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Introduction

Defining the background:
e Increased RAM capacities
e Limited TLB capacity
e Base pages limit TLB reach
[

Poor huge page support in S/W

Defining the problem:

Latency
Memory Bloat
Unfairness
Memory savings




State-of-the-art

Increasing RAM capacities (over terabytes).
o Challenge: Address translation.

TLBs cache the virtual-to-physical mappings.

The TLB capacities haven't scaled like RAM understandably.

Result : High performance penalty, TLB misses force page table walks.
Hardware supports huge pages more than ever.

Operating System/Hypervisor support for huge pages limited.
o Hodge-Podge of best-effort algorithms and spot fixes.



e Ingens: A coordinated, unified approach to huge pages.
e Manages memory contiguity as a first-class resource.
e Tracks utilization and access frequency of pages in memory.



Ingens : Impact on real workload problems

e Latency
o Huge Pages increase tail latency and cause high latency variation.
o Improves Cloudstone benchmark by 18% , reduces 90th percentile latency by 41%.

e Bloat

o Process/VM allocated huge page memory is often internally fragmented.
o For Redis, Linux bloats memory by 69% vs 0.8% with Ingens.



Ingens : Impact on real workload problems

e Unfairness

(@)

(@)

O

Linux : Simple, greedy allocation of huge pages.
Causes large, persistent performance differences across processes/VMs.
Ingens ensure fairness.

e Performance vs Memory Savings

(@)

(@)

(@)

Kernel Same-Page Merging (KSM) and other services reduce memory consumption.
These services may also prevent a VM from using huge pages containing shared code.
Ingens manages saving 71.3% of the memory saved by Linux/KVM while reduce
performance slowdown from 6.8-19% to 1.5-2.6%.



Virtual Memory Hardware Trends
OS support for huge pages
B a C kg ro u n d Hypervisor support for huge pages
Performance improvement from
huge pages




Virtual Memory Hardware Trends

e DRAM Growth

o Increased DRAM sizes imply deeper page tables.
o Increased latency for page table walks.
m X864 level page table => Four memory references per translation.

e Hardware Memory Virtualization

Extended (Intel) or Nested (AMD) page tables further aggravate VA translation complexity.
Both host and guest OS perform VA-> PA translations for a single request.

Each layer of lookup in guest => Multi level translations in host.

Maximum lookup cost can go as high as 24 lookups. => Higher latency.

o O O O



Virtual Memory Hardware Trends

e Increased TLB Reach

Intel's new two level TLB design, second level huge table entries have increased.

Eg. Haswell : 1024 entries, Skylake : 1536 entries.

Increased page size support (2MB vs 4KB) increases TLB reach.

Larger pages require contiguity => Risk fragmentation ( internal and external ).

System software must generate, manage and maintain significant memory continuity.
m Memory contiguity as a first-class resource.

o O O O O



Operating System Support for Huge Pages

e Transparent support is vital
o  Only way to extend huge page support to all applications with dynamic memory behaviour.
o Kernel autonomously can
m Promote 512 contiguous and aligned base pages to a huge page.
m Demote a huge page to 512 independent base pages.
o Ingens builds on Linux running on Intel processors.
m Best transparent huge page support currently.
m Only 4KB and 2MB page sizes are dealt. (1 GB pages are too large for most cases).
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Operating System Support for Huge Pages

e Linux Huge Page Management : Greedy and Aggressive

(@)

o O O O

Promotes pages in the page fault handler based on local information.
Always tries to allocate a huge page to a process if possible.
The approach can work only for processes with uniform memory access patterns.
Many applications don't fit this behaviour and are consequently penalized.
Results in an intuition: Contiguity should be explicitly managed.

m Valuable OS resource.
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Hypervisor Support for Huge Pages

Focus : Linux used as both the guest OS and host hypervisor.
Ingens supports host huge pages mapped from guest physical memory.
Linux : Unified OS and hypervisor memory management.

We next explore current huge page problems.
o Some of these problems only apply to the OS.
o  Similarly some only apply to the hypervisor.

e Ingens : Future Scope of work.
o  Support for OS and hypervisor pair that does not share memory management.
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Performance Improvement : Huge Pages

e Application speed up recorded with huge page support on linux shows that :
o There are observable speed ups on enabling huge pages on host as well as guest.
o Therefore, largest speedup attained when both host and guest use huge pages.

e Therefore huge page support holds a lot of value.

e However, a variety of more challenging workloads and circumstances:

o Expose the limitations of Linux’s memory management.
o Motivate the need for better and more principled huge page management.
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Performance Improvement : Huge Pages

- Application speed up over using base pages only

Better
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Current Huge
Page Problems

Page fault latency,
synchronous promotion
Increased memory footprint
Fragmentation

Unfair performance
Memory sharing issues
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Page Fault Latency

e Process faults on a memory region
o =>Page fault handler allocates physical memory to the page.

e However, Linux is greedy
o On apage fault on a base page, it tries to upgrade and allocate a huge page if possible.

e This synchronous promotion increases latency because :
o Linux must zero out a page before returning them to user.
o Huge pages are 512x larger than base pages ( thus, slower to clear).
o  With fragmented memory, contiguous 2MB regions become much harder to find than 4KB.
o  OS must even resort to compacting memory to generate contiguity.
m Synchronous compaction of memory in page fault handler.
m Increased average and tail latency. -



Page Fault Latency

e Free memory fragmentation index (FMFI) :
o 0 (unfragmented) to 1 (highly fragmented).
e For unfragmented memory (FMFI < 0.1)
o Page clearing overheads increase page fault latency.
o 3.6 us for base pages, 378 us (105x slower) for huge pages.
e For fragmented memory (FMFI = 0.9)
o 8.1 us average latency for base and huge pages. ( 2.1x 3.6 us)

o Average latency is lower because 98% allocations are base pages.
o  Why? The memory is too fragmented for huge page allocation.
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Page Fault Latency

e Synchronous huge page promotion with page faults:
o Increases average and tail latency.
o Penalizes time-sensitive applications. Eg. Web services.
e Alternate : Asynchronous huge page promotion.
o  Configured to work at a promotion speed (in MB/s)
o Not fast enough in practice at 1.6 MB/s.
e Faster asynchronous promotion => BAD IDEA.

o Unacceptably high CPU utilization for memory scanning and compaction.
o Aggressive CPU use reduces/cancels any performance benefits of huge pages.
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Page Fault Latency

SVM Synchronous  Asynchronous
Exec. time (sec) 178 (1.30x%) 228 (1.02x)
Huge page 4.8 GB 468 MB
Promotion speed immediate 1.6 MB/s

Table 4. Comparison of synchronous promotion and asyn-
chronous promotion when both host and guest use huge
pages. The parenthesis is speedup compared to not using

huge pages. We use the default asynchronous promotion
speed of Ubuntu 14.04.
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Increased Memory Footprint

e Application in general may not utilize their allocated huge pages uniformly.
e Linux continues to allocate huge pages irrespective of utilization.

e Leads to several huge pages that are internally fragmented.
o Huge pages reserve large memory regions.

e Promotion of sparsely allocated memory to huge pages => Bloating!
e Experiments with:

o Redis: 2 million keys allocated, 70 % freed => 69% bloating over base page only allocation.
o MongoDB : Sparse allocation in VA space => 23% bloating over base page only allocation.
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Increased Memory Footprint

e Impossible to predict total memory usage of application in production.
o Memory usage depends on the huge page use.
o Huge page use depends on memory fragmentation and allocation pattern.
e Eg. Previous instance of Redis application ( 1.69x bloating ).
o Base page memory usage of 12.2 GB for the job.
o An 18 GB provision for huge page supported run (1.5x) over-provisioning would cause
swapping.
e Linux transparent huge page support susceptible to unacceptable bloating.
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Fragmentation

e Greedy promotion quickly consumes available physical memory contiguity.

e Therefore memory becomes increasingly fragmented.
o =>Precondition for page fault latency, memory bloat. VICIOUS CYCLE!

e Redis application tested with initial FMFI = 0.3.

o Clients populate the server with 13 GB of key/value pairs
o  With huge pages, FMFI quickly rises to 1 and Linux resorts to memory compaction.
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Fragmentation
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Figure 1: Fragmentation index in Linux when running a

Redis server, with Linux using (and not using) huge pages.

The System has 24 GB memory. Redis uses 13 GB, other
processes use 5 GB, and system has 6 GB free memory.
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FreeBSD Huge Page Support

Reserves contiguous 2MB memory but does not promote immediately.

o Monitors page utilization while only allocating base pages on page faults.
o Promotes a reserved region to huge page when the 2MB region in completely utilized.

FreeBSD supports huge pages for file-cached pages.

X86 maintains access/dirty bits for the entire huge page.
o Eviction or swapping of huge page => Increased 1/0 traffic.

FreeBSD is conservative about writable huge pages. Marks them read only.
On a write, huge page demoted to base pages.
Promoted again only if all base pages are modified.

Conservative, Asynchronous approach limits speedups. )



FreeBSD Huge Page Support

OS SVM Canneal Redis

FreeBSD 1.28 1.13 1.02
Linux 1.30 1.21 1.15

Table 6: Performance speedup when using huge page in
different operating systems.
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Unfair Performance

Unfair huge page allocation :
o  =>Unequal speedups.

o  =>Unfair performance differences.

Aggravated by high fragmentation.

VMO starts first in system with FMFI 0.85.

VM1 starts next.

VM2 and VM3 follow.

VMO terminates and frees its memory.
Clearly, Linux allocates all new huge
pages to VM3.

VM2 24% slower than VM3 as a result.
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Exec. time (sec) 533 (1.12x) 589 (1.24x) 475

Figure 2: Unfair allocation of huge pages in KVM. Three
virtual machines run concurrently, each executing SVM.
The line graph is huge page size (MB) over time and the
table shows execution time of SVM for 2 iterations.
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Memory Sharing vs Performance

Sharing identical memory/code reduces guest VM memory footprint.
KVM hypervisor : Identical page sharing supported with base pages only.
If a huge page contains shareable base page, KVM demotes it.

Clearly KVM penalizes performance to save memory.

Alternate Policy : Huge Page Sharing
e Base pages can be shared only with other base pages (no huge pages).
e Huge pages can be shared with other huge pages.
e Prioritizes performance over memory footprint.
Clearly, performance vs memory tradeoff is a common theme in systems. 27



Memory Sharing vs Performance

Policy Mem saving | Performance slowdown H/M
5, 429.mcf: 278 | 429.mcf: 9%
- = SVM: 191 SVM: 99%
sharing Tunkrank: 236 | Tunkrank: 99%
429.mcf: 331 (19.0%) | 429.mcf: 66%
KVM | 1.19GB SVM: 204 (6.8%) |  SVM:90%

(Linux) | @-2%) | 1ypirank: 268 (13.5%) | Tunkrank: 69%
429.mcf: 278 (0.0%) | 429.mcf: 99%
E 1(9;9 51;“)3 SVM: 194 (1.5%) | SVM: 99%
Shafing 70 Tunkrank: 238 (0.8%) | Tunkrank: 99%

Table 7: Memory saving and performance trade off for a multi-
process workload. Each row is an experiment where all work-
loads run concurrently in separate virtual machines. H/M - huge
page ratio out of total memory used. Parentheses in the Mem
saving column expresses the memory saved as a percentage of
the total memory (13 GB) allocated to all three virtual machines. .



Design of
Ingens

Basic primitives:

e Utilization tracking
e Access frequency tracking
Contiguity monitoring

Goals of the design:

e Reduce page fault latency
e Reduce memory bloating
e Fair huge page allocation




Monitoring Space and Time

e Util bitvector :
o  The util bitvector records which base pages are used within each huge-page region
o The page fault handler updates the util bitvector

e Access bitvector :

o The access bitvector records the recent access history of a process to its pages
o Ingens computes the exponential moving average (EMA):

e F, =a(weight(util bitvector)) + (1-a)F .

e a=0.4forthe experiments
o Experimental verification of frequency information, using the access bit
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Fast page faults

e Ingens decouples promotion decisions from huge page allocation

e The page fault handler decides when to promote a huge page and signals
a background thread (called Promote-kth) to do the promotion (and
allocation if necessary) asynchronously

e Promote-kth compacts memory if necessary and promotes the pages
identified by the page fault handler
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Mitigating memory bloat

e Ingens manages memory contiguity as a resource

e It allocates only base pages in the page fault handler and tracks base
page allocations in the util bitvector

e If a huge page region accumulates enough base pages, it wakes up
promote-Kth to promote the base pages to a huge page

e The utilization threshold gives an upper bound on memory bloat

e Similar mechanism for utilization based demotion
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Proactive compaction and page sharing

Ingens monitors the fragmentation state of memory
Proactively compacts memory to reduce the latency of large allocations
Compaction -> TLB invalidations

Don’t move frequently accessed pages
o  Minimize impact of TLB invalidations

e Ingens denies sharing if that huge page is frequently accessed, otherwise
it allows the huge page to be demoted for sharing
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Memory contiguity management

Fair allocation of memory contiguity across processes
Share priority for every process
Ingens imposes a penalty for idle memory
Per page memory promotion metric:
© S
y—
2+ {Fe(l=f))

e Scan Kth profiles idle fraction of huge pages for fair promotion
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Fair promotion

e Fairness is achieved when all processes have a priority proportional share
of the available contiguity
e Mathematically this is achieved by minimizing theta

C =Y (Mi—A)
e In practice, an approximate minimization suffices
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Implementation

Huge page promotions
Access frequency tracking
Limitations
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Huge page promotion

e Promote kth runs as a background kernel thread

e Promote kth maintains two priority lists:
o High : Promotion requests from page fault handler
o Low : Promotion requests filled as Promote kth scans memory

e Virtual memory can grow, shrink or be merged

e Promote-kth compares the promotion metric of each application and
selects the process with the highest deviation from a fair state

e Remove seemingly adversarial applications
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Access frequency tracking

Scan kth uses the Linux access bit tracking framework to find idle memory
Default time period for performing the scan is of 2 seconds
Clearing access bit -> TLB invalidation

To ameliorate this:
o Frequency aware profiling and sampling
o Not frequently accessed : scan Kth clears the access bit
o Otherwise it clears it with 20% probability
o Experimental validation for this strategy

38



Limitations

e Linux does not support huge pages for page cache pages
o Makes sense to extend Ingens to manage them

e Hardware support for finer-grain tracking of access and dirty bits for huge
pages would greatly benefit Ingens

e All measurements are within a single NUMA domain

o Huge pages may lead to memory request imbalance.
o Further work needed to balance huge pages among NUMA domains and split huge pages
if false sharing is detected or if they become too hot
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Evaluation

Page fault latency evaluation
Memory bloating evaluation
Ingens overhead

Fair huge page promotion
Trade off of memory saving
and performance




Page fault latency evaluation

Throughput (requests/s)

922.3 1091.9 (+18%)

Latency (millisecond)
View event  Visit home page

600 :
B Linux

500 o M Ingens
400 T s I R R R

30 B EE
200 [ EN

'100
0

Better

P o P et

Avg. 90th Avg. 90th

Fragmented memory

Cloudstone workload (latency sensitive)
o 85%read, 10% login, 5% write workloads

Ingens reduces:

o  Average latency up to 29.2%
o Tail latency up to 41.4%
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Page fault latency evaluation

Throughput (requests/s)

Fragmented memory
Cloudstone workload (latency sensitive)

Linux Ingens

922.3 1091.9 (+18%) o  85%read, 10% login, 5% write workloads

- ° :
Latency (millisecond) Tngens feeliges
o  Average latency up to 29.2%
View event  Visit home page o Tail latency up to 41.4%
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W Linux
M Ingens
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o s
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Memory bloating evaluation

e Redis Physical memory consumption:
o Delete 70% objects after populating 8KB
objects
e Mongo DB Using huge Using only
o 15 million GET requests for 1KB object page base page
with YCSB
e Bloating makes memory consumption Redis 20.7GB

unpredictable. Can't avoid swapping. (+69%)

12.4GB 10.1GB
(+23%)

MongoDB
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Memory bloating experiment

Huge : 2MB page

Physical memory consumption Base : 4KB page
122GB  12.3GB e 2EHET 20.7 GB
Linux (base only) Ingens Linux (huge)
GET throughput
19.0K cater 20.9K 21.7K
e &
Linux (base only) Ingens Linux (huge)

B @
+10% - 4% e



Ingens overhead is small

e Overhead for memory intensive applications:

429.mcf Graph Spark |Canneal| SVM Redis MongoDB

09% 09% 06% 19% 1.3% 02% 0.6%

e Overhead for non-memory intensive applications:

Kernel build Grep Parsec 3.0 Benchmark

0.2% 0.4% 0.8%
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Fair huge page promotion

& a0 Ingens huge page promotion
T — :
e Ingens promotes huge pages based on the g sl ot
fairness objective defined £ o] Cannoal "
e Fair distribution of huge pages translates el R
fair end-to-end ion ti I 1] e
to fair end-to-end execution time as we £ o} - e o - -
e All applications finish at the same time —_— Linux huge page promotion

Huge page consump, (MB})
sse828s

a0 L _
100, 50 100 150 200 50
time (sac)
Canneal-1 Canneal-2 Canneal-3
Linux 181 192 195

Ingens 186 186 187 46




Trade off of memory saving and performance

Three different OS configurations:
o  KVM with aggressive page sharing
o  KVM where pages of same type are shared
o Ingens

Infrequently used huge pages are demoted
for sharing

Ratio of huge pages to the total pages
remains high in Ingens due to it's access
frequency based approach

Policy Mem saving| Performance slowdown H/M
Tunkrank: 274 (12.7%)| Tunkrank: 66%
{E‘;E] 1?336{}};?3 MovieRecmd: 210 (6.5%)MovieRecmd: 10%
i SVM: 232 (20.2%) SVM: T2%
Tunkrank: 243|  Tunkrank: 99%
Hﬁ“f:ﬂ.f:fg“ ?;:12711;5 MovieRecmd: 197MovieRecmd: 99%
& d o S‘E’M: 193 3 SVM: 99%
1026 MB Tunkrank: 247 (1.6%)| Tunkrank: 90%
Ingens (6.8%) MovieRecmd: 200 (1.5%)MovieRecmd: 79%
5 SVM: 198 (2.5%) SVM: 94%
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Conclusion

Hardware vendors are betting
big on huge pages

Ingens provides coordinated,
transparent huge page support

Ingens reduces tail latency and
bloat while improving fairness
and performance




