NetBricks

Keywords

Middleboxes

Network Function Virtualization
Safe Languages

Static check Analysis

Zero Copy software isolation
Unique types

vSwitch

LLVM

MiddleBoxes - Device that performs operations other than the traditional packet forwarding
e Firewall

Intrusion Detection Systems

Network Address Translators

WAN optimizers

Load Balancers

Network Function Virtualisation
e Offload work of multiple middleboxes to the machines capable of processing
different network functions
e Limited use by performance and efficiency

NetBricks - Programming Model - Building NFs
e Abstracted higher level interface to implement network operations
e User Defined Functions

NetBricks - Execution Model - Running NFs
e Zero Copy software Isolation
o Unique types
e Compile time and runtime checks to enforce memory isolation

Design - Packet Structure
e Stack of Headers
e Payload
e Reference to any per-packet metadata



Design - Programming Abstractions

Packet Processing

o Parse

o Deparse

o Transform

o Filter
ByteStream Processing

o Window

o Packetize
Control Flow

o Group By

o Shuffle

o Merge
State

o No external access

o Bounded inconsistency

o Strict-consistency
Scheduled Events

Design - Execution Environment

Safe Language and runtime environments

Packet Isolation - call to other NF marks that sender loses access to the packet
Zero-Copy Software Isolation

Parallel Directed Graphs for scheduling

Run-to Completion Scheduling

Entire NF chain on a single core

Round robin scheduling policy

Implementation

Operators running NetBricks chain NFs together and NFs authors use the same
language and tools as many optimization can be exploited as a complete program and
complex control flow of NFs can be achieved

Packet processing is lazy as no computation is performed until results are required
Netbricks process batches of packets at a time for high-performance

Netbricks uses a modified version of Rust Language and Rust Lint tool developed for
static check on unsafe pointers

Costs associated with building Network functions

1.
2.

Netbricks NF and equivalent C application performs the same
Overheads of array accesses due to bound checking by safe languages



Costs associated with running Network functions
1. Isolation Overheads
a. Overheads from cache and context switches
b. Overhead from copying - packet isolation
2. Netbricks performs well due to optimizations on both overheads
3. Netbricks can be executed on multiple cores for better parallelisation
4. As packet processing complexity increases, effect of benefits from netbricks decreases

Check your understanding

How netbricks provide isolation at low costs?

Why Stack of headers is required in Netbricks packet structure?

Why reference of metadata is required in packet structure?

Implementation of Network functions

How safe language , static checks and runtime bounds guarantee strong isolation
property?

e The behaviour of NetBricks on multiple cores?









