Naveen Garg *

Rohit Khandekar *

Vinayaka Pandit[†]

Abstract

The Universal Facility Location problem (UniFL) is a generalized formulation which contains several variants of facility location including capacitated facility location (1-CFL) as its special cases. We present a $6 + \epsilon$ approximation for the UniFL problem, thus improving the $8 + \epsilon$ approximation given by Mahdian and Pal. Our result bridges the existing gap between the UniFL problem and the 1-CFL problem.

1 Preliminaries

The Universal Facility Location (UniFL) problem was introduced by Hajiaghayi et al. [1]. In the UniFL problem, we are given a set of facilities F, a set of clients C, and a distance metric $\{c_{ij} : i, j \in F \cup C\}$. Each client $j \in C$ is associated with an integer demand $d_j \geq 0$. For each $i \in F$, the facility cost of i is given by a non-decreasing, continuous function $f_i(u_i)$ of the total capacity u_i installed at i. The goal is to install capacities u_i at every facility $i \in F$ and assign all the demands to the facilities such that each facility i serves at most u_i units of the demand. The demand of a client can be split among multiple facilities. The service cost of assigning a unit demand of a client $j \in C$ to a facility $i \in F$ is given by c_{ji} . The objective is to minimize the sum of the total facility cost and the total service cost.

Mahdian and Pál [2] give $8 + \epsilon$ approximation for UniFL using a local search algorithm. Zhang et al. [3] improve their analysis to give $7 + \epsilon$ approximation. Zhang et al. [4] also give $6 + \epsilon$ approximation for the capacitated facility location problem (1-CFL). We generalize their result to UniFL with a new local search operation called Double_Pivot. We give a local search algorithm which outputs a local optimum with cost at most 6 times the cost of the optimum. This yields $6 + \epsilon$ approximation algorithm. Our local search algorithm starts with an arbitrary solution and outputs a local optimum solution with respect to the following operations. The first two operations were introduced by Mahdian and Pál [2].

1. $add(s, \delta)$: Increase the capacity at $s \in F$ by $\delta \ge 0$. The change in cost can be computed exactly and the operation is performed if it saves cost.

- 2. Single_Pivot (s, Δ) : The vector $\Delta \in \Re^{|F|}$ indicates the increase in the installed capacity at each facility. A facility $i \in F$ is said to *shrink* if $\Delta_i < 0$, and grow if $\Delta_i > 0$. Each shrinking facility i sends $|\Delta_i|$ units of its demand to the pivot $s \in F$. Each growing facility i receives Δ_i units of demand from s. For a valid operation, we assume $\sum_{i \in F} \Delta_i = 0$. The increase in cost of the solution is at most $\sum_{i \in F} (f_i(u_i + \Delta_i) f_i(u_i) + c_{si} |\Delta_i|)$. We perform the operation if the upper bound is negative.
- 3. Double_Pivot $(s_1, s_2, \Delta^1, \Delta^2)$: It is similar to performing two Single_Pivot operations at a time. The vector $\Delta^1 \in \Re^{|F|}$ specifies the rerouting of demand through s_1 and $\Delta^2 \in \Re^{|F|}$ specifies the rerouting of demand through s_2 . The overall increase in the capacities is given by $\Delta^1 + \Delta^2$. We assume $\sum_{i \in F} \Delta_i^1 = \sum_{i \in F} \Delta_i^2 = 0$. The increase in cost of the solution is now at most $\sum_{i \in F} (f_i(u_i + \Delta_i^1 + \Delta_i^2) - f_i(u_i) + c_{s_1i} |\Delta_i^1| + c_{s_2i} |\Delta_i^2|)$. We perform the operation if the upper bound is negative.

Mahdian and Pál [2] show how to use dynamic programming to find a Single Pivot operation with the minimum upper bound on the increase in the cost. The Double_Pivot can be implemented using similar ideas.

2 Analysis

Let S and S^* denote a local optimum solution and a global optimum solution respectively. Let u_i and u_i^* denote the capacities installed at $i \in F$ in S and S^* respectively. Let $C_s(S)$ and $C_f(S)$ denote the service and the facility costs of S, and $C(S) = C_s(S) +$ $C_f(S)$ denote the total cost of S. Similarly define $C_s(S^*), C_f(S^*)$, and $C(S^*)$. Using the fact that S is locally optimum with respect to the add operation, Mahdian and Pál [2] proved the following upper bound on the service cost of S.

LEMMA 2.1. $C_s(S) \leq C_f(S^*) + C_s(S^*)$.

The rest of the paper is devoted to bounding $C_f(S)$. Let the facilities $F_+ = \{i \in F \mid u_i - u_i^* > 0\}$ be called sources and the facilities $F_- = \{i \in F \mid u_i - u_i^* < 0\}$ be called *sinks*. Consider the transhipment problem

^{*}Dept. CSE, Indian Institute of Technology, Delhi. [†]IBM India Research Laboratory, New Delhi.

in which each $i \in F_+$ sources a ow of $u_i - u_i^*$ and each $i \in F_-$ sinks a ow of $|u_i - u_i^*|$. Let the cost of routing a unit demand from a facility s to a facility tbe c_{st} . Mahdian and Pál [2] proved the minimum cost of the transshipment to be at most $C_s(S) + C_s(S^*)$. Furthermore, the support graph of the minimum cost transshipment is a forest with edges going between F_+ and F_- . We define operations based on this forest.

Let y denote the the optimal transshipment with the property described above. Thus, y(s,t) denotes the ow between $s \in F_+$ and $t \in F_-$. For $t \in F_-$, let $y(\cdot,t) = \sum_{s \in F_+} y(s,t)$ and for $s \in F_+$, let $y(s,\cdot) =$ $\sum_{t \in F_-} y(s,t)$. Similarly, for $A \subset F_-$, let $y(\cdot,A) =$ $\sum_{t \in A} y(\cdot,t)$ and for $B \subset F_+$, let $y(B,\cdot) = \sum_{s \in B} y(s,\cdot)$. Root each tree \mathcal{T} in the forest at some node $r \in F_-$.

For a node v, let K(v) denote the set of its children. Thus $K(t) \subseteq F_+$ if $t \in F_-$ and $K(s) \subseteq F_-$ if $s \in F_+$. We borrow the following notation from [2] and [4]. Consider a node $t \in F_-$. We call t weak if $\sum_{s \in K(t)} y(s,t) >$ $y(\cdot,t)/2$ and strong otherwise. We call $s \in K(t)$ heavy if $y(s,t) > y(\cdot,t)/2$ and light otherwise. Note that there can be at most one heavy node in K(t). A light node $s \in K(t)$ is called dominant if $y(s,t) \ge y(s,\cdot)/2$ and non-dominant otherwise. We denote the set of dominant nodes in K(t) by Dom(t) and the set of non-dominant nodes in K(t) by NDom(t). For $s \in \text{NDom}(t)$, let W(s)denote the set of weak children of s and let Rem(s) = $\max\{y(s,t) - \sum_{t' \in W(s)} y(s,t'), 0\}$. If |NDom(t)| = k, we re-index the facilities in NDom(t) as s_1, s_2, \ldots, s_k such that $\text{Rem}(s_1) \le \text{Rem}(s_2) \le \ldots \le \text{Rem}(s_k)$.

Consider a tree \mathcal{T} in the forest. For $t \in F_{-}$ which is a non-leaf node in \mathcal{T} , let \mathcal{T}_{t} denote the subtree rooted at t containing all the children and grand-children of t. Thus \mathcal{T}_{t} is of depth at most two. For each such \mathcal{T}_{t} in the forest, we consider the following operations.

- 1. Consider the operations Single_Pivot (s_i, Δ) for $s_i \in \text{NDom}(t)$ such that $i = 1, \ldots, k-1$ where k = |NDom(t)|. We send $y(s_i, \cdot)$ units of ow out of s_i as follows: $2y(s_i, t')$ to all $t' \in W(s_i)$ (this is feasible as t' is weak), $y(s_i, t')$ to all $t' \in K(s_i) \setminus W(s_i)$, and $Rem(s_i)$ to the facilities in $K(s_{i+1}) \setminus W(s_{i+1})$. It is straightforward to set the vector Δ . The indexing of the facilities in NDom(t) ensures that ow routed across every edge e in \mathcal{T}_t is at most 2y(e), i.e., two times the ow across e in the transshipment y.
- 2A. Case when t is strong. As t is strong, there is no heavy node in K(t). Consider the operation Double_Pivot $(t, s_k, \Delta^1, \Delta^2)$. We send the ow $y(\text{Dom}(t), \cdot)$ from the nodes in Dom(t) to t and a ow of $y(s_k, t)$ from s_k to t. We set the vector Δ^1 accordingly. For each $t' \in K(s_k)$, we send a ow of $y(s_k, t')$ from s_k to t' and set Δ^2 accordingly.

- 2B. Case when t is weak and there is a heavy node $s_0 \in K(t)$. Consider Single_Pivot (s_0, Δ) . For each $t' \in K(s_0)$, we send a ow of $y(s_0, t')$ from s_0 to t' and a ow of $y(s_0, t)$ from s_0 to t. The vector Δ is set accordingly. Furthermore for the facilities in Dom(t) and s_k , consider Double_Pivot $(t, s_k, \Delta^1, \Delta^2)$ same as the one explained in the Case 2A above.
- 2C. Case when t is weak and there is no heavy node in K(t). Zhang et al. [4] show that there exists $\gamma_1 \in \text{Dom}(t)$ such that the set $\text{Dom}(t) \setminus \{\gamma_1\}$ can be partitioned into Dom_1 and Dom_2 satisfying $y(\gamma_1, t) + y(\text{Dom}_i, \cdot) \leq y(\cdot, t)$ for i = 1, 2where $\gamma_2 = s_k$. We consider two operations $\text{Double_Pivot}(t, \gamma_i, \Delta_i^1, \Delta_i^2)$ for i = 1, 2. Here the vector Δ_i^1 is set such that the ow $y(\text{Dom}_i, \cdot)$ is sent from the nodes in Dom_i to t and Δ_i^2 is set such that the ow $y(\gamma_i, t)$ is sent from γ_i to t and $y(\gamma_i, t')$ is sent to each $t' \in K(\gamma_i)$. The definition of dominant nodes can be used to show that the operations are feasible.

After rerouting of the ow in above operations, if the capacity of a facility $s \in F_+$ reduces to u_s^* , we say that s is closed. If on the other hand, the capacity of a facility $t \in F_-$ is increased to at most u_t^* , we say that t is opened.

As shown by Zhang et al. [4] it is easy to verify that

LEMMA 2.2. The operations considered above are such that each facility $s \in F_+$ is closed exactly once, each facility $t \in F_-$ is opened at most three times, and the flow across every edge in e in the forest is at most 2y(e).

As proved in [2, 4], Lemmas 2.2 and 2.1 imply,

LEMMA 2.3. $C_f(S) \leq 3C_f(S^*) + 2(C_s(S) + C_s(S^*)) \leq 5C_f(S^*) + 4C_s(S^*).$

Lemmas 2.1 and 2.3 together imply that $C(S) \leq 6C_f(S^*) + 5C_s(S^*)$, yielding a $6 + \epsilon$ approximation algorithm. Standard scaling techniques can be used to improve the ratio to $3 + 2\sqrt{2} + \epsilon < 5.83 + \epsilon$.

References

- M. Hajiaghayi, M. Mahdian, and V. Mirrokni, *The facility location problem with general cost functions*, Networks, 42(2003), pp. 42–47.
- [2] M. Mahdian and M. Pál, Universal facility location, in Proceedings of ESA (2003), pp. 409-422.
- [3] J. Zhang, B. Chen, and Y. Ye, Personal communication.
- [4] J. Zhang, B. Chen, and Y. Ye, Multi-exchange local search algorithm for capacitated facility location problem, in Proceedings of IPCO (2004), pp. 219-233.