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A b s t r a c t  

The Universal Facility Location problem (UniFL) is a gen- 
eralized formulation which contains several variants of facil- 
ity location including capacitated facility location (1-CFL) 
as its special cases. We present a 6 + ~ approximation for 
the UniFL problem, thus improving the 8 % e approximation 
given by iVlahdian and Pal. Our result bridges the existing 
gap between the UniFL problem and the 1-CFL problem. 

1 P r e l i m i n a r i e s  

The Universal Facility Location (UniFL) problem was 
introduced by Hajiaghayi et al. [1]. In the UniFL 
problem, we are given a set of facilities F,  a set of 
clients C, and a distance metric {cij : i , j  c F U C}.  
Each client j E C is associated with an integer demand 
dj > 0. For each i E F,  the facility cost of i is given 
by a non-decreasing, continuous function f i (u i )  of the 
total  capacity ui installed at i. The goal is to install 
capacities 'ai at every facility i E F and assign all the 
demands to the facilities such that  each facility i serves 
at most ui units of the demand. The demand of a client 
can be split among nmltiple facilities. The service cost 
of assigning a unit demand of a client j E C to a facility 
i E F is given by cji. The objective is to minimize the 
sum of the total  facility cost and the total  service cost. 

Mahdian and P£1 [2] give 8 + e approximation for 
UniFL using a local search algorithm. Zhang et al. [3] 
improve their analysis to give 7 + e approximation. 
Zhang et al. [4] also give 6 + e approxinmtion for the 
capacitated facility location problem (1-CFL). We gen- 
eralize their result to UniFL with a new local search 
operation called Double_Pivot .  We give a local search 
algorithm which outputs a local opt imum with cost at 
most 6 times the cost of the optimum. This yields 6 + e 
approximation algorithm. Our local search algorithm 
starts  with an arbi trary solution and outputs  a local op- 
t imum solution with respect to the following operations. 
The first two operations were introduced by Mahdian 
and Pgl [2]. 

1. add(s,5): Increase the capacity at s E F by 5 _> 0. 
The change in cost can be computed exactly and 
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the operation is perforlned if it saves cost. 

2. S ing l e_P ivo t ( s , A) :  The vector ZX E ~IFI indi- 
cates the increase in the installed capacity at each 
facility. A facility i E F is said to shrink if &i < 0, 
and grow if Ai > 0. Each shrinking facility i sends 
IAil units of its demand to the pivot s E F.  Each 
growing facility i receives Ai units of demand from 
s. For a valid operation, we assume ~ i e F  ZXi = 0. 
The increase in cost of the solution is at most 

~ i e F ( f i ( ' a i  + A i )  -- f i (ui)  + Cs.i[A.il). We perform 
the operation if the upper bound is negative. 

3. Double_Pivot(s1,  s2, A 1, A2): It  is similar to per- 
forming two S i n g l e _ P i v o t  operations at a time. 
The vector A 1 E ~lFI specifies the rerouting of 
demand through sl and A 2 E ~lFI specifies the 
rerouting of demand through s2. The overall in- 
crease in the capacities is given by A I + A 2. We 
assume E < v  A~ = E i e v  A~ = 0. The increase in 

cost of the solution is now at most ~ ieF( f , i ( u i  + 
ZXl +ZX~)--f,("*,,)+c,,d&~ I+C,=dZX~t). We perform 
the operation if the upper bound is negative. 

Mahdian and Pgl [2] show how to use dynamic pro- 
gramming to find a S i n g l e _ P i v o t  operation with the 
minimum upper bound on the increase in the cost. The 
Doub]_e..Pivot can be implemented using similar ideas. 

2 A n a l y s i s  

Let S and S* denote a local opt imum solution and a 
global opt immn solution respectively. Let ui and 'u i* 
denote the capacities installed at i E F in S and S* 
respectively. Let Cs(S)  and C f ( S )  denote the service 
and the facility costs of S, and C(S )  = Cs(S)  + 
C f ( S )  denote the total  cost of S. Similarly define 
Cs(S* ) ,Cs (S* ) ,  and C(S*) .  Using the fact that  S 
is locally opt inmm with respect to the add operation, 
Mahdian and Pgl [2] proved the following upper bound 
on the service cost of S. 

LEMIvlA 2.1. Cs(S)  5_ C f (S* )  + Cs(S*).  

The rest of the paper is devoted to bounding C i ( S ) .  
- '  * 0} be called Let tile facilities F+ = {i E F I u i u, i > 

sources and the facilities F_ = {i E F I ni - u~ < 0} 
be called sinks. Consider tile t ransshipment problem 
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in which each i E F+ sources a ow of u i - u ~  and 
e a c h i  E F_ sinks a o w o f i u i - u ~ I .  Let the cost of 
routing a unit demand from a facility s to a facility t 
be cat. Mahdian and Pgd [2] proved the minimum cost 
of the transshipment to be at most Cs(S) + Cs(S*). 
Furthermore, the support  graph of the minimum cost 
t ransshipment is a forest with edges going between F+ 
and F_.  We define operations based on this forest. 

Let y denote the the optimal t ransshipment with 
the proper ty  described above. Thus, y(s, t) denotes the 

ow between s E F+ and t E F_.  For t E F_,  let 
y( . , t )  = ~ E F +  y(s, t)  and for s e F+, let y(s,.) = 
~ teF_  y(s,t).  Similarly, for A c F_ ,  let y( . ,A) = 

~ t ~ A  Y(', t) and for B C F+,  let y(B, .) = ~ E B  y(s, .). 
Root each tree T in the forest at some node r E F_.  

For a node v, let K(v)  denote the set of its children. 
Thus K(t)  _C F+ if t E F_ and K(s)  c_ F_ if s E F+. We 
borrow the following notation from [2] and [4]. Consider 
a node t E F_.  We call t weak if ~ E K ( t )  Y(S,t) > 
y(., t) /2 and strong otherwise. We call s E K(t)  heavy 
if y(s, t) > y(., t) /2 and light otherwise. Note that  there 
can be at most one heavy node in K(t).  A light node 
s E K(t )  is called dominant if y(s, t)  _> y(s , . ) /2  and 
non-dominant otherwise. We denote the set of dominant 
nodes in K(t)  by Dora(t) and the set of non-dominant  
nodes in K(t)  by NDom(t). For s E NDom(t), let W(s) 
denote the set of weak children of s and let Rein(s) = 
nlax{y(s, t) - Et ,cw(s)  y(s, t'), 0}. If INDom(t)I = k, we 
re-index the facilities in NDom(t) as s l , s 2 , . . . , s a  such 
that  Rein(s1) <_ Rem(s2) < . . .  < Rem(sk).  

Consider a tree T in the forest. For t E F_ which is 
a non-leaf node in T,  let T t  denote the subtree rooted 
at t containing all the children and grand-children of t. 
Thus T t  is of depth at most  two. For each such T~ in 
the forest, we consider the following operations. 

1. Consider the operations S ing le . .P ivo t ( s~ ,A)  for 
si E NDom(t) such that  i = 1 , . . . , k  - 1 where k = 
tNDom(t)I. We send y(si, .) units of ow out of si as 
follows: 2y(s~, t') to all t' E W(si)  (this is feasible 
as t '  is weak), y(si, t') to all t' E K(si)  \ W(si) ,  and 
Rern(s.i) to the facilities in K(si+~)\  W(s~+l). It  is 
straightforward to set the vector A. The indexing 
of the facilities in NDom(t) ensures that  ow routed 
across every edge e in T t  is at most 2y(e), i.e., two 
times the ow across e in the t ransshipment  y. 

2A. C a s e  w h e n  t is s t r o n g .  As t is strong, there is 
no heavy node in K(t).  Consider the operation 
Double__Pivot(t ,s~,A1,A2).  We send the ow 
y(Dom(t),.) from the nodes in Dora(t) to t and a 

ow of y(s~, t) from sk to t. We set the vector A ~ 
accordingly. For each t ~ E K(sa), we send a ow of 
y(sk, t ~) from Sk to t ' and set A ~ accordingly. 

2B. C a s e  w h e n  t is w e a k  a n d  t h e r e  is a h e a v y  
n o d e  so E K(t) .  Consider Single_Pivot(s0 ,£~) .  
For each t '  E K(s0),  we send a ow of y(s0, t ') 
from so to t '  and a ow of y(s0, t) fi'om so to 
t. The vector A is set accordingly. Further- 
more for the facilities in Dora(t) and Sk, consider 
Double_Pivot( t ,  sk, ~ l ,  A2) same as tile one ex- 
plained in the Case 2A above. 

2C. C a s e  w h e n  t is w e a k  a n d  t h e r e  is no  h e a v y  
n o d e  in K(t) .  Zhang et al. [4] show tha t  there 
exists 71 E Dora(t) such that  the set Dora(t) \ {71} 
can be part i t ioned into Doml and Dora 2 satisfy- 
ing Y(71,t) + y(Domi,.) < y(-, t)  for i = 1,2 
where 72 ---- sk. We consider two operations 
Double_Pivot(t, i 2 7i, A~ ,Ai )  for i = 1,2. Here the 
vector , ~  is set such tha t  the ow y(Domi, .) is sent 
from the nodes in Domi to t and A~ is set such that  
the ow Y(7i, t) is sent from 7i to t and Y(Ti, if) is 
sent to each t ~ E K(Ti).  The definition of dominant  
nodes can be used to show tha t  the operations are 
feasible. 

After rerouting of the ow in above operations, if 
the capacity of a facility s E F+ reduces to u~, we say 
that  s is closed. If on the other hand, the capacity of a 

, $ facility t E F_ is increased to at most at, we say that  t 
is opened. 

As shown by Zhang et al. [4] it is easy to verify that  

LEMMA 2.2. The operations considered above are such 
that each facility s E F+ is closed exactly once, each 
facility t E F_ is opened at most three times, and the 
flow across every edge in e in the forest is at most 2y(e). 

As proved in [2, 4], Lemmas 2.2 and 2.1 imply, 

LEMMA 2.3. Cf(S) _< 3C/(S*) -~- 2(Cs(S) + Cs(S*)) < 
5cf(s*) + 4c~(s*). 
Lemmas 2.1 and 2.3 together imply that  C(S) < 
6C/(S*)  + 5Cs(S*), yielding a 6 + c approximation 
algorithm. Standard scaling techniques can be used to 
improve the ratio to 3 + 2~/2 + e < 5.83 + e. 
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