the stack segment determines the stack pointer
size (16, 32 or 64 bits). The operand-size attribute of the current code segment
determines the amount the stack pointer is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the
32-bit ESP register (stack pointer) is decremented by 4. If both attributes are 16, the
16-bit SP register (stack pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the
stack, a sign-extended value is pushed on the stack. If the source operand is the FS
or GS and its size is less than the address size of the stack, the zero-extended value
is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-
size attribute. The D flag in the current code segment’s segment descriptor (with
prefixes), determines the operand-size attribute and the address-size attribute of the
source operand. Pushing a 16-bit operand when the stack address-size attribute is 32
can result in a misaligned stack pointer (a stack pointer that is not be aligned on a
doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before
the instruction was executed. Thus if a PUSH instruction uses a memory operand in
which the ESP register is used for computing the operand address, the address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is
executed, an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Inte/l® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the
64-bit RSP register (stack pointer) is decremented by 8. A 66H override causes
16-bit operation. Note that pushing a 16-bit operand can result in the stack pointer
misaligned to 8-byte boundary.

4-296 Vol.2B PUSH—Push Word, Doubleword or Quadword Onto the Stack



INSTRUCTION SET REFERENCE, N-Z

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the
value of the ESP register as it existed before the instruction was executed. (This is
also true for Intel 64 architecture, real-address and virtual-8086 modes of IA-32
architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new
value of the SP register (that is the value after it has been decremented by 2).

Operation
IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
RSP « (RSP — 8);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend64(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend64(SRC); Fl;
ELSE
TEMP = SRC;
Fl
RSP «— TEMP; (* Push quadword *)
ELSE (* OperandSize = 16; 66H used *)
RSP « (RSP — 2);
RSP «— SRC; (* Push word *)
Fl;
ELSE IF StackAddrSize = 32
THEN
IF OperandSize = 32

THEN
ESP « (ESP — 4);
IF (SRCis FS or GS)
THEN
TEMP = ZeroExtend32(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend32(SRC); Fl;
ELSE
TEMP = SRG;
Fl;
SS:ESP « TEMP; (* Push doubleword *)
ELSE (* OperandSize = 16%*)
ESP « (ESP - 2);
SS:ESP < SRC; (* Push word *)

PUSH—Push Word, Doubleword or Quadword Onto the Stack Vol.2B 4-297



INSTRUCTION SET REFERENCE, N-Z

Fl;

ELSE StackAddrSize = 16
IF OperandSize = 16

THEN

SP « (SP —2);
SS:SP « SRC; (* Push word *)
ELSE (* OperandSize = 32 *)
SP « (SP — 4);
SS:SP « SRC; (* Push doubleword *)

Fl;
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the new value of the SP or ESP register is outside the stack
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

4-298 Vol.2B

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

PUSH—Push Word, Doubleword or Quadword Onto the Stack



INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in @ hon-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

PUSH—Push Word, Doubleword or Quadword Onto the Stack Vol.2B 4-299



INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

Opcode Instruction  64-Bit Compat/ Description
Mode Leg Mode
60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and
DI.
60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP, EBP,
€SI, and EDI.

Description

Pushes the contents of the general-purpose registers onto the stack. The registers
are stored on the stack in the following order: EAX, ECX, EDX, EBX, ESP (original
value), EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX,
BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These
instructions perform the reverse operation of the POPA/POPAD instructions. The
value pushed for the ESP or SP register is its value before prior to pushing the first
register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same
opcode. The PUSHA instruction is intended for use when the operand-size attribute is
16 and the PUSHAD instruction for when the operand-size attribute is 32. Some
assemblers may force the operand size to 16 when PUSHA is used and to 32 when
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD)
and use the current setting of the operand-size attribute to determine the size of
values to be pushed from the stack, regardless of the mnemonic used.

In the real-address mode, if the ESP or SP registeris 1, 3, or 5 when PUSHA/PUSHAD
executes: an #SS exception is generated but not delivered (the stack error reported
prevents #SS delivery). Next, the processor generates a #DF exception and enters a
shutdown state as described in the #DF discussion in Chapter 5 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-bit Mode
THEN #UD
Fl;
IF OperandSize = 32 (* PUSHAD instruction *)
THEN
Temp « (ESP);
Push(EAX);

4-300 Vol.2B PUSHA/PUSHAD—Push All General-Purpose Registers



INSTRUCTION SET REFERENCE, N-Z

Push
Push
Push
Push

ECX);
EDX);
EBX);
Temp);
Push(EBP);
Push(ESI);
Push(EDI);
ELSE (* OperandSize = 16, PUSHA instruction *)
Temp « (SP);
Push(AX);

P

Fl;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.

#UD If the LOCK prefix is used.

PUSHA/PUSHAD—Push All General-Purpose Registers Vol.2B 4-301



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

4-302 Vol.2B

PUSHA/PUSHAD—Push All General-Purpose Registers



INSTRUCTION SET REFERENCE, N-Z

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
9C PUSHF Valid Valid Push lower 16 bits of EFLAGS.
aC PUSHFD N.E. Valid Push EFLAGS.
9C PUSHFQ Valid N.E. Push RFLAGS.
Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and
pushes the entire contents of the EFLAGS register onto the stack, or decrements the
stack pointer by 2 (if the operand-size attribute is 16) and pushes the lower 16 bits
of the EFLAGS register (that is, the FLAGS register) onto the stack. These instruc-
tions reverse the operation of the POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16
and 17) are not copied; instead, the values for these flags are cleared in the EFLAGS
image stored on the stack. See Chapter 3 of the Inte/l® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the EFLAGS
register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the
same opcode. The PUSHF instruction is intended for use when the operand-size
attribute is 16 and the PUSHFD instruction for when the operand-size attribute is 32.
Some assemblers may force the operand size to 16 when PUSHF is used and to 32
when PUSHFD is used. Others may treat these mnemonics as synonyms
(PUSHF/PUSHFD) and use the current setting of the operand-size attribute to deter-
mine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer
(RSP) by 8 and pushes RFLAGS on the stack. 16-bit operation is supported using the
operand size override prefix 66H. 32-bit operand size cannot be encoded in this
mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are
not copied; instead, values for these flags are cleared in the RFLAGS image stored on
the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruc-
tion executes: an #SS exception is generated but not delivered (the stack error
reported prevents #SS delivery). Next, the processor generates a #DF exception and
enters a shutdown state as described in the #DF discussion in Chapter 5 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack Vol.2B 4-303



INSTRUCTION SET REFERENCE, N-Z

Operation

IF (PE=0)or (PE=1and ((VM=0)or (VM=1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)
THEN
IF OperandSize = 32
THEN
push (EFLAGS AND OOFCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64
THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment
boundary.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the I/0 privilege level is less than 3.

4-304 Vol.2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment
checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(0) If the stack address is in @ non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current
privilege level is 3 and alignment checking is enabled.

#UD If the LOCK prefix is used.

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack Vol. 2B 4-305



INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF EF /1 PXOR mm, mm/m64 Valid Valid Bitwise XOR of
mm/m64 and mm.

66 OF EF /r  PXOR xmm1, xmm2/m128  Valid Valid Bitwise XOR of
xmmZ2/m128and
xmm1.

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand
(second operand) and the destination operand (first operand) and stores the result in
the destination operand. The source operand can be an MMX technology register or a
64-bit memory location or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register. Each
bit of the result is 1 if the corresponding bits of the two operands are different; each
bit is 0 if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST « DEST XOR SRC

Intel C/C++ Compiler Intrinsic Equivalent

PXOR __m64 _mm_xor_si64 (__m64 m1, __m64 m2)
PXOR __m128i _mm_xor_si128 (_m128ia, __m128ib)
Flags Affected

None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

(128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

4-306 Vol.2B PXOR—Logical Exclusive OR



INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS
segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

Real-Address Mode Exceptions

#GP (128-bit operations only) If a memory operand is not aligned on
a 16-byte boundary, regardless of segment.

If any part of the operand lies outside of the effective address
space from 0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0. Execution
of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction
operating on the mm registers, not #UD.

If the LOCK prefix is used.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

PXOR—Logical Exclusive OR Vol.2B 4-307



INSTRUCTION SET REFERENCE, N-Z

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-308 Vol.2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a
16-byte boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege
level is 3.

PXOR—Logical Exclusive OR



RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

Opcode**

DO /2

REX +D0O /2
D2 /2

REX +D2 /2
co/2ib

REX+CO/2ib

D17/2
D3/2

C1/2ib

D17/2
REX.W + D1 /2

D3 /2

REXW +D3 /2
C1/2ib
REX.W +C1 /2
ib

DO /3

REX +D0O /3
D2 /3

REX +D2 /3

Instruction

RCL r/m8, 1
RCL /m8* 1
RCL r/m8, CL
RCL r/m8* CL

RCL r/m8,
imm8

RCL r/m8*,
imm8

RCL r/m16, 1
RCL r/m16, CL

RCL r/m16,
imm8

RCL r/m32,1
RCL /m64, 1

RCL r/m32, CL

RCL r/m64, CL

RCL r/m32,
imm8

RCL r/m64,
imm8

RCR r/m8, 1
RCR r/m8* 1
RCR r/m8, CL

RCR r/m8%, CL

64-Bit
Mode

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid

Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid

Valid

Valid
N.E.

Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.

Description

Rotate 9 bits (CF, /m8) left once.

Rotate 9 bits (CF, r/m8) left once.

Rotate 9 bits (CF, /m8) left CL times.

Rotate 9 bits (CF, /m8) left CL times.
(

Rotate 9 bits (CF, /m8) left imm8
times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 17 bits (CF, /m16) left once.

Rotate 17 bits (CF, /m16) left CL
times.

Rotate 17 bits (CF, /m16) left imm8
times.

Rotate 33 bits (CF, /m32) left once.

Rotate 65 bits (CF, /m64) left once.
Uses a 6 bit count.

Rotate 33 bits (CF, /m32) left CL
times.

Rotate 65 bits (CF, /m64) left CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) left imm8
times.

Rotate 65 bits (CF, /m64) left imm8
times. Uses a 6 bit count.

Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, r/m8) right once.

Rotate 9 bits (CF, r/m8) right CL
times.

Rotate 9 bits (CF, r/m8) right CL
times.

RCL/RCR/ROL/ROR-—Rotate

Vol. 2B 4-309




INSTRUCTION SET REFERENCE, N-Z

Opcode**
Co0/3ib
REX +CO/3ib

D1/3
D3/3

C1/3ib

D1/3

REXW +D1/3
D3/3

REXW +D3 /3
C1/3ib
REXW +C1 /3
ib

DO /0

REX + D0 /0
D2 /0

REX +D2 /0
Co/0ib

REX+CO/0ib

D1/0
D3/0
C1/0ib

D1/0

Instruction

RCR r/m8,
imm8

RCR r/m8%*
imm8

RCR r/m16, 1
RCR r/m16, CL

RCR r/m16,
imm8

RCR r/m32,1

RCR r/m64,1

RCR r/m32, CL

RCR r/m64, CL

RCR r/m32,
imm8

RCR r/m64,
imm8

ROL r/m8, 1
ROL r/m8* 1
ROL r/m8, CL
ROL r/m8* CL

ROL /m8,
imm8

ROL r/m8%*
imm8

ROL r/m16,1
ROL r/m16, CL
ROL r/m16,
imm8

ROL r/m32,1

64-Bit
Mode
Valid
Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid

Compat/
Leg Mode
Valid

N.E.

Valid
Valid

Valid
Valid
N.E.
Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid

Description

Rotate 9 bits (CF, r/m8) right imm8
times.

Rotate 9 bits (CF, /m8) right imm8
times.

Rotate 17 bits (CF, r/m16) right once.

Rotate 17 bits (CF, r/m16) right CL
times.

Rotate 17 bits (CF, /m16) right imm8
times.

Rotate 33 bits (CF, /m32) right once.
Uses a 6 bit count.

Rotate 65 bits (CF, /m64) right once.
Uses a 6 bit count.

Rotate 33 bits (CF, r/m32) right CL
times.

Rotate 65 bits (CF, r/m64) right CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) right imm8
times.

Rotate 65 bits (CF, /m64) right imm8
times. Uses a 6 bit count.

Rotate 8 bits r/m8 left once.
Rotate 8 bits r/m8 left once

Rotate 8 bits r/m8 left CL times.
Rotate 8 bits r/m8left CL times.
Rotate 8 bits r/m8 left imm8 times.

Rotate 8 bits r/m8 left imm8 times.

Rotate 16 bits r/m16 left once.
Rotate 16 bits r/m16 left CL times.

Rotate 16 bits r/m16 left imm8
times.

Rotate 32 bits r/m32 left once.

4-310 Vol.2B

RCL/RCR/ROL/ROR-—Rotate



INSTRUCTION SET REFERENCE, N-Z

Opcode** Instruction 64-Bit Compat/  Description
Mode Leg Mode
REXW +D1/0 ROL r/m64, 1 Valid N.E. Rotate 64 bits r/m64 left once. Uses
a 6 bit count.
D3 /0 ROL r/m32,CL Valid Valid Rotate 32 bits /m32 left CL times.
REXW +D3/0 ROL r/m64,CL Valid N.E. Rotate 64 bits r/m64 left CL times.
Uses a 6 bit count.
C1/0ib ROL r/m32, Valid Valid Rotate 32 bits /m32 left imm8
imm8 times.
C1/0ib ROL r/m64, Valid N.E. Rotate 64 bits /m64 left imm8
imm8 times. Uses a 6 bit count.
DO ROR r/m8, 1 Valid Valid Rotate 8 bits r/m8right once.
REX + D0 /1 ROR r/m8* 1 Valid N.E. Rotate 8 bits r/m8right once.
D2 N ROR r/m8, CL  Valid Valid Rotate 8 bits r/m8right CL times.
REX +D2 /1 ROR r/m8* CL  Valid N.E. Rotate 8 bits r/m8right CL times.
CoO/ib ROR r/m8, Valid Valid Rotate 8 bits /m16 right imm8
imm8 times.
REX+CO/1ib ROR r/m8* Valid N.E. Rotate 8 bits /m16 right imm8
imm8 times.
D1/ ROR r/m16,1  Valid Valid Rotate 16 bits r/m16 right once.
D3 /1 ROR r/m16,CL Valid Valid Rotate 16 bits /m16 right CL times.
Ci/1ib ROR r/m16, Valid Valid Rotate 16 bits r/m16 right imm8
imm8 times.
D11 ROR r/m32,1  Valid Valid Rotate 32 bits r/m32 right once.
REXW +D1/1 ROR r/m64,1 Valid N.E. Rotate 64 bits r/m64 right once. Uses
a 6 bit count.
D3 /1 ROR r/m32,CL Valid Valid Rotate 32 bits r/m32 right CL times.
REXW +D3/1 ROR r/m64,CL Valid N.E. Rotate 64 bits r/m64 right CL times.
Uses a 6 bit count.
Ci/1ib ROR r/m32, Valid Valid Rotate 32 bits r/m32 right imm8
imm8 times.
REX.W +C1/1 ROR r/m64, Valid N.E. Rotate 64 bits r/m64 right imm8
ib imm8 times. Uses a 6 bit count.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

** See |A-32 Architecture Compatibility section below.

RCL/RCR/ROL/ROR-—Rotate

Vol.2B 4-311




INSTRUCTION SET REFERENCE, N-Z

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit
positions specified in the second operand (count operand) and stores the result in the
destination operand. The destination operand can be a register or a memory loca-
tion; the count operand is an unsigned integer that can be an immediate or a value in
the CL register. In legacy and compatibility mode, the processor restricts the count to
a number between 0 and 31 by masking all the bits in the count operand except the
5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits
toward more-significant bit positions, except for the most-significant bit, which is
rotated to the least-significant bit location. The rotate right (ROR) and rotate through
carry right (RCR) instructions shift all the bits toward less significant bit positions,
except for the least-significant bit, which is rotated to the most-significant bit loca-
tion.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction
shifts the CF flag into the least-significant bit and shifts the most-significant bit into
the CF flag. The RCR instruction shifts the CF flag into the most-significant bit and
shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the
original value of the CF flag is not a part of the result, but the CF flag receives a copy
of the bit that was shifted from one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases
(except that a zero-bit rotate does nothing, that is affects no flags). For left rotates,
the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the most-
significant bit of the result. For right rotates, the OF flag is set to the exclusive OR of
the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Use of REX.W promotes the first operand to 64 bits and causes
the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the rotation count to 5 bits, resulting
in @ maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)

SIZE « OperandSize;

CASE (determine count) OF
SIZE«8:  tempCOUNT « (COUNT AND 1FH) MOD 9;
SIZE «~ 16 tempCOUNT « (COUNT AND 1FH) MOD 17;
SIZE «— 32:  tempCOUNT <« COUNT AND 1FH;

4-312 Vol.2B RCL/RCR/ROL/ROR-—Rotate



INSTRUCTION SET REFERENCE, N-Z

SIZE <~ 64:  tempCOUNT «— COUNT AND 3FH;
ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT = 0)
DO
tempCF « MSB(DEST);
DEST « (DEST * 2) + CF;
CF « tempCF;
tempCOUNT « tempCOUNT - 1;
0D;
ELIHW;
IF COUNT =1
THEN OF « MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;

(* RCR instruction operation *)
IF COUNT =1
THEN OF « MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;
WHILE (tempCOUNT = 0)
DO
tempCF « LSB(SRC);
DEST « (DEST / 2) + (CF * 25128y,
CF « tempCF;
tempCOUNT « tempCOUNT - 1;
0D;

(* ROL and ROR instructions *)
SIZE « OperandSize;
CASE (determine count) OF

SIZE « 8: tempCOUNT «

COUNT AND 1FH) MOD 8; (* Mask count before MOD *)

( )
SIZE «~ 16:  tempCOUNT « (COUNT AND 1FH) MOD 16;
SIZE «— 32 tempCOUNT « (COUNT AND 1FH) MOD 32;
SIZE «— 64:  tempCOUNT « (COUNT AND 1FH) MOD 64;

ESAC

(* ROL instruction operation *)
IF (tempCOUNT > 0O) (* Prevents updates to CF *)
WHILE (tempCOUNT = 0)
DO

RCL/RCR/ROL/ROR-—Rotate Vol.2B 4-313



INSTRUCTION SET REFERENCE, N-Z

tempCF « MSB(DEST);
DEST « (DEST * 2) + tempCF;
tempCOUNT « tempCOUNT - 1;
(0]D3
ELIHW;
CF « LSB(DEST);
IF COUNT =1
THEN OF <« MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;
Fl;

(* ROR instruction operation *)
IF tempCOUNT > 0O) (* Prevent updates to CF *)
WHILE (tempCOUNT = 0)
DO
tempCF « LSB(SRC);
DEST « (DEST / 2) + (tempCF * 25128y,
tempCOUNT « tempCOUNT - 1;
OD;
ELIHW;
CF < MSB(DEST);
IF COUNT =1
THEN OF «— MSB(DEST) XOR MSB — 1(DEST);
ELSE OF is undefined;
Fl;
Fl;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for
single-bit rotates (see “Description” above); it is undefined for multi-bit rotates. The
SF, ZF, AF, and PF flags are not affected.

Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

4-314 Vol. 2B RCL/RCR/ROL/ROR-—Rotate



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

RCL/RCR/ROL/ROR-—Rotate Vol.2B 4-315



INSTRUCTION SET REFERENCE, N-Z

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF53/r  RCPPS xmm1, Valid Valid Computes the approximate reciprocals
xmmZ2/m128 of the packed single-precision floating-
point values in xmmZ2/m128 and stores
the results in xmm1.

Description

Performs a SIMD computation of the approximate reciprocals of the four packed
single-precision floating-point values in the source operand (second operand) stores
the packed single-precision floating-point results in the destination operand. The
source operand can be an XMM register or a 128-bit memory location. The destina-
tion operand is an XMM register. See Figure 10-5 in the Inte/l® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for an illustration of a SIMD single-
precision floating-point operation.

The relative error for this approximation is:

IRelative Error| < 1.5 % 2712

The RCPPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to [1.11111111110100000000000B*212°| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2126|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROXIMATE(1.0/(SRC[31:0]));
DEST[63:32] «~ APPROXIMATE(1.0/(SRC[63:32]));
DEST[95:64] « APPROXIMATE(1.0/(SRC[95:64]));
DEST[127:96] <« APPROXIMATE(1.0/(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RCCPS __m128 _mm_rcp_ps(__m128 a)

4-316 Vol.2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values Vol.2B 4-317



INSTRUCTION SET REFERENCE, N-Z

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

4-318 Vol.2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OF 53 RCPSS xmm1, Valid Valid Computes the approximate reciprocal of
Ir xmm2/m32 the scalar single-precision floating-point
value in xmmZ2/m32 and stores the result
in xmm1.
Description

Computes of an approximate reciprocal of the low single-precision floating-point
value in the source operand (second operand) and stores the single-precision
floating-point result in the destination operand. The source operand can be an XMM
register or a 32-bit memory location. The destination operand is an XMM register.
The three high-order doublewords of the destination operand remain unchanged.
See Figure 10-6 in the Inte/® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point oper-
ation.

The relative error for this approximation is:

[Relative Error| < 1.5 * 2712

The RCPSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). Tiny results
are always flushed to 0.0, with the sign of the operand. (Input values greater than or
equal to [1.11111111110100000000000B*212°| are guaranteed to not produce tiny
results; input values less than or equal to |1.00000000000110000000001B*2125|
are guaranteed to produce tiny results, which are in turn flushed to 0.0; and input
values in between this range may or may not produce tiny results, depending on the
implementation.) When a source value is an SNaN or QNaN, the SNaN is converted to
a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] <~ APPROX (1.0/(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RCPSS __m128 _mm_rcp_ss(__m128 a)

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values Vol.2B 4-319



INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC(0) For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

4-320 Vol.2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values Vol.2B 4-321



INSTRUCTION SET REFERENCE, N-Z

RDMSR—Read from Model Specific Register

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 32 RDMSR Valid Valid Read MSR specified by ECX into
EDX:EAX.
NOTES:

* See IA-32 Architecture Compatibility section below.

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architec-
ture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the
high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32
bits. (On processors that support the Intel 64 architecture, the high-order 32 bits of
each of RAX and RDX are cleared.) If fewer than 64 bits are implemented in the MSR
being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.

This instruction must be executed at privilege level 0 or in real-address mode; other-
wise, a general protection exception #GP(0) will be generated. Specifying a reserved
or unimplemented MSR address in ECX will also cause a general protection excep-
tion.

The MSRs control functions for testability, execution tracing, performance-moni-
toring, and machine check errors. Appendix B, “Model-Specific Registers (MSRs),” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
all the MSRs that can be read with this instruction and their addresses. Note that
each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported
(CPUID.01H:EDX[5] = 1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced
into the IA-32 Architecture with the Pentium processor. Execution of this instruction
by an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

EDX:EAX « MSRIECX];

4-322 Vol.2B RDMSR—Read from Model Specific Register



INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the value in ECX specifies a reserved or unimplemented MSR
address.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR
address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or unimple-
mented MSR address.

#UD If the LOCK prefix is used.

RDMSR—Read from Model Specific Register Vol.2B 4-323



INSTRUCTION SET REFERENCE, N-Z

RDPMC—Read Performance-Monitoring Counters

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.
Description

Loads the performance-monitoring counter specified in the ECX register into regis-
ters EDX:EAX. (On processors that support the Intel 64 architecture, the high-order
32 bits of RCX are ignored.) The EDX register is loaded with the high-order 8 bits of
the counter and the EAX register is loaded with the low-order 32 bits. (On processors
that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX
are cleared.) See below for the treatment of the EDX register for “fast” reads.

The ECX register selects one of two type of performance counters, specifies the index
relative to the base of each counter type, and selects “fast” read mode if supported.
The two counter types are :

®* General-purpose or special-purpose performance counters: The number of
general-purpose counters is model specific if the processor does not support
architectural performance monitoring, see Chapter 18 of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3B. Special-purpose
counters are available only in selected processor members, see Section 18.19,
18.20 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B. This counter type is selected if ECX[30] is clear.

®* Fixed-function performance counter. The number fixed-function performance
counters is enumerated by CPUID 0AH leaf. See Chapter 18 of Inte/® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B. This counter type
is selected if ECX[30] is set.

ECX[29:0] specifies the index. The width of general-purpose performance counters
are 40-bits for processors that do not support architectural performance monitoring
counters.The width of special-purpose performance counters are implementation
specific. The width of fixed-function performance counters and general-purpose
performance counters on processor supporting architectural performance monitoring
are reported by CPUID 0AH leaf.

Table 4-2 lists valid indices of the general-purpose and special-purpose performance
counters according to the derived displayed_family/displayed_model values of
CPUID encoding for each processor family.

4-324 \Vol.2B RDPMC—Read Performance-Monitoring Counters



INSTRUCTION SET REFERENCE, N-Z

Table 4-2. Valid General and Special Purpose Performance Counter Index Range for

RDPMC
Processor Family Displayed_Family_Dis | Valid PMC General-
played_Model/ Other Index Range purpose
Signatures Counters
P6 06H_01H, 06H_03H, 0,1 0.1
06H_05H, 06H_06H,
06H_07H, 06H_08H,
06H_0AH, 06H_0BH
Pentium® 4, Intel® Xeon OFH_OOH,0FH_OTH, | >0and<17 | >0and<17
processors OFH_OZ2H
Pentium 4, Intel Xeon processors | (OFH_O3H, OFH_04H, >0and<17 >0and<17
OFH_06H) and (L3 is
absent)
Pentium M processors 06H_09H, 06H_ODH 0,1 0,1
64-bit Intel Xeon processors OFH_O3H, OFH_04H) >0and<25 >0and<17
with L3 and (L3 is present)
Intel® Core™ Solo and Intel® 06H_OEH 0,1 0,1
Core™ Duo processors, Dual-core
Intel® Xeon® processor LV
Intel® Core™2 Duo processor, 06H_OFH 0,1 01
Intel Xeon processor 3000,
5100, 5300, 7300 Series -
general-purpose PMC
Intel Xeon processors 7100 (OFH_O6H) and (L3 is >0and<25 >0and<17
series with L3 present)
Intel® Core™2 Duo processor 06H_17H 0,1 01
family, Intel Xeon processor
family - general-purpose PMC
Intel® Atom™ processor family 06H_1CH 0,1 01
Intel® Core™i7 processor 06H_1AH 0-3 0123

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow”
(40-bit) reads on the first 18 performance counters. Selected this option using
ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected perfor-
mance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX
and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and Intel
Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25
are 32-bit counters. EDX is cleared after executing RDPMC for these counters. On
Intel Xeon processor 7100 series with L3, performance counters with indices 18-25

are also 32-bit counters.

RDPMC—Read Performance-Monitoring Counters

Vol.2B 4-325




INSTRUCTION SET REFERENCE, N-Z

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, and 5300 series,
the fixed-function performance counters are 40-bits wide; they can be accessed by
RDMPC with ECX between from 4000_0000H and 4000_0002H.

When in protected or virtual 8086 mode, the performance-monitoring counters
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as
follows. When the PCE flag is set, the RDPMC instruction can be executed at any priv-
ilege level; when the flag is clear, the instruction can only be executed at privilege
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed
to count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads. Appendix A, “"Performance Monitoring Events,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
the events that can be counted for various processors in the Intel 64 and IA-32
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that
all the events caused by the preceding instructions have been completed or that
events caused by subsequent instructions have not begun. If an exact event count is
desired, software must insert a serializing instruction (such as the CPUID instruction)
before and/or after the RDPMC instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads,
a serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the
event count is stored in the full EAX and EDX registers. The RDPMC instruction was
introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.

Operation
(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300 series*)
Most significant counter bit (MSCB) = 39

IF (CR4.PCE = 1) or (CPL =0) or (CRO.PE = 0))
THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)
EAX <« IA32_FIXED_CTR(ECX)[30:0];
EDX « IA32_FIXED_CTR(ECX)[MSCB:32];
ELSE IF (ECX[30] = Oand ECX[29:0] in valid general-purpose counter range)
EAX « PMC(ECX[30:0])[31:0];
EDX « PMC(ECX[30:0])[MSCB:32];

4-326 Vol.2B RDPMC—Read Performance-Monitoring Counters



INSTRUCTION SET REFERENCE, N-Z

ELSE (* ECX is not valid or CR4.PCEis O and CPLis 1, 2, or 3 and CRO.PEis 1 *)
#GP(0);
Fl;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX=0or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CRO.PE =0))
THEN
EAX « PMC(ECX)[31:0];
EDX «- PMC(ECX)[39:32];
ELSE (* ECXisnot O or 1 or CR4.PCEis 0 and CPLis 1, 2, or 3 and CRO.PEis 1 *)
#GP(0);
Fl;
(* Processors with CPUID family 15 *)
IF ((CR4.PCE = 1) or (CPL = 0) or (CRO.PE = 0))
THEN IF (ECX[30:0] = 0:17)
THEN IF ECX[31]1=0
THEN
EAX « PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX « PMC(ECX[30:0])[39:32];
ELSE (* ECX[31]=1%)
THEN
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « 0;
Fl;
ELSE IF (*64-bit Intel Xeon processor with L3 *)
THEN IF (ECX[30:0]=18:25)
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « 0;
Fl;
ELSE IF (*Intel Xeon processor 7100 series with L3 *)
THEN IF (ECX[30:0] =18:25)
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX «- 0;
FI;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-5. *)
GP(0);
FI;
ELSE (* CR4.PCE=0and (CPL=1, 2, or 3)and CRO.PE = 1 *)
#GP(0);
Fl;

Flags Affected

None.

RDPMC—Read Performance-Monitoring Counters Vol.2B 4-327



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#UD

If the current privilege level is not 0 and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#UD

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#UD

If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)

#UD

4-328 Vol.2B

If the current privilege level is not 0 and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified in ECX[30:0]
(see Table 4-2).

If the LOCK prefix is used.

RDPMC—Read Performance-Monitoring Counters



INSTRUCTION SET REFERENCE, N-Z

RDTSC—Read Time-Stamp Counter

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 31 RDTSC Valid Valid Read time-stamp counter into
EDX:EAX.
Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the
MSR and the EAX register is loaded with the low-order 32 bits. (On processors that
support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are
cleared.)

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter”
in Chapter 18 of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag
is clear, the RDTSC instruction can be executed at any privilege level; when the flag
is set, the instruction can only be executed at privilege level 0. (When in real-address
mode, the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when
executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily
wait until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the read operation is
performed.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CRO.PE=0)
THEN EDX:EAX «— TimeStampCounter;
ELSE (* CR4.TSD =1 and (CPL =1, 2, or 3)and CRO.PE = 1 *)
#GP(0);
Fl;

RDTSC—Read Time-Stamp Counter Vol.2B 4-329



INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than
0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-330 Vol.2B RDTSC—Read Time-Stamp Counter



INSTRUCTION SET REFERENCE, N-Z

RDTSCP—Read Time-Stamp Counter and Processor ID

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 01 F9 RDTSCP Valid Valid Read 64-bit time-stamp counter
and 32-bit IA32_TSC_AUX value
into EDX:EAX and ECX.
Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into
the EDX:EAX registers and also loads the IA32_TSC_AUX MSR (address
C000_0103H) into the ECX register. The EDX register is loaded with the high-order
32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of
the IA32_TSC MSR; and the ECX register is loaded with the low-order 32-bits of
IA32_TSC_AUX MSR. On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “"Time Stamp Counter”
in Chapter 18 of the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in
register CR4 restricts the use of the RDTSCP instruction as follows. When the TSD
flag is clear, the RDTSCP instruction can be executed at any privilege level; when the
flag is set, the instruction can only be executed at privilege level 0. (When in real-
address mode, the RDTSCP instruction is always enabled.)

The RDTSCP instruction waits until all previous instructions have been executed
before reading the counter. However, subsequent instructions may begin execution
before the read operation is performed.

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001H, EDX
bit 27. If the bit is set to 1 then RDTSCP is present on the processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CRO.PE=0)
THEN
EDX:EAX « TimeStampCounter;
ECX «— IA32_TSC_AUX[31:0];
ELSE (* CR4.TSD =1 and (CPL =1, 2, or 3)and CRO.PE = 1 *)
#GP(0);
Fl;

RDTSCP—Read Time-Stamp Counter and Processor ID Vol.2B 4-331



INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions

#GP(0)

#UD

If the TSD flag in register CR4 is set and the CPL is greater than
0.

If the LOCK prefix is used.
If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Real-Address Mode Exceptions

#UD

If the LOCK prefix is used.
If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions

#GP(0)
#UD

If the TSD flag in register CR4 is set.
If the LOCK prefix is used.
If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-332 Vol.2B

RDTSCP—Read Time-Stamp Counter and Processor ID



INSTRUCTION SET REFERENCE, N-Z

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Opcode
F36C

F36C

F36D

F36D

F3 6D

F3 A4

F3 REX.W A4
F3 A5

F3 A5

F3 REX.W A5
F3 6€E

F3 REX.W 6E
F3 6F

F3 6F

F3 REX.W 6F
F3 AC

F3 REX.W AC

F3 AD

Instruction

REP INS m8, DX

REP INS m8, DX

REP INS m16, DX

REP INS m32, DX

REP INS r/m32, DX

REP MOVS m8, m8

REP MOVS m8, m8

REP MOVS m16,

mi16

REP MOVS m32,

m32

REP MOVS m64,

m64

REP OUTS DX, /m8

REP OUTS DX,
r/m8*

REP OUTS DX,
/mi16

REP OUTS DX,
r/m32

REP OUTS DX,
r/m32

REP LODS AL
REP LODS AL

REP LODS AX

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.

Valid

Description

Input (E)CX bytes from port DX
into ES:[(E)DI].

Input RCX bytes from port DX
into [RDI].

Input (E)CX words from port DX
into ES:[(E)DL.]

Input (E)CX doublewords from
port DX into ES:[(E)DI].

Input RCX default size from port
DX into [RDI].

Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

Move RCX bytes from [RSI] to
[RDI].

Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

Move (E)CX doublewords from
DS:[(E)SI] to ES:[(E)DI].

Move RCX quadwords from [RSI]
to [RDI].

Output (E)CX bytes from
DS:[(E)SI] to port DX.

Output RCX bytes from [RSI] to
port DX.

Output (E)CX words from
DS:[(E)SI] to port DX.

Output (E)CX doublewords from
DS:[(E)SI] to port DX.

Output RCX default size from
[RSI] to port DX.

Load (E)CX bytes from DS:[(E)SI]
to AL.

Load RCX bytes from [RSI] to
AL

Load (E)CX words from DS:[(E)SI]
to AX.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Vol.2B 4-333




INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 AD REP LODS EAX Valid Valid Load (E)CX doublewords from
DS:[(E)SI] to EAX.
F3 REX.W AD REP LODS RAX Valid N.E. Load RCX quadwords from [RSI]
to RAX.
F3 AA REP STOS m8 Valid Valid Fill (E)CX bytes at ES:[(E)DI] with
AL
F3 REX.W AA REP STOS m8 Valid N.E. Fill RCX bytes at [RDI] with AL.
F3 AB REP STOS m16 Valid Valid Fill (E)CX words at ES:[(E)DI]
with AX.
F3 AB REP STOS m32 Valid Valid Fill (E)CX doublewords at
ES:[(E)DI] with EAX.
F3 REX.W AB REP STOS m64 Valid N.E. Fill RCX quadwords at [RDI] with
RAX.
F3 A6 REPE CMPS m8, m8 Valid Valid Find nonmatching bytes in
ES:[(E)DI] and DS:[(E)SI].
F3 REX.W A6 REPE CMPS m8, m8 Valid N.E. Find non-matching bytes in
[RDI] and [RSI].
F3 A7 REPE CMPS m16, Valid Valid Find nonmatching words in
m16 ES:[(E)DI] and DS:[(E)SI].
F3 A7 REPE CMPS m32, Valid Valid Find nonmatching doublewords
m32 in ES:[(E)DI] and DS:[(E)SI].
F3 REXW A7 REPE CMPS m64, Valid N.E. Find non-matching quadwords
mo64 in [RDI] and [RSI].
F3 AE REPE SCAS m8 Valid Valid Find non-AL byte starting at
ES:[(E)DI].
F3 REX.W AE REPE SCAS m8 Valid N.E. Find non-AL byte starting at
[RDI].
F3 AF REPE SCAS m16 Valid Valid Find non-AX word starting at
ES:[(E)DI].
F3 AF REPE SCAS m32 Valid Valid Find non-EAX doubleword
starting at ES:[(E)DI].
F3 REX.W AF REPE SCAS m64 Valid N.E. Find non-RAX quadword
starting at [RDI].
F2 A6 REPNE CMPS m8, Valid Valid Find matching bytes in ES:[(E)DI]
m8 and DS:[(E)SI].
F2 REX.W A6 REPNE CMPS m8, Valid N.E. Find matching bytes in [RDI] and
m8 [RSI].
4-334 Vol.2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix




INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit  Compat/ Description
Mode Leg Mode
F2 A7 REPNE CMPS m16, Valid Valid Find matching words in
m16 ES:[(E)DI] and DS:[(E)SI].
F2 A7 REPNE CMPS m32,  Valid Valid Find matching doublewords in
m32 €S:[(E)DI] and DS:[(E)SI].
F2 REXW A7 REPNE CMPS m64, Valid N.E. Find matching doublewords in
m64 [RDI] and [RSI].
F2 AE REPNE SCAS m8 Valid Valid Find AL, starting at ES:[(E)DI].
F2 REX.W AE REPNE SCAS m8 Valid N.E. Find AL, starting at [RDI].
F2 AF REPNE SCASm16  Valid Valid Find AX, starting at ES:[(E)DI].
F2 AF REPNE SCAS m32  Valid Valid Find EAX, starting at ES:[(E)DI].
F2 REX.W AF REPNE SCAS m64  Valid N.E. Find RAX, starting at [RDI].
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Repeats a string instruction the number of times specified in the count register or
until the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE
(repeat while equal), REPNE (repeat while not equal), REPZ (repeat while zero), and
REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of
the string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS,
and STOS instructions, and the REPE, REPNE, REPZ, and REPNZ prefixes can be
added to the CMPS and SCAS instructions. (The REPZ and REPNZ prefixes are synon-
ymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP
prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of
instructions, use the LOOP instruction or another looping construct. All of these
repeat prefixes cause the associated instruction to be repeated until the count in
register is decremented to 0. See Table 4-3.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix Vol.2B 4-335



INSTRUCTION SET REFERENCE, N-Z

Table 4-3. Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2
REP RCX or (E)CX=0 None

REPE/REPZ RCX or (E)CX=0 ZF=0

REPNE/REPNZ RCX or (E)CX=0 ZF=1

NOTES:

* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes. In
64-bit mode, if default operation size is 32 bits, the count register becomes RCX when a REX.W
prefix is used.

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state.
When both termination conditions are tested, the cause of a repeat termination can
be determined either by testing the count register with a JECXZ instruction or by
testing the ZF flag (with a JZ, JNZ, or JNE instruction).

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not
require initialization because both the CMPS and SCAS instructions affect the ZF flag
according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When
this happens, the state of the registers is preserved to allow the string operation to
be resumed upon a return from the exception or interrupt handler. The source and
destination registers point to the next string elements to be operated on, the EIP
register points to the string instruction, and the ECX register has the value it held
following the last successful iteration of the instruction. This mechanism allows long
string operations to proceed without affecting the interrupt response time of the
system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is
prefixed with REPE or REPNE, the EFLAGS value is restored to the state prior to the
execution of the instruction. Since the SCAS and CMPS instructions do not use
EFLAGS as an input, the processor can resume the instruction after the page fault
handler.

If a debug exception occurs, non-enabled debug breakpoints matched on previous
iterations of the REP operation may or may not be reported in the DR6 register.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle
the rate at which these instructions execute. Note that a REP STOS instruction is the
fastest way to initialize a large block of memory.

In 64-bit mode, default operation size is 32 bits. The default count register is RCX for
REP INS and REP OUTS; it is ECX for other instructions. REX.W does not promote
operation to 64-bit for REP INS and REP OUTS. However, using a REX prefix in the
form of REX.W does promote operation to 64-bit operands for other

4-336 Vol.2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix



INSTRUCTION SET REFERENCE, N-Z

REP/REPNE/REPZ/REPNZ instructions. See the summary chart at the beginning of
this section for encoding data and limits.

Operation

IF AddressSize =16
THEN
Use CX for CountReg;
ELSE IF AddressSize = 64 and REX.W used
THEN Use RCX for CountReg; FI;
ELSE
Use ECX for CountReg;
Fl;
WHILE CountReg # 0
DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg « (CountReg - 1);
IF CountReg=0
THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)
THEN exit WHILE loop; FI;
0D;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the
EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix Vol.2B 4-337



INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

C3 RET Valid Valid Near return to calling procedure.
(B RET Valid Valid Far return to calling procedure.
C2 iw RET imm16 Valid Valid Near return to calling procedure and pop

imm16 bytes from stack.

CAiw RET imm16 Valid Valid Far return to calling procedure and pop
imm16 bytes from stack.

Description

Transfers program control to a return address located on the top of the stack. The
address is usually placed on the stack by a CALL instruction, and the return is made
to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after
the return address is popped; the default is none. This operand can be used to
release parameters from the stack that were passed to the called procedure and are
no longer needed. It must be used when the CALL instruction used to switch to a new
procedure uses a call gate with a non-zero word count to access the new procedure.
Here, the source operand for the RET instruction must specify the same number of
bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

® Near return — A return to a calling procedure within the current code segment
(the segment currently pointed to by the CS register), sometimes referred to as
an intrasegment return.

®* Farreturn — A return to a calling procedure located in a different segment than
the current code segment, sometimes referred to as an intersegment return.

¢ Inter-privilege-level far return — A far return to a different privilege level
than that of the currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the
section titled “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64

and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed infor-

mation on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer
(offset) from the top of the stack into the EIP register and begins program execution
at the new instruction pointer. The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from
the top of the stack into the EIP register, then pops the segment selector from the top
of the stack into the CS register. The processor then begins program execution in the
new code segment at the new instruction pointer.

4-338 Vol.2B RET—Return from Procedure



INSTRUCTION SET REFERENCE, N-Z

The mechanics of an inter-privilege-level far return are similar to an intersegment
return, except that the processor examines the privilege levels and access rights of
the code and stack segments being returned to determine if the control transfer is
allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the
RET instruction during an inter-privilege-level return if they refer to segments that
are not allowed to be accessed at the new privilege level. Since a stack switch also
occurs on an inter-privilege level return, the ESP and SS registers are loaded from
the stack.

If parameters are passed to the called procedure during an inter-privilege level call,
the optional source operand must be used with the RET instruction to release the
parameters on the return. Here, the parameters are released both from the called
procedure’s stack and the calling procedure’s stack (that is, the stack being returned
to).

In 64-bit mode, the default operation size of this instruction is the stack size, i.e. 64
bits.

Operation

(* Near return *)
IF instruction = Near return

THEN;
IF OperandSize = 32
THEN
IF top 4 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP « Pop();
ELSE
IF OperandSize = 64
THEN
IF top 8 bytes of stack not within stack limits
THEN #SS(0); FI;
RIP « Pop();
ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP « Pop();
tempEIP « tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempEIP;
Fl;
Fl;

RET—Return from Procedure Vol.2B 4-339



INSTRUCTION SET REFERENCE, N-Z

IF instruction has immediate operand
THEN IF StackAddressSize = 32
THEN
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE
IF StackAddressSize = 64
THEN
RSP « RSP + SRC; (* Release parameters from stack *)
ELSE (* StackAddressSize = 16 *)
SP « SP + SRC; (* Release parameters from stack *)
Fl;
Fl;
Fl;
Fl;

(* Real-address mode or virtual-8086 mode *)
IF ((PE=0)or (PE=1 AND VM = 1)) and instruction = far return
THEN
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP « Pop();
tempEIP «— tempEIP AND OO00FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempEIP;
CS « Pop(); (* 16-bit pop *)
Fl;
IF instruction has immediate operand
THEN
SP « SP + (SRC AND FFFFH); (* Release parameters from stack *)
FI;
Fl;

(* Protected mode, not virtual-8086 mode *)

IF (PE=1and VM =0 and IA32_EFER.LMA = 0) and instruction = far RET
THEN

4-340 Vol.2B RET—Return from Procedure



INSTRUCTION SET REFERENCE, N-Z

IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits
THEN #SS(0); FI;

Fl;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL # return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); Fl:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;
Fl;

Fl;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP < EIP AND OO0OFFFFH;
CS « Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* Release parameters from stack *)

RET—Return from Procedure Vol. 2B 4-341



INSTRUCTION SET REFERENCE, N-Z

Fl;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL
THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL = RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
CPL « ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP < Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor
information also loaded *)
CS(RPL) «— CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment
descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;
ELSE (* OperandSize = 16 *)
EIP < Pop();
EIP «— EIP AND OOOOQFFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) «— CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;

4-342 \/ol.2B RET—Return from Procedure



INSTRUCTION SET REFERENCE, N-Z

Fl;

FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)
THEN SegmentSelector «— O; (* Segment selector invalid *)
Fl;
0D;

For each of ES, FS, GS, and DS
DO
IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or
readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor's DPL < CPL or RPL of code segment's
segment selector
THEN SegmentSelector « O; (* Segment selector invalid *)
oD;
ESP « ESP + SRC; (* Release parameters from calling procedure’s stack *)

(* IA-32e Mode *)
IF (PE=1and VM =0 and IA32_EFER.LMA = 1) and instruction = far RET

THEN
IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space
THEN #SS(0); Fl;
ELSE
IF OperandSize = 16
THEN
IF second word on stack is not within stack limits
THEN #SS(0); FI;
IF first or second word on stack is not in canonical space
THEN #SS(0); FI;
ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space
THEN #SS(0); Fl;
Fl
Fl;

IF return code segment selector is NULL

RET—Return from Procedure Vol.2B 4-343



INSTRUCTION SET REFERENCE, N-Z

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit
THEN GP(selector); Fl;
IF return code segment selector addresses descriptor in non-canonical space
THEN GP(selector); Fl;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1
THEN #GP(selector); FI;
IF return code segment selector RPL < CPL
THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL # return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present
THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO IA-32€-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;
FI;
Fl;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE
IF OperandSize = 16
THEN
EIP « Pop();
EIP < EIP AND O00OFFFFH;
CS « Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* Release parameters from stack *)

4-344 \/ol. 2B RET—Return from Procedure



INSTRUCTION SET REFERENCE, N-Z

ELSE (* OperandSize = 64 *)
RIP « Pop();
CS « Pop(); (* 64-bit pop, high-order 48 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
Fl;
Fl;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)
THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL
THEN
IF new CS descriptor L-bit = 0
THEN #GP(selector);
IF stack segment selector RPL = 3
THEN #GP(selector);
Fl;
IF return stack segment descriptor is not within descriptor table limits
THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space
THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL = RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
CPL < ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor

RET—Return from Procedure

Vol. 2B 4-345



INSTRUCTION SET REFERENCE, N-Z

information also loaded *)
CS(RPL) «— CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
ESP « tempESP;
SS « tempSS;
ELSE
IF OperandSize = 16
THEN
EIP « Pop();
EIP < EIP AND O00OFFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) «— CPL;
ESP « ESP + SRC; (* release parameters from called
procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 16-bit pop; segment descriptor information loaded *)
ESP « tempESP;
SS « tempSS;
ELSE (* OperandSize = 64 *)
RIP «— Pop();
CS « Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s
stack *)
tempESP « Pop();
tempSS « Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;
Fl;
Fl;

FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)
THEN SegmentSelector «— O; (* SegmentSelector invalid *)
Fl;
oD;

4-346 \ol.2B RET—Return from Procedure



INSTRUCTION SET REFERENCE, N-Z

For each of ES, FS, GS, and DS

DO
IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor's DPL < CPL or RPL of code segment’s segment selector

THEN SegmentSelector «— O; (* SegmentSelector invalid *)
0D;

ESP ESP + SRC; (* Release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code
segment limit

#GP(selector) If the RPL of the return code segment selector is less then the
CPL.

If the return code or stack segment selector index is not within
its descriptor table limits.

If the return code segment descriptor does not indicate a code
segment.

If the return code segment is non-conforming and the segment
selector’s DPL is not equal to the RPL of the code segment’s
segment selector

If the return code segment is conforming and the segment
selector’s DPL greater than the RPL of the code segment’s
segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.
#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and

alignment checking is enabled.

RET—Return from Procedure Vol. 2B 4-347



INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#SS

If the return instruction pointer is not within the return code
segment limit

If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the return instruction pointer is not within the return code
segment limit

If the top bytes of stack are not within stack limits.
If a page fault occurs.

If an unaligned memory access occurs when alignment checking
is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

4-348 Vol.2B

If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code
segment limit.

If the stack segment selector is NULL going back to compatibility
mode.

If the stack segment selector is NULL going back to CPL3 64-bit
mode.

If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.

If the return code segment selector is NULL.

If the proposed segment descriptor for a code segment does not
indicate it is a code segment.

If the proposed new code segment descriptor has both the D-bit
and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.

If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.

RET—Return from Procedure



INSTRUCTION SET REFERENCE, N-Z

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

RET—Return from Procedure Vol. 2B 4-349



INSTRUCTION SET REFERENCE, N-Z

ROUNDPD — Round Packed Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode LegMode
66 OF 3A  ROUNDPD xmm1, Valid Valid Round packed double precision
09/rib xmm2/m128, imm8 floating-point values in

xmmZ2/m128 and place the result in
xmm1. The rounding mode is
determined by imm8.

Description

Round the 2 double-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

8 3210

Reserved

P — Precision Mask; 0: normal, 1: inexact
RS — Rounding select; 1: MXCSR.RC, 0: Inm8.RC
RC — Rounding mode

Figure 4-13. Bit Control Fields of Inmediate Byte for ROUNDXxXx Instruction

4-350 Vol.2B ROUNDPD — Round Packed Double Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

Table 4-4. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding RCField | Description
Mode Setting
Round to 00B Rounded result is the closest to the infinitely precise result. If two
nearest (even) values are equally close, the result is the even value (i.e., the integer
value with the least-significant bit of zero).

Round down 01B Rounded result is closest to but no greater than the infinitely precise
(toward —) result.
Round up 10B Rounded result is closest to but no less than the infinitely precise
(toward +w0) result.
Round toward | 11B Rounded result is closest to but no greater in absolute value than the
zero (Truncate) infinitely precise result.

Operation

IF (imm[2] =="1)

THEN  //rounding mode is determined by MXCSR.RC
DEST[63:0] < ConvertDPFPTolnteger_M(SRC[63:0]);
DEST[127:64] € ConvertDPFPTolnteger_M(SRC[127:64]);

ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] < ConvertDPFPTolnteger_Imm(SRC[63:0));
DEST[127:64] € ConvertDPFPTolnteger_Imm(SRC[127:64]);

Fl

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode);
__m128 mm_floor_pd(__m128d s1);
__m128 mm_ceil_pd(__m128ds1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] =="0; ifimm[3] == "1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPD.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

ROUNDPD — Round Packed Double Precision Floating-Point Values Vol.2B 4-351




INSTRUCTION SET REFERENCE, N-Z

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.

4-352 Vol.2B ROUNDPD — Round Packed Double Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

ROUNDPD — Round Packed Double Precision Floating-Point Values Vol.2B 4-353



INSTRUCTION SET REFERENCE, N-Z

ROUNDPS — Round Packed Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode LegMode
66 OF 3A 08 ROUNDPS xmm1, Valid Valid Round packed single precision
Irib xmm2/m128, imm8 floating-point values in

xmmZ2/m128 and place the result
in xmm1. The rounding mode is
determined by imm8.

Description

Round the 4 single-precision floating-point values in the source operand (second
operand) using the rounding mode specified in the immediate operand (third
operand) and place the results in the destination operand (first operand). The
rounding process rounds each input floating-point value to an integer value and
returns the integer result as a single-precision floating-point value.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2]=="1)

THEN  //rounding mode is determined by MXCSR.RC
DEST[31:0] € ConvertSPFPTolnteger_M(SRC[31:0]);
DEST[63:32] € ConvertSPFPTolnteger_M(SRC[63:32]);
DEST[95:64] < ConvertSPFPTolnteger_M(SRC[95:64]);
DEST[127:96] €< ConvertSPFPTolnteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC
DEST[31:0] €« ConvertSPFPTolnteger_Imm(SRC[31:0]);
DEST[63:32] € ConvertSPFPTolnteger_Imm(SRC[63:32]);
DEST[95:64] € ConvertSPFPTolnteger_Imm(SRC[95:64]);
DEST[127:96] €< ConvertSPFPTolnteger_Imm(SRC[127:96]);

Fl;

4-354 Vol. 2B ROUNDPS — Round Packed Single Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode);
__m128 mm_floor_ps(__m128s1);
__m128 mm_ceil_ps(__m128s1);

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] =="0; ifimm[3] =="1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDPS.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.

ROUNDPS — Round Packed Single Precision Floating-Point Values Vol.2B 4-355



INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

4-356 Vol. 2B ROUNDPS — Round Packed Single Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

ROUNDSD — Round Scalar Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A0B  ROUNDSD xmm1, Valid Valid Round the low packed double
/rib xmmZ2/m64, imm8 precision floating-point value in

xmmZ2/m64 and place the result in
xmm1. The rounding mode is
determined by imm8.

Description

Round the DP FP value in the lower qword of the source operand (second operand)
using the rounding mode specified in the immediate operand (third operand) and
place the result in the destination operand (first operand). The rounding process
rounds a double-precision floating-point input to an integer value and returns the
integer result as a double precision floating-point value in the lowest position. The
upper double precision floating-point value in the destination is retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to '1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] =="1)
THEN  //rounding mode is determined by MXCSR.RC
DEST[63:0] < ConvertDPFPTolnteger_M(SRC[63:0]);
ELSE // rounding mode is determined by IMM8.RC
DEST[63:0] €« ConvertDPFPTolnteger_Imm(SRC[63:0));
Fl;
DEST[127:63] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst,__m128ds1);
__m128d mm_ceil_sd(__m128ddst,__m128ds1);

ROUNDSD — Round Scalar Double Precision Floating-Point Values Vol.2B 4-357



INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] =="'0; ifimm[3] =="1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSD.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-358 Vol. 2B ROUNDSD — Round Scalar Double Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

ROUNDSD — Round Scalar Double Precision Floating-Point Values Vol.2B 4-359



INSTRUCTION SET REFERENCE, N-Z

ROUNDSS — Round Scalar Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 3A0A /r ROUNDSS xmm1, Valid Valid Round the low packed single
ib xmmz2/m32, imm8 precision floating-point value

in xmmZ2/m32 and place the
result in xmm1. The rounding
mode is determined by imm8.

Description

Round the single-precision floating-point value in the lowest dword of the source
operand (second operand) using the rounding mode specified in the immediate
operand (third operand) and place the result in the destination operand (first
operand). The rounding process rounds a single-precision floating-point input to an
integer value and returns the result as a single-precision floating-point value in the
lowest position. The upper three single-precision floating-point values in the destina-
tion are retained.

The immediate operand specifies control fields for the rounding operation, three bit
fields are defined and shown in Figure 4-13. Bit 3 of the immediate byte controls
processor behavior for a precision exception, bit 2 selects the source of rounding
mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-4 lists the
encoded values for rounding-mode field).

The Precision Floating-Point Exception is signaled according to the immediate
operand. If any source operand is an SNaN then it will be converted to a QNaN. If
DAZ is set to ‘1 then denormals will be converted to zero before rounding.

Operation

IF (imm[2] =="1)
THEN  // rounding mode is determined by MXCSR.RC
DEST[31:0] € ConvertSPFPTolnteger_M(SRC[31:0]);
ELSE  //rounding mode is determined by IMM8.RC
DEST[31:0] €« ConvertSPFPTolnteger_Imm(SRC[31:0]);
Fl;
DEST[127:32] remains unchanged ;

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS __m128 mm_round_ss(__m128 dst,__m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128dst,__m128s1);
__m128 mm_ceil_ss(__m128dst,__m1285s1);

4-360 Vol.2B ROUNDSS — Round Scalar Single Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions
Invalid (signaled only if SRC = SNaN)

Precision (signaled only if imm[3] =="0; ifimm[3] == "1, then the Precision Mask in
the MXSCSR is ignored and precision exception is not signaled.)

Note that Denormal is not signaled by ROUNDSS.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault:code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Either the prefix REP (F3h) or REPN (F2H) is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

ROUNDSS — Round Scalar Single Precision Floating-Point Values Vol.2B 4-361



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions
#GP(0) If the memory address is in a nhon-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-362 Vol.2B ROUNDSS — Round Scalar Single Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

RSM—Resume from System Management Mode

Opcode Instruction  Non- SMM Mode Description
SMM
Mode
OF AA RSM Invalid  Valid Resume operation of interrupted
program.
Description

Returns program control from system management mode (SMM) to the application
program or operating-system procedure that was interrupted when the processor
received an SMM interrupt. The processor’s state is restored from the dump created
upon entering SMM. If the processor detects invalid state information during state
restoration, it enters the shutdown state. The following invalid information can cause
a shutdown:

®* Any reserved bit of CR4 is set to 1.

®* Any illegal combination of bits in CRO, such as (PG=1 and PE=0) or (NW=1 and
CD=0).

® (Intel Pentium and Intel486™ processors only.) The value stored in the state
dump base field is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-
64-bit modes and 64-bit mode.

See Chapter 25, "System Management,” in the Inte/® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about SMM and the
behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported) or (CPUID_DisplayFamily_DisplayModleSignature = 06H_OCH )
THEN
ProcessorState «— Restore(SMMDump(IA-32e SMM STATE MAP));
Else
ProcessorState «— Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));
Fl

Flags Affected
All.

RSM—Resume from System Management Mode Vol.2B 4-363



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the
processor is not in SMM.

If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-364 Vol. 2B RSM—Resume from System Management Mode



INSTRUCTION SET REFERENCE, N-Z

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

Opcode Instruction 64-Bit  Compat/ Description
Mode Leg Mode
OF52/r RSQRTPS xmm1, Valid Valid Computes the approximate reciprocals
xmmZ2/m128 of the square roots of the packed

single-precision floating-point values
in xmmZ2/m128 and stores the results
in xmm1.

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of
the four packed single-precision floating-point values in the source operand (second
operand) and stores the packed single-precision floating-point results in the destina-
tion operand. The source operand can be an XMM register or a 128-bit memory loca-
tion. The destination operand is an XMM register. See Figure 10-5 in the Inte/l® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of
a SIMD single-precision floating-point operation.

The relative error for this approximation is:

[Relative Error] < 1.5 % 2712

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than -0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROXIMATE(1.0/SQRT(SRC[31:0]));
DEST[63:32] <« APPROXIMATE(1.0/SQRT(SRC[63:32]));
DEST[95:64] < APPROXIMATE(1.0/SQRT(SRC[95:64]));
DEST[127:96] «— APPROXIMATE(1.0/SQRT(SRC[127:96)));

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating- Vol.2B 4-365
Point Values



INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

4-366 Vol.2B RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-
Point Values



#GP(0)

#PF(fault-code)
#NM

INSTRUCTION SET REFERENCE, N-Z

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.
If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating- Vol.2B 4-367

Point Values



INSTRUCTION SET REFERENCE, N-Z

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OF 52 /r RSQRTSS xmm1, Valid Valid Computes the approximate reciprocal of
xmmZ2/m32 the square root of the low single-

precision floating-point value in
xmmZ2/m32 and stores the results in
xmm1.

Description

Computes an approximate reciprocal of the square root of the low single-precision
floating-point value in the source operand (second operand) stores the single-preci-
sion floating-point result in the destination operand. The source operand can be an
XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain
unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

IRelative Error| < 1.5 % 2712

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR
register. When a source value is a 0.0, an « of the sign of the source value is
returned. A denormal source value is treated as a 0.0 (of the same sign). When a
source value is a negative value (other than -0.0), a floating-point indefinite is
returned. When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN
or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] <~ APPROXIMATE(1.0/SQRT(SRC[31:01));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions
None.

4-368 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value



INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Vol.2B 4-369

Value



INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-370 Vol.2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point
Value



INSTRUCTION SET REFERENCE, N-Z

SAHF—Store AH into Flags

Opcode Instruction  64-Bit Compat/ Description
Mode Leg Mode
9E SAHF Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH
into EFLAGS register.
NOTES:

*\/alid in specific steppings. See Description section.

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3,
and 5 of register AH are ignored; the corresponding reserved bits (1, 3, and 5) in the
EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode.
It is valid in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN
IF CPUID.80000001.ECX[0] = 1;
THEN
RFLAGS(SF:ZF:0:AF:0:PF:1:.CF) « AH;
ELSE
#UD;
Fl
ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) « AH;
Fl;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3,
and 5 of the EFLAGS register are unaffected, with the values remaining 1, 0, and O,
respectively.

Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

SAHF—Store AH into Flags Vol.2B 4-371



INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
None.

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001.ECX[0] = 0.
If the LOCK prefix is used.

4-372 Vol.2B SAHF—Store AH into Flags



SAL/SAR/SHU/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

Opcode*** Instruction 64-Bit Compat/ Description
Mode Leg Mode

DO /4 SAL r/m8, 1 Valid Valid Multiply r/m8by 2, once.

REX + DO /4 SAL /m8**,1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SAL r/m8, CL Valid Valid Multiply /m8by 2, CL times.

REX +D2 /4 SAL r/m8**, CL Valid N.E. Multiply r/m8 by 2, CL times.

C0/4ib SAL r/m8, imm8 Valid Valid Multiply /m8by 2, imm8
times.

REX+CO /4 ib SAL /m8** imm8 Valid N.E. Multiply /m8by 2, imm8
times.

D1/4 SAL /m16, 1 Valid Valid Multiply /m16 by 2, once.

D3/4 SAL r/m16, CL Valid Valid Multiply /m16 by 2, CL times.

C1/4ib SAL r/m16, imm8  Valid Valid Multiply /m16 by 2, imm8
times.

D1/4 SAL r/m32,1 Valid Valid Multiply r/m32 by 2, once.

REXW + D1 /4 SAL r/m64, 1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SAL r/m32, CL Valid Valid Multiply /m32 by 2, CL times.

REX.W + D3 /4 SAL r/m64, CL Valid N.E. Multiply r/m64 by 2, CL times.

C1/4ib SAL /m32, imm8  Valid Valid Multiply /m32 by 2, imm8
times.

REXW +C1/4ib  SAL r/m64,imm8  Valid N.E. Multiply r/m64 by 2, imm8
times.

DO /7 SAR r/m8, 1 Valid Valid Signed divide* r/m8by 2,
once.

REX + D0 /7 SAR r/m8** 1 Valid N.E. Signed divide* r/m8by 2,
once.

D2 /7 SAR r/m8, CL Valid Valid Signed divide* r/m8by 2, CL
times.

REX +D2 /7 SAR r/m8** CL Valid N.E. Signed divide* /m8by 2, CL
times.

C0/7ib SAR r/m8, imm8 Valid Valid Signed divide* r/m8by 2,
imm8 time.

REX +CO /7 ib SAR r/m8**, imm8 Valid N.E. Signed divide* r/m8by 2,
imm8 times.

D1/7 SAR r/m16,1 Valid Valid Signed divide* /m16 by 2,
once.

SAL/SAR/SHL/SHR—Shift Vol.2B 4-373




INSTRUCTION SET REFERENCE, N-Z

Opcode

D3/7

C1/7ib

D177

REXW + D1 /7
D377

REXW + D3 /7
C1/7ib

REXW +C1 /7 ib

DO /4

REX + DO /4
D2 /4

REX + D2 /4
C0/4ib

REX+CO /4 ib

D1/4
D3 /4
C1/4ib

D1/4

REXW +D1/4
D3/4

REXW + D3 /4
C1/4ib

REXW +C1 /4 ib

Instruction

SAR r/m16, CL

SAR r/m16, imm8

SAR r/m32, 1

SAR r/m64, 1

SAR r/m32, CL

SAR r/m64, CL

SAR r/m32, imm8

SAR r/m64, imm8

SHL /m8, 1

SHL /m8** 1
SHL /m8, CL
SHL /m8**, CL
SHL r/m8, imm8

SHL r/m8** imm8

SHL r/m16,1
SHL r/m16, CL
SHL /m16, imm8

SHL /m32,1

SHL r/m64,1

SHL r/m32, CL
SHL r/m64, CL
SHL r/m32, imm8

SHL r/m64, imm8

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid
Valid
Valid
Valid
Valid

Valid

Compat/
Leg Mode
Valid
Valid

Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid
N.E.
Valid
N.E.
Valid

N.E.

Description

Signed divide* /m16 by 2, CL
times.

Signed divide* /m16by 2,
imm8 times.

Signed divide* r/m32by 2,
once.

Signed divide* r/m64 by 2,
once.

Signed divide* r/m32 by 2, CL
times.

Signed divide* /m64 by 2, CL
times.

Signed divide* /m32by 2,
imm8 times.

Signed divide* /m64 by 2,
imm8 times

Multiply /m8by 2, once.
Multiply r/m8 by 2, once.
Multiply /m8by 2, CL times.
Multiply r/m8 by 2, CL times.

Multiply /m8by 2, imm8
times.

Multiply /m8by 2, imm8
times.

Multiply r/m16 by 2, once.
Multiply /m16 by 2, CL times.

Multiply r/m16 by 2, imm8
times.

Multiply /m32 by 2, once.
Multiply r/m64 by 2, once.
Multiply /m32 by 2, CL times.
Multiply r/m64 by 2, CL times.

Multiply r/m32 by 2, imm8
times.

Multiply r/m64 by 2, imm8
times.

4-374 Vol.2B

SAL/SAR/SHL/SHR—Shift



INSTRUCTION SET REFERENCE, N-Z

Opcode

DO /5

REX + D0 /5
D2 /5

REX +D2 /5
C0/5ib
REX+CO/5ib
D1/5

D3 /5

C1/5ib

D1/5

REXW + D1 /5
D3 /5

REXW + D3 /5

C1/5ib

REXW +C1/5ib

Instruction

SHR r/m8,1

SHR r/m8**, 1

SHR r/m8, CL

SHR r/m8** CL

SHR r/m8, imm8

SHR r/m8** imm8

SHR r/m16, 1

SHR r/m16, CL

SHR r/m16, imm8

SHR r/m32, 1

SHR r/m64, 1

SHR r/m32, CL

SHR r/m64, CL

SHR r/m32, imm8

SHR r/m64, imm8

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode
Valid

N.E.

Valid

N.E.

Valid

N.E.

Valid
Valid
Valid
Valid

N.E.

Valid

N.E.

Valid

N.E.

Description

Unsigned divide r/m8by 2,
once.

Unsigned divide r/m8by 2,
once.

Unsigned divide /m8by 2, CL
times.

Unsigned divide r/m8by 2, CL
times.

Unsigned divide r/m8by 2,
imm8 times.

Unsigned divide /m8by 2,
imm8 times.

Unsigned divide /m16 by 2,
once.

Unsigned divide /m16 by 2,
CL times

Unsigned divide /m16 by 2,
imm8 times.

Unsigned divide /m32 by 2,
once.

Unsigned divide r/m64 by 2,
once.

Unsigned divide r/m32 by 2,
CL times.

Unsigned divide r/m64 by 2,
CL times.

Unsigned divide r/m32 by 2,
imm8 times.

Unsigned divide /m64 by 2,
imm8 times.

NOTES:

* Not the same form of division as IDIV; rounding is toward negative infinity.

** |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

***See |A-32 Architecture Compatibility section below.

SAL/SAR/SHL/SHR—Shift

Vol.2B 4-375




INSTRUCTION SET REFERENCE, N-Z

Description

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand.

The destination operand can be a register or a memory location. The count operand
can be an immediate value or the CL register. The count is masked to 5 bits (or 6 bits
if in 64-bit mode and REX.W is used). The count range is limited to 0 to 31 (or 63 if
64-bit mode and REX.W is used). A special opcode encoding is provided for a count
of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the
same operation; they shift the bits in the destination operand to the left (toward
more significant bit locations). For each shift count, the most significant bit of the
destination operand is shifted into the CF flag, and the least significant bit is cleared
(see Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits
of the destination operand to the right (toward less significant bit locations). For each
shift count, the least significant bit of the destination operand is shifted into the CF
flag, and the most significant bit is either set or cleared depending on the instruction
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Inte/®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1); the SAR
instruction sets or clears the most significant bit to correspond to the sign (most
significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted
value (see Figure 7-9 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction to shift a signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same
result as the IDIV instruction. The quotient from the IDIV instruction is rounded
toward zero, whereas the “quotient” of the SAR instruction is rounded toward nega-
tive infinity. This difference is apparent only for negative numbers. For example,
when the IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and
the “remainder” is +3; however, the SAR instruction stores only the most significant
bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the
most-significant bit of the result is the same as the CF flag (that is, the top two bits
of the original operand were the same); otherwise, it is set to 1. For the SAR instruc-
tion, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is
set to the most-significant bit of the original operand.

4-376 Vol.2B SAL/SAR/SHL/SHR—Shift



INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width
for CL is 5 bits. Using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to
64-bits and sets the mask width for CL to 6 bits. See the summary chart at the begin-
ning of this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN
countMASK « 3FH;
ELSE
countMASK « 1FH;
Fl

tempCOUNT <« (COUNT AND countMASK);
tempDEST « DEST;
WHILE (tempCOUNT = 0)
DO
IF instruction is SAL or SHL
THEN
CF « MSB(DEST);
ELSE (* Instruction is SAR or SHR *)
CF <« LSB(DEST);
Fl;
IF instruction is SAL or SHL
THEN
DEST « DEST = 2;
ELSE
IF instruction is SAR
THEN
DEST « DEST / 2; (* Signed divide, rounding toward negative infinity *)
ELSE (* Instruction is SHR *)
DEST « DEST / 2 ; (* Unsigned divide *)
Fl;
Fl;
tempCOUNT <« tempCOUNT - 1;
oD;

SAL/SAR/SHL/SHR—Shift Vol.2B 4-377



INSTRUCTION SET REFERENCE, N-Z

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL
THEN
OF < MSB(DEST) XOR CF;
ELSE
IF instruction is SAR
THEN
OF « C;
ELSE (* Instruction is SHR *)
OF < MSB(tempDEST);
Fl;
Fl;
ELSE IF (COUNT AND countMASK) =0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)
OF « undefined;
Fl;
Fl;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it
is undefined for SHL and SHR instructions where the count is greater than or equal to
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit
shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

4-378 Vol.2B SAL/SAR/SHL/SHR—Shift



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

SAL/SAR/SHL/SHR—Shift Vol.2B 4-379



INSTRUCTION SET REFERENCE, N-Z

SBB—Integer Subtraction with Borrow

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

1Cib SBB AL, imm8 Valid Valid Subtract with borrow imm8
from AL.

1D iw SBB AX, imm16 Valid Valid Subtract with borrow imm16
from AX.

1D id SBB EAX, imm32 Valid Valid Subtract with borrow imm32
from EAX.

REXW + 1D id SBB RAX, imm32  Valid N.E. Subtract with borrow sign-
extended imm.32 to 64-bits
from RAX.

80/3ib SBB r/m8, imm8 Valid Valid Subtract with borrow imm8
from r/m8.

REX+80/3ib SBB r/m8* imm8  Valid N.E. Subtract with borrow imm8
from r/m8.

81 /3 iw SBB r/m16, imm16 Valid Valid Subtract with borrow imm16
from r/m16.

81/3id SBB r/m32, imm32 Valid Valid Subtract with borrow imm32
from r/m32.

REXW +81/3id SBB r/m64, imm32 Valid N.E. Subtract with borrow sign-
extended imm32 to 64-bits
from r/m64.

83/3ib SBB r/m16, imm8  Valid Valid Subtract with borrow sign-
extended imm8 from r/m16.

83/3ib SBB r/m32, imm8  Valid Valid Subtract with borrow sign-
extended imm8 from r/m32.

REXW +83/3ib  SBBr/m64, imm8 Valid N.E. Subtract with borrow sign-
extended imm8 from r/m64.

18/r SBB r/m8, r8 Valid Valid Subtract with borrow r8
from r/m8.

REX+18/r SBB r/m8%* r8 Valid N.E. Subtract with borrow r8
from r/m8.

19/r SBB r/m16, r16 Valid Valid Subtract with borrow r16
from r/m16.

19/r SBB r/m32, r32 Valid Valid Subtract with borrow r32
from r/m32.

REXW +19/r SBB r/m64, r64 Valid N.E. Subtract with borrow r64
from r/m64.

4-380 Vol.2B SBB—Integer Subtraction with Borrow



INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

1A/r SBB r8, r/m8 Valid Valid Subtract with borrow /m8
from r8.

REX+1A/r SBB r8% r/m8* Valid N.E. Subtract with borrow r/m8
from r8.

1B/r SBB r16, r/m16 Valid Valid Subtract with borrow /m16
from r16.

1B/r SBB r32, r/m32 Valid Valid Subtract with borrow r/m32
from r32.

REXW + 1B /r SBB r64, r/m64 Valid N.E. Subtract with borrow r/m64
from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the
result from the destination operand (first operand). The result of the subtraction is
stored in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, a register, or a memory
location. (However, two memory operands cannot be used in one instruction.) The
state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of
the destination operand format.

The SBB instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a borrow in the signed or unsigned result, respectively. The SF
flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtrac-
tion in which a SUB instruction is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

SBB—Integer Subtraction with Borrow Vol. 2B 4-381



INSTRUCTION SET REFERENCE, N-Z

Operation

DEST « (DEST - (SRC + CF));

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

4-382 Vol. 2B SBB—Integer Subtraction with Borrow



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

SBB—Integer Subtraction with Borrow Vol.2B 4-383



INSTRUCTION SET REFERENCE, N-Z

SCAS/SCASB/SCASW/SCASD—Scan String

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

AE SCAS m8 Valid Valid Compare AL with byte at ES:(E)DI or RDI,
then set status flags.*

AF SCAS m16 Valid Valid Compare AX with word at ES;(E)DI or
RDI, then set status flags.*

AF SCAS m32 Valid Valid Compare EAX with doubleword at
ES(E)DI or RDI then set status flags.*

REX.W + AF SCAS m64 Valid N.E. Compare RAX with quadword at RDI or
€DI then set status flags.

AE SCASB Valid Valid Compare AL with byte at €S:(E)DI or RDI
then set status flags.*

AF SCASW Valid Valid Compare AX with word at ES:(E)DI or RDI
then set status flags.*

AF SCASD Valid Valid Compare EAX with doubleword at
ES:(E)DI or RDI then set status flags.*

REX.W + AF SCASQ Valid N.E. Compare RAX with quadword at RDI or

€DI then set status flags.

NOTES:

*In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode,
only 32-bit (EDI) and 16-bit (DI) address sizes are supported.

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte,
word, doubleword or quadword specified using a memory operand with the value in
AL, AX, or EAX. It then sets status flags in EFLAGS recording the results. The memory
operand address is read from ES:(E)DI register (depending on the address-size
attribute of the instruction and the current operational mode). Note that ES cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-
operand form and the no-operands form. The explicit-operand form (specified using
the SCAS mnemonic) allows a memory operand to be specified explicitly. The
memory operand must be a symbol that indicates the size and location of the
operand value. The register operand is then automatically selected to match the size
of the memory operand (AL register for byte comparisons, AX for word comparisons,
EAX for doubleword comparisons). The explicit-operand form is provided to allow
documentation. Note that the documentation provided by this form can be
misleading. That is, the memory operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword) but it does not have to specify the correct
location. The location is always specified by ES:(E)DI.

4-384 Vol.2B SCAS/SCASB/SCASW/SCASD—Scan String



INSTRUCTION SET REFERENCE, N-Z

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI
is assumed to be the memory operand and AL, AX, or EAX is assumed to be the
register operand. The size of operands is selected by the mnemonic: SCASB (byte
comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. If the DF flag is O,
the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decre-
mented. The register is incremented or decremented by 1 for byte operations, by 2
for word operations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for
block comparisons of ECX bytes, words, doublewords, or quadwords. Often, however,
these instructions will be used in a LOOP construct that takes some action based on
the setting of status flags. See "RDTSCP—Read Time-Stamp Counter and Processor
ID” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is
supported using the prefix 67H. Using a REX prefix in the form of REX.W promotes
operation on doubleword operand to 64 bits. The 64-bit no-operand mnemonic is
SCASQ. Address of the memory operand is specified in either RDI or EDI, and
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the desti-
nation register is incremented or decremented by the current operand size
(depending on the value of the DF flag). See the summary chart at the beginning of
this section for encoding data and limits.

Operation
Non-64-bit Mode:

IF (Byte cmparison)
THEN
temp < AL — SRC;
SetStatusFlags(temp);
THENIFDF=0
THEN (E)DI « (E)DI + 1;
ELSE (E)DI «— (E)DI - 1; FI;
ELSE IF (Word comparison)
THEN
temp <~ AX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI «— (E)DI - 2; FI;
Fl;
ELSE IF (Doubleword comparison)
THEN

SCAS/SCASB/SCASW/SCASD—Scan String Vol. 2B 4-385



INSTRUCTION SET REFERENCE, N-Z

temp « EAX - SRC;
SetStatusFlags(temp);
IFDF=0
THEN (E)DI < (E)DI + 4;
ELSE (E)DI «— (E)DI - 4; FI;
Fl;
Fl;

64-bit Mode:

IF (Byte cmparison)
THEN
temp < AL - SRC;
SetStatusFlags(temp);
THENIFDF=0
THEN (RIE)DI «— (RIE)DI + 1;
ELSE (RIE)DI «— (RIE)DI - 1; FI;
ELSE IF (Word comparison)
THEN
temp <~ AX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI «— (RIE)DI + 2;
ELSE (RIE)DI «— (RIE)DI - 2; FI;
Fl;
ELSE IF (Doubleword comparison)
THEN
temp <« EAX - SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI < (RIE)DI + 4;
ELSE (RIE)DI «— (RIE)DI - 4; FI;
Fl;
ELSE IF (Quadword comparison using REX.W )
THEN
temp <~ RAX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI « (RIE)DI + 8;
ELSE (RIE)DI «— (RIE)DI - 8;
Fl;
Fl;

4-386 Vol.2B

SCAS/SCASB/SCASW/SCASD—Scan String



INSTRUCTION SET REFERENCE, N-Z

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the
comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the
ES segment.

If the ES register contains a NULL segment selector.

If an illegal memory operand effective address in the ES
segment is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.

SCAS/SCASB/SCASW/SCASD—Scan String Vol.2B 4-387



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

4-388 Vol.2B SCAS/SCASB/SCASW/SCASD—Scan String



SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

Opcode
OF 97
REX + OF 97

OF 93
REX + OF 93
OF 92
REX + OF 92
OF 96

REX + OF 96

OF 92
REX + OF 92
OF 94
REX + OF 94
OF 9F

REX + OF 9F
OF 9D
REX + OF 9D

OF 9C
REX + 0F 9C
OF SE

REX + OF 9E

OF 96

REX + OF 96

Instruction

SETA r/m8

SETA r/m8*

SETAE r/m8
SETAE r/m8*
SETB r/m8
SETB r/m8*
SETBE r/m8

SETBE r/m8*

SETC r/m8
SETC r/m8*
SETE r/m8
SETE r/m8*
SETG r/m8

SETG r/m8*

SETGE r/m8

SETGE r/m8*

SETL r/m8
SETL r/m8*
SETLE r/m8

SETLE /m8*

SETNA r/m8

SETNA r/m8*

64-Bit
Mode

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.

Valid

N.E.

Description

Set byte if above (CF=0 and
ZF=0).

Set byte if above (CF=0 and
ZF=0).

Set byte if above or equal (CF=0).
Set byte if above or equal (CF=0).
Set byte if below (CF=1).
Set byte if below (CF=1).

Set byte if below or equal (CF=1
or ZF=1).

Set byte if below or equal (CF=1
or ZF=1).

Set byte if carry (CF=1).
Set byte if carry (CF=1).
Set byte if equal (ZF=1).
Set byte if equal (ZF=1).

Set byte if greater (ZF=0 and
SF=0F).

Set byte if greater (ZF=0 and
SF=0F).

Set byte if greater or equal
(SF=OF).

Set byte if greater or equal
(SF=0F).

Set byte if less (SF= OF).
Set byte if less (SF= OF).

Set byte if less or equal (ZF=1 or
SF+# OF).

Set byte if less or equal (ZF=1 or
SF= OF).

Set byte if not above (CF=1 or
ZF=1).

Set byte if not above (CF=1 or
ZF=1).

SETcc—Set Byte on Condition

Vol.2B 4-389




INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF 92 SETNAE r/m8 Valid Valid Set byte if not above or equal
(CF=1).

REX + OF 92 SETNAE r/m8*  Valid N.E. Set byte if not above or equal
(CF=1).

OF 93 SETNB r/m8 Valid Valid Set byte if not below (CF=0).

REX + OF 93 SETNB r/m8* Valid N.E. Set byte if not below (CF=0).

OF 97 SETNBE r/m8 Valid Valid Set byte if not below or equal
(CF=0 and ZF=0).

REX + OF 97 SETNBE r/m8*  Valid N.E. Set byte if not below or equal
(CF=0 and ZF=0).

0F 93 SETNC r/m8 Valid Valid Set byte if not carry (CF=0).

REX + OF 93 SETNC r/m8* Valid N.E. Set byte if not carry (CF=0).

OF 95 SETNE r/m8 Valid Valid Set byte if not equal (ZF=0).

REX + OF 95 SETNE r/m8* Valid N.E. Set byte if not equal (ZF=0).

OF 9€ SETNG r/m8 Valid Valid Set byte if not greater (ZF=1 or
SF+# OF)

REX + OF 9€ SETNG r/m8* Valid N.E. Set byte if not greater (ZF=1 or
SF# OF).

OF 9C SETNGE r/m8 Valid Valid Set byte if not greater or equal
(SF= OF).

REX + OF 9C SETNGE r/m8* Valid N.E. Set byte if not greater or equal
(SF+ OF).

OF 9D SETNL r/m8 Valid Valid Set byte if not less (SF=0F).

REX + OF 9D SETNL r/m8* Valid N.E. Set byte if not less (SF=0F).

OF 9F SETNLE r/m8 Valid Valid Set byte if not less or equal (ZF=0
and SF=0F).

REX + OF 9F SETNLE r/m8* Valid N.E. Set byte if not less or equal (ZF=0
and SF=0F).

OF 91 SETNO r/m8 Valid Valid Set byte if not overflow (OF=0).

REX + OF 91 SETNO r/m8* Valid N.E. Set byte if not overflow (OF=0).

OF 9B SETNP r/m8 Valid Valid Set byte if not parity (PF=0).

REX + OF 9B SETNP r/m8* Valid N.E. Set byte if not parity (PF=0).

OF 99 SETNS r/m8 Valid Valid Set byte if not sign (SF=0).

REX + OF 99 SETNS r/m8* Valid N.E. Set byte if not sign (SF=0).

OF 95 SETNZ r/m8 Valid Valid Set byte if not zero (ZF=0).

4-390 Vol.2B SETcc—Set Byte on Condition



INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
REX + OF 95 SETNZ r/m8* Valid N.E. Set byte if not zero (ZF=0).
OF 90 SETO r/m8 Valid Valid Set byte if overflow (OF=1)
REX + OF 90 SETO r/m8* Valid N.E. Set byte if overflow (OF=1).
OF 9A SETP r/m8 Valid Valid Set byte if parity (PF=1).
REX + OF 9A SETP r/m8* Valid N.E. Set byte if parity (PF=1).
OF 9A SETPE r/m8 Valid Valid Set byte if parity even (PF=1).
REX + OF 9A SETPE r/m8* Valid N.E. Set byte if parity even (PF=1).
OF 9B SETPO r/m8 Valid Valid Set byte if parity odd (PF=0).
REX + OF 9B SETPO r/m8* Valid N.E. Set byte if parity odd (PF=0).
OF 98 SETS r/m8 Valid Valid Set byte if sign (SF=1).
REX + OF 98 SETS r/m8* Valid N.E. Set byte if sign (SF=1).
OF 94 SETZ r/m8 Valid Valid Set byte if zero (ZF=1).
REX + OF 94 SETZ r/m8* Valid N.E. Set byte if zero (ZF=1).
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags
(CF, SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a
byte register or a byte in memory. The condition code suffix (cc) indicates the condi-
tion being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the rela-
tionship between two unsigned integer values. The terms “greater” and “less” are
associated with the SF and OF flags and refer to the relationship between two signed
integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example,
SETG (set byte if greater) and SETNLE (set if not less or equal) have the same
opcode and test for the same condition: ZF equals 0 and SF equals OF. These alter-
nate mnemonics are provided to make code more intelligible. Appendix B, "EFLAGS
Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, shows the alternate mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This represen-
tation can be obtained by choosing the logically opposite condition for the SETcc
instruction, then decrementing the result. For example, to test for overflow, use the
SETNO instruction, then decrement the result.

SETcc—Set Byte on Condition Vol. 2B 4-391



INSTRUCTION SET REFERENCE, N-Z

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform
addressing to additional byte registers. Otherwise, this instruction’s operation is the
same as in legacy mode and compatibility mode.

Operation

IF condition
THEN DEST « 1;
ELSE DEST « O;
Fl;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

4-392 Vol.2B SETcc—Set Byte on Condition



INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

SETcc—Set Byte on Condition Vol.2B 4-393



INSTRUCTION SET REFERENCE, N-Z

SFENCE—Store Fence

Opcode Instruction  64-Bit Compat Description

Mode /Leg Mode
OF AE/7  SFENCE Valid Valid Serializes store operations.
Description

Performs a serializing operation on all store-to-memory instructions that were issued
prior the SFENCE instruction. This serializing operation guarantees that every store
instruction that precedes in program order the SFENCE instruction is globally visible
before any store instruction that follows the SFENCE instruction is globally visible.
The SFENCE instruction is ordered with respect store instructions, other SFENCE
instructions, any MFENCE instructions, and any serializing instructions (such as the
CPUID instruction). It is not ordered with respect to load instructions or the LFENCE
instruction.

Weakly ordered memory types can be used to achieve higher processor performance
through such techniques as out-of-order issue, write-combining, and write-
collapsing. The degree to which a consumer of data recognizes or knows that the
data is weakly ordered varies among applications and may be unknown to the
producer of this data. The SFENCE instruction provides a performance-efficient way
of insuring store ordering between routines that produce weakly-ordered results and
routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

4-394 \/ol.2B SFENCE—Store Fence



INSTRUCTION SET REFERENCE, N-Z

SGDT—Store Global Descriptor Table Register

Opcode* Instruction 64-Bit Compat/  Description
Mode Leg Mode

OF01/0 SGDT m Valid Valid Store GDTR to m.

NOTES:

* See |A-32 Architecture Compatibility section below.

Description

Stores the content of the global descriptor table register (GDTR) in the destination
operand. The destination operand specifies a memory location.

In legacy or compatibility mode, the destination operand is a 6-byte memory loca-
tion. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and
the 24-bit base address is stored in bytes 3-5, and byte 6 is zero-filled. If the
operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the
low 2 bytes of the memory location and the 32-bit base address is stored in the high
4 bytes.

In IA-32e mode, the operand size is fixed at 842 bytes. The instruction stores an 8-
byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in appli-
cation programs without causing an exception to be generated. See
“LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information
on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8
bits are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium
4, Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386™ processors fill
these bits with Os.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN
DEST[0:15] «— GDTR(Limit);
DEST[16:39] «— GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] « O;

ELSE IF (32-bit Operand Size)
DEST[0:15] «— GDTR(Limit);
DEST[16:47] < GDTR(Base); (* Full 32-bit base address stored *)

SGDT—Store Global Descriptor Table Register Vol.2B 4-395



INSTRUCTION SET REFERENCE, N-Z

Fl;

ELSE (* 64-bit Operand Size *)
DEST[0:15] « GDTR(Limit);
DEST[16:79] «— GDTR(Base); (* Full 64-bit base address stored *)

Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#UD

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If the destination operand is a register.
If the LOCK prefix is used.
If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD

#GP

#SS

If the destination operand is a register.
If the LOCK prefix is used.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#UD

#GP(0)
#55(0)

#PF(fault-code)

4-396 Vol.2B

If the destination operand is a register.
If the LOCK prefix is used.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

SGDT—Store Global Descriptor Table Register



INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#UD If the destination operand is a register.
If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

SGDT—Store Global Descriptor Table Register Vol.2B 4-397



INSTRUCTION SET REFERENCE, N-Z

SHLD—Double Precision Shift Left

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF A4 SHLD r/m16, r16, Valid Valid Shift /m16 to left imm8
imm8 places while shifting bits
from r16in from the right.

OF A5 SHLD r/m16, r16,CL Valid Valid Shift r/m16 to left CL places
while shifting bits from r16
in from the right.

OF A4 SHLD r/m32, r32, Valid Valid Shift /m32 to left imm8

imm8 places while shifting bits
from r32in from the right.

REXW + OF A4  SHLD r/m64, r64, Valid N.E. Shift r/m64 to left imm8

imm8 places while shifting bits
from r64 in from the right.

OF A5 SHLD r/m32, r32, CL Valid Valid Shift r/m32 to left CL places
while shifting bits from r32
in from the right.

REXW + OF A5  SHLD r/m64, r64, CL Valid N.E. Shift r/m64 to left CL places
while shifting bits from r64
in from the right.

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the right (starting with bit 0 of the destination
operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or in the CL register. If the count operand is CL, the shift count is the
logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode;
only bits 0 through 4 of the count are used. This masks the count to a value between
0 and 31. If a count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask

4-398 Vol.2B SHLD—Double Precision Shift Left



INSTRUCTION SET REFERENCE, N-Z

to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation
IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT « COUNT MOQD 64;
ELSE COUNT « COUNT MOD 32;
Fl
SIZE « OperandSize;
IFCOUNT=0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF « BIT[DEST, SIZE - COUNT];
(* Last bit shifted out on exit *)
FOR i < SIZE - 1 DOWN TO COUNT
DO
Bit(DEST, i) « Bit(DEST, i - COUNT);
oD;
FOR i <~ COUNT - 1 DOWN TO O
DO
BIT[DEST, i] <~ BIT[SRC, i - COUNT + SIZE];
oD;
Fl;
Fl;
Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

SHLD—Double Precision Shift Left Vol. 2B 4-399



INSTRUCTION SET REFERENCE, N-Z

#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

4-400 Vol.2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

SHLD—Double Precision Shift Left



INSTRUCTION SET REFERENCE, N-Z

SHRD—Double Precision Shift Right

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF AC SHRD r/m16, Valid Valid Shift /m16 to right imm8 places
r16, imm8 while shifting bits from r16in
from the left.
OF AD SHRD r/m16, Valid Valid Shift r/m16 to right CL places
r16, CL while shifting bits from r16in
from the left.
OF AC SHRD r/m32, Valid Valid Shift /m32 to right imm8 places
r32, imm8 while shifting bits from r32in
from the left.
REXW + OF AC  SHRD r/m64, Valid N.E. Shift /m64 to right imm8 places
ré64, imm8 while shifting bits from r64in
from the left.
OF AD SHRD r/m32, Valid Valid Shift r/m32 to right CL places
r3z,CL while shifting bits from r32in
from the left.
REX.W + OF AD  SHRD r/m64, Valid N.E. Shift r/m64 to right CL places
ré4, CL while shifting bits from r64in
from the left.

Description
The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number
of bits specified by the third operand (count operand). The second operand (source
operand) provides bits to shift in from the left (starting with the most significant bit
of the destination operand).

The destination operand can be a register or a memory location; the source operand
is a register. The count operand is an unsigned integer that can be stored in an imme-
diate byte or the CL register. If the count operand is CL, the shift count is the logical
AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used
(masking the count to a value between 0 and 31). If the count is greater than the
operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand. For a 1-bit shift, the OF flag is set if a sign change occurred; other-
wise, it is cleared. If the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask

SHRD—Double Precision Shift Right Vol. 2B 4-401



INSTRUCTION SET REFERENCE, N-Z

to 6 bits). See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT <« COUNT MOD 64;
ELSE COUNT <« COUNT MOD 32;
Fl
SIZE « OperandSize;
IFCOUNT =0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF <« BIT[DEST, COUNT - 1]; (* Last bit shifted out on exit *)
FOR i« O TOSIZE - 1 - COUNT
DO
BIT[DEST, i] < BIT[DEST, i + COUNT];
0D;
FOR i < SIZE - COUNT TO SIZE - 1
DO
BIT[DEST,i] «- BIT[SRC, i + COUNT - SIZE];
0D;
Fl;
Fl;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the desti-
nation operand and the SF, ZF, and PF flags are set according to the value of the
result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is
cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF
flag is undefined. If the count operand is 0, the flags are not affected. If the count is
greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

4-402 Vol.2B SHRD—Double Precision Shift Right



INSTRUCTION SET REFERENCE, N-Z

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

SHRD—Double Precision Shift Right Vol.2B 4-403



INSTRUCTION SET REFERENCE, N-Z

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF C6 /rib SHUFPD xmm1, Valid Valid Shuffle packed double-precision
xmmZ2/m128, imm8 floating-point values selected by
imm8 from xmm1 and
xmmZ2/m128to xmm]1.

Description

Moves either of the two packed double-precision floating-point values from destina-
tion operand (first operand) into the low quadword of the destination operand;
moves either of the two packed double-precision floating-point values from the
source operand into to the high quadword of the destination operand (see

Figure 4-14). The select operand (third operand) determines which values are
moved to the destination operand.

DEST X1 X0

SRC Y1 YO

DEST Y1 orYO X1 or X0

Figure 4-14. SHUFPD Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bit 0
selects which value is moved from the destination operand to the result (where 0
selects the low quadword and 1 selects the high quadword) and bit 1 selects which
value is moved from the source operand to the result. Bits 2 through 7 of the select
operand are reserved and must be set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

4-404 Vol.2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values




INSTRUCTION SET REFERENCE, N-Z

Operation

IF SELECT[0] =0
THEN DEST[63:0] « DEST[63:0];
ELSE DEST[63:0] < DEST[127:64]; FI;

IF SELECT[1]=0
THEN DEST[127:64] « SRC[63:0];
ELSE DEST[127:64] « SRC[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values Vol.2B 4-405



INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

4-406 Vol.2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF C6/rib  SHUFPS xmm1, Valid Valid Shuffle packed single-precision
xmmZ2/m128, imm8 floating-point values selected by
imm8 from xmm1 and
xmm1/m128to xmm].
Description

Moves two of the four packed single-precision floating-point values from the destina-
tion operand (first operand) into the low quadword of the destination operand;
moves two of the four packed single-precision floating-point values from the source
operand (second operand) into to the high quadword of the destination operand (see
Figure 4-15). The select operand (third operand) determines which values are
moved to the destination operand.

DEST X3 X2 X1 X0
SRC Y3 Y2 Y1 YO
DEST Y3..YO0 Y3...Y0 X3 ... X0 X3 ... X0

Figure 4-15. SHUFPS Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The select operand is an 8-bit immediate: bits 0
and 1 select the value to be moved from the destination operand to the low double-
word of the result, bits 2 and 3 select the value to be moved from the destination
operand to the second doubleword of the result, bits 4 and 5 select the value to be
moved from the source operand to the third doubleword of the result, and bits 6 and
7 select the value to be moved from the source operand to the high doubleword of
the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values Vol.2B 4-407



INSTRUCTION SET REFERENCE, N-Z

Operation

CASE (SELECT[1:0]) OF
0: DEST[31:0] « DEST[31:0];
1: DEST[31:0] <« DEST[63:32];
2: DEST[31:0] « DEST[95:64];
3: DEST[31:0] « DEST[127:96];
ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] « DEST[31:0];
1: DEST[63:32] « DEST[63:32];
2. DEST[63:32] « DEST[95:64];
3: DEST[63:32] « DEST[127:96];
ESAG;

CASE (SELECT[5:4]) OF
0: DEST[95:64] <« SRC[31:0];
1: DEST[95:64] « SRC[63:32];
2. DEST[95:64] < SRC[95:64];
3: DEST[95:64] < SRC[127:96];
ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96] « SRC[31:0];
1:  DEST[127:96] < SRC[63:32];
2. DEST[127:96] <« SRC[95:64];
3: DEST[127:96] « SRC[127:96];
ESAC;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPS  __m128 _mm_shuffle_ps(__m128a, __m128 b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

4-408 Vol.2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If memory operand is not aligned on a 16-byte boundary,

regardless of segment.

If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.

If the LOCK prefix is used.

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values Vol.2B 4-409



INSTRUCTION SET REFERENCE, N-Z

SIDT—Store Interrupt Descriptor Table Register

Opcode Instruction 64-Bit Compat/  Description
Mode Leg Mode

OF 01 /1 SIDT m Valid Valid Store IDTR to m.

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination
operand. The destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of
the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes. If the operand-size attribute is 16 bits, the limit
is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth,
and fifth byte, with the sixth byte filled with Os.

In 64-bit mode, the operand size fixed at 842 bytes. The instruction stores 8-byte
base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in applica-
tion programs without causing an exception to be generated. See “LGDT/LIDT—Load
Global/Interrupt Descriptor Table Register” in Chapter 3, Inte/l® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for information on loading the
GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits
are not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4,
Intel Xeon, P6 processor family, Pentium, Intel486, and Intel386 processors fill these
bits with 0s.

Operation

IF instruction is SIDT
THEN
IF OperandSize = 16

THEN
DEST[0:15] «— IDTR(Limit);
DEST[16:39] « IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] < O;

ELSE IF (32-bit Operand Size)
DEST[0:15] «— IDTR(Limit);
DEST[16:47] < IDTR(Base); Fl; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] «— IDTR(Limit);

4-410 Vol.2B SIDT—Store Interrupt Descriptor Table Register



INSTRUCTION SET REFERENCE, N-Z

DEST[16:79] « IDTR(Base); (* Full 64-bit base address stored *)
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

SIDT—Store Interrupt Descriptor Table Register Vol.2B 4-411



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#UD If the destination operand is a register.
If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.

4-412 Vol.2B SIDT—Store Interrupt Descriptor Table Register



INSTRUCTION SET REFERENCE, N-Z

SLDT—Store Local Descriptor Table Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 00 /0 SLDT r/m16 Valid Valid Stores segment selector from LDTR
in r/m16.
REXW +OF  SLDT r64/m16  Valid Valid Stores segment selector from LDTR
00/0 in r64/m16.
Description

Stores the segment selector from the local descriptor table register (LDTR) in the
destination operand. The destination operand can be a general-purpose register or a
memory location. The segment selector stored with this instruction points to the
segment descriptor (located in the GDT) for the current LDT. This instruction can only
be executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared for the Pentium 4, Intel Xeon, and P6 family proces-
sors. They are undefined for Pentium, Intel486, and Intel386 processors. When the
destination operand is a memory location, the segment selector is written to memory
as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit
segment selector is copied into the low-order 16 bits of the register. The high-order
16 bits of the register are cleared. When the destination operand is a memory loca-
tion, the segment selector is written to memory as a 16-bit quantity, regardless of
the operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional
registers (R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the
16-bit selector and store it in the register. If the destination is memory and operand
size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, regard-
less of the operand size

Operation

DEST « LDTR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

SLDT—Store Local Descriptor Table Register Vol.2B 4-413




INSTRUCTION SET REFERENCE, N-Z

#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD

The SLDT instruction is not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD

The SLDT instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

4-414 Vol. 2B

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

SLDT—Store Local Descriptor Table Register



INSTRUCTION SET REFERENCE, N-Z

SMSW-—Store Machine Status Word

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OF 01 /4 SMSW r/m16 Valid Valid Store machine status word to r/m176.
OF 01 /4 SMSW r32/m16 \Valid Valid Store machine status word in low-order

16 bits of r32/m16; high-order 16 bits
of r32 are undefined.

REXW + OF SMSW r64/m16 Valid Valid Store machine status word in low-order
01/4 16 bits of r64/m16; high-order 16 bits
of r32 are undefined.

Description

Stores the machine status word (bits 0 through 15 of control register CRO) into the
destination operand. The destination operand can be a general-purpose register or a
memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order
16 bits of register CRO are copied into the low-order 16 bits of the register and the
high-order 16 bits are undefined. When the destination operand is a memory loca-
tion, the low-order 16 bits of register CRO are written to memory as a 16-bit quantity,
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following
examples:

® SMSW r16 operand size 16, store CRO[15:0] inr16

® SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32
® SMSW r64 operand size 64, zero-extend CR0O[63:0], and store in r64
® SMSW m16 operand size 16, store CR0[15:0] in m16

® SMSW m16 operand size 32, store CRO[15:0] in m16 (not m32)

® SMSW m16 operands size 64, store CRO[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged
instruction and can be used in application programs. The is provided for compatibility
with the Intel 286 processor. Programs and procedures intended to run on the
Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should
use the MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

SMSW—Store Machine Status Word Vol. 2B 4-415



INSTRUCTION SET REFERENCE, N-Z

Operation

DEST « CRO[15:0];
(* Machine status word *)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-416 Vol.2B SMSW—Store Machine Status Word



INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

SMSW—Store Machine Status Word Vol.2B 4-417



INSTRUCTION SET REFERENCE, N-Z

SQRTPD—Compute Square Roots of Packed Double-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 51 /r SQRTPD xmm1, Valid Valid Computes square roots of the
xmm2/m128 packed double-precision floating-
point values in xmmZ2/m128 and
stores the results in xmm1.

Description

Performs a SIMD computation of the square roots of the two packed double-precision
floating-point values in the source operand (second operand) stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «- SQRT(SRC[63:0]);
DEST[127:64] «- SQRT(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPD __m128d _mm_sqgrt_pd (m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

4-418 Vol.2B SMSW—Store Machine Status Word



INSTRUCTION SET REFERENCE, N-Z

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.CR4.0SXMMEXCPT(bit 10) is 1.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

SMSW—Store Machine Status Word Vol.2B 4-419



INSTRUCTION SET REFERENCE, N-Z

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

4-420 Vol.2B SMSW—Store Machine Status Word



INSTRUCTION SET REFERENCE, N-Z

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF51/r SQRTPS xmm1,  Valid Valid Computes square roots of the packed
xmm2/m128 single-precision floating-point values in
xmmZ2/m128 and stores the results in
xmm1.
Description

Performs a SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand
can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-
point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] « SQRT(SRC[31:0]);
DEST[63:32] < SQRT(SRC[63:32]);
DEST[95:64] « SQRT(SRC[95:64]);
DEST[127:96] < SQRT(SRC[127:96));

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values Vol.2B 4-421



INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

4-422 \ol.2B SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values



INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values Vol.2B 4-423



INSTRUCTION SET REFERENCE, N-Z

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF 51 /r SQRTSD xmm1, Valid Valid Computes square root of the
xmmZ2/m64 low double-precision floating-
point value in xmmZ2/m64 and
stores the results in xmm1.

Description

Computes the square root of the low double-precision floating-point value in the
source operand (second operand) and stores the double-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
64-bit memory location. The destination operand is an XMM register. The high quad-
word of the destination operand remains unchanged. See Figure 11-4 in the Inte/l®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «— SQRT(SRC[63:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSD __m128d _mm_sqrt_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-424 \ol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value



INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value Vol.2B 4-425



INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

4-426 Vol.2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value



INSTRUCTION SET REFERENCE, N-Z

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OF 51 /r SQRTSS xmm1, Valid Valid Computes square root of the low
xmmZ2/m32 single-precision floating-point value
in xmmZ2/m32 and stores the
results in xmm71.

Description

Computes the square root of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a
32-bit memory location. The destination operand is an XMM register. The three high-
order doublewords of the destination operand remain unchanged. See Figure 10-6 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] «- SQRT (SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSS __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value Vol.2B 4-427



INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-428 \Vol. 2B SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value



INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value Vol.2B 4-429



INSTRUCTION SET REFERENCE, N-Z

STC—Set Carry Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

F9 STC Valid Valid Set CF flag.

Description

Sets the CF flag in the EFLAGS register.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CFe1;

Flags Affected
The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

4-430 Vol.2B STC—Set Carry Flag



INSTRUCTION SET REFERENCE, N-Z

STD—Set Direction Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

FD STD Valid Valid Set DF flag.

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations
decrement the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF «1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

STD—Set Direction Flag Vol. 2B 4-431



INSTRUCTION SET REFERENCE, N-Z

STI—Set Interrupt Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
FB STI Valid Valid Set interrupt flag; external, maskable

interrupts enabled at the end of the
next instruction.

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF)
in the EFLAGS register. After the IF flag is set, the processor begins responding to
external, maskable interrupts after the next instruction is executed. The delayed
effect of this instruction is provided to allow interrupts to be enabled just before
returning from a procedure (or subroutine). For instance, if an STI instruction is
followed by an RET instruction, the RET instruction is allowed to execute before
external interrupts are recognized?. If the STI instruction is followed by a CLI instruc-
tion (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of excep-
tions and NMI interrupts. NMI interrupts (and SMIs) may be blocked for one macro-
instruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; STI sets the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-5 indicates the action of the STI instruction depending on the processor’s
mode of operation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Table 4-5. Decision Table for STI Results

PE VM IOPL CPL PVI VIP VME STI Result
0 X X X X X X IF=1

1 0 > CPL X X X IF=1

1 0 <CPL 3 1 0 X VIF =1

1 0 <CPL <3 X X X GP Fault

1. The STl instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0.In a
sequence of STl instructions, only the first instruction in the sequence is guaranteed to delay
interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI

STI

RET

4-432 \Vol.2B STI—Set Interrupt Flag



INSTRUCTION SET REFERENCE, N-Z

Table 4-5. Decision Table for STI Results

PE VM I0PL CPL PVI VIP VME STl Result
1 0 <CPL X 0 X X GP Fault
1 0 < CPL X X 1 X GP Fault
1 1 3 X X X X IF=1
1 1 <3 X X 0 1 VIF =1
1 1 <3 X X 1 X GP Fault
1 1 <3 X X X 0 GP Fault
NOTES:

X = This setting has no impact.

Operation

IF PE=0 (* Executing in real-address mode *)
THEN
IF < 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)
IFVM =0 (* Executing in protected mode*)

THEN
IF 10PL > CPL
THEN
IF < 1; (* Set Interrupt Flag *)
ELSE
IF (IOPL < CPL) and (CPL =3) and (VIP = 0)
THEN
VIF < 1; (* Set Virtual Interrupt Flag *)
ELSE
#GP(0);
Fl;
Fl;
ELSE (* Executing in Virtual-8086 mode *)
IFIOPL=3
THEN
IF < 1; (* Set Interrupt Flag *)
ELSE
IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN
VIF < 1; (* Set Virtual Interrupt Flag *)
ELSE
#GP(0); (* Trap to virtual-8086 monitor *)
FI;)
Fl;

STI—Set Interrupt Flag Vol.2B 4-433



INSTRUCTION SET REFERENCE, N-Z

Fl;
Fl;

Flags Affected
The IF flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-434 \ol. 2B STI—Set Interrupt Flag



INSTRUCTION SET REFERENCE, N-Z

STMXCSR—Store MXCSR Register State

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF AE/3 STMXCSR m32  Valid Valid Store contents of MXCSR register to
m32.
Description

Stores the contents of the MXCSR control and status register to the destination
operand. The destination operand is a 32-bit memory location. The reserved bits in
the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

m32 « MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

Exceptions
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions,

three conditions must be true: CR0.AM[bit 18] = 1,
EFLAGS.AC[bit 18] = 1, current CPL = 3.

#UD If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

STMXCSR—Store MXCSR Register State Vol.2B 4-435



INSTRUCTION SET REFERENCE, N-Z

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from 0 to OFFFFH.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#UD If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions,

three conditions must be true: CR0O.AM[bit 18] = 1,
EFLAGS.AC[bit 18] = 1, current CPL = 3

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

4-436 Vol.2B STMXCSR—Store MXCSR Register State



INSTRUCTION SET REFERENCE, N-Z

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Opcode Instruction  64-Bit Compat/ Description
Mode Leg Mode
AA STOS m8 Valid Valid For legacy mode, store AL at address

ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOS m16 Valid Valid For legacy mode, store AX at address
€S:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOS m32 Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 Valid N.E. Store RAX at address RDI or EDI.

AA STOSB Valid Valid For legacy mode, store AL at address
€S:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOSW Valid Valid For legacy mode, store AX at address
ES:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOSD Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ Valid N.E. Store RAX at address RDI or EDI.

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the
AL, AX, or EAX register (respectively) into the destination operand. The destination
operand is a memory location, the address of which is read from either the ES:EDI or
ES:DI register (depending on the address-size attribute of the instruction and the
mode of operation). The ES segment cannot be overridden with a segment override
prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the STOS mnemonic) allows the destination operand to be specified explicitly.
Here, the destination operand should be a symbol that indicates the size and location
of the destination value. The source operand is then automatically selected to match
the size of the destination operand (the AL register for byte operands, AX for word
operands, EAX for doubleword operands). The explicit-operands form is provided to
allow documentation; however, note that the documentation provided by this form
can be misleading. That is, the destination operand symbol must specify the correct
type (size) of the operand (byte, word, or doubleword), but it does not have to
specify the correct location. The location is always specified by the ES:(E)DI

STOS/STOSB/STOSW/STOSD/STOSQ—Store String Vol.2B 4-437



INSTRUCTION SET REFERENCE, N-Z

register. These must be loaded correctly before the store string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and
qguadword versions of the STOS instructions. Here also ES:(E)DI is assumed to be the
destination operand and AL, AX, or EAX is assumed to be the source operand. The
size of the destination and source operands is selected by the mnemonic: STOSB
(byte read from register AL), STOSW (word from AX), STOSD (doubleword from
EAX).

After the byte, word, or doubleword is transferred from the register to the memory
location, the (E)DI register is incremented or decremented according to the setting of
the DF flag in the EFLAGS register. If the DF flag is 0, the register is incremented; if
the DF flag is 1, the register is decremented (the register is incremented or decre-
mented by 1 for byte operations, by 2 for word operations, by 4 for doubleword oper-
ations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported
using the prefix 67H. Using a REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The promoted no-operand mnemonic is STOSQ.
STOSQ (and its explicit operands variant) store a quadword from the RAX register
into the destination addressed by RDI or EDI. See the summary chart at the begin-
ning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP
prefix for block loads of ECX bytes, words, or doublewords. More often, however,
these instructions are used within a LOOP construct because data needs to be moved
into the AL, AX, or EAX register before it can be stored. See "RDTSCP—Read Time-
Stamp Counter and Processor ID” in this chapter for a description of the REP prefix.

Operation
Non-64-bit Mode:

IF (Byte store)
THEN
DEST « AL;
THENIFDF=0
THEN (E)DI «— (E)DI + 1;
ELSE (E)DI « (E)DI - 1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THENIFDF=0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI « (E)DI - 2;
Fl;

4-438 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String



Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THENIFDF=0
THEN (E)DI « (E)DI + 4;
ELSE (E)DI «— (E)DI - 4;
Fl;
Fl;
Fl;
64-bit Mode:
IF (Byte store)
THEN
DEST « AL;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 1;
ELSE (RIE)DI «— (RIE)DI - 1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 2;
ELSE (RIE)DI «— (RIE)DI - 2;
Fl;
Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 4;
ELSE (RIE)DI «— (RIE)DI - 4;
Fl;
Fl;
ELSE IF (Quadword store using REX.W )
THEN
DEST « RAX;
THENIFDF=0
THEN (RIE)DI < (RIE)DI + 8;
ELSE (RIE)DI «— (RIE)DI - 8;
Fl;
Fl;

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B

4-439



INSTRUCTION SET REFERENCE, N-Z

Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the
ES segment.

If the ES register contains a NULL segment selector.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the ES
segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the ES
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-440 Vol.2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String



INSTRUCTION SET REFERENCE, N-Z

STR—Store Task Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 00 /1 STRr/m16 Valid Valid Stores segment selector from TR in
r/mi1é.
Description

Stores the segment selector from the task register (TR) in the destination operand.
The destination operand can be a general-purpose register or a memory location.
The segment selector stored with this instruction points to the task state segment
(TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is
copied into the lower 16 bits of the register and the upper 16 bits of the register are
cleared. When the destination operand is a memory location, the segment selector is
written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16
bits. In register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be
executed in protected mode.

Operation

DEST « TR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a non-
writable segment or if the effective address is outside the CS,
DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

STR—Store Task Register Vol.2B 4-441



INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

4-442 \ol.2B STR—Store Task Register



SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

2Cib SUB AL, imm8 Valid Valid Subtract imm8 from AL.

2D iw SUB AX,imm16 Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUBRAX,imm32  Valid N.E. Subtract imm32 sign-
extended to 64-bits from
RAX.

80/5ib SUB r/m8, imm8 Valid Valid Subtract imm8 from r/m8.

REX+80/5ib SUB /m8* imm8  Valid N.E. Subtract imm8 from r/m8.

81/5iw SUB r/m16, imm16 Valid Valid Subtract imm16 from r/m16.

81/5id SUB r/m32, imm32 Valid Valid Subtract imm32 from r/m32.

REXW +81/5id  SUB r/m64, imm32 Valid N.E. Subtract imm32 sign-
extended to 64-bits from
r/m64.

83/5ib SUB r/m16, imm8  Valid Valid Subtract sign-extended imm8
from r/m16.

83/5ib SUB r/m32, imm8  Valid Valid Subtract sign-extended imm8
from r/m32.

REXW +83/5ib  SUB r/m64, imm8 Valid N.E. Subtract sign-extended imm8
from r/m64.

28/r SUB r/m8, r8 Valid Valid Subtract r8 from r/m8.

REX +28/r SUB r/m8*, r8* Valid N.E. Subtract r8 from r/m8.

29/r SUB r/m16, r16 Valid Valid Subtract r16 from r/m16.

29/r SUB r/m32, r32 Valid Valid Subtract r32 from r/m32.

REXW +29/r SUB r/m64, r32 Valid N.E. Subtract r64 from r/m64.

2AIr SUB r8, r/m8 Valid Valid Subtract r/m8 from r8.

REX +2A/r SUB r8* r/m8* Valid N.E. Subtract r/m8 from r8.

2B/r SUB r16, r/m16 Valid Valid Subtract r/m16 from r16.

2B/r SUB r32, r/m32 Valid Valid Subtract r/m32 from r32.

REXW + 2B /r SUB r64, r/m64 Valid N.E. Subtract r/m64 from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

SUB—Subtract

Vol.2B 4-443




INSTRUCTION SET REFERENCE, N-Z

Description

Subtracts the second operand (source operand) from the first operand (destination
operand) and stores the result in the destination operand. The destination operand
can be a register or a memory location; the source operand can be an immediate,
register, or memory location. (However, two memory operands cannot be used in one
instruction.) When an immediate value is used as an operand, it is sign-extended to
the length of the destination operand format.

The SUB instruction performs integer subtraction. It evaluates the result for both
signed and unsigned integer operands and sets the OF and CF flags to indicate an
overflow in the signed or unsigned result, respectively. The SF flag indicates the sign
of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

Operation

DEST « (DEST - SRC);

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

4-444 \/ol. 2B SUB—Subtract



#SS

#UD

INSTRUCTION SET REFERENCE, N-Z

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.
If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

SUB—Subtract

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol. 2B 4-445



INSTRUCTION SET REFERENCE, N-Z

SUBPD—Subtract Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 5C/r  SUBPD xmmT, Valid Valid Subtract packed double-precision
xmmZ2/m128 floating-point values in
xmmZ2/m128 from xmm1.

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in
the source operand (second operand) from the two packed double-precision floating-
point values in the destination operand (first operand), and stores the packed
double-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. See Figure 11-3 in the Inte/l® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-preci-
sion floating-point opera