
Published in the Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, Vancouver 2000, pages 83–95

Translation Validation for an Optimizing Compiler

George C. Necula
University of California, Berkeley

necula@cs.berkeley.edu

Abstract

We describe a translation validation infrastructure for the
GNU C compiler. During the compilation the infrastructure
compares the intermediate form of the program before and
after each compiler pass and verifies the preservation of se-
mantics. We discuss a general framework that the optimizer
can use to communicate to the validator what transforma-
tions were performed. Our implementation however does not
rely on help from the optimizer and it is quite successful by
using instead a few heuristics to detect the transformations
that take place.

The main message of this paper is that a practical trans-
lation validation infrastructure, able to check the correct-
ness of many of the transformations performed by a realistic
compiler, can be implemented with about the effort typically
required to implement one compiler pass. We demonstrate
this in the context of the GNU C compiler for a number of
its optimizations while compiling realistic programs such as
the compiler itself or the Linux kernel. We believe that the
price of such an infrastructure is small considering the qual-
itative increase in the ability to isolate compilation errors
during compiler testing and maintenance.

1 Introduction

Despite a large body of work [CM75, MP67, Mor73, Moo89,
You89, WO92] in the area of compiler verification we are
still far from being able to prove automatically that a given
optimizing compiler always produces target programs that
are semantically equivalent to their source versions. But if
we cannot prove that a compiler is always correct maybe
we can at least check the correctness of each compilation.
This observation has inspired the technique of translation
validation [PSS98] whose goal is to check the result of each
compilation against the source program and thus to detect
and pinpoint compilation errors on-the-fly. In this paper
we present a few techniques that can be used to implement
translation validation and we discuss our initial experience

This research was supported in part by the National
Science Foundation Grants No. CCR-9875171 and CCR-
0081588, NSF Infrastructure Grant No. EIA-9802069, and
gifts from AT&T and Intel. The information presented here
does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

with a translation validation infrastructure for the GNU C
optimizing compiler.

One might argue that errors in commercial compilers are
the least likely source of headaches for most programmers.
While this may be true, compiler manuals contain warn-
ings like the following: “Optimizing compilers can some-
times change your code to something you wouldn’t expect.
[...] Developers have been able to trace the bad code being
generated when optimizations are on by looking at the ac-
tual assembly code generated for a function.” [Mic99] While
this warning suggests a horrifying scenario for an end user,
it is, unfortunately, only an accurate description of the state
of the art in compiler testing and maintenance. And com-
piler testing is bound to become more important and more
tedious as more demanding architectures are being used as
targets.

Our preliminary experience suggests that, with effort sim-
ilar to that required for implementing one compiler pass, a
compiler-development team could build an effective transla-
tion validation infrastructure (TVI). Such an infrastructure
“watches” the compilation as it takes place and points out
precisely the mismatches between the semantics of the pro-
gram being compiled and the semantics of the same pro-
gram after an individual compiler pass. We have imple-
mented a prototype translation validator for the GNU C
compiler. Our prototype is able to handle quite reliably most
of the intraprocedural optimizations that gcc performs, such
as branch optimization, common subexpression elimination,
register allocation and code scheduling, while compiling real-
istic programs such as the compiler itself or the Linux kernel.
As an empirical validation of the infrastructure we were able
to isolate a known bug in gcc version 2.7.2.2. In our exper-
iments the translation validator slows down compilation by
a factor of four. In some cases TVI reports errors that are
not actual semantic mismatches, but are due to the inabil-
ity of TVI to understand precisely what transformation took
place or why the transformation is correct. We refer to such
errors are false alarms. For most optimizations the ratio of
false alarms is very low but for some others there is a false
alarm in about 10% of the compiled functions. While there
is certainly room for improvement in these results and a need
for more experimental validation, we believe that translation
validation is a promising technique for achieving a qualita-
tive increase in our ability to isolate compilation errors dur-
ing compiler testing and maintenance, and consequently to

1

Instructions i ::= t← E | t← [E] | [E1]← E2 | t← call(E, Ē) | return(e) |
label(L) | jump(L) | E ? jump(L1) : jump(L2)

Expressions E ::= t | &g | n | E1 op E2 | sel(M, E)
Operators op ::= + | − | ∗ | & | = | 6= | ≤ | < | · · ·
Memory M ::= m | upd(M, E1, E2) | updcall(M, E, Ē)

Figure 1: The abstract syntax of the IL intermediate language

increase the reliability of our compilers.

Translation validation does not obviate the need for exten-
sive compiler testing suites but is instead a tool for greatly
increasing their effectiveness for compiler testing and mainte-
nance. In a traditional compiler test procedure, a test source
program is compiled and, if the compiler does not report an
internal error, the resulting program is run on a few input
values for which the output is known [Cyg]. In most cases,
however it is still the task of the tester to inspect manually
the output program and to spot subtle compilation errors.
For example, exception handling code is both hard to com-
pile correctly and also very hard to test exhaustively. TVI
automates this task by comparing the output program to the
input program, or to an unoptimized version of the target
program, and reporting the exact nature and position of a
semantic mismatch, without requiring any test cases for the
compiled program.

Checking program equivalence is an undecidable problem,
and thus we cannot hope to have a complete equivalence
checking procedure. However, equivalence checking is possi-
ble if the compiler produces additional information to guide
the translation validation infrastructure. One contribution
of this work is a framework in which such information can be
expressed as a simulation relation. We show on an example
how a checking algorithm would make use of the simulation
relation, and we discuss a few guidelines for compiler writers
on how to generate such simulation relations.

Typically, each compiler pass transforms the program in
a limited way. By looking at the program before and after
the transformation, we can hope to detect the transforma-
tion that took place, possibly using heuristics or knowledge
about the kind of transformations that the compiler per-
forms. A second contribution of this work is a two-step in-
ference algorithm that uses simple heuristics to match the
control-flow graphs of the input and output programs and
then uses symbolic evaluation along with constraint solving
to complete the checking. One way to view this algorithm is
as an inferencer for simulation relations.

Some of the advantages of translation validation can be
realized with a weaker infrastructure that does not attempt
to verify full semantic equivalence but verifies only that the
output has certain expected properties. For example, the
Touchstone certifying compiler [NL98] proves the type safety
of its output when compiling a type-safe subset of the C
programming language. Similarly, Special J [CLN+00] does
the same for Java, and Popcorn [MCG+99] for yet another
type-safe subset of C. In spite of its obvious limitations, this
form of result checking has helped with the early discovery
of numerous Touchstone bugs, some even in code that was
reused from mature compilers. At that time we were asked
if one could benefit from the result-checking techniques of
Touchstone even in compilers for unsafe languages and for

checking more than preservation of type safety, ideally with
only minor modifications to the compiler. We believe there
is hope to achieve some of these goals, and the current paper
describes our initial experience along this path.

In the next section we discuss the equivalence criterion
based on simulation relations that out TVI uses. Then we
introduce an example program and argue informally that its
semantics is preserved by a series of transformations. Start-
ing in Section 4 we formalize this process by showing first
the symbolic evaluation pass that collects equivalence con-
straints, followed in Section 5 by the description of the con-
straint solver. In Section 6 we report on our preliminary
experience with the implementation of our prototype in the
context of the GCC compiler.

2 Simulation Relations and the Equiva-
lence Criterion

For exposition purposes we consider that programs are writ-
ten in the intermediate language (IL) whose syntax is shown
in Figure 1. A function body is a sequence of IL instruc-
tions. Among instructions we have assignments to tem-
porary registers, memory reads, memory writes, function
calls and returns, labels, unconditional jumps and condi-
tional branches. The first argument of a function call de-
notes the function to be called and Ē denotes a sequence
of expressions. (Throughout this paper we are going to use
an overbar notation to denote a sequence of elements.) The
expression language is also relatively simple containing ref-
erences to temporaries and to global names, integer liter-
als, and composite expressions using a variety of operators.
This language is actually very close to the IL intermediate
language that the GNU C compiler uses.

One direction in which IL differs from typical interme-
diate languages is that the state of memory is represented
explicitly. In particular, upd(M, E1, E2) denotes the state of
memory after a write in previous memory state M at ad-
dress E1 of value E2. And updcall(M, E, Ē) denotes the
state of memory after a call in memory state M to function
E with arguments Ē. The expression sel(M, E) denotes the
contents of memory address E in memory state M . We will
occasionally use variables m to range over memory states.

A simulation relation relation between two IL programs
S and T (the source and the target) is a set of elements
of the form (PCS , PCT , Ē), where PCS and PCT are program
points in S and T respectively and Ē is a sequence of boolean
expressions referring to temporaries live in S and T at the
respective program points. In the current version of our sys-
tem all such boolean expressions are equalities that contain
only temporaries from S on the left-hand side and only tem-
poraries from T on the right-hand side.

2

Informally, a simulation relation describes under what
conditions two program fragments are equivalent. There are
quite a few possible equivalence criteria for IL programs. A
criterion that is too fine grained (e.g., one that requires the
same sequence of memory operations) might prevent possible
compiler optimizations. One that is too coarse (e.g., if the
source is memory safe then so is the target, such as checked
by the Touchstone certifying compiler) does not allow the
detection of subtle errors in the optimizer.

In order to define equivalence of program fragments we
first define equivalence of a pair of executions. In this work
we say that two executions are equivalent if both lead to the
same sequence of function calls and returns. Two returns are
the same if the returned value and the state of the memory
are the same. Two function calls are the same if the state of
the memory prior to the call, the arguments and the address
of the called function are the same in both cases.

The notion of equivalence of memory states deserves some
further discussion because we do not want to constrain it to
include the state of memory locations used as spill slots.
Such a constraint would not allow TVI to check the opera-
tion of the register allocator. We address this issue by assign-
ing names of fresh temporaries to the spill slots followed by
rewriting of the program to change spilling instructions into
operations using these new temporaries. This effectively un-
does the spilling operation. An important added benefit of
this operation is that the lack of aliasing between spill slots
and other memory locations is made explicit. This renaming
operation is actually quite simple since most compilers use
only simple indirect addressing from a frame pointer to ac-
cess the spill slots. In the context of an unsafe language like
C it is not possible to guarantee that a location intended as
a spill slot will not be changed by a “normal” memory op-
eration. We ignore this possibility, just like any C compiler
does, on the grounds that the behavior of such a program is
undefined. All we are doing is to adopt the same notion of
“undefined” as the compiler does.

Thus, our equivalence criterion is an equivalence of ob-
servable behaviors where the set of observable events are
function calls and returns. This equivalence criterion is in-
tended to cover all intraprocedural program transformations,
such as those performed by the GNU C compiler.1

Finally, a simulation relation Σ between S and T is correct
if for each element (PCS , PCT , Ē) ∈ Σ all pairs of executions
of S started at PCS and of T started at PCT , in states that
satisfy all boolean conditions Ē, are equivalent. Thus, a
simulation relation is a witness that two program fragments
are equivalent. Note that by this criterion the two program
fragments are also required to have the same termination be-
havior. One can imagine an optimizing compiler producing
a simulation relation as a way to explain to an observer how
the program changed through the transformation. All that
is needed then is a way to check easily such simulation rela-
tions. In this paper we go one step ahead and we show that
for a moderately-aggressive optimizing compiler like gcc it is
actually possible to infer the simulation relation and thus to

1It is possible to extend the set of observable events to
include memory writes to the heap. Also, in order to handle
correctly the RTL intermediate language of gcc we extend
the set of observable events to include memory reads and
writes to volatile locations.

avoid modifying the compiler. But in doing this we have to
accept that there will be advanced optimizations for which
the inference machine will not work, resulting in false com-
pilation errors being reported. We discuss informally in the
next section how an example of a simulation relation can
be checked and the we go on to formalize this process and
describe the inference engine.

3 An Example

Consider the program shown in intermediate form in Fig-
ure 2(a) and then again in Figure 2(b) after a few typical
transformations. This program writes the values g ∗ i + 3
at index i in the array of bytes a, for i running from 0 to
n − 1. Here a and g are global variables; all of the other
variables are locals represented as temporaries in the inter-
mediate language. The program is split into basic blocks
labeled b0 to b3.

Figure 2(b) shows the same program after a few optimiza-
tions. The register r0 was allocated to hold temporary i,
and register r2 to hold v. The temporary n was spilled to
the memory location “BP − 4”, where BP denotes the frame
pointer register. The loop was inverted and the termination
test duplicated. Since i is an induction variable and we as-
sume there is no aliasing2 between [&g] and [&a + i], v is
also an induction variable. Finally, the compiler hoists out
of the loop (to block b6) the computation of [&g] and stores
its result in the spill slot “BP− 8”.

We assume that we are given the simulation relation
shown in Figure 2(c) and we have to check its correctness.
We omit from this example an additional boolean expres-
sion in each element of the simulation relation stating that
the memory states should be equivalent in the source and
the target at the respective program points. Note that the
first element of the simulation relation says that the two pro-
grams are equivalent only if they are started in states when
“n = [BP− 4]”.

Checking equivalence can be accomplished by checking in
turn all the elements of the simulation relation. For each
row, we examine the definitions of the blocks involved, and
we proceed forward in parallel in both the source and the
target programs. We stop when we hit a return instruction
on both sides, in which case we check that the state of mem-
ory and the returned value are the same on both sides, or
another pair of related blocks, in which case we check the
constraints of this new pair. If all these checks succeed then
we can show by an inductive argument that the program
fragments are equivalent modulo the constraints from the
start row in the equivalence relation. Since the checking pro-
cess for each element stops when we reach program points
related by another element, we can ensure termination of
this checking process by requiring that we have “enough”
elements in the relation. We will postpone the formalization
of this notion until we discuss the inference algorithm.

To illustrate the checking process we show the checking
of element 1 (an easy one) and element 5 (the most difficult
one). To check element 1, we start by assuming that its

2This aliasing assumption could in fact be wrong since the
index i is not checked against the array bounds. Nevertheless
many C compilers make this assumption.

3

i← 0

b0

•b1

i < n

return i

b2

F

����
��

��

��

t← [&g]
u← t ∗ i
v ← u + 3
[&a + i]← v
i← i + 1@A BC

EDoo

b3
T

��0
00

00

r0 ← 0
[BP− 4] > 0

b4

[BP− 8]← [&g]
r2 ← 3

b6

T

��6
66

66
6

•b7

[&a + r0]← r2

r0 ← r0 + 1
r2 ← r2 + [BP− 8]
r0 < [BP− 4]

��

??D@A BC

EDoo

return r0

b5 Fxxpppppppp

F

��

1 b0 b4 n = [BP− 4]
2 b1 b4 i = 0, n = [BP− 4]
3 b2 b5 i = r0

4 b3 b6 i = r0, n = [BP− 4]
5 b3 b7 i = r0, n = [BP− 4]

[&g] = [BP− 8],
[&g] ∗ i + 3 = r2

(a) Original program (b) Transformed program (c) Simulation relation

Figure 2: An example IL program before and after a series of transformations, including loop inversion, strength reduction,
register allocation with spilling, and instruction scheduling. On the right side we have the simulation relation for this pair of
programs.

constraints hold. Then, from the control-flow graphs and
the simulation relation, we notice that we need to advance
to block b1 on the source side and stay in place on the target
side, in order to hit element 2 of the simulation relation. We
now have to check that the constraints of element 2 are met.
The first constraint “i = 0” is evidently met since we have
assigned 0 to i in block b0. The second constraint is met
because we have not modified n or the memory, and we can
thus use the assumption directly.

To check element 5, we assume again that its constraints
hold, and then we look for pairs of related paths in the source
and the target from the current blocks to another pair of re-
lated blocks. There are two such pairs: b3−b1−b2 related to
b7 − b5, and b3 − b1 − b3 related to b7 − b7. (How exactly we
discover these paths is explained in Section 5.2.) For both
pairs we have to check that they are taken under the same
conditions and that they establish the constraints of the re-
lated blocks they reach. We show only the checks related
to the second pair of paths. We use the primed notation to
refer to values of temporaries at the end of the path.

First we have to check the path conditions, i.e., that i′ <
n′ ≡ r′0 < [BP − 4]′, or equivalently that i + 1 < n ≡
r0 + 1 < [BP − 4]′. Using our assumptions this reduces to
proving that [BP−4]′ = [BP−4], which we can be done noting
that the memory write from block b7 cannot change a spill
slot. (Recall that we treat spill slots as temporaries and not
as memory addresses.)

Now we check the last constraint in element 5, i.e., that
[&g]′ ∗ i′ + 3 = r′2, or equivalently that [&g]′ ∗ (i + 1) + 3 =
(r2 + [BP − 8]). This is a bit tricky but can be done with
knowledge that the compiler does strength reduction. In
this case the rule of distributivity of multiplication is used
followed by arithmetic simplification to reduce the goal to
[&g]′ ∗ i + [&g]′ + 3 = r2 + [BP− 8]. It remains to prove that
[&g]′ = [&g] which requires arguing that addresses &a+i and

&g are not aliased. GCC makes this assumption (because it
involves addresses of two distinct globals) and so does our
TVI. Now we can reduce the goal to [&g] ∗ i + [&g] + 3 =
r2+[BP−8] which follows immediately from the assumptions
[&g] ∗ i + 3 = r2 and [&g] = [BP− 8].

This example shows that TVI must have similar knowl-
edge of the algebraic rules and aliasing rules that the com-
piler itself has. A sample of the rules that our TVI uses to
check equivalence of boolean expressions appearing in sim-
ulation relation elements is shown in Figure 3. We have
rules for proving the facts that the compiler itself proves im-
plicitly in the process of optimization: use of assumptions,
commutativity of additions, etc. We also have the usual
rules saying that equality is a equivalence relation and the
congruence rules. The last two rules in this section are used
to reason about the contents of memory reads; the first one
refers to the contents of a memory location that was just
written, and the second one makes used of “cannot alias”
information (` E1 6= E′

1) to prove that a given memory up-
date cannot affect the contents of another memory location.
Note that we have no rules for reasoning about the contents
of a memory location across a function call. This is one in-
completeness in our system motivated by our current focus
on intraprocedural optimizations.

In the bottom part of Figure 3 we show rules for reason-
ing about the equivalence of memory states. For general-
ity, we extend the equivalence judgment to be of the form
` M =∆ M ′ to say that the states denoted by M and M ′

are equivalent, except possibly at those addresses contained
in the set ∆. The first two rules in this section are typical
substitutivity rules. If the compiler does not reorder mem-
ory writes and does not eliminate redundant memory writes
then only these two rules are necessary. The other two rules
and the ∆ annotation are necessary to reason about trans-
formations that change the sequence of memory writes. The

4

Boolean expression satisfiability: ` E

` E1 + E2 = E2 + E1 ` E + 0 = E ` E ≥ E

p represents the sum of literals n and m

` n + m = p

` E1 = E′
1 ` E2 = E′

2

` sel(upd(M, E1, E2), E
′
1) = E′

2

` E1 6= E′
1 ` sel(M, E′

1) = E′
2

` sel(upd(M, E1, E2), E
′
1) = E′

2

Memory equivalence: `M =∆ M ′

E′
1 ∈ ∆ ` E1 = E′

1 `M =∆ M ′

` upd(M, E1, E2) =∆ M ′

` E2 = sel(M ′, E1) `M =∆∪{E1} M ′

` upd(M, E1, E2) =∆ M ′

`M =∆ M ′ ` E1 = E′
1 ` E2 = E′

2

` upd(M, E1, E2) =∆ upd(M ′, E′
1, E

′
2)

` E = E′ `M =∆ M ′ ` Ē = Ē′

` updcall(E, M, Ē) =∆ updcall(E′, M ′, Ē′)

Figure 3: A few representative rules that define the equivalence checking.

third rule handles the case of “don’t care” memory location
being written; the fourth one says that M after writing of
E2 to address E1 is the same as M ′ if the latter already
contains E2 at that address and is otherwise equivalent to
M .

Each of these rules must be designed to match the seman-
tics of the intermediate language. We need enough rules to
describe all properties of the IL that the compiler itself uses
when transforming the program. This does not mean that
TVI must be as complex as the compiler. A compiler is typ-
ically more complex because it must also decide which of the
rules to use and when. Also, in our implementation of TVI
the checker is essentially a pattern matcher with each pat-
tern being a direct transcription of the corresponding logical
rule. As a result of this implementation scheme, and also
due to one order of magnitude difference in the size of TVI
and the compiler, we believe that it is much easier to check
by inspection the operation of the translation validator than
it is to check the implementation of the compiler.

The attentive reader has noticed that the checking process
is quite simple because in fact the difficulty lies in coming
up with the simulation relation. The most reliable way to
do that is to have it produced by the compiler. However,
even for moderately aggressive compilers, such as the GNU
C compiler, it is possible to infer the simulation relation, as
explained in the next section.

4 Symbolic Evaluation

In this section we start describing the translation validation
algorithm in more details. First, a program in the IL form
is split into basic blocks, which start at a label and end with
a return, a jump or a branch instruction. A core feature of
our approach is the use of symbolic evaluation to compute
the effect of a basic block. To illustrate the major benefit of
symbolic evaluation consider the two basic blocks:

t1 ← 5; t6 ← i ∗ 5;
t2 ← t1 + i; t7 ← 5 + i;
t3 ← i ∗ t1; t8 ← t7 + t6;
t4 ← t1 + i; return t8
t5 ← t4 + t3;
return t5

These blocks might seem different if one takes a purely
syntactical look at them. However, if we evaluate both of
them symbolically we see that they are both equivalent to
“return (5 + i) + (i ∗ 5)”. Our point is that symbolic eval-
uation abstracts over many minor syntactic details such as
a permutation of independent instructions (e.g., instruction
scheduling), a renaming of local temporaries (e.g., register
allocation), or even a change in the order of computing inde-
pendent subexpressions (e.g., common subexpression elimi-
nation). This observation is hardly new; it has appeared
before under several disguises such as predicate transform-
ers [Dij76] and value-dependence graphs [WCES94]. But its
use for checking correctness of program transformations ap-
pears to be new.

A symbolic evaluation state S consists of a program point
along with a set of symbolic values Ē for the live registers at
that point. In our translation validation scheme it is enough
to consider only only three kinds of states, corresponding to
end-points of the three kinds of blocks, as follows:

S ::= ret(M, E) | b(M, Ē) | E ? b(M, Ē) : b′(M ′, Ē′)

The first form represents a return instruction in memory
state M and with returned value E, the second represents
a jump to block b in memory state M and with the values
of live registers being Ē, and the third a conditional branch
with guard E and successor blocks b and b′ with Ē and Ē′

being the values of live registers of b and b′ respectively.

For each basic block b, we compute the symbolic state at
end of block as a function of the value m of the memory and
x̄ of the live registers at the block start. For this purpose we
create an initial symbolic register state ρb = [µ→ m, l̄b → x̄]
mapping a special memory register µ and the live registers
l̄b to their initial values. Then we invoke a symbolic evalu-
ation function SE(Ī(b), ρb) on the sequence of instructions
contained in b and on the initial symbolic register state. The
result of the symbolic evaluation function is a symbolic eval-
uation state possibly depending on the variables m and x̄.
This allows us to define, for each block b, the evaluation
state at the end of the block as a transfer function b(m, x̄),
as follows:

b(m, x̄)
def
= SE(I(b), [µ→ m, l̄b → x̄])

5

SE(t← E; Ī , ρ) = SE(Ī , ρ[t→ ρE])
SE(t← [E]; Ī , ρ) = SE(Ī , ρ[t→ sel(ρµ, ρE)])

SE([E1]← E2; Ī , ρ) = SE(Ī , ρ[µ→ upd(ρµ, ρE1, ρE2)])
SE(t← call(E, Ē); Ī , ρ) = SE(Ī , ρ[µ→ updcall(ρµ, ρE, ρĒ), t→ call(ρµ, ρE, ρĒ)])

SE(return(E), ρ) = ret(ρµ, ρE)
SE(jump(b), ρ) = b(ρµ, ρl̄b)

SE(E ? jump(b1) : jump(b2), ρ) = ρE ? b1(ρµ, ρl̄b1)) : b2(ρµ, ρl̄b2))

Figure 4: The symbolic evaluation algorithm

where I(b) denotes the sequence of instructions of block b,
and l̄b is the set of live registers at start of block b.

The symbolic evaluation function SE is defined in Fig-
ure 4. Depending on the kind of instruction at hand, the
symbolic evaluation state is modified accordingly and the
function SE is invoked recursively on the next instruction.
We write ρE to denote the expression obtained by applying
the substitution ρ to E. We write ρ[t → E] to denote the
state obtained from ρ after setting t to E. Note that the
memory write instruction sets the memory register, and the
call instruction modifies both the memory register and the
register where the result of the call is placed. The last three
cases correspond to terminal instructions and build symbolic
states directly. For example, the transfer function of the ba-
sic block b3 from Figure 2(b) is:

b3(m, i, n)
def
= b1(upd(m, &a+ i, (sel(m, &g)∗ i)+3), i+1, n)

and of the basic block b1 is:

b1(m, i, n)
def
= i < n ? b2(m, i) : b3(m, i, n)

An alternative view of the symbolic evaluation strategy
described here is as a rewriting of the body of an IL func-
tion as a purely functional program composed of a series
of mutually recursive function definitions (the basic block
transfer functions). The benefit is that equivalence of such
programs is easier to verify due to lack of side effects. Fur-
thermore, as suggested by the example from the beginning
of this section, symbolic evaluation produces syntactically
identical transfer functions for many basic blocks that differ
in the names of registers or in the order of non-dependent
instructions.

Symbolic evaluation simulates symbolically the runtime
effects of a sequence of instructions and must model accu-
rately these effects. But since it performs mostly substitu-
tion the symbolic evaluation phase does not have to make
any decisions based on the semantics of various operators.
All such decisions are postponed to checking phase, which is
discussed next.

5 Checking Symbolic State Equivalence

We designed two equivalence checking algorithms. One relies
on the simulation relation being available (we call this the
checking algorithm) and another that does not rely on such
information (the inference algorithm). The checking algo-
rithm is theoretically more powerful and it constitutes both
a correctness criterion and a completeness goal for the infer-
ence algorithm. In this stage of the project we did not want
to modify gcc and we wanted instead to explore how accu-
rately one can infer the simulation relation by just passively

observing the compilation. Our current inference algorithm
has the following two limitations with respect to the checking
algorithm:

• all branches in the target program must correspond to
branches in the source program, and

• all constraints in the simulation relation must be equal-
ity constraints.

Both of these limitations make our inference algorithm suit-
able for all but one of the transformations that gcc performs.
The exception is loop unrolling, and then only in one of the
four versions of unrolling that gcc uses. Since the checking
algorithm is a simpler version of the inference algorithm we
discuss only the latter here.

The inference algorithm has three components. One com-
ponent, called Scan, walks the source and the target pro-
grams in parallel and collects equivalence constraints. An-
other component, called Branch, assists Scan in determining
whether a branch in the source program was either elimi-
nated, and then which side was retained or if it was copied
to the target program in the same form or in reversed form.
We are not handling the case when a branch in the tar-
get program does not correspond to a branch in the source
program. The third component of the inference algorithm,
called Solve, is invoked last to simplify the set of equivalence
constraints produced by Scan until none are left. In this
case we declare success. Failures can occur in the Branch
module or in the Solve module. In both cases TVI points
out the exact nature of a failure so a human can ascertain
whether we have uncovered indeed a compiler bug or just an
incompleteness issue in our tool. In the latter case we can
update the tool or just make a note that validation is know
to fail for a certain test case.

5.1 Collecting Constraints

There are three flavors of constraints that we collect in the
set C. Expression equivalence constraints E = E′ relate two
expressions whose values are equal for all substitutions of
free variables with values that satisfy C. Memory expres-
sion equivalence M = M ′ relates two memory expressions
that denote memory states whose contents coincides.3 Fi-
nally, symbolic state equivalence S = S′ relates two states
that, for any substitution of their free variables with values
that satisfy C, lead to the same sequence of function calls
and returns. Two function calls or returns are the same if

3We actually use a more general form that allows the
two memory states to differ on a given set of addresses, as
described in Section 3.

6

they are executed in the same memory state with the same
arguments.

The main entry point Infer and the Scan component are
both shown in Figure 5. We use primed notation to refer to
entities from the target program. The inference algorithm
maintains two lists of pairs of blocks. Done contains those
pairs of related blocks that have been processed already and
ToDo those pairs that have been encountered but not yet
processed. The latter list is initialized with the start blocks
of the source and target respectively. For each pair still to be
processed, we create new parameters to stand for the values
of live registers on entry and then we invoke the scanner.

The Scan procedure takes, in addition to the source and
target states, the sequence of IL instructions leading to these
states from the start of the current pair of related blocks be-
ing processed. Scan first follows jumps in both the source
and the target (the first two cases of Scan) until on both
sides we reach either a branch or a return. In the process, the
symbolic state and the sequence of leading instructions are
accumulated accordingly. Then Scan examines the source
state, and if that is a return (the third case of Scan) it ex-
pects a return on the target side as well. Scan terminates in
this case by adding two constraints to C.

The interesting case is when the source state is a branch.
There are four possibilities here, named ELIMT , ELIMF , EQ,
EQR, meaning that either the branch was eliminated and the
true or the false side was retained, or the branch corresponds
to a target branch either in the same direction or reversed.
The decision of which case applies is made by the function
Branch (discussed in Section 5.2) based on the control-flow
graph and the sequences of instructions leading to the branch
points. In the ELIMT case the constraint ¬E = 0 (where ¬ is
the negation operator) is added to say that the source branch
condition is always true, and scanning continues with the
true side. In the EQ case the target must also be a branch and
a constraint is added saying that the two branches always
go in the same direction. The helper function MarkRelated
adds a state equivalence constraint and then adds the two
blocks to the ToDo list.

Notice that Scan is guaranteed to terminate because it
never looks at a pair of blocks more than once. Furthermore,
in practice very few blocks (those that have been duplicated)
appear in more than one pair. The number of constraints
produced in this stage is also relatively small. We typically
have one constraint per conditional, two constraints for each
return instruction and for each join point we have as many
state constraints as there are successors. It is not a sur-
prise that constraint generation, including Branch, is done
in about 10 seconds on the complete gcc sources. Additional
constrains are generated during constraint solving but before
moving on to that stage we describe briefly the operation of
the Branch module.

5.2 Navigating Branches

The Branch module is invoked when the Scan module de-
scribed before encounters a branch in the source program.
The role of the Branch module is to discover whether the
branch was eliminated or if it was kept in the target pro-
gram. We describe here an implementation of Branch based
on heuristics that were found effective in our experiments.

The input of Branch consists of the instruction sequences

Function Infer(b0, b
′
0) is

Done = ∅
ToDo = {(b0, b

′
0)}

C = ∅
while (b, b′) ∈ ToDo

ToDo = ToDo \{(b, b′)}
Done = Done ∪ {(b, b′)}
create new parameters m, x̄, m′, x̄′

Scan(b(m, x̄), ∅, b′(m′, x̄′), ∅)
done

Solve(C)

Function Scan(S, Ī, S′, Ī ′) is

if S ≡ b(M, Ē) and b(m, x̄)
def
= S1 then

Scan([M�m, Ē�x̄]S1, Ī · I(b), S′, Ī ′)

elseif S′ ≡ b′(M ′, Ē′) and b′(m, x̄)
def
= S′

1 then

Scan(S, Ī, [M
′
�m, Ē

′
�x̄]S′

1, Ī
′ · I(b′))

elseif S ≡ ret(M, E) and S′ ≡ ret(M ′, E′) then

C = C ∪ {M = M ′, E = E′}
elseif S ≡ E ? b1(M1, Ē1) : b2(M2, Ē2) then

switch Branch(Ī , Ī ′) of

case ELIMT and b1(m, x̄)
def
= S1

C = C ∪ {¬E = 0}
Scan([M1�m, Ē1�x̄]S1, Ī · I(b1), S

′, Ī ′)

case ELIMF and b2(m, x̄)
def
= S2

C = C ∪ {E = 0}
Scan([M2�m, Ē2�x̄]S2, Ī · I(b2), S

′, Ī ′)

case EQ and S′ ≡ E′ ? b′1(M
′
1, Ē

′
1) : b′2(M

′
2, Ē

′
2)

C = C ∪ {E = E′}
MarkRelated(b1(M1, Ē1), b

′
1(M

′
1, Ē

′
1))

MarkRelated(b2(M2, Ē2), b
′
2(M

′
2, Ē

′
2))

case EQR and S′ ≡ E′ ? b′1(M
′
1, Ē

′
1) : b′2(M

′
2, Ē

′
2)

C = C ∪ {E = ¬E′}
MarkRelated(b1(M1, Ē1), b

′
2(M

′
2, Ē

′
2))

MarkRelated(b2(M2, Ē2), b
′
1(M

′
1, Ē

′
1))

default

fail

else

fail

Function MarkRelated(b(M, Ē), b′(M ′, Ē′)) is

C = C ∪ {b(M, Ē) = b′(M ′, Ē′)}
if (b, b′) 6∈ Done then

ToDo = ToDo ∪ {(b, b′)}

Figure 5: The main entry point to the inference function
and the Scan component.

7

Ī leading to a branch B in the source and Ī ′ leading either
to a branch B′ or to a return R′ in the target. First, in
order to expose more instructions, we follow jumps after the
branches until each side of a branch ends with a return or
with another branch. The two possible resulting situations
are shown below:

•

• B
Ī

��
rrr LLL

•��
Ī1

•��
Ī2

•

• B′Ī′

��
rrr LLL

•��
Ī′
1

•��
Ī′
2

•

• R′

Ī′

��

Source Target

orand

We discuss here only the situation when the target side
contains a branch. The other case, of a return, is simpler. If
the source branch was preserved then it must correspond to
the branch on the target side. The test that we perform is
as follows (note that this test is considered to be false if the
target side has a return):

Ī ∼ Ī ′ and
((B ∼ B′ and Ī1 ∼ Ī ′1 and Ī2 ∼ Ī ′2)
or

(B ∼ ¬B′ and Ī1 ∼ Ī ′2 and Ī2 ∼ Ī ′1))
The two similarity operations, between instructions se-

quences and between conditionals, are defined below. Since
these operations are performed by heuristics, their results
are not straight booleans but rather scores between 0.0 and
1.0, with “and” implemented as multiplication and “or” im-
plemented as the maximum operator.

Two boolean conditionals are similar if they could be ob-
tained from each other using simple transformations, such as
from E1 > E2 to E′

1 > E′
2 or to E′

1 < E′
2. We assign low sim-

ilarity scores to pairs of conditionals where the comparison
operators are not closely related, such as ≥ and 6=.

To supplement the boolean expression similarity heuris-
tic we also compute instruction sequence similarity, using
several elements:

• First we look at the sequence of function calls in the two
instruction sequences. For this purpose we consider a
return as a call to the function “return” and an indirect
function call as a call to the function “indirect”. Before
doing the comparison, we append as the last element
in the sequence of calls, a set of function names that
could be called next in the code following the instruction
sequence. This information is precomputed with an
easy fixpoint operation. If the sequence of calls in one
instruction sequence is not a prefix of the other’s then
we cannot have similarity and we assign the lowest score
0.0.

• Next, we look at whether the two instruction sequences
lead to points that are already known to be related since
they occur in the Done or ToDo lists. We assign a high
score of 1.0 in this case.

The next two heuristics are specific to gcc although it is
likely that some similar heuristics could be implemented for
other compilers.

• Next we look at the sequence of serial numbers of the
IL instructions in a sequence. Each IL instruction has a

unique serial number. Those instructions that are not
eliminated or duplicated across a transformation main-
tain their serial number, even if their body is modified
slightly such as during register allocation. Some in-
structions are newly introduced in the target, but we
can detect that too since their serial numbers are larger
than those appearing in the source. We compute the
similarity score as the ratio between the number of se-
rial numbers appearing in both instruction sequences
divided by the length of the shortest one.

• Finally, in some cases (e.g., when code is duplicated)
none of the above heuristics work well enough. In
that case we use source line-number information that
gcc places as special IL instructions in the instruction
stream. Since gcc is careful to move such information
along with the moved instructions (to assist debugging)
it becomes a good way to detect code duplication. We
assign a score computed like for the sequence of serial
numbers.

With these four heuristics we are able to handle reliably
all of the transformations performed by gcc, except for loop
unrolling. The problem there is our current decision to allow
only target conditionals that are copies of source condition-
als. This problem can be fixed to make the heuristics of
Branch good enough to handle the control-flow transforma-
tions performed by gcc. However, unlike other techniques
presented in this paper, the Branch heuristics are the ones
that are most likely to be sensitive to changes in the compiler
and also those that might not be easily transferable to other
compilers. Perhaps the truly general solution to this problem
is for the compiler to annotate branches in the target pro-
gram indicating how they relate to the source program. This
will obviate the need for any heuristics and could greatly im-
prove the robustness of TVI in the face of modifications in
the compiler.

5.3 Solving Constraints

The final stage of the inference process solves the constraints
collected by Scan. There are three kinds of constraints:
expression constraints, memory constraints and state con-
straints. The strategy is to start solving the simplest con-
straints first. Whenever we find a simple constraint x = E
we do several things:

• remove x = E from C

• verify that x does not appear in E. That would lead to
circularity that affects the soundness of the algorithm.

• replace in all of C all occurrences of x by E.

• find out for which pair of basic blocks was the parameter
x introduced in Infer. Let their transfer functions be
b(m, x̄) and b′(m′, x̄′).

• add x = E to the set of boolean expressions contained
in the element of the simulation relation corresponding
to b and b′

• for all state constraints of the form b(M, Ē) =
b′(M ′, Ē′) introduced by MarkRelated add to C the con-
straint [m→M, x̄→ Ē, m′ →M ′, x̄′ → Ē′](x = E).

8

Intuitively, the simple constraints are generated first for
return instructions. The last step above propagates simple
constraints to the predecessors of a block, thus effectively
moving them towards the start of the program. When they
reach the start they say in what initial states are the pair of
programs equivalent.

Assume now that we are in a state without any sim-
ple expression constraints. In that case we try to sim-
plify expression and memory constraints using similar al-
gebraic rules to what the compiler itself uses. For exam-
ple, we take every constraint E1 = E2 and we compute
a canonical form of “E1 − E2 = 0” by breaking all top-
level additions, subtractions and multiplications and rewrit-
ing the term as an integer added to a weighted sum of non-
arithmetic expressions. For example, we reduce the con-
straint “x1 + 2 ∗ (x2 + 5) = x3 + x2 + x1 + 20” to the con-
straint “x2 − x3 − 10 = 0”, which we can turn into a simple
constraint for x2 or for x3.

In addition to arithmetic simplification we also simplify
memory operations, according to the equation below:

sel(upd(M, A, E), A′) =

{
sel(M, A′) if A−A′ 6= 0
E if A−A′ = 0

The side conditions above are checked using the arithmetic
simplifier. If A − A′ is simplified to zero then the second
choice is used. If it is simplified to a non-zero constant or
to an expression involving the difference of the addresses
of two globals, then the first choice is used. Otherwise the
expression is not simplified.

When we cannot simplify expression constraints anymore,
we move on to memory constraints. A memory expression is
a sequence of memory updates and function calls. According
to our equivalence criterion we do not handle programs in
which the compiler moves memory operations across func-
tion calls. Thus we can split all memory expressions into
segments at function calls. We compare such segments and
we add constraints stating, for two corresponding function
calls, that the memory states, the functions that are called,
and the arguments are all equal. After this step all memory
expressions have been reduced to contain just upd opera-
tions, which we solve using the following rule:

Solve(upd(M, A, E) = upd(M ′, A′, E′)) =
if A−A′ 6= 0 then

C = C ∪ {sel(M ′, A) = E, sel(M, A′) = E′}
else

C = C ∪ {M = M ′, A = A′, E = E′}
where again A−A′ 6= 0 means that A−A′ is simplified to

a non-zero constant or to a difference of addresses of globals.
These effectively are the aliasing rules that gcc uses. The
second case is the default one used whenever the compiler
does not reorder writes to the heap. Note that this last rule
is rather weak in face of sophisticated reordering of memory
operations based on aliasing information. Even though this
is not currently a problem for gcc we plan to improve this
aspect of our checker.

Note that since there are a finite number of parameters
introduced by Scan, the simple-constraint procedure is guar-
anteed to be executed only a finite number of times. Thus
to ensure termination it is sufficient to arrange the simplifi-
cation procedures to always terminate.

It is instructive to consider in what situations the solver
fails. It happens if the simplifier procedures are not as pow-

erful as the compiler in reasoning about expression equiv-
alence, as would be the case with the above simplifier for
memory states in the case of a compiler that performs ag-
gressive aliasing analysis. Thus, most of the effort in main-
taining a translation validator is spent in the simplifiers.

6 Implementation Details and Early Ex-
perimental Results

We implemented the translation validation infrastructure to
handle the intermediate language of the GNU C compiler.
The gcc compiler is a portable optimizing compiler for C
and C++ with additional front-ends for Fortran and Java.
What makes gcc an excellent candidate for experimenting
with translation validation is not only the easy availability of
source code and documentation but also the fact that it uses
a single intermediate language, called RTL, whose intended
semantics is also well documented. gcc starts by parsing the
source code and translating it directly to RTL. During pars-
ing gcc performs type checking and even some optimizations
such as procedure integration and tail-recursion elimination.
The rest of the compiler is rather conventional, composed of
a maximum of 13 passes, depending on which optimizations
are enabled. Typical transformations are branch optimiza-
tion, local and global common subexpression elimination,
loop unrolling, loop inversion, induction variable optimiza-
tions, local and global register allocation and instruction
scheduling. Several of the optimizations, such as jump op-
timization and common subexpression elimination, are run
multiple times in different passes.

Access to the RTL programs can be obtained conveniently
by instructing gcc (with a command-line argument) to pro-
duce an easy-to-parse RTL dump after every pass. This does
result in large dump files and slows down the compilation
considerably but it avoids the need to change GCC.

We implemented the translation validation infrastructure
as a standalone program in the Objective CAML dialect of
ML. The implementation consists of 10500 lines of code. Of
those, about 2000 are the parser and other utility functions
that would not be needed for a validator that is integrated
with the compiler. The symbolic evaluator is about 1000
lines and the Solve module containing the equivalence rules
is about 3000 lines. The rest of the implementation are ded-
icated to auxiliary tasks such as performing liveness analysis
and conversion to SSA form. For comparison, the implemen-
tation of a typical gcc pass is over 10,000 lines of C code.
We wrote a shell script that invokes gcc with additional
command-line flags to request dumps of thirteen IL files (one
after each pass), which we parse and compare pairwise. This
script is then used as a substitute for the C compiler when
building software systems, such as the compiler itself or the
Linux kernel. As a general rule we turn on all optimizations
supported on the architecture on their most aggressive level.

The implementation follows closely the algorithms de-
scribed in this paper. We construct the control-flow graph
and we perform symbolic evaluation of all blocks. During
symbolic evaluation we also keep track of the used and the
defined registers, so we can compute liveness information af-
terwards. As an optimization we are exploring the use of
static-single assignment form to reduce the number of in-
dependent parameters of basic-block transfer functions and

9

Program Functions RTL instructions Constraints
GCC 2.91 5909 3,993,552 1,597,420
Linux 2.2 2627 1,021,555 501,108

Table 1: Sizes of the software systems for which we ran
translation validation.

thus the number of trivial equality constraints. To prevent
excessive use of memory we make sure to share the repre-
sentation of identical subexpressions.

One of the most expensive operations to be performed by
our algorithm is substitution. It is used during the Scan

module to collect the symbolic state when following jumps
and it is also used extensively during the solving procedure.
To reduce both the memory usage and the time required
to perform the substitution we use the technique of explicit
substitutions [ACCL91]. Instead of performing substitutions
eagerly we carry the substitution along with the expressions.
Later, when we traverse the expression and we hit a reference
to a register, we fetch from the accompanying substitution
another pair of an expression and a substitution with which
we continue the traversal.

We tested our validator on several small examples (a few
hundred up to a thousand lines) all of which worked without
any problems. (More precisely, we used those examples to
find out what is the set of arithmetic and equivalence rules
that TVI must be aware of.) For the real test we tried TVI
while compiling the gcc compiler itself and the Linux kernel.
We show in Table 1 the number of functions compiled in
each case, along with the total number of IL instructions
and a typical sample of the number of constraints arising in
checking one pass.

We have several questions that we want to address with
our experiments. We know that semantic coverage is very
strong by design but we wanted to know how incomplete
our system is at the moment. First we measured the effec-
tiveness of the Branch module. Then we wanted to know
how many of the constraints (each representing a correct-
ness condition at a given program point) cannot be solved
in the Solve module, as a measure of the incompleteness of
our simplifiers. Recall that failures of the Branch module to
recognize changes in the control-flow graph and failures of
the Solve module to solve and eliminate constraints translate
directly in false alarms that compilation is not correct. Each
alarm must be investigated by a human and thus we want
to eliminate virtually all false alarms. Finally, we wanted to
know how fast the validation process is.

The results for validating the compilation of gcc 2.91 are
shown in Table 2. The results for the Linux kernel are simi-
lar, except that the timings are adjusted proportionally with
the number of constraints shown in Table 1. The columns
correspond to four optimizations while the lines correspond
in order to percentage of failures in the Branch module, per-
centage of unsolved constraints and the time, in minutes,
to complete one validation pass of the entire compiler, on a
Pentium Pro machine running at 400MHz. The timings do
not include the dumping and parsing time for RTL, again
in the idea that one would integrate the validator in the
compiler. When including those times both compilation and
validation are about twice as slow.

The early results are promising. The Branch module turns

GGG v2.91 Branch CSE Loop RA Sched
Branch miss. 1.2% 1.5% 3.0% 0% 0%
Constr. 1.3% 3.5% 3.2% 0.1% 0.01%
Time(min) 8.4 7.3 17.3 9.9 8.8

Table 2: A synthesis of the false alarm ratios we observe at
present and the validation time for compiling gcc, for several
of the passes.

out to be quite effective and it fails mostly for the few cases of
loop unrolling that it is not yet designed to handle. There are
a number of Branch-related false alarms when validating the
common-subexpression phase. These alarms seem to be due
to the Branch module not being able to recognize reliably
when sequences of adjacent conditionals are eliminated.

The second line in the table shows the percentage of con-
straints that remain unsimplified after Solve. While the sim-
plifier is quite good for the back-end phases we noticed a
large number of unsimplified constraints when validating the
result of loop unrolling and common-subexpression elimina-
tion. Preliminary analysis of the test logs suggests that many
of the unsimplified constraints in this case are indeed not
simplifiable. The problem is that after a mistaken Branch
result a number of invalid constraints are generated by Scan.
We hope therefore that an improvement in the performance
of the Branch module will bring a large reduction in the ratio
of false alarms.

In terms of the running time cost of the TVI we observed
on the average that the validation of one compilation phase
takes about four times as much as the compilation phase
itself. If we also add in the time to dump the RTL files
and to parse them into the TVI the time is doubled. We
believe that the speed can be drastically improved with a
few optimizations in the constraint solver (where almost all
of the time is spent). For example, we plan to memoize
constraint solving to avoid solving a constraint twice.

As a quick validation of the bug-isolating capabilities of
the validator we ran the version 2.7.2.2 of gcc on a couple
of example programs that were known to exhibit bugs in
the register allocator and in loop unrolling. In both cases
the bugs surfaced as residual non-simplifiable constraints.
This is not surprising since TVI performs such a thorough
semantic check. However, the alarm in the unrolling case
was accompanied by 3 other false alarms, and this was for
a program only 100 lines long. Before we can hope for this
infrastructure to become actually used in practice we need
to work on the false alarm problem, especially for loop opti-
mizations.

6.1 Related Work

The primary inspiration for this work was the original
work on translation validation by Pnueli, Siegel and Singer-
man [PSS98] and our own work on certifying compila-
tion [NL98, Nec98]. In a sense this project can be seen as
tackling the goals laid out in [PSS98] using the symbolic eval-
uation techniques from [Nec98], in the context of a realistic
compiler. Additional innovations were required to handle
optimizations like spilling and to overcome the lack of assis-
tance from the optimizer. This is made possible in our case
by a few key techniques among which the most important is

10

symbolic evaluation.

The advance of the present work over [PSS98] and other
similar work [C+97, Goe97], is that the language involved
and the range of optimizations handled here are much more
ambitious. In [PSS98] translation validation is applied to the
non-optimizing compilation of SIGNAL to C. In [C+97] the
compiler translates expressions into a fragment of RTL with-
out loops and function calls. In this case, and also in recent
work of Kozen [Koz98], validation is simplified considerably
by restricting the optimizations such that each source-level
construct is compiled into a given pattern in the target code,
and no inter-pattern optimizations are allowed.

The advance over our own previous work, and similar work
like TIL [TMC+96] or Popcorn [MCG+99], is that we now
attempt to validate full semantic equivalence of the source
and target as opposed to checking just the preservation of
type safety. This makes the current work more widely ap-
plicable, for example to compilers for unsafe languages, and
should also make it more effective in isolating compiler bugs.

Also related is the recent work of Rinard and Mari-
nov [RM99, Rin99]. There a compiler produces complete
proofs of each transformation and the validator checks the
proofs. Our formal framework based on simulation relations
appears to be similar in spirit to that used in [RM99]. More
fundamentally, our work is different in that it attempts to
validate the translation with none or minimal help from the
compiler, thus making it more easily applicable to existing
compilers. Also, the range of transformations that we han-
dle and the scale of the experiments presented here are more
ambitious than in any previous work.

The issue of detecting equivalence of program fragments
was studied before in the context of merging program
variants [YHR92]. There two programs are considered
equivalent if they have isomorphic program representation
graphs [HPR88, RR89]. PRG’s have some of the features
of the symbolic evaluation step we use in that they ignore
syntactic details such as the order of unrelated instructions.
However, PRG isomorphism is not powerful enough to han-
dle all the optimizations in realistic compilers.

7 Conclusions and Future Work

The main message of this paper is that a practical trans-
lation validation infrastructure, able to handle many of the
common optimizations in a realistic compiler can be imple-
mented with about the effort typically required to implement
one compiler pass, say common subexpression elimination.
We demonstrate this in the context of the GNU C compiler
for a number of its optimizations. We believe this price is
small considering the qualitative increase in the effectiveness
of compiler testing and error isolation.

In an ideal world compilers will cooperate with their trans-
lation validators by emitting enough information of what
happened to the code, in order to take all the guesswork out
of the validator, thus simplifying and strengthening it.

Our work is not yet complete. As the experimental data
shows we still need to improve the validator in order to re-
duce the number of false alarms. We also need to take serious
action against the running time of the validator. We believe
that a significant improvement is possible once we memoize
all constraints that were generated and processed.

At the moment we handle only the intermediate phases
of gcc, ignoring the parser and the code generator. The
parser seems is harder to handle but is on the other hand
relatively stable. We do intend however to implement trans-
lation validation for the x86 and IA64 code generators. In
the latter case, we need to extend the infrastructure to han-
dle advanced optimizations that exploit IA64 features such
as speculative execution and rotating-register files.

We have not yet implemented the code necessary for val-
idating correct translation of exception handling. That we
feel will be one of the strong points of a translation valida-
tor because exception handling is both notoriously hard to
compile correctly and very hard to test.

We have not yet explored one of the major potential
strengths of a translation validator, namely the ability to
turn, in theory, a regular compiler into a certifying com-
piler that also produces proofs pertaining to the target code.
More precisely, we can imagine that the simulation relations
that we infer can be used as the basis for translating as-
sertions and proofs about the source program to assertions
and proofs on the target programs, thus effectively bridging
the semantic gap between source and target in a sound way.
In particular, one flavor of “proofs” that we could imagine
translating are the easily available proofs of well-typedness,
with the ultimate effect that we use the gcc compiler with
the Java front-end to produce provably type-safe native-code
components.

Acknowledgments

We would like to thank Jeff Foster, Mihai Budiu, Dawn Song,
Hong Wang, Ken Lueh and Mark Wegman for useful com-
ments on this work, Shree Rahul for his help with running
the experiments and Christopher Rose for writing the XY-
pic Latex package with which the diagrams are drawn.

References

[ACCL91] Martin Abadi, Luca Cardelli, P.-L. Curien, and
J.-J Lévy. Explicit substitutions. Journal of
Functional Programming, 1(4):375–416, October
1991.

[C+97] Alessandro Cimatti et al. A provably correct
embedded verifier for the certification of safety
critical software. In Computer Aided Verifica-
tion. 9th International Conference. Proceedings,
pages 202–213. Springer-Verlag, June 1997.

[CLN+00] Christopher Colby, Peter Lee, George C. Necula,
Fred Blau, Mark Plesko, and Kenneth Cline. A
certifying compiler for Java. ACM SIGPLAN
Notices, 35(5):95–107, May 2000.

[CM75] L. M. Chirica and D. F. Martin. An approach to
compiler correctness. ACM SIGPLAN Notices,
10(6):96–103, June 1975.

[Cyg] Cygnus Solutions. DejaGnu Testing Framework.
http://www.gnu.org/software/dejagnu/dejagnu.html.

[Dij76] Edsger W. Dijkstra. A Discipline of Program-
ming. Prentice-Hall, 1976.

11

[Goe97] Wolfgang Goerigk. Towards rigorous com-
piler implementation verification. In Rudolf
Berghammer, editor, Proc. of the 1997 Work-
shop on Programming Languages and Funda-
mentals of Programming, pages 118–126, 1997.

[HPR88] Susan Horowitz, Jan Prins, and Tom Reps. On
the adequacy of program dependence graphs for
representing programs. In Proceedings of the Fif-
teenth Annual ACM Symposium on the Princi-
ples of Programming Languages, pages 146–157,
San Diego, CA, January 1988.

[Koz98] Dexter Kozen. Efficient code certification. Tech-
nical Report TR 98–1661, Cornell University,
January 1998.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan
Grossman, Richard Samuels, Frederick Smith,
David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A realistic typed assem-
bly language. In Proceedings of the 1999 ACM
SIGPLAN Workshop on Compiler Support for
System Software, pages 25–35, 1999.

[Mic99] Microsoft Corporation. Microsoft Developer
Network Library, March 1999.

[Moo89] J. Strother Moore. A mechanically verified lan-
guage implementation. Journal of Automated
Reasoning, 5(4):461–492, December 1989.

[Mor73] F. Lockwood Morris. Advice on structuring com-
pilers and proving them correct. In Proceedings
of the First ACM Symposium on Principles of
Programming Languages, pages 144–152, 1973.

[MP67] John McCarthy and James Painter. Correctness
of a compiler for arithmetic expressions. In J. T.
Schwartz, editor, Proceedings of Symposia in Ap-
plied Mathematics. American Mathematical So-
ciety, 1967.

[Nec98] George C. Necula. Compiling with Proofs. PhD
thesis, Carnegie Mellon University, September
1998. Also available as CMU-CS-98-154.

[NL98] George C. Necula and Peter Lee. The design and
implementation of a certifying compiler. In ACM
SIGPLAN’98 Conference on Programming Lan-
guage Design and Implementation, pages 333–
344, June 1998.

[PSS98] Amir Pnueli, M. Siegel, and Eli Singerman.
Translation validation. In Bernhard Steffen, ed-
itor, Tools and Algorithms for Construction and
Analysis of Systems, 4th International Confer-
ence, TACAS ’98, volume LNCS 1384, pages
151–166. Springer, 1998.

[Rin99] Martin Rinard. Credible compilers. Technical
Report MIT/LCS/TR-776, Massachusetts Insti-
tute of Technology, December 1999.

[RM99] Martin Rinard and Darko Marinov. Credible
compilation. In Proceedings of the Run-Time
Result Verification Workshop, July 1999.

[RR89] G. Ramalingam and Thomas Reps. Semantics
of program representation graphs. Technical
Report CS-TR-89-900, University of Wisconsin,
Madison, December 1989.

[TMC+96] David Tarditi, J. Gregory Morrisett, Perry
Cheng, Chris Stone, Robert Harper, and Pe-
ter Lee. TIL: A type-directed optimizing com-
piler for ML. In PLDI’96 Conference on Pro-
gramming Language Design and Implementa-
tion, pages 181–192, May 1996.

[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst,
and Bjarne Steensgaard. Value dependence
graphs: representation without taxation. In Pro-
ceedings of POPL ’94, 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, pages 297–310, January 1994.

[WO92] Mitchell Wand and Dino P. Oliva. Proving the
correctness of storage representations. In Pro-
ceedings of the 1992 ACM Conference on Lisp
and Functional Programming, pages 151–160,
1992.

[YHR92] Wuu Yang, Susan Horowitz, and Thomas Reps.
A program integration algorithm that accom-
modates semantics-preserving transformations.
acm Transactions of Software Engineering and
Methodology, 1(3):310–354, July 1992.

[You89] William D. Young. A mechanically verified code
generator. Journal of Automated Reasoning,
5(4):493–518, December 1989.

12

	Introduction
	Simulation Relations and the Equivalence Criterion
	An Example
	Symbolic Evaluation
	Checking Symbolic State Equivalence
	Collecting Constraints
	Navigating Branches
	Solving Constraints

	Implementation Details and Early Experimental Results
	Related Work

	Conclusions and Future Work

