Improved Approximation for Universal Facility Location

Naveen Garg * Rohit Khandekar * Vinayaka Pandit ${ }^{\dagger}$

Abstract

The Universal Facility Location problem (UniFL) is a generalized formulation which contains several variants of facility location including capacitated facility location (1-CFL) as its special cases. We present a $6+\epsilon$ approximation for the UniFL problem, thus improving the $8+\epsilon$ approximation given by Mahdian and Pal. Our result bridges the existing gap between the UniFL problem and the 1-CFL problem.

1 Preliminaries

The Universal Facility Location (UniFL) problem was introduced by Hajiaghayi et al. [1]. In the UniFL problem, we are given a set of facilities F, a set of clients C, and a distance metric $\left\{c_{i j}: i, j \in F \cup C\right\}$. Each client $j \in C$ is associated with an integer demand $d_{j} \geq 0$. For each $i \in F$, the facility cost of i is given by a non-decreasing, continuous function $f_{i}\left(u_{i}\right)$ of the total capacity u_{i} installed at i. The goal is to install capacities u_{i} at every facility $i \in F$ and assign all the demands to the facilities such that each facility i serves at most u_{i} units of the demand. The demand of a client can be split among multiple facilities. The service cost of assigning a unit demand of a client $j \in C$ to a facility $i \in F$ is given by $c_{j i}$. The objective is to minimize the sum of the total facility cost and the total service cost.

Mahdian and Pál [2] give $8+\epsilon$ approximation for UniFL using a local search algorithm. Zhang et al. [3] improve their analysis to give $7+\epsilon$ approximation. Zhang et al. [4] also give $6+\epsilon$ approximation for the capacitated facility location problem (1-CFL). We generalize their result to UniFL with a new local search operation called Double_Pivot. We give a local search algorithm which outputs a local optimum with cost at most 6 times the cost of the optimum. This yields $6+\epsilon$ approximation algorithm. Our local search algorithm starts with an arbitrary solution and outputs a local optimum solution with respect to the following operations. The first two operations were introduced by Mahdian and Pál [2].

1. $\operatorname{add}(s, \delta):$ Increase the capacity at $s \in F$ by $\delta \geq 0$. The change in cost can be computed exactly and

[^0]the operation is performed if it saves cost.
2. Single $\operatorname{Pivot}(s, \Delta)$: The vector $\Delta \in \Re^{|F|}$ indicates the increase in the installed capacity at each facility. A facility $i \in F$ is said to shrink if $\Delta_{i}<0$, and grow if $\Delta_{i}>0$. Each shrinking facility i sends $\left|\Delta_{i}\right|$ units of its demand to the pivot $s \in F$. Each growing facility i receives Δ_{i} units of demand from s. For a valid operation, we assume $\sum_{i \in F} \Delta_{i}=0$. The increase in cost of the solution is at most $\sum_{i \in F}\left(f_{i}\left(u_{i}+\Delta_{i}\right)-f_{i}\left(u_{i}\right)+c_{s i}\left|\Delta_{i}\right|\right)$. We perform the operation if the upper bound is negative.
3. Double_Pivot $\left(s_{1}, s_{2}, \Delta^{1}, \Delta^{2}\right)$: It is similar to performing two Single_Pivot operations at a time. The vector $\Delta^{1} \in \Re^{|F|}$ specifies the rerouting of demand through s_{1} and $\Delta^{2} \in \Re^{|F|}$ specifies the rerouting of demand through s_{2}. The overall increase in the capacities is given by $\Delta^{1}+\Delta^{2}$. We assume $\sum_{i \in F} \Delta_{i}^{1}=\sum_{i \in F} \Delta_{i}^{2}=0$. The increase in cost of the solution is now at most $\sum_{i \in F}\left(f_{i}\left(u_{i}+\right.\right.$ $\left.\left.\Delta_{i}^{1}+\Delta_{i}^{2}\right)-f_{i}\left(u_{i}\right)+c_{s_{1} i}\left|\Delta_{i}^{1}\right|+c_{s_{2} i}\left|\Delta_{i}^{2}\right|\right)$. We perform the operation if the upper bound is negative.

Mahdian and Pál [2] show how to use dynamic programming to find a SinglePivot operation with the minimum upper bound on the increase in the cost. The Double.Pivot can be implemented using similar ideas.

2 Analysis

Let S and S^{*} denote a local optimum solution and a global optimum solution respectively. Let u_{i} and u_{i}^{*} denote the capacities installed at $i \in F$ in S and S^{*} respectively. Let $C_{S}(S)$ and $C_{f}(S)$ denote the service and the facility costs of S, and $C(S)=C_{s}(S)+$ $C_{f}(S)$ denote the total cost of S. Similarly define $C_{s}\left(S^{*}\right), C_{f}\left(S^{*}\right)$, and $C\left(S^{*}\right)$. Using the fact that S is locally optimum with respect to the add operation, Mahdian and Pál [2] proved the following upper bound on the service cost of S.

Lemma 2.1. $C_{s}(S) \leq C_{f}\left(S^{*}\right)+C_{s}\left(S^{*}\right)$.
The rest of the paper is devoted to bounding $C_{f}(S)$. Let the facilities $F_{+}=\left\{i \in F \mid u_{i}-u_{i}^{*}>0\right\}$ be called sources and the facilities $F_{-}=\left\{i \in F \mid u_{i}-u_{i}^{*}<0\right\}$ be called sinks. Consider the transshipment problem
in which each $i \in F_{+}$sources a ow of $u_{i}-u_{i}^{*}$ and each $i \in F_{-}$sinks a ow of $\left|u_{i}-u_{i}^{*}\right|$. Let the cost of routing a unit demand from a facility s to a facility t be $c_{s t}$. Mahdian and Pál [2] proved the minimum cost of the transshipment to be at most $C_{s}(S)+C_{s}\left(S^{*}\right)$. Furthermore, the support graph of the minimum cost transshipment is a forest with edges going between F_{+} and F_{-}. We define operations based on this forest.

Let y denote the the optimal transshipment with the property described above. Thus, $y(s, t)$ denotes the ow between $s \in F_{+}$and $t \in F_{-}$. For $t \in F_{-}$, let $y(\cdot, t)=\sum_{s \in F_{+}} y(s, t)$ and for $s \in F_{+}$, let $y(s, \cdot)=$ $\sum_{t \in F_{-}} y(s, t)$. Similarly, for $A \subset F_{-}$, let $y(\cdot, A)=$ $\sum_{t \in A} y(\cdot, t)$ and for $B \subset F_{+}$, let $y(B, \cdot)=\sum_{s \in B} y(s, \cdot)$.

Root each tree \mathcal{T} in the forest at some node $r \in F_{-}$. For a node v, let $K(v)$ denote the set of its children. Thus $K(t) \subseteq F_{+}$if $t \in F_{-}$and $K(s) \subseteq F_{-}$if $s \in F_{+}$. We borrow the following notation from [2] and [4]. Consider a node $t \in F_{-}$. We call t weak if $\sum_{s \in K(t)} y(s, t)>$ $y(\cdot, t) / 2$ and strong otherwise. We call $s \in K(t)$ heavy if $y(s, t)>y(\cdot, t) / 2$ and light otherwise. Note that there can be at most one heavy node in $K(t)$. A light node $s \in K(t)$ is called dominant if $y(s, t) \geq y(s, \cdot) / 2$ and non-dominant otherwise. We denote the set of dominant nodes in $K(t)$ by $\operatorname{Dom}(t)$ and the set of non-dominant nodes in $K(t)$ by $\operatorname{NDom}(t)$. For $s \in \operatorname{NDom}(t)$, let $W(s)$ denote the set of weak children of s and let $\operatorname{Rem}(s)=$ $\max \left\{y(s, t)-\sum_{t^{\prime} \in W(s)} y\left(s, t^{\prime}\right), 0\right\}$. If $|\operatorname{NDom}(t)|=k$, we re-index the facilities in $\operatorname{NDom}(t)$ as $s_{1}, s_{2}, \ldots, s_{k}$ such that $\operatorname{Rem}\left(s_{1}\right) \leq \operatorname{Rem}\left(s_{2}\right) \leq \ldots \leq \operatorname{Rem}\left(s_{k}\right)$.

Consider a tree \mathcal{T} in the forest. For $t \in F_{-}$which is a non-leaf node in \mathcal{T}, let \mathcal{T}_{t} denote the subtree rooted at t containing all the children and grand-children of t. Thus \mathcal{T}_{t} is of depth at most two. For each such \mathcal{T}_{t} in the forest, we consider the following operations.

1. Consider the operations Single_Pivot $\left(s_{i}, \Delta\right)$ for $s_{i} \in \operatorname{NDom}(t)$ such that $i=1, \ldots, k-1$ where $k=$ $|\operatorname{NDom}(t)|$. We send $y\left(s_{i}, \cdot\right)$ units of ow out of s_{i} as follows: $2 y\left(s_{i}, t^{\prime}\right)$ to all $t^{\prime} \in W\left(s_{i}\right)$ (this is feasible as t^{\prime} is weak), $y\left(s_{i}, t^{\prime}\right)$ to all $t^{\prime} \in K\left(s_{i}\right) \backslash W\left(s_{i}\right)$, and $\operatorname{Rem}\left(s_{i}\right)$ to the facilities in $K\left(s_{i+1}\right) \backslash W\left(s_{i+1}\right)$. It is straightforward to set the vector Δ. The indexing of the facilities in $\operatorname{NDom}(t)$ ensures that ow routed across every edge e in \mathcal{T}_{t} is at most $2 y(e)$, i.e., two times the ow across e in the transshipment y.

2A. Case when t is strong. As t is strong, there is no heavy node in $K(t)$. Consider the operation Double_Pivot $\left(t, s_{k}, \Delta^{1}, \Delta^{2}\right)$. We send the ow $y(\operatorname{Dom}(t), \cdot)$ from the nodes in $\operatorname{Dom}(t)$ to t and a ow of $y\left(s_{k}, t\right)$ from s_{k} to t. We set the vector Δ^{1} accordingly. For each $t^{\prime} \in K\left(s_{k}\right)$, we send a ow of $y\left(s_{k}, t^{\prime}\right)$ from s_{k} to t^{\prime} and set Δ^{2} accordingly.

2B. Case when t is weak and there is a heavy node $s_{0} \in K(t)$. Consider Single_Pivot $\left(s_{0}, \Delta\right)$. For each $t^{\prime} \in K\left(s_{0}\right)$, we send a ow of $y\left(s_{0}, t^{\prime}\right)$ from s_{0} to t^{\prime} and a ow of $y\left(s_{0}, t\right)$ from s_{0} to t. The vector Δ is set accordingly. Furthermore for the facilities in $\operatorname{Dom}(t)$ and s_{k}, consider Double_Pivot $\left(t, s_{k}, \Delta^{1}, \Delta^{2}\right)$ same as the one explained in the Case 2A above.
2C. Case when t is weak and there is no heavy node in $K(t)$. Zhang et al. [4] show that there exists $\gamma_{1} \in \operatorname{Dom}(t)$ such that the set $\operatorname{Dom}(t) \backslash\left\{\gamma_{1}\right\}$ can be partitioned into Dom_{1} and Dom_{2} satisfying $y\left(\gamma_{1}, t\right)+y\left(\right.$ Dom $\left._{i}, \cdot\right) \leq y(\cdot, t)$ for $i=1,2$ where $\gamma_{2}=s_{k}$. We consider two operations Double_Pivot $\left(t, \gamma_{i}, \Delta_{i}^{1}, \Delta_{i}^{2}\right)$ for $i=1,2$. Here the vector Δ_{i}^{1} is set such that the ow $y\left(\operatorname{Dom}_{i}, \cdot\right)$ is sent from the nodes in Dom ${ }_{i}$ to t and Δ_{i}^{2} is set such that the ow $y\left(\gamma_{i}, t\right)$ is sent from γ_{i} to t and $y\left(\gamma_{i}, t^{\prime}\right)$ is sent to each $t^{\prime} \in K\left(\gamma_{i}\right)$. The definition of dominant nodes can be used to show that the operations are feasible.
After rerouting of the ow in above operations, if the capacity of a facility $s \in F_{+}$reduces to u_{s}^{*}, we say that s is closed. If on the other hand, the capacity of a facility $t \in F_{-}$is increased to at most u_{t}^{*}, we say that t is opened.

As shown by Zhang et al. [4] it is easy to verify that
Lemma 2.2. The operations considered above are such that each facility $s \in F_{+}$is closed exactly once, each facility $t \in F_{-}$is opened at most three times, and the flow across every edge in e in the forest is at most $2 y(e)$.
As proved in [2, 4], Lemmas 2.2 and 2.1 imply,
Lemma 2.3. $C_{f}(S) \leq 3 C_{f}\left(S^{*}\right)+2\left(C_{s}(S)+C_{s}\left(S^{*}\right)\right) \leq$ $5 C_{f}\left(S^{*}\right)+4 C_{s}\left(S^{*}\right)$.
Lemmas 2.1 and 2.3 together imply that $C(S) \leq$ $6 C_{f}\left(S^{*}\right)+5 C_{s}\left(S^{*}\right)$, yielding a $6+\epsilon$ approximation algorithm. Standard scaling techniques can be used to improve the ratio to $3+2 \sqrt{2}+\epsilon<5.83+\epsilon$.

References

[1] M. Hajiaghayi, M. Mahdian, and V. Mirrokni, The facility location problem with general cost functions, Networks, 42 (2003), pp. 42-47.
[2] M. Mahdian and M. Pál, Universal facility location, in Proceedings of ESA (2003), pp. 409-422.
[3] J. Zhang, B. Chen, and Y. Ye, Personal communication.
[4] J. Zhang, B. Chen, and Y. Ye, Multi-exchange local search algorithm for capacitated facility location problem, in Proceedings of IPCO (2004), pp. 219-233.

[^0]: ${ }^{\text {TDept. }}$ t. CSE, Indian Institute of Technology, Delhi.
 ${ }^{\dagger}$ IBM India Research Laboratory, New Delhi.

