Improved Approximation for Universal Facility Location

Naveen Garg *

Abstract

The Universal Facility Location problem (UniFL) is a gen-
eralized formulation which contains several variants of facil-
ity location including capacitated facility location (1-CFL)
as its special cases. We present a 6 + ¢ approximation for
the UniFL problem, thus improving the 8+ ¢ approximation
given by Mahdian and Pal. Our result bridges the existing
gap between the UniFL problem and the 1-CFL problem.

1 Preliminaries

The Universal Facility Location (UniFL) problem was
introduced by Hajiaghayi et al. [1]. In the UniFL
problem, we are given a set of facilities F', a set of
clients C, and a distance metric {¢;; : i,j € F U C}.
Each client j € C is associated with an integer demand
d; > 0. For each i € F, the facility cost of i is given
by a non-decreasing, continuous function f;(u;) of the
total capacity wu, installed at . The goal is to install
capacities u; at every facility ¢ € F and assign all the
demands to the facilities such that each facility i serves
at most u; units of the demand. The demand of a client
can be split among multiple facilities. The service cost
of assigning a unit demand of a client j € C to a facility
i € F is given by cj;. The objective is to minimize the
sum of the total facility cost and the total service cost.

Mahdian and P4l [2] give 8 + € approximation for
UniFL using a local search algorithm. Zhang et al. (3]
improve their analysis to give 7 + € approximation.
Zhang et al. [4] also give 6 + ¢ approximation for the
capacitated facility location problem (l—CFL). We gen-
eralize their result to UniFL with a new local search
operation called Double Pivot. We give a local search
algorithm which outputs a local optimum with cost at
most 6 times the cost of the optimum. This yields 6 + €
approximation algorithm. Our local search algorithm
starts with an arbitrary solution and outputs a local op-
timum solution with respect to the following operations.
The first two operations were introduced by Mahdian
and P4l [2].

1. add(s,d): Increase the capacity at s € F by § > 0.
The change in cost can be computed exactly and
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the operation is performed if it saves cost.

2. Single Pivot(s,A): The vector A € RIF! indi-
cates the increase in the installed capacity at each
facility. A facility ¢ € F is said to shrink if &; < 0,
and grow if A; > 0. Each shrinking facility ¢ sends
[A;] units of its demand to the pivot s € F. Each
growing facility ¢ receives A; units of demand from
s. For a valid operation, we assume Zie O =0.
The increase in cost of the solution is at most
Y ier(filus + A¢) = fi(us) + csilAi]). We perform
the operation if the upper bound is negative.

3. Double Pivot(si, sp, Al, A?): It is similar to per-
forming two Single Pivot operations at a time.
The vector A' € RIFl specifies the rerouting of
demand through s; and A% ¢ RIF! specifies the
rerouting of demand through ss. The overall in-
crease in the capacities is given by A! 4+ A2, We
assume Y. p Al =3, 2 A? = 0. The increase in
cost of the solution is now at most Y, p(fi(u; +
AL+ A2) = filu;) +csyi| Ad |+ es,:]A2]). We perform
the operation if the upper bound is negative.

Mahdian and P4l [2] show how to use dynamic pro-
gramming to find a Single Pivot operation with the
minimum upper bound on the increase in the cost. The
Double_Pivot can be implemented using similar ideas.

2 Analysis

Let S and S* denote a local optimum solution and a
global optimum solution respectively. Let u; and u}
denote the capacities installed at 7 € F in S and S*
respectively. Let Cy(S) and Cf(S) denote the service
and the facility costs of S, and C(S) = Cs(S) +
C¢(S) denote the total cost of S. Similarly define
Cs(8%),C¢(S*), and C(S*). Using the fact that S
is locally optimum with respect to the add operation,
Mahdian and P4l {2] proved the following upper bound
on the service cost of S.

LEMMA 2.1. Cy(S) < Cp(S*) + C4(S*).

The rest of the paper is devoted to bounding C¢(S).
Let the facilities Fly = {i € F | u; — u} > 0} be called
sources and the facilities F_ = {¢ € F' | u; — uf < 0}
be called sinks. Consider the transshipment problem
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in which each ¢ € Fy sources a ow of u; — u] and
each i € F_ sinks a ow of |u; — u}|. Let the cost of
routing a unit demand from a facility s to a facility ¢
be ¢s;. Mahdian and P4l (2] proved the minimum cost
of the transshipment to be at most C,(S) + Cs(S*).
Furthermore, the support graph of the minimum cost
transshipment is a forest with edges going between F.
and F_. We define operations based on this forest.

Let y denote the the optimal transshipment with
the property described above. Thus, y(s,t) denotes the

ow between s € Fy and t € F_. For t € F_, let

y(-,t) = EseFJr y(s,t) and for s € Fy, let y(s, ) =
> ek y(s,t). Similarly, for A C F_, let y(, 4) =
Yoieay(,t) and for B C Fy, let y(B,-) = > g u(s,")-

Root each tree T in the forest at some node r € F_.
For a node v, let K(v) denote the set of its children.
Thus K(t) C Fifte F_and K(s) C F_ifse€ F,. We
borrow the following notation from [2] and [4]. Consider
anode t € F_. We call t weak if > cp¥(s,t) >
y(-,t)/2 and strong otherwise. We call s € K(t) heavy
if y(s,t} > y(-,t)/2 and light otherwise. Note that there
can be at most one heavy node in K(¢). A light node
s € K(t) is called dominant if y(s,t) > y(s,-)/2 and
non-dominant otherwise. We denote the set of dominant
nodes in K (t) by Dom(t) and the set of non-dominant
nodes in K (t) by NDom(t). For s € NDom(t), let W (s)
denote the set of weak children of s and let Rem(s) =
max{y(s,t) ~ >, ew(s) Y(s,t), 0} If [NDom(t)| = k, we
re-index the facilities in NDom(t) as si1,S82,...,S% such
that Rem(s;) < Rem(sz2) < ... < Rem(sg)-

Consider a tree 7 in the forest. For ¢t € F_ which is
a non-leaf node in 7, let 7T, denote the subtree rooted
at t containing all the children and grand-children of ¢.
Thus 7 is of depth at most two. For each such 7 in
the forest, we consider the following operations.

1. Consider the operations Single Pivot(s;, A) for
s; € NDom(t) such that i =1,...,k — 1 where k =
INDom(¢)|. We send y(s;,-) units of ow out of s; as
follows: 2y(s;,¢') to all t € W(s;) (this is feasible
as t’ is weak), y(s;,t') to all ¢’ € K (s;)\ W(s;), and
Rem(s;) to the facilities in K (s;41)\W(si41). It is
straightforward to set the vector A. The indexing
of the facilities in NDom(¢) ensures that ow routed
across every edge e in T, is at most 2y(e), i.e., two
times the ow across e in the transshipment y.

2A. Case when t is strong. Ast is strong, there is
no heavy node in K(¢). Consider the operation
Double Pivot(t, s, Al,A%?). We send the ow
y(Dom(t),-) from the nodes in Dom(t) to ¢t and a

ow of y(sg,t) from s, to t. We set the vector Al
accordingly. For each ¢/ € K (si), we send a ow of

y(sk,t') from si to t' and set A? accordingly.
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2B. Case when t is weak and there is a heavy
node sy € K(t). Consider Single Pivot(sg, A).
For each t' € K(sp), we send a ow of y(sp,t')
from sp to t' and a ow of y(so,t) from sp to
t. The vector A is set accordingly. Further-
more for the facilities in Dom(t) and si, consider
Double_Pivot(t, sk, A, A?) same as the one ex-
plained in the Case 2A above.

2C. Case when ¢ is weak and there is no heavy
node in K(¢). Zhang et al. [4] show that there
exists y; € Dom(t) such that the set Dom(t) \ {71}
can be partitioned into Dom; and Domg satisfy-
ing y(711t) + y(Domia ) < y(-,t) for i = 1,2
where v2 = si. We consider two operations
Double_Pivot(t,v;, AL, A?) for i = 1,2. Here the
vector A} is set such that the ow y(Dom, -) is sent
from the nodes in Dom; to ¢ and A? is set such that
the ow y(v:,t) is sent from ~; to t and y(v,t') is
sent to each ¢’ € K(-y;). The definition of dominant
nodes can be used to show that the operations are
feasible.

After rerouting of the ow in above operations, if
the capacity of a facility s € F\ reduces to uj, we say
that s is closed. If on the other hand, the capacity of a
facility t € F_ is increased to at most u;, we say that ¢
is opened.

As shown by Zhang et al. [4] it is easy to verify that

LEMMA 2.2. The operations considered above are such
that each facility s € Fy is closed exactly once, each
facility t € F_ is opened at most three times, and the
flow across every edge in e in the forest is at most 2y(e).

As proved in [2, 4], Lemmas 2.2 and 2.1 imply,

LEMMA 2.3. C1(S) < 3C5(S*) + 2(Cs(S) + C5(5%)) <
5C;(S*) + 4C,(S*).

Lemmas 2.1 and 2.3 together imply that C(S) <
6C(S*) + 5C,(S*), yielding a 6 + € approximation
algorithm. Standard scaling techniques can be used to
improve the ratio to 3 + 2v/2+e< 583 +e¢.
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