COL864: Special Topics in Al
Semester I1I, 2020-21

Task Planning

Rohan Paul

Outline

e Last Class
e A* search

* This Class

* Symbolic Representations for Task Planning
* How can we represent such problems?

* How can we (efficiently) search for a plan?
* Reference Material

* Primary reference are the lecture notes. For basic background refer to AIMA
Classical Planning Ch. 10 (Sec 10.1 - 10.3)

Acknowledgements

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by
Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun,

Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and
others.

Task Planning

* Motion planning
* Generating collision free trajectories.

* Task Planning

* Presence of Semantic constraints
* Till now, generating collision free trajectories.

* Now, consider when an action a; must be performed before
action a; (opening a box before placing and object inside it)

* Need to scale decision making

* Consider an assembly task: packing objects in a container and
transporting it.

* Intuitively, we solve such problems by thinking about abstract
actions “picking an object and placing in the box” assuming
that precise motions can be determined later.

* Characteristic of long-horizon tasks.

* Planning vs. Scheduling
* Scheduling

* Tasks are fixed (scheduling classes in a week). There may be constraints
on the tasks. Don’t need to determine "which” tasks are to be done.

* Planning

* We need to decide “which” set of tasks or steps we need to them as well
as to schedule them.

Other examples:
https://www.youtube.com/watch?v=IY4PKBqp9ZM&t=179s

4

Example: Blocksworld

>

* Re-order the blocks from the start state to the goal state.
e Assume that the arm can reach/move all the top blocks.
* Planning task: determining the order of actions. [C .

. B
» Abstraction :

* Problem \\
\
A

* The precise poses of B and C are less relevant, what
matters is whether B is on C or not.

* The precise motion of the gripper is less relevant. Its

start state

symbolic effect matters, i.e., the block went on top of B
another.
* Symbolic Representation C
« States: “On(X, Y)” that aggregate low level positions that A
represent this relationship. [
* Actions: “Move(X, Y)” to denote all ways in which the g()a[state
robot can move X on Y.]

Symbolic Planning

> ————
o
7

* World or Domain \\
* Describe the world (domain) using logic. \
. A
* Actions B [C I
* Describe the actions available to the agent as [|
* When they can be executed. start state
* What happens if they are.
* Initial and Goal states B
* Task C
e Find a plan that moves the agent from start state to goa A

|
goal state

STRIPS Planning

e STRIPS: Stanford Research Institute Problem Solver
* Represent the world using a knowledge-base of first-order logic.

* Actions change what is currently true.
* Describe the actions available, defined by preconditions and

effects
* Planning Domain Description Language
» Standard language for planning domains
* International programming competitions

e Separate definitions of:
* A domain, which describes a class of tasks.
* Predicates and operators.
e A task, which is an instance of domain.

e Objects.
e Start and goal states.

* A predicate is a first-order logic function returning True or
False, given a set of objects. ,

PDDL: Predicates

* A predicate returns True or False
given a set of objects.

(define (domain blocksworld)

(:predicates (clear ’x)
(on-table 7x)
(arm-empty)
(holding ?x)
(on ?x ?y))

PDDL: Operators

Operators:
Name
Parameters

Preconditions
Effects

)and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))
(not (arm-empty))))

PDDL: Problem Instance

TR |

(define (problem pb3)
(:domain blocksworld)
(:objectsa b ¢)
Start state (:init (on-table a) (on-table b) (on-table)
(clear a) (clear b) (clear c) (arm-empty))

Goal state (:goal (and (on d b) (on b C))))

10

PDDL: States

* A state describes the configuration
of the world at a moment of time.

* A conjunction of positive literal
predicates.

* Closed world assumption

* Those not mentioned are assumed to
be False.
* Implications
* Avoid inference

(

(

* No uncertainty about which actions can (
be executed. (C ear a)

(

(

(

* No uncertainty about the goal.

* Consistency with knowledge base
semantics.

PDDL: Operators

* Implicit Markov assumption.

(:action putdown
:parameters (/ob)
:precondition (and (holding ?ob))
.effect (and (clear ?ob) (arm-empty) (on-table ?ob)
(not (holding ?0b))))

12

PDDL: Goals

* A conjunction of literal predicates.
 (and (onab)(onbc))

* Predicates not listed are don’t cares.

* Each goal is thus a partial state expression.
* Implies a set of goal states.

PDDL: Action Execution

Start state:
(on-table a) (on-table b) (on-table c)

(clear a) (clear b) (clear c) (arm-empty)

Action: pickup(a) (:action pickup
+ Check preconditions ;parameters (’ob)
* Decide to execute. ;precondition (and (clear Job) (on-table lob) (arm-empty))
*+ Delete negative effects.
.effect (and (holding 7ob) (not (clear ob)) (not (on-table ’ob))

+ Add positive effects.
(not (arm-empty))))

Next state:

(on-table-a) (on-table b) (on-table)
(elear-a) (clear b) (clear c) {arm-empty)
(holding a) y

PDDL: Example

State: (on-table a) (on-table b) (on-table c)
(clear a) (clear b) (clear c) (arm-empty))

Goal: (and (on a b) (on b))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
teffect (and (holding ?ob) (not (clear ?ob))
(not (on-table ?ob))
(not (arm-empty))))

pickup(b)

BN

15

PDDL: Example

after pickup(b) ...

—a

State: (on-table a) {en-table-b)} (on-table c)

(clear a) (elear-b) (clear c) {(arm-empty) (holding b))
Goal: (and (on a b) (on b))

16

PDDL: Example

State: (on-table a) (on-table c)
(clear a) (clear c) (holding b))
Goal: (and (on a b) (on b c))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
teffect (and (arm-empty) (clear ?ob) (on ?ob ?underob)
(not (clear ?underob)) (not (holding ?0b))))

stack(b, c)

—a

17

PDDL: Example

after stack(b, c) ...

State: (on-table a) (on-table c)

(clear a) {elear—<)-(holding b}
(arm-empty) (clear b) (on b, c))

Goal: (and (on a b) (on b c))

18

PDDL: Example

after stack(b, c) ...

State: (on-table a) (on-table c)

(clear a) {elear—<)-(holding b}
(arm-empty) (clear b) (on b, c))

Goal: (and (on a b) (on b c))

19

PDDL: Example

after stack(b, c) ...

State: (on-table a) (on-table c)

(clear a) {elear—<)-(holding b}
(arm-empty) (clear b) (on b, c))

Goal: (and (on a b) (on b c))

20

PDDL: Example

State: (on-table a) (on-table c)

(clear a) (arm-empty) (clear b) (on b, c))
Goal: (and (on a b) (onb c))

(:action pickup
:parameters (7?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
teffect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?o0b))
(not (arm-empty))))

pickup(a)

21

PDDL: Example

after pickup(a)

State: (en-table-a) (on-table c)

(elear-a)-(arm-empty)-(clear b) (on b, c) (holding a))
Goal: (and (on a b) (on b c))

22

PDDL: Example

State: (on-table c)
(on b, ¢) (clear b) (holding a))
Goal: (and (on a b) (onb c))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
teffect (and (arm-empty) (clear ?ob) (on ?ob ?underob)
(not (clear ?underob)) (not (holding ?ob))))

stack(a, b)

23

PDDL: Example

State: (on-table c)

(on a b) (clear b) (on b, ¢) (holding a))
Goal: (and (on a b) (on b c))

-

24

Formal Specification

* Predicates P
* A set of predicates P, each with p, parameters.

* Objects O

e Literal predicates L
* A set of predicates from P with bound parameters from O.

* States
» A list of positive ground literals, sc L
e Goal test : a list of positive ground literals, gc L

* Operator List:
* Name
* Parameters
* Preconditions
* Effects

25

Planning: As a Graph Search

e Search Problem
* Nodes are states
* Actions are applicable operators
* Goal expression as a goal test :]

&>

* How to search the graph for a plan? /

* Direct search |

* Informed search \
* Domain independent heuristics.

On(C.Table)"Block(A)"Block(B)

\nnn ToTable(A.B)

On(A,C)"On(B. Table) On(A,Tabley*On(B.Table)

>|0))

On(C.Table)"Block(A) Block(B) On(C.Table)" Block(A) Block(B)
Block(Cy Clear(A) Clear(B) Block(C)"Clear(A) " Clear(C)

26

Searching for a Plan

Forward search

(on-table a) (on-table b)
(on-table ¢) (clear a) (clear b)

* Forward planning

* Begin from the initial state and examine the effects
of all actions applicable on that state.

* Determine successor states and continue the "
process till you reach the goal state.

e Often the branching factor is large.

(clear ¢) (arm-empty)

pickup(a)

(on-table b) (on-table ¢)

(clear b) (clear ¢) (holding a)

* Backward or regression search

e Start at the goal state, apply actions backward until
we find the sequence of actions that reaches the
initial state.

* Computes the predecessor state s’ for a final state s
reached by action a.

* Check for only those actions that are relevant for
the goal

» At least one of the action’s effects (positive or
negative) should unify with the goal.

* Often the branching factor is low.

Backward search

(and (ona b)
(on bc)))

putdown(a)

(and (holding a)
(clear b)
(on b c)))

Heuristics for Planning

* Informed Search
e Can try to search with A* by constructing a

heuristic. | /\3@
* Domain-specific heuristics can be derived fronr {
the problem structure. _/\ \

* Requires careful engineering.
* Domain-independent heuristics

* Once a planning problem is encoded in the /@

PDDL form then can the search be
independent of the domain.

* The number of literals that are NOT yet
satisfied.

e Obtain a relaxation on the problem
* Work for any problem encoded in PDDL.

28

Fast Forward (FF) Planner

* Recap: Notion of a relaxed problem

* Make simplifying assumption on the original planning problem i.e., address a
relaxed problem.

* Solve the relaxed problem optimally. Use the optimal plan in the relaxed
problem as a heuristic for the hard problem.

* FF Planner (2000)

* Relax the problem by deleting the negative effects of actions.
* Solve the relaxed problem using a planner.

(:action pickup
:parameters (lob)
:precondition (and (clear ob) (on-table ?ob) (arm-empty))
:effect (and (holding 0ob) (ret{clear2ob)){not{on-table 2ob))
{notfarm-empty}})))

29

FF Planner

Deleting negative effects of actions leads to a relaxation of the problem.

* Setup
* Goal: conjunction of positive literals.
* Actions

* Precondition (conjunction of positive literals)
» Effects (adds and deletes)

Monotonic progress towards the goal
* Each action execution monotonically adds the applicable actions.
* Once aliteral is made true, it is not deleted. Progress made is not undone.

* Some of the the complex interactions between actions is ignored

* Intuitively, If there is an action that deletes the preconditions for another action then the plan length will be
longer as effort is needed to set the deleted predicate as true.

* By ignoring delete effects, the problem gets relaxed as the actual plan is going to be at least as long.

Planning

* Central idea: FF Planner searches for a plan making use of the heuristic computed from the
relaxed problem.

* Other strategies are also applied to aid plan search.

FF Planner

* Still NP hard to compute the
optimal solution in the relaxed
problem

e Approximate solution can be
found via hill climbing.

* Figure

* Visualizes state space for two

problems using the ignore delete
list heuristic.

e Dots (StateS), edges (actions) and Figure 10.6 Two state spaces from planning problems with the ignore-delete-lists heuris-
height (h isti t) tic. The height above the bottom plane is the heuristic score of a state; states on the bottom
€ig euristic cost). plane are goals. There are no local minima, so search for the goal is straightforward. From
. Fyr - b
* Hill climbing search will provide Hoffmann (2005).

an approximate solution. AIMA Ch 10

31

Planning Graphs

* Motivation
* A planning problem asks if we can reach a goal state from the initial state.

* If we have a tree of all possible actions from the initial state to successor states and so on.

* We can determine if there is a plan from start to the goal.
* Problem: this tree is exponential in size.

* Planning Graphs
* Planning graph is a polynomial-size approximation to this tree. Trade off is that the
planning graph indicates states that can possibly be reached.

* It cannot definitively answer if the goal G is attainable from sO
e But, it can estimate how may steps it takes to reach G.

* The estimate is always correct when it reports the goal is not reachable.
* It never overestimates the number of steps (hence an admissible heuristic)

AIMA Ch 10 Sec 10.3

Planning Graphs

* Construction
* Layered Graph
e S, contains all the literals that could hold at time i.

e A, contains all the actions that could have their pre-
conditions satisfied at time i.

* No variables. All grounded literals and grounded actions.

* What does a planning graph encode?

* A planning graph only records a restricted subset of
negative interaction between actions.

* Allows quick elimination of some impossible alternatives
in the search process.

* The level at which a literal appears is a good estimate of
how difficult it is to attain a literal from the initial state.

* How are planning graphs used?
* Computing a heuristic
* Extracting a plan (GraphPlan)

Prop. Action Prop.
Level O Level 1 Level 2
P P
Q N —
\\ \
\\\\
R® - R
\
S e

Action
Level 3

Prop.
Level 4

33

Planning graph: Construction

e Start with the initial state (given)

* Add applicable actions and effects
* Add actions with satisfied pre-conditions -
* Add all effects of actions at previous levels

k=2 -

* The action layer will contain all actions P &
whose pre-conditions are satisfied. . .
e Add maintenance actions .
 Ensures that once a literal is reached it is *

“maintained” in the planning graph for

Add actions with satisfied
every subsequence layer.

pre-conditions

O
}—

oN

.\.

Add maintenance
operations.

AN
AN

N

N\
N

34

.
\\
o

Mutually Exclusive Actions

* Two action instances at level i are mutex if:

* Inconsistent effects

* The effect of one action is negation of another.
 Interference

* One action deletes the precondition of another.

* Competing needs

* The actions have preconditions that are mutex at level i-
1

e What do the mutexes model?

* Some conditions under which two actions cannot
be performed together (i.e., only one of them
must be selected)

* Detection of certain obvious flaws (there may be
other conflicts that are not encoded by the

planning graph)

mutex
A
Actions N
considered as —
mutex B J
1 C
mutex []
1A |
BT
Inconsistent
support 1 C ™~

Mutually Exclusive Actions

* |nconsistent effects

. Init(Have(Cake
) Eat(ca ke) and the persistence of G’O(L(I(11(1.-1.'((? (C'(z./.t()f)) AN Faten(Cake))
Have(cake) have inconsistent Action(Eat(Cake)
effects. PRECOND: Have(Cake)
EFFECT: — Have(Cake) N Faten(Cake))
* Interference Action(Bake (Cake)

PRECOND: — Have(Cake)

* Eat(Cake) interferes with the EFFECT: Have (Cake))

persistence of Have(Cake) by
negating its pre-conditions.

 Competing needs SakeCake)
Have(Cake) {1 Have(Cake) {1 Have(Cake)
« Bake(Cake) and Eat(Cake) are e ﬁHZ;(Ca:G) X o ﬁsz;(;a;)
mutex because they compete on Eat(Cake)
Eaten(Cake) {1 Eaten(Cake)
the Value Of the Have(ca ke) — Eaten(Cake) {1 — Eaten(Cake) {1 — Eaten(Cake)
precondition.

36

Mutually Exclusive Propositions

Init(Have(Cake))
Goal(Have(Cake) N FEaten(Cake))
Action(FEat(Cake)

PRECOND: Have(Cake)

EFFECT: — Have(Cake) N Faten(Cake))
Action(Bake (Cake)

PRECOND: — Have(Cake)

EFFECT: Have(Cake))

* Two propositions at level | are
mutex if:
* Negation
* They are negations of one another

* |Inconsistent support

» All ways of achieving the propositions
at level i-1 are pairwise mutex.

* Example
* Inconsistent support
* Have(Cake) and Eaten(Cake) are HEESES d PSS A S
. — Have(Cake) Lr — Have(Cake)
mutex in S1 because the only way of Eat(Cake)
attaining Have(Cake) which is Eaten(Cake) 5 Eaten(Cake)
maintenance action is mutex with the — Eaten(Cake) 0 — Eaten(Cake) 0 — Eaten(Cake)

only way of achieving Eaten(Cake)
which is Eat(Cake)

37

Planning Graphs for Heuristic Estimation

* Using Planning Graphs for Heuristic Estimation

* The planning graph is polynomial in size (hence tractable to compute)

* The planning graph can be used to estimate the cost to go from a current state s to the goal, serving as a
heuristic.

* |f any goal literal fails to appear in the final level of the planning graph, then the problem is unsolvable.

* Level-cost
e Cost of attaining any goal g; from a state s as the level at which g; first appears in the planning graph
constructed from the initial state s.
* Cost of attaining Multiple Goals
* Max-level heuristic

* Level-sum heuristic
* Set level heuristics

38

Example: flashlight domain

* Problem involves putting batteries into
a torchlight. I a 0 -

Object | | | _

Instances [= {Batteryl, Battery2, Cap, Flashlight}

Actions Name Preconditions Effects
PlaceCap — {~On(Cap, Flashlight)} {On(Cap, Flashlight)}
RemoveCap {On(Cap, Flashlight)} {~On(Cap, Flashlight)}

Insert(i) {=On(Cap, Flashlight), —In(i, Flashlight)} {In(i, Flashlight)}

39

Example: flashlight domain

| N

State S = {On(Cap, Flashlight)}
(On(Cap, Flashlight), —~In(Batteryl, Flashlightl), In(Battery2, Flashlight))

Goal G = {On(Cap, Flashlight), In(Batteryl, Flashlight),
In(Battery2, Flashlight)},

Plan (RemoveCap, Insert(Batteryl), Insert(Battery2), PlaceCap)

40

Example: flashlight domain

Planning graph

* In L1 only remove cap action can apply

PC

PC
A

11

n ,
» Appearance of Not(On(Cap, Flashlight)) enables the I(B1, F) I(B1, F)
battery insertion operation to apply.
* Finally, L3 and L4 are the same and the graph stabilizes. ' 12 (B2, / 12 (B2, F)
RC O(C, F) ‘ ~O(C, F) ~0(C, F)
r r ¥ r
O(C, F) (i(/ J :/ J O(C, F)
o = > > & >
~I(B1, F) :7 y ~I(B1, F)
o))) >
~I(B2, F) ~1(B2, F) ~1(B2, F) ~I(B2, F)
L 1 Ol LZ ()2 L3 03 L~1

Graph Plan

e Central Idea
e Use the planning graph to extract a plan

* Instead of using the graph for providing a
heuristic.

O(C,F) ()((,_/ j (0] / J O(C,F)
1

(C.F)
*l(]gl.l-‘) o ﬁl(’lzl.F) o ﬁzl;l/ o -I(B1,F)
* Graph Plan]

—I1(B2,F) —I(B2,F) —I(B2, F) —I1(B2, F)

* Look for a plan of depth K.

. L, O, L, 0, Ly O3 Ly
* Then search for a solution.
* If you succeed return a plan, else increase the « Interleaves graph extension and plan search
plan depth to K+1 * Once all the goals appear as non-mutex in the

graph then call a plan search.

42

Plan Extraction

* There can be several actions in an action
layer.

* How to extract the plan?

Start from layer k and search backwards.
Perform an And/Or search.

All literals in the target state are to be satisfied
(AND part)

Try the possible operators under mutex constraints
(OR part)

Planning graph has multiple actions at a level.

A plan of depth k
e has k times steps
e may have multiple parallel actions per time step

t=1 DOA | DoB

t=2 DoC |

t=3

Procedure for plan extraction

e If all the literals in the goal appear at the deepest
level and not mutex, then search for a solution for
each subgoal at level i

e For each subgoal at level i

- Choose an action to achieve it

- If it’s mutex with another action, Fail
* Repeat for preconditions at level i-2

43

