COL864: Special Topics in AI Semester II, 2020-21

Reinforcement Learning II - Model-free Methods

Rohan Paul

Outline

- Last Class
- Reinforcement Learning
- Model-Based Reinforcement Learning
- This Class
- Model-Free Reinforcement Learning
- Reference Material
- Please follow the notes as the primary reference on this topic.

Acknowledgements

These slides are intended for teaching purposes only. Some material has been used/adapted from web sources and from slides by Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun, Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and others.

Model-Based RL vs. Model-Free RL

- Model-Based RL
- Used data to infer a model and compute a policy
- Problem
- Storing the model (and computing the policy) can be difficult.
- Can we compute a policy in a way that "avoids" storing the model?
- Note that we still need to store "some" statistics over our experience
- Hence, maintain an estimate of the "value" function.
- Model-Free RL
- Bypass explicit learning of the intermediate model.
- Can sample trajectories from the world directly and estimate a value function without the model.

Monte Carlo Methods

- Learning the state-value function for a given policy
- What is the value of a state?
- Expected return - expected cumulative future discounted reward
- Key Idea
- Sample trajectories from the world directly and estimate a value function without a model
- Simply average the returns observed after visits to that state.
- As more returns are observed the average should converge to the expected value.
- Each occurrence of a state in an episode is a called a visit to the state.

Toy Example: Monte Carlo Method

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)

Value/utility of state c $\mathrm{V}^{\pi}(\mathrm{C})=((9+9+9+(-11)) / 4)$ $=4$

Toy Example: Monte Carlo Method

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)

Episode 1

Value/utility of state c $\mathrm{V} \pi(\mathrm{C})=((9+9+9+(-11)) / 4)$ $=4$

Output Values

Monte Carlo Methods

- Advantage
- Do not require the MDP dynamics or rewards
- Disadvantage
- Can only be applied to episodic MDPs
- Averaging over the returns from a complete episode
- Requires each episode to terminate

First-Visit Monte Carlo (FVMC) Policy Evaluation

I.e., only update the value estimate if this is the first visit to the state.

First-Visit Monte Carlo (FVMC)

- First-Visit Monte Carlo (FVMC)
- Averages the returns following the first visit to a state s in the episode.
- Every-visit Monte Carlo (EVMC)
- Averages returns following all the visits to s.
- Convergence
- FVMC - error falls as $1 / \mathrm{N}(\mathrm{s})$. Needs lots of data
- EVMC - error falls quadratically, slightly better data efficiency.

Policy Improvement

Two problems in the last pseudo-code in doing policy improvement.

1. How to obtain the policy?

- Note: we only stored the state value function. In the absence of a model, we cannot compute the policy.
- Solution: Store the state-action values.

2. How to ensure the coverage of states?

- Solution: Use epsilon-greedy policies
- Most of the time select an action that has maximal estimated action value.
- But with probability epsilon, instead, select an action at random.

Policy Improvement (Monte Carlo Control)

Estimate the Q-function.
Derive the policy from there.

All non-greedy actions have a small probability of being selected. The bulk of the likelihood is given to the greedy action.

Algorithm parameter: small $\varepsilon>0$
Initialize:
$\pi \leftarrow$ an arbitrary ε-soft policy
$Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in \mathcal{S}, a \in \mathcal{A}(s)$
$\operatorname{Return} s(s, a) \leftarrow$ empty list, for all $s \in \mathcal{S}, a \in \mathcal{A}(s)$
Repeat forever (for each episode):
Generate an episode following π : $S_{0}, A_{0}, R_{1}, \ldots, S_{T-1}, A_{T-1}, R_{T}$
$G \leftarrow 0$
Loop for each step of episode, $t=T-1, T-2, \ldots, 0$:

$$
G \leftarrow \gamma G+R_{t+1}
$$

Unless the pair S_{t}, A_{t} appears in $S_{0}, A_{0}, S_{1}, A_{1} \ldots, S_{t-1}, A_{t-1}$:

In literature, a policy is called soft if $\pi(a \mid s)>0$ for all $s \in S$ and all $a \in A(s)$.
An $\epsilon-$ soft policy is one for which $\pi(a \mid s) \geq \frac{\epsilon}{|A(s)|}$ for all states and actions

Problem with Monte Carlo

- Limitations
- Each state must be learned separately, loses the state connection information.
- Estimate of one state is not taking advantage of the estimates of the other states.
- Note: Bellman equations tell us that value function for states has a recursive relationship.
- Could only be used in an episodic setting.

Recall our example

Input Policy π

Assume: $\gamma=1$

Observed Episodes (Training)
Episode 2
B, east, C, -1
C, east, D, -1
D, exit, $x,+10$

Episode 4
E, north, $C,-1$
C, east, $A,-1$
A, exit, $x,-10$

Output Values

Problem: we have lost the connection between states. We go through state C, 4 times. We use only 2 estimates for E. But, C and E are adjacent!

Temporal Difference (TD) Learning

- Model-Free combination of
- Monte Carlo (learning from sample trajectories/experience) and
- Dynamic programming (via Bellman Equations)
- Incorporate Bootstrapping
- Update value function estimates of a state based on others
- Adjust the value function estimate using the Bellman Equation relationship between the value function of successor states.
- More data-efficient than a Monte Carlo method (discussed previously)
- Setting
- Can be used in an episodic or infinite-horizon non-episodic settings
- Immediately updates the estimate of $\mathrm{V}(\mathrm{s})$ after each $\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}, \mathrm{r}\right)$ tuple.

[^0]
TD Learning

- Aim: estimate $V \pi(s)$ given episodes generated under policy π
- $G_{t}=r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\gamma^{3} r_{t+3}+\cdots$ in MDP M under policy π
- $V^{\pi}(s)=E_{\pi}\left[G_{t}\right]$
- Bellman Operator (if we know MDP models)

$$
B^{\pi} V(s)=r(s, \pi(s))+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right)
$$

- In incremental every-visit MC, update estimate using 1 sample of return (for the current $i^{\text {th }}$ episode)

$$
V^{\pi}(s)=V^{\pi}(s)+\alpha\left(G_{i, t}-V^{\pi}(s)\right)
$$

- Insight: have an estimate of V^{π}, use to estimate expected return

$$
V^{\pi}\left(s_{t}\right)=V^{\pi}\left(s_{t}\right)+\alpha \underbrace{\left(\left[r_{t}+\gamma V^{\pi}\left(s_{t+1}\right)\right]\right.}_{\text {TD target }}-V^{\pi}\left(s_{t}\right))
$$

- Can immediately update the value estimate after each $\left(s, a, r, s^{\prime}\right)$ tuple. Do not need the episodic setting.

TD Methods

- The updates are based on the difference in value functions at each time step, the TD error,

$$
\delta_{t}=r_{t}+\gamma V^{\pi}\left(s_{t+1}\right)-V^{\pi}\left(s_{t}\right)
$$

hence the name temporal difference learning.

- α is the learning rate.
- TD can be generalised to n-step returns:

$$
R_{t}^{(n)}=r_{t+1}+\gamma r_{t+2}+\gamma^{2} r_{t+3}+\cdots+\gamma^{n} V_{t}\left(s_{t+n}\right)
$$

Note: earlier we used the 1-step return in the TD update. Now, we can generalize to how many steps in the future to update from.

$$
V^{\pi}\left(s_{t}\right)=V^{\pi}\left(s_{t}\right)+\alpha \underbrace{\left(\left[r_{t}+\gamma V^{\pi}\left(s_{t+1}\right)\right]\right.}_{\text {TD target }}-V^{\pi}\left(s_{t}\right))
$$

TD Methods

TD can be generalised to n-step returns:
$R_{t}^{(n)}=r_{t+1}+\gamma r_{t+2}+\gamma^{2} r_{t+3}+\cdots+\gamma^{n} V_{t}\left(s_{t+n}\right)$

TD Learning (intuitively)

- Nudge our prior estimate of the value function for a state using the given experience.
- Shift the estimate based on the error in what we are experiencing and what estimate we had before
- Weighted by the learning rate.

Temporal Difference Learning: Example

States
Observed Transitions

Assume: $\gamma=1, \alpha=1 / 2$

$$
V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+\alpha\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

SARSA

- The TD algorithm describes how to evaluate a policy, but does not describe how to improve the policy.
- Can be done very easily with SARSA.
- Rather than learning the value function $V(s)$, we will learn the state-action value $Q(s, a)$, learning from the tuple $\left\{s_{t}, a_{t}, r_{t}, s_{t+1}, a_{t+1}\right\}$, hence the name SARSA or "state action reward state action".

Update using state, action, reward, state, action.

- If we generalize the TD rule to state-action functions, such that

$$
Q\left(s_{t}, a_{t}\right)=Q\left(s_{t}, a_{t}\right)+\alpha\left[\left(r_{t+1}+\gamma Q\left(s_{t+1}, a_{t+1}\right)\right)-Q\left(s_{t}, a_{t}\right)\right],
$$

can then choose a new policy by maximizing over the next action we might take, as in

$$
\pi(s)=\max _{a} Q(s, a)
$$

- We modify this policy slightly, using a policy $\pi_{\epsilon}(s)$ such that

$$
\pi_{\epsilon}(s)= \begin{cases}\max _{a} Q(s, a) & \text { with probability }(1-\epsilon) \\ \operatorname{RAND}(A) & \text { otherwise }\end{cases}
$$

in order to ensure that we visit all state-action pairs sufficiently often.

- The parameters ϵ can be lowered as $\epsilon_{t}=1 / t$ so that the agent eventually stops exploring and converges to the optimal policy.

SARSA

Sarsa (on-policy TD control) for estimating $Q \approx q_{*}$
Algorithm parameters: step size $\alpha \in(0,1]$, small $\varepsilon>0$
Initialize $Q(s, a)$, for all $s \in \mathcal{S}^{+}, a \in \mathcal{A}(s)$, arbitrarily except that $Q($ terminal,$\cdot)=0$
Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., ε-greedy)
Loop for each step of episode:
Take action A, observe R, S^{\prime}
State-action values updated using the SARSA Learning Rule
$\begin{aligned} \rightarrow & Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+\gamma Q\left(S^{\prime}, A^{\prime}\right)-Q(S, A)\right] \\ & S \leftarrow S^{\prime} ; A \leftarrow A^{\prime} ;\end{aligned}$
until S is terminal

Example: Windy Grid World

- Setup
- Standard grid world with start and goal state.
- Crosswind running upward through the middle of the grid.
- Actions: Up, down, left, right
- Wind strength varies from column to column (written below) in number of grid cells shifted upwards.
- E.g., if you are one cell to the right of the goal, then the action left takes you to the cell just above the goal.
- Undiscounted episodic task with constant rewards of -1 till the goal state is reached.
- SARSA with epsilon-greedy does well on this control task.

Actions

- Can learn that the blue path is good.
- Monte Carlo methods cannot easily be used for this task because termination is not guaranteed for all policies.
- If a policy was found that caused the agent to stay in the same state, then the next episode would never end.
- Step-by-step learning methods such as SARSA do not have this problem because they quickly learn during the episode.

Q-Learning

- One disadvantage to SARSA is that it is an on-policy algorithm
- That is, we only get an estimate of the Q function for tuples that are directly experienced by executing the policy
- What if our initial policy is really poor?
- In that case could take a long time to find the optimal policy.
- The update rule can be modified to improve the best state-action tuple, rather than the experienced tuple by putting the max operator directly inside the update rule, as in

$$
Q\left(s_{t}, a_{t}\right)=Q\left(s_{t}, a_{t}\right)+\alpha\left[\left(r_{t}+\gamma \max _{a^{\prime}} Q\left(s_{t+1}, a^{\prime}\right)\right)-Q\left(s_{t}, a_{t}\right)\right]
$$

- Q-LEARNing is one of the core algorithms of reinforcement learning.
- It is an off-policy algorithm, in that the Q function can be shown to converge, regardless of the underlying policy, so long as the underlying policy is guaranteed to visit all state-action pairs infinitely often.

Q-Learning

$$
\begin{aligned}
& \text { Q-learning (off-policy TD control) for estimating } \pi \approx \pi_{*} \\
& \text { Algorithm parameters: step size } \alpha \in(0,1] \text {, small } \varepsilon>0 \\
& \text { Initialize } Q(s, a) \text {, for all } s \in \mathcal{S}^{+}, a \in \mathcal{A}(s) \text {, arbitrarily except that } Q(\text { terminal, } \cdot)=0 \\
& \text { Loop for each episode: } \\
& \text { Initialize } S \\
& \text { Loop for each step of episode: } \\
& \text { Choose } A \text { from } S \text { using policy derived from } Q \text { (e.g., } \varepsilon \text {-greedy) } \\
& \text { Take action } A, \text { observe } R, S^{\prime} \\
& \longrightarrow Q(S, A) \leftarrow Q(S, A)+\alpha\left[R+\gamma \max _{a} Q\left(S^{\prime}, a\right)-Q(S, A)\right] \\
& \quad S \leftarrow S^{\prime} \\
& \text { until } S \text { is terminal }
\end{aligned}
$$

Example: Cliff Walking

- The agent does not know the rewards a-priori. - Learns the effect of the east action over time. - Only the actions taken by the agent contribute to updates.
- Occasionally falls in the cliff and gets the negative reward.
- Note that the max of the Q values is propagated (green values) to other states as it is approximating the optimal Q value.

Cliff at the bottom, negative reward here.

The Off-Policy Nature of Q-Learning

- Off-policy methods
- Learns the optimal state-action value function, independent of the policy being followed.
- Q-learning converges to optimal policy
- Even if the agent is acting sub-optimally.
- Under conditions: Exploration is enough. The learning rate becomes small enough
- The algorithm learns about the value of the optimal policy without knowing or using the optimal policy.
- Example: sporadic falls in the cliff does not affect the knowledge that going right leads to high reward.
- Note that SARSA was an on-policy algorithm

Example: Another Cliff Walking

Task: Undiscounted, episodic task with start and goal states.

- Online performance of Q-learning is worse than of SARSA
- SARSA learns the blue path.
- Q-learning learns the red path occasionally falling into the cliff due to epsilon greedy action selection and gets lower rewards.

Expected SARSA

- Expected SARSA just like Q-learning except
takes and expectation instead of the max.
- Considers how likely the action is under the current policy.
- Expected SARSA is more complex computationally but eliminates the variance due to the random selection of actions.
- Expected SARSA performs better than both SARSA and Q-learning on the cliff walking task.

$$
\begin{aligned}
Q\left(S_{t}, A_{t}\right) & \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \mathbb{E}_{\pi}\left[Q\left(S_{t+1}, A_{t+1}\right) \mid S_{t+1}\right]-Q\left(S_{t}, A_{t}\right)\right] \\
& \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left[R_{t+1}+\gamma \sum_{a} \pi\left(a \mid S_{t+1}\right) Q\left(S_{t+1}, a\right)-Q\left(S_{t}, A_{t}\right)\right],
\end{aligned}
$$

[^0]: "If one had to identify one idea that is central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning", Sutton and Barto 2017

