Coordinated and efficient huge page support(Ingens)-
Scribe

On many workloads, the TLB is not able to capture the working set of the pages and that
leads to large latency for memory lookup. Paging is an attractive solution only when the
hit rate for the TLB is very high(about 99.99%). If we use large pages (2MB in size) in
place of regular 4KB pages, we can increase the TLB coverage and solve this problem.

In current operating systems, there exists no principled way of huge page allocation.
There is a need to manage memory contiguity as a resource and allocate it across
processes.

There is a latency for page faults because the page needs to be allocated from a
contiguous memory region(which might require some compaction) and the entire
memory region also needs to be wiped(for security reasons) before it is allocated to a
process. Tail latency is the value such that the latency encountered by 90% of the
operations is lesser than this particular value. Tail latency is an important factor to take
into consideration because it guarantees that a large percentage of operations would
take lesser time than the tail latency.

There is a tradeoff between memory savings and performance. When we use only large
pages greedily(current Linux strategy), we can get good performance because of fewer
TLB misses however this can lead to memory bloat. This tradeoff needs to be taken into
consideration while designing a solution for this problem.

Another incentive for moving to huge pages is that DRAM sizes are constantly
increasing leading to an increase in the address space and so it makes sense to use
larger pages so that fewer TLB entries are required. In modern 64 bit systems, we use a
4 level page table and this has exacerbated the problem of latency due to TLB misses.

For a setup where we are running the application on a virtual OS running on a
hypervisor, the page fault latency is even more because there can be as many as 24
memory lookups for a single memory dereferencing. This is because in a virtualization
setup there are two translations involved. The guest virtual address is translated to the
guest physical address using the guest page table. This guest physical address(host
virtual address) is in turn translated to the host physical address using the host page
table. For a 64 bit machine that there are 4 lookups required for both the host page table
and the guest page table. In the worst case this means that there can be a maximum of
24 |lookups.



Modern microprocessor manufacturers have interesting 2 level TLB designs with static
translation and dedicated space for large pages. This is mostly just wasted if we dont
use huge pages properly.

Why is the anonymous memory named this way?
o Anonymous memory is independent of the the user to which it is allocated. Linux
currently supports huge pages only for the anonymous memory. Huge pages for
page cache pages are not supported.

In all the experiments performed on Ingens, they use virtualized workloads. This means
that every application runs on a guest OS which runs on a host OS which in this case
are both Linux. We can see that this setup gives us the best case speedup because it
benefits from using huge pages during both page table translations. Also, some
experiments are performed on memory intensive workloads which makes the use of
huge pages more attractive. For a virtualized setup we can see that there can be
latencies as high as 53%, and in this case paging is a failure. Base pages do not suffice
in this case and huge pages can help improve performance in this case. If we compare
the performance benefits of using huge pages in the host OS and guest OS, then
advantages are comparable in both levels. There is no significant advantage in using
huge pages at either of these levels in particular.

The advantages of greedy huge page allocation that is done in Linux are:

o Since pages allocated are of a larger size, this means that there are fewer page

faults when huge pages are greedily allocated.

o More huge pages implies lesser pressure on TLB leading to better performance.
However when we are allocating a huge page to a process, the entire 2MB memory
region needs to be cleared before being given to a process because of security reasons.
For huge page allocation the OS might also have to perform memory compaction before
it finds a suitable 2MB block that can be allocated. These factors increase latency of
page faults when huge pages are allocated and hence it is not a suitable design choice
to synchronously perform memory compaction.

Fragmentation of memory is measured using the FMFI index:

The extent of fragmentation depends on the number of free blocks1 in the system, their
size and the size of the requested allocation. In this section, we define two metrics that
are used to measure the ability of a system to satisfy an allocation and the degree of
fragmentation. We measure the fraction of available free memory that can be used to
satisfy allocations of a specific size using an unusable free space index, F . The
fragmentation index is defined as the percentage of free space in memory that is not
usable because pages cannot be allocated in that region.



e Asynchronous promotion to reduce page fault latency :

o Lower huge page promotion speed means under-utilization of the huge page
support in hardware and limited performance improvements.

o High huge page promotion rates increase the CPU cycles required by the
promoting thread (memory scanning and compaction), thus increasing CPU
usage and affecting user application performance.

o In a multiprocessor setting, TLB invalidation due to compaction needs to be
communicated to the other processors as well in the form of TLB shootdowns
which hugely increases overhead.

o Linux asynchronous promotion speed is chosen to be 1.6 MB/s (i.e. a maximum
of 1 huge page per 1.25 seconds).

e Fragmentation variation over time with huge page support enabled vs disabled.

o With base page support, FMFI quickly falls from 0.3 to almost zero. The reason in
that new base pages are allocated by the OS closely in the memory. Additionally,
pre-existing pages that fragment memory get unmapped or compacted by the OS
periodically.

o Huge page allocation on the other hand aggravates the FMFI because of less
effective compaction and the inability to closely allocate huge pages in an already
fragmented memory considering their 512x larger size.

e FreeBSD approach to huge page support -> Extremely conservative and strict. Kills the
possible performance improvements out of huge pages in order to keep strict hold on
memory utilization. Also supports file cached pages but again is conservative about
writing huge pages to avoid /O traffic.

o Canneal : An application that allocates memory gradually, the conservative huge
page allocation clearly falls back in performance in comparison to the greedy
huge page allocation by Linux.

e Fairness : Some issues like fair huge page allocation across processes and especially
VMs is important to maintain consistent performance across them. Linux simply has no
support or monitoring for fair distribution of huge pages across VMs/processes. In a
situation where someone purchases VM from a service provider, one expects an
equivalent / comparable performance for VM instances of the same price. This is not
guaranteed with the Linux huge page support.

DESIGN
e Tracking the util bitvector(512 bits) for a huge page aligned region with each bit storing

utilization of a base page in the aligned region.

e Proportional Promotion
S # of huge pages f: % huge pages that are idle



P1 10000 100 40%
P2 10000 100 10%
P3 10000 10 10%

Here, all the three processes have the same priority for huge pages (S) and process P3 has the
lowest number of allocated huge pages. Intuitively, P3 must be prioritized over P1 and P2 for
new huge page allocation.

P1 and P2 have the same priority and same number of allocated huge pages, P1 however has
far more huge pages that are actually idle. P1 therefore should be penalized and not be
allocated as many huge pages as P2.

e NUMA considerations with huge pages : More likely to create load imbalance across
NUMA domains.

o Page level false sharing : Unrelated data addresses that could be present in
different base pages, when present in a single huge page can lead to false
sharing.

o Hot page Effect : If the memory region is frequently accessed (hot) across
different cores, it aggravates the load imbalance especially if the hot page is a
huge page. It makes sense to split such huge pages in situations where there is
false sharing or the huge page is too hot.

e Limitations

o The Ingens approach pivots from the Linux huge page management at some
fundamental level, but it still not completely principled. Some decisions and
parameters seem arbitrary unless backed up by tests on workloads.

o Ingens opts to fall back to Linux huge page management in circumstances when
it starts to fail on certain applications.

o Scan-kth scans for 2 s but periodically repeats only after every 10 s. Forthe 8 s
period in between no access information is captured. -> Not very principled.

o Scan-kth has a lot of CPU overhead for access bit tracking which can be as high
as 11% for 10 GB memory. This memory is not very large, which makes its
performance with larger memory worrisome.



