EbbRT: A Framework for
Building Per-Application
Library Operating Systems

Overview

Motivation
Objectives
System design
Implementation
Evaluation
Conclusion

Motivation

e Emphasis on CPU performance and software stack in cloud environments
o End of Dennard scaling.
o High speed I/O devices.
e Limitations of generality of commodity operating systems
o Fixed interface and implementation.
e Techniques in response
o Hardware virtualization.

o Kernel bypass techniques.
o Library operating systems.

e Engineering effort and narrow applicability.

Library OS

Operating systems define the interface between application and hardware
resources.

They hide information about machine resources behind high level
abstractions such as processes, files, address spaces and interprocess
communication.

Certain architectures leave the management of physical resources to
applications by exporting hardware resources to library operating systems
through low-level interfaces.

Exokernel

Mosaic Applications Bames—Hut

WWW

POSIX TCP

Library operating systems

Exokernel Secure bindings

= =
Hardware | Frame buffer| TLB m Memory Disk

Unikernel

Configuration Files

Application Binary

Language Runtime

Parallel Threads

Mirage Compiler
application source code

configuration files

hardware architecture
whole-system optimisation

User Processes

Application Code

OS Kernel Mirage Runtime
Hypervisor Hypervisor
Hardware Hardware

specialised
unikernel

Figure 1: Contrasting software layers in existing VM appliances vs.

unikernel’s standalone kernel compilation approach.

Obijectives

e Performance specialization
o Allow applications to specialize the system at every level.
o Provide an event driven environment with minimal abstraction over hardware.
o Low overhead component model to be used throughout performance sensitive paths.
e Broad Applicability
o Designed to support existing libraries and complex runtimes.
o Heterogeneous distributed architecture called MultiLibOS model.
o EDbDbRT library OS and general purpose OS present.
e Ease of development
o Exploits modern language techniques to simplify the task of writing software.
o Ebb model encapsulates existing system components.
o Difficulty to port applications reduced through function offloading.

System Design

e Heterogeneous distributed structure
e Modular system structure
e Non-preemptive event driven execution model

Heterogeneous distributed structure

e Cloud environment, single application can be deployed across several
machines.

e Deployed across a heterogeneous mix of specialized library OS and general
purpose OS.

o Light weight bootable runtime - native runtime.
o User level library - hosted runtime.

e Native runtime sets up a single address space, basic system functionality (eg.
timers, networking, memory allocation) and invokes an application entry point
while running at highest privilege level.

Frontend OS Process linked to Hosted library
Ebb Instance per-\VM, per-core Representatives

VMO \ \" W VM2

(@@

Hoste

Commodity
0S

cores _ram nics

$ss | mOm

A\ A
Backend privileged protection-domain
linked to Native library OS

Figure 1: High Level EbbRT architecture

Modular system structure

Comprised of objects called Elastic Building Blocks.

Can modify or extend software stack to provide high degree of customization.
Distributed, multi-core fragmented objects.

Namespace of Ebbs is shared across both the hosted and native runtimes.

Obijects in distributed environment

e Shared objects
e Replicated objects
e Fragmented objects

Adaptable replicated objects

Replicas enhance availability and reliability in distributed environments.
Replicas need to be maintained consistent.
Tradeoff between consistency and performance.
Consistency contract must be implemented without jeopardizing performance.
Replica

o Encapsulates local copy and provides interface to access the object.

e Access object
o Wrapper that controls accesses to replica.

® Consistency manager
o Maintains consistency.

e Examples: counter, distributed editor.

Address Space | N

Ch'l('m i)

B it

s
-
s
£
&
£
’
¥
‘
4
'
i
I
i
1
I
| A
1
]
1
1
. g
\
\
]
\
L}
\
A
s
A
A
“ -
: p
o Fa
< p
. i -
~ Access Object 7
. -
R o M
r
= ~
- .
L Client 2 Client 3 Address Space 2)

Figure 1: Concrete representation of a replicated object shared by three threads
located in two processes. Dashed lines identify logical distributed object boun-

daries.

Fragmented objects

e A fragmented object (FO) can be viewed at two different levels of abstraction
o Client’s view (external/abstract).
o Designer’s view (internal/concrete).

e Forclients, FO is a single shared object.

e For designers, FO is composed of
o Set of elementary objects, fragments.
o Client interface exported through public interface.
o Interface between fragments, group interface.
o Lower level shared FOs used for communication, connective objects.

address space A

bar()

address space B

fragmented
ohject

address space C

Figure 1: A fragmented object as seen from clients

bar()

foo()

5

address space A

address space B

connective
object

fragmented

object /

address space C

Figure 2: A fragmented object as seen by its designer

writel()

read() write()
seek()

[t)

file: I{ \ site C

multicast
channel

put()

ﬁy

site B

Figure 3: The fragmented representation of a replicated file

Execution model

e Non-preemptive and event-driven.

e Event loop per core
o Dispatches external and software generated events to registered handlers.

e Hosted library provides analogous environment through the use of poll or
select.

e Cloud applications driven by external requests in general
o Event driven programming a natural choice.

e Cooperative threading model provided as well
o Blocking semantics and concurrency model similar to Go.

Event driven execution

EventEmitters Events ﬂ Event Handlers
O~ 0] ==~ }

NS

Implementation

Software system overview
Events

Elastic Building Blocks
Memory management
Lambdas and futures
Network stack

Primitives

External Libraries

w” faal =]
o | | m| B
El215(%] 25| &
E 2|58g|z| £
2133 |a|E]| ¢ Description
_ PageAllocator v 7 Power of two physical page frame allocator
5‘ VMemAllocator v Allocates virtual address space
g SlabAllocator v o Allocates fixed sized objects
GeneralPurposeAllocator v General purpose memory allocator
£ EbbAllocator v o Allocates Ebblds
% LocalldMap v o Local data store for Ebb data and fault resolution
= GloballdMap v v o v Application-wide data store for Ebb data
E EventManager v o v v Creates events and manages hardware interrupts
@ Timer v /7 Delay based scheduling of events
NetworkManager v o Implements TCP/IP stack
SharedPoolAllocator v Allocates network ports
g NodeAllocator v v o v Allocates, configures, and releases IAAS resources
Messenger v o v Cross node Ebb to Ebb communication
VirtioNet v o/ VirtlO network device driver

Table 1: The core Ebbs that make up EbbRT. A gray row indicates that the Ebb has a multi-core implementation (one
representative per core) while the others use a single shared representative.

Software system overview

e Written predominantly in C++14.

e Native library is packaged with GNU toolchain and libc modified to support
x86_64-ebbrt build target.

e Application when compiled with toolchain produces a bootable ELF binary
linked with library OS.

e POSIX incompatible. Too restrictive and unnecessary.

e Provides necessary functionality for events to execute and Ebbs to be
constructed and used.

Events

e Both native and hosted systems provide event driven execution
o Uses Boost ASIO library to interface with system APIs.
o Eventdriven APl implemented directly on hardware.

Drivers allocate an interrupt from Event manager and bind a handler.
Execution begins at the top frame of a per-core stack.

Exception handler checks for event handler bound to interrupt and invokes.
Events typically generated by hardware interrupts.

Synthetic Events

e Can invoke synthetic events on any core in the system.

e Spawn method
o Receives an event handler that is later invoked.
o Executed only once.

e |dleHandler
o Handler for recurring events.

Event Manager

e Priority Order
o Handles any pending interrupts.
o Dispatches a single synthetic event.
o Invokes all idle handlers.
o Enables interrupts and halts.

e Adaptive polling implementation
o Device programmed to fire interrupt when packets are received.

o Process each packet to completion.
o Rate beyond a threshold install IdleHandlers instead to poll the device.

Limitations

e Cooperative threading model.

e Long running threads
o Preemptive scheduler.
o Dedicated processors.
o Cloud applications 10 driven.

Elastic Building Blocks

e Nearly all software in EbbRT is written as elastic building blocks.

e Every instance is identified by a system wide unique Ebbld.

e Ebbld provides an offset into a virtual memory region backed with distinct
per-core pages which holds a pointer to the per-core representative.

e \When function is called and the pointer is null a type specific handler is
invoked which either returns a reference to a representative or throws a
language level exception.

e Fault handler will construct and store the representative so future invocations
take the fast path.

e Hosted implementation uses per-core hash tables.

EbbRT provides core Ebbs that support distributed data storage and
messaging services.

Fast path cost of a Ebb invocation is one predictable branch and one
unconditional branch more than a normal C++ object dereference.
Avoided using interface definition languages.

malloc() free()

Memory Management '

Small allocations

served from @eneralPurpnseAllncamD

identity mapped
e Similar to that of Linux Kernel. et

(S iabAll ") Large allocations
a ocator reserve virtual
e Page Allocator g % memory and map

o Buddy allocator per NUMA node. physical pages
e Slab Allocator Ebbs

. . . Pai eAIIncator) (VMemAllocatc-rD

o Allocate fixed sized objects. (9) (>

o Per core, per NUMA node representatives to store PR B] SR R MEMWJ
free lists and partial pages. oy

| ——=]
-

o Design based on Linux Kernel’'s SLQB allocator. !
e General Purpose Allocator

o Slab Allocator. Figure 2: Memory Management Ebbs
o VMem Allocator.

Y
k-
\

Buddy Allocator

start
A=70K

B=35K
C=80K
A ends
D=60K
B ends
D ends
C ends

end

0

128k

256k

512k

1024k
1024k

128 256 512
B | &4 256 19
A B |e4| € 128 512
128 1B |e4 | © 128 512
128 B |D C 128 512
128 64 | D c 129 512
256 c 128 1
512 512

1024k

Buddy Allocator

Generally implemented using binary trees.

Very little external fragmentation.

Low compaction overhead

Problem - internal fragmentation due to memory wastage

Slab Allocator

e Each page - only to a particular type of
object.

e Free lists maintained for each of the
partial slabs.

e Advantages :
o No external fragmentation
o Data structures of some objects can be difficult
to move than other objects. So paging policies
can be changed to include for this fact.

Slab Allocation (illustrated)

kernel objects caches slabs
3KB T~
objects
[~
7 KB D\ /
objects > M
O—=—"]

physical
contiguous|
pages

CS-502 (EMC) Fall 2009

Note on mallo

e() and

slab allocation

Any ebb can be modified/replaced without impacting others.

Compiler optimization, function inlining.

Can perform zero copy 10, when memory is identity mapped rather than
allocating memory for DMA.

Lack of preemption
o Allocations served from per core cache without synchronization.
Partition of virtual memory.

VMem Allocator allows implementation of arbitrary paging policies.

Advantages

e Scalability: per core representatives.
e Lack of preemption: no need for synchronization.
e Library OS design: tighter collaboration between system and application

components.

o Directly manage virtual memory
o Achieve zero copy interactions with device.

Event driven programming limitations

e (Obfuscates control flow of application
o Example: asynchronous calls, construct continuations - control mechanisms to save and
restore state across invocations.
o Lambdas capture local state that can be referred when they are invoked.

e Complex error handling

o Exceptions in c++.
Stack unwound to most recent try catch block.
One logical flow of control split across multiple stacks.
Exceptions must be handled at every event boundary.
Monadic futures used instead.

O O O O

// Sends cut an IPv4 packet over Ethernet
Future<void> EthIpv4Send(uintlé_t eth proto, const IpviHeader& ip hdr, IOBuf buf)
IpvdAddress local_dest = Route (ip_hdr.dst);
Future<EthAddr> future_macaddr = ArpFind(local_ dest); /+* asynchronous call
return future_macaddr.Then (
// continuation is passed in as an argument
[buf = move(buf), eth proto] (Future<EthaAddr> f) { f+* lambda definition
auto& eth hdr = buf->Get<EthernetHeader>/();
eth_hdr.dst = f£f.Get ();
eth_hdr.src = Address();
eth_hdr.type = htons {eth_proto);

Send(move (buf)) ;
)i /+ end of Then{) call

Figure 3: Network code path to route and send and Ethernet frame.

Futures - datatype for asynchronously produced values

A future cannot be directly operated on, instead lambda can be applied using

THEN method.
Lambda is invoked once the future is fulfilled.

THEN function returns Future representing value returned by applied function.
This allows other software components to chain further functions to be
invoked on completion.

Any exception will flow to the first function which attempts to catch the
exception - behaviour similar to synchronous code.

C++ futures have no THEN function, block then using get function.

Futures - interface definitions, lambdas - manual continuation construction

Network Stack

e Did not port but implemented the network stack anew.
e Features: IPv4, TCP/IP, DHCP functionality

o Provided event driven interface to applications.
o Minimized multi-core synchronization.
o Enabled pervasive zero copy.

e Does not provide standard BSD socket interface.
e Enables tighter integration with application to manage resources.

|OBuf primitive to support zero-copy software.

Manages ownership of a region of memory as well as view of a part of it.
Applications do not invoke read on a buffer.

Rather they install a handler which is passed an IOBuf.

Network stack does not provide buffering but will invoke the application as
long as data arrives.

Most systems have fixed size buffers to pace connections.
Application can manage its own buffering.

UDP drop datagrams.

TCP set window size to prevent further sends.

Check if outgoing data fits within the advertised window.
o If yes send otherwise buffer.
Allow applications whether to delay sending to aggregate multiple sends.

o Other Systems - Nagle’s algorithm - poor latency.
o EDbbRT - applications can tune behaviour of it's connections runtime

Default behaviours provided.

Challenge - Synchronizing accesses to connection state.
Connection state is stored in a RCU hash table.
o No atomic operations required.
Connection state manipulated only by a single core, chosen by application.
Common case network operations require no synchronization.
Network stack specialization
o Buffering and queuing important factor in performance.
o EDbbRT gives more control to the applications

o Zero copy optimization illustrates the value of having physical memory identity map, unpaged
and within single address space.

Evaluation

e Affirm that this fulfills all the three objectives discussed.
o Supports High-performance specialization
o Provides support for broad set of applications
o Simplifies development of application-specific systems software

e Micro-benchmarks to quantify base overheads of primitives.
e Macro-benchmarks that exercise EbbRT in the context of real applications.

Microbenchmarks

e Evaluates memory allocator and overheads of Ebb mechanism.

e Evaluates latencies and throughput of network stack and exercise several of
system features discussed including idle event processing, lambdas and
|OBuf mechanism.

Memory Allocation

Ported Threadtest from Hoard benchmark suit.

Compared performance with glibc 2.2.5 and jemalloc 4.2.1 allocators.
Allocator scales competitively with production allocators.

Scalability due to locality induced by the per-core Ebb reps of mem allocator
and lack of preemption which removes synchronization.

Memory Allocator bt

... | EbbRT
B glibe
8 jemalloc

e FEach thread T allocates
N * 8 /T byte objects.

Billions of Cycles

Threads Threads

Figure 4: Hoard Threadtest. Y-axis represents threads, .
1.) N=100,000, i=1000; I1.) =100, i=1,000,000.

Network Stack

Ported NetPIPE and iPerf benchmarks.
NetPIPE

o Client sends a fixed size message to server which is echoed back after receiving it completely.
o lllustrates latency of sending and receiving over TCP.

iPerf
o Client opens a TCP stream and sends fixed sized messages which server receives and
discards.

o Confirms - run-to-completion network stack does not preclude high throughput applications.

EbbRT servers - 24.53 microsec, 64 B msg - 4Gb goodput, 100 kB

Linux VMs - 34.27 microsec, 64 B mgs - 4GB goodput, 200 kB

EbbRT short path achieves a 40% improvement in latency.

This illustrates the benefits of non-preemptive event driven execution model
and zero copy instruction path.

Network Stack

8000

6000

4000

Goodput (Mbps)

2000

l—-— Linux VM

—— EthTl

0 -2 4 6 8

100k

200k 300k 400k

5000k 600K 700K

Message Size (B)

Figure 5: NetPIPE performance as a function of message
size. Inset shows small message sizes.

Memcached

e Distributed memory caching system - caches data and objects in RAM to
reduce number of times an external data source must be read.

e Used mainly in dynamic web applications to reduce database load.

In memory key-value store common benchmark in examination and

optimization of networked systems.

Significant OS overhead for Memcached

Re-implemented Memcached instead of porting.

Supports standard memcached library protocol.

Key value pairs stored in RCU hash table to alleviate lock contention.

Memcached

e Benchmarking tool - Mutilate
e Place particular load on server and measure response latency.

e Configure to generate load representative of facebook ETC workload.
o Consists 20-70 B keys and 1-1024 B values.

4'-.— 0s == Li VM == Li —{— Ehh“T]i'
i ot bl l-.— Linux VM =@ Linux (thread) ~{}~ Linux (process) == EhhHTl—

800

600}
wn n
= =
> >
] W)
= |z}

U 400 o 400
4 et
lin]
" i

200 QL

200k 400k 600k BODk 1000K 1200K

Throughput (RPS)

25K 50k 75k 100k 125k 150k
Throughput (RPS)

: . Fi 7: M hed Multi Perf
Figure 6: Memcached Single Core Performance i B s e s e

Represents 99th percent latency

Request/sec Inst/cycle Inst/request LLC ref/cycle I-cache miss/cycle

EbbRT 379387 0.81 32357 0.0081 0.0079

Linux VM 137194 0.71 13604 0.0098 0.0339

Table 2: Memcached CPU-efficiency metrics

e Linux Kernel perf utility used to gather data - 10 sec duration of a fully-loaded

single core memcached server run within a VM
e 2.75x speedup for request processing - shorter non-preemptive instruction

path for processing requests.

Ingress Application Egress Total

EbbRT | 0.89us 0.86 us 0.83us 2.59us
Linux 1.05 us 1.30us 1.46pus 3.81us

Table 3: Memcached Per-Request Latency

Node.|s

e In comparison to memcached node.js uses many features like virtual memory
mapping, file /O, periodic timers etc.

e To illustrate EbbRT’s support for broad class of software, also reducing
developers burden required to develop specialized systems.

e Benchmark - V8 Javascript benchmark suite

Inst/cycle LLC ref/cycle TLB miss/cycle VMexit Hypervisortime Guest kernel time

EbbRT 2.48 0.0021 1.18e-5 5950 0.33% N/A

Linux VM 239 0.0028 9.92e-5 06851 0.74% 1.08%

Table 4: V8 JavaScript Benchmark CPU-efficiency metrics

Score - inversion of running time, o T R
Scaling by the Score Of a reference g 1 e O PR PSP
implementation, geometric mean Of 8 i 1.2 b 7
scores LI T S |
48]
&
Inefficiency of Linux VM - executes s

more instructions such as VM exits, 0.9
extraneous Kernel functionality like
scheduling etc.

coy®™ Da\w‘we

ef e ° a5 oY \
al \a \4 \2 G
r—.ar\ﬂ““‘:: u\e=5‘° %a‘!“ PO et e o

Figure 8: V8 JavaScript Benchmark

Node.js Webserver

WRK benchmark - place moderate load on the webserver.
EbbRT - 91.1uys mean and 100us 99th percentile latencies.
Linux - 103.5us mean and 120.6us 99th percentile latencies

Linux has 13.6% higher mean latency and 20.65% higher 99th percentile
latencies over EbbRT.

Conclusion

e Library OS uses - portability, security, efficiency

e EDLDbRT applications achieve high performance through system wide
specialization rather than one particular technique.

e Long-term goal - ability to be used for a broad range of applications, enabling
high degree of specialization

e EDDLRT framework for constructing specialized systems for cloud applications

