
Light-Weight Contexts: 
An OS Abstraction for Safety and Performance

James Litton

Anjo Vahldiek-Oberwagner Eslam Elnikety
Deepak Garg Bobby Bhattacharjee

Peter Druschel

Aseem Saxena
Shubhani



Introduction

Process -- 

Unit of 
● Isolation
● privilege separation
● program state

2



Introduction

Process vs Thread 

Threads separate the unit of 
execution from a process

But do not provide isolation and 
privilege separation

3



Introduction

Light Weight Context (lwC)

● OS abstraction - that provides 
independent units of protection, privilege, 
and execution state within a process.

● A process may contain multiple lwCs, 
each with their own virtual memory 
mappings, file descriptor bindings, and 
credentials.

4



Introduction

lwCs enable a range of new in-process 
capabilities
● fast roll-back

● protection rings (by credential restriction)

● session isolation

● protected compartments

● Reference Monitors

5



Design -- Creating lwCs

 
● lwCs are named using file descriptors.
● Each process starts with one root lwC, 

which has a well-known file descriptor 
number.

● lwCreate semantics similar to fork

6



Design -- Creating lwCs

Arguments
● child lwC receives a copy-on-write snapshot 

of all its parent’s resources by default
● resource-spec : array of C unions
● each array element specifies either a range 

of FDs, VM addresses, or credentials. 
● For each range, one of the following sharing 

options can be specified:
○ LWC_COW
○ LWC_SHARED
○ LWC_UNMAP

● Options : systrap etc. 7



Design -- Creating lwCs

Return Values
● New

○ Parent lwC’s FD in child lwC
○ Child lwC’s FD in parent lwC

● Caller
○ -1 in parent
○ Caller lwC’s FD in child lwC

● args
○ Arguments passed while switching to 

child lwC

8



Design  --  lwC vs Thread

● Threads and lwCs are independent. 
● Within a process, a thread executes 

within one lwC at a time and can switch 
between lwCs.

● lwSwitch retains the state of the calling 
thread in the present lwC. 

9



Design  --  Switching between lwCs

switches the calling thread to the lwC with 
descriptor target, passing args as 
parameters. 

Returns from a lwSwitch and lwCreate, any 
signal handlers that were installed are the 
only possible entry points into a lwC.

10



Usecase 1 -- Snapshot and rollback 

As compared to a setup where the process 
manually cleans up request-specific state after 
each request, the snapshot and rollback can 
improve performance by efficiently discarding 
the request-specific state with a single call, 
and also improves security by isolating 
sequential requests served by the same task 
from each other.

11



Usecase 2 -- Isolating sessions in an event-driven server 

Since all worker lwCs obtain a private copy of 
the root’s state, no worker sees 
session-specific state of other workers. This 
isolates the sessions from each other.

12



Design -- Resource access APIs 

13



Design -- Dynamic Resources 

A lwC may dynamically map/overlay resources from 
another lwC into its address space. 

Arguments
● lwc - FD of Target lwc for resource overlaying
● Spec - Regions of a given resource type (FD or 

VM) that are to be overlayed, and whether the 
specified region should be copied or shared. 

Caller should hold access capabilities for the 
requested resources. 

14



Design -- Access Capabilities/Restrictions 

● Each lwC holds a descriptor with a universal 
access capability for itself. 

● Parent receives a descriptor with a universal 
access capability for the child. 

● Parent lwC may grant a child lwC access 
capabilities for the parent lwC selectively by 
LWC_MAY_ACCESS in the resource-spec passed 
to the lwCreate call.

● lwRestrict, restricts the set of resources that may 
be overlayed or accessed by any context that holds 
the lwC descriptor l

15



Usecase 3 -- Sensitive data isolation 

Isolation of a private signature key that is available to 
a signing function, but kept hidden from the rest of 
the network-facing program. 

The child lwC is granted the privilege to overlay any 
part of the parent’s virtual memory by using 
MAY_OVERLAY flag in lwCreate

Parent lwC revokes its privilege to overlay any part 
of the child lwC’s memory using lwRestrict

16



Design -- System call emulation 

● Child lwC created with LWC_SYSTRAP in options flag
● If a thread in Child lwC invokes a system call for which it
● does not hold a capability, the thread is switched to its 

parent lwC by sandbox.
● The parent can choose to :

○ decline the syscall and return an error to the child,
○ perform a syscall on behalf of the child( with 

different argument also) using the lwSyscall.

17



Design -- System call emulation 

Arguments:
● Target : Child lwC for which syscall is being made

● Mask parameter allows the caller to modify the behavior 
by specifying aspects of its own context that are to be 
put in place for the duration of the system call

● Syscall args can be modified by parent from as provided 
by child lwC

18



Usecase 4 -- Protected reference monitor 

Allows a parent lwC to intercept any subset of
system calls made by its child and monitor those 
calls. 

A  more  interesting  monitor could inspect the 
system call arguments or other parts of the child’s 
state by overlaying in the appropriate regions.

19



Usecase 4 -- Protected reference monitor 

20



lwC Signal handling  Semantics

● Attributable signals(which can be attributed to the execution  of  a  particular  instruction 

such as SIGSEGV or SIGFPE), are delivered to the lwC that caused the signal immediately.

 

● Non-attributable signals(SIGKILL or SIGUSR1), are delivered to the root lwC and any lwCs 

in the process that were created with the LWC_SHARESIGNALS option. 

● A non-attributable signal is delivered to a lwC upon the next switch to the lwC.

21



lwC System Call  Semantics

● During fork system call, all lwC s in the calling process are duplicated in the child process.

● Any memory region with MAP_SHARED flag in some lwCs of the  calling  process  are  

shared  with  the  corresponding lwCs in the new child process, within and across the two 

processes.  

● Any memory regions that are shared among lwCs in the parent process using the 

LWC_SHARED option in lwCreate are shared among the corresponding lwCs within the 

child process only.  

● Exit system call in any lwC of a process terminates the entire process

22



lwC Abstraction : Threat model & Security Properties

● When a lwC is created, its parent  has  universal  privileges  on  the lwC.  Consequently, the  

security  of  a lwC assumes  that  its  parent  (and,  by transitivity, all its ancestors) cannot 

be hijacked to abuse these privileges.  

● In practice, the parent should drop all unnecessary privileges on the child immediately after 

the child is created, so this assumption is needed only with respect to the remaining 

privileges.

23



lwC Abstraction : Threat model & Security Properties

● A lwC cannot attain privileges that exceed those of its process, and the confidentiality and 

integrity properties of any lwC cannot be weaker than those of its process. 

● The properties of the root lwC are those of the process.

● The  root lwC should  run  a  high-assurance  component, near  to the  root,  to  minimize  

its  dependencies.

● More complex, less stable, network or user-facing components should be encapsulated in 

de-privileged lwCs at the leaves of a process’s lwC tree and should execute with the least 

privileges required.

24



lwC Abstraction 

● Why lighter than process Abstraction?

○ Space overhead

○ Time overhead

25



lwC Implementation 

● Implemented lwCs in the FreeBSD 11.0

● FreeBSD is an OS for a variety of platforms which focuses on features, speed, 

and stability. 

● FreeBSD is derived from BSD

● lwC implementation required modifications in FreeBSD kernel data structures 

corresponding to process memory, file tables and credentials. 26

https://www.freebsd.org/platforms/


lwC Implementation -- Memory 

●  The address space of a process is organized under a vmspace structure

27



lwC Implementation -- Memory 

28

●  Per Process Resources



lwC Implementation -- Memory 

29

●  The number of memory regions within a process is typically small (few tens).

● lwCreate replicates the vmspace associated with the parent lwC in exactly the 

same manner as fork.

● LWC_UNMAP during the lwCreate call are not mapped into the new lwC’s

● LWC_SHARE are mapped into the lwC as memory that differs from shared 

memory in only one respect: a subsequent fork will not share this region with its 

parent.

● Work performed during fork and lwCreate is proportional to the number of 

vm_map_entry structures.



lwC Implementation -- Memory 

30

● FreeBSD 11.0 supports PCIDs 

● Earlier context switch (lwC or process) required a TLB flush.

● Modern processors include a “process context identifier” (PCID)that can be used 

to distinguish pages that belong to different page tables.

●  TLB entries are tagged with the PCID that was active when they were resolved. 

● At the time of switch, the kernel sets the CR3 register to a value containing the 

PCID and the address of the first page directory entry. 

● each lwC is assigned a unique PCID.



lwC Implementation -- File Table 

31

● all files, sockets, devices, etc. open in a process are accessible via the 

process’s file table. 

● lwCs are also accessed via file-table entries. 

● Upon fork, the file table is copied from the parent to the child process.

● In lwCreate all FD are copied into the child lwC file table in the same manner as 

fork except that any associated FD overlay rights are copied as well.

● For LWC_UNMAP, the descriptors are not copied into the file table.

● Upon lwCreate, if the file table or a lwC descriptor’s is not shared by parent, 

then the child lwC is not able to access the parent’s lwCs



lwC Implementation -- Permissions and Overlays 

32

● Lwc interaction using lwSwitch or lwOverlay

● lwC ‘a’ may switch to lwC ‘b’ only if b’s descriptor is present in a’s file table.

● Overlay permissions are more fine-grained(LWC_MAY_OVERLAY flag) 

● lwCreate call (p creating c) results in two file descriptors. 

○ c and has full overlay rights, and is inserted into p’s file table. 

○ p is given to c and only allows overlays on the descriptor as specified by p 

in the lwCreate call. 



Experimental Results

Experiments were performed on 
● Dell R410 servers, each with 2x Intel Xeon X5650 2.66GHz 6 core CPUs 
● hyper-threading and Speed-Step disabled, 
● 48GB main memory, 
● OS FreeBSD 11.0 
● OpenSSL 1.0.2 for TLS.
● Servers connected via Cisco switches with 1Gbit Ethernet links. 
● Each server has a 1TB Seagate ST31000424SS disk formatted under UFS.

33



Experimental Results

● Microbenchmarks
○ lwCreate
○ lwSwitch
○ Reference monitoring (SYSTRAP)

● Apache (v. 2.4.18)
○ Session isolation
○ Reference monitoring

● Nginx (v. 1.9.15)
○ Session isolation
○ Reference monitoring

● SSL private key isolation

● PHP (v. 7.0.11)
○ Fast startup via snapshots

34



Experimental Results -- lwC Creation

● Total cost of creating, switching to, and destroying lwCs with resources as 
COW, within a single process

○ No dirty pages - 87.7 μs
○ COW cost per dirty page - 3.4 μs(approx)

● Cost of maintaining a separate lwC is linearly dependent on the number of 
unique pages it creates.

● These results can be used to estimate the cost of using lwCs in an 
application, given an estimate of the rate of lwC creations and switches, and 
the number of unique pages in each lwC.

35



Experimental Results -- lwC Switch

● Above table compares the time to execute a lwSwitch call compared to context 
switching between processes (using semaphore), between kernel threads (using 
semaphore) and user threads.

● lwC switch takes less than half the time of a process or kernel thread switch.

● Kernel thread switch is on par with a process context switch when both use the 
same form of synchronization.

● The user threads use the getcontext and setcontext calls in FreeBSD 11. In Linux 
glibc, it is implemented in userspace library(run in 6% of the time required by 
semaphore-based kernel thread switches)

36



Experimental Results -- Reference Monitor

● lwc-mon
○ When a process starts, the reference monitor gains control first and creates 

a child lwC, which executes the server application. 

○ Child lwC is sandboxed using FreeBSD Capsicum .

○ Child lwC disallowed from using certain system calls, which are instead 
redirected to the parent lwC using the LWC_SYSTRAP.

37



Experimental Results -- Reference Monitor

● Evaluated against:

○ Inline Monitoring using 
LD_PRELOAD, provides a lower 
bound on overhead, but does not 
provide security.

○ Process Separation provides a 
secure reference monitor in a 
separate process. But lwC  
outperform it by a factor of two.

38



Experimental Results -- Apache

● Apache provides services in two configurations:
○ Kernel threads
○ Pre-forked processes that map to different cores.

● Another server Nginx use event loop within a process and have option of swapping 
multiple process that map to cores.

● These configurations do not provide privilege separation in different user sessions and 
per user information flow control.

○ Multi threaded and event driven configurations serve different sessions 
concurrently in the same process.

○ Pre-forked processes sequentially share among different sessions.
● Apache can be configured to fork new process for each user session to provide 

memory isolation and privilege separation.

39



Experimental Results -- Apache

● Results alongside indicate that apache in 
configuration to provide security services have 
reduced performance.

● Apache is augmented with lwC to provide security 
services using snapshot and rollback.

● This apache with lwC has better throughput in all 
cases and has significant advantage for short 
sessions.

● Moreover, lwC achieves performance comparable to 
the best configuration without isolation for sessions 
lengths of 256 and larger.

40



Experimental Results -- Apache

● Reference monitoring was integrated 
within Apache.

● Figure on the right shows the throughput 
of Apache prefork in different reference 
monitor configurations when used to serve 
short (45 byte) documents.

● The overhead of reference monitoring 
increases with session length due to the 
increase in relative number of reference 
monitored system calls compared to other 
system calls.

41



Experimental Results -- Nginx

● It is a high performance web server and it also do not provide session isolation.

● It is augmented to provide reference monitoring and session isolation as shown in figure.

42

Original Nginx working Augmented Nginx working



Experimental Results -- Nginx

● nginx is considered the state of the art 
high-performance server. It is about 2.88x quicker 
than apache.

● Introducing lwCs in base configuration has no 
significant impact on its throughput.

● Reference monitoring adds only minimal overhead.

● For both HTTP and HTTPS, with isolation and 
reference monitoring, lwC-augmented nginx 
performs comparably to native nginx.

43



Experimental Results -- Nginx

● Effect of using lwCs under a large number of 
concurrent client connections. Two configurations:

○ Between 6 and 76 ApacheBench instances, 
and each instance issues 250 concurrent 
requests for a 45 byte document.

○ Identical except the ApacheBench instances 
request 900 byte documents.

44



Experimental Results -- Nginx

● For small documents, lwc-event matches the 
performance of native nginx up to 6500 clients. 
Beyond, the performance of both configurations 
declines.

● In FreeBSD kernel threads, the interrupt handler 
thread, gets CPU bound after 6500 clients, and the 
CPU consumption of the nginx worker threads 
reduces with higher numbers of clients as the nginx 
worker threads block. The lwc-event configuration 
further pays an extra cost of lwC switches, which 
reduces performance compared to stock nginx. 
However, given that lwc-event provides session 
isolation, this is a still a strong result.

45



Experimental Results -- PHP FCGI

● Use lwC snapshots to speed up PHP.

● Before a PHP script performs any computation that 
depends on request-specific parameters, the script 
may invoke the pagecache call, which implements 
the snapshot pattern, and then revert to it on 
subsequent requests to the same URL.

● With or without the opcode cache, the lwC snapshot 
is able to provide significant performance benefit to 
highly optimized end-to-end applications such as 
web frameworks, while adding isolation between 
user requests.

46



Experimental Results -- Isolating OpenSSL 
Keys

● lwCs provide an effective way to isolate sensitive data from network-based attacks like 
buffer overflows or overreads. The sensitive data is stored in a lwC, within the process, 
such that the network-facing code has no visibility to it.

● As an example, parts of the OpenSSL library that manipulate web server certificate private 
keys were isolated.

● In experiments, native nginx required 99.7 seconds to complete ten thousand SSL 
handshakes, whereas the configuration with a lwC isolated SSL library required 100.4 
seconds.

● Hence, with lwCs, isolating SSL private keys is essentially free.

47



Thank You

48


