
Rohan Paul

COL864: Special Topics in AI
Semester II, 2020-21

Task Planning

1

Outline

• Last Class
• A* search

• This Class
• Symbolic Representations for Task Planning

• How can we represent such problems?
• How can we (efficiently) search for a plan?

• Reference Material
• Primary reference are the lecture notes. For basic background refer to AIMA

Classical Planning Ch. 10 (Sec 10.1 - 10.3)

2

Acknowledgements
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by
Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun,
Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and
others.

3

Task Planning

4

Other examples:
https://www.youtube.com/watch?v=lY4PKBqp9ZM&t=179s

• Motion planning
• Generating collision free trajectories.

• Task Planning
• Presence of Semantic constraints

• Till now, generating collision free trajectories.
• Now, consider when an action ai must be performed before

action aj (opening a box before placing and object inside it)
• Need to scale decision making

• Consider an assembly task: packing objects in a container and
transporting it.

• Intuitively, we solve such problems by thinking about abstract
actions “picking an object and placing in the box” assuming
that precise motions can be determined later.

• Characteristic of long-horizon tasks.

• Planning vs. Scheduling
• Scheduling

• Tasks are fixed (scheduling classes in a week). There may be constraints
on the tasks. Don’t need to determine ”which” tasks are to be done.

• Planning
• We need to decide “which” set of tasks or steps we need to them as well

as to schedule them.

Example: Blocksworld

• Problem
• Re-order the blocks from the start state to the goal state.
• Assume that the arm can reach/move all the top blocks.
• Planning task: determining the order of actions.

• Abstraction
• The precise poses of B and C are less relevant, what

matters is whether B is on C or not.
• The precise motion of the gripper is less relevant. Its

symbolic effect matters, i.e., the block went on top of
another.

• Symbolic Representation
• States: “On(X, Y)” that aggregate low level positions that

represent this relationship.
• Actions: “Move(X, Y)” to denote all ways in which the

robot can move X on Y.
5

Symbolic Planning

• World or Domain
• Describe the world (domain) using logic.

• Actions
• Describe the actions available to the agent as

• When they can be executed.
• What happens if they are.

• Initial and Goal states
• Task

• Find a plan that moves the agent from start state to goal

6

STRIPS Planning

• STRIPS: Stanford Research Institute Problem Solver
• Represent the world using a knowledge-base of first-order logic.
• Actions change what is currently true.
• Describe the actions available, defined by preconditions and

effects
• Planning Domain Description Language

• Standard language for planning domains
• International programming competitions

• Separate definitions of:
• A domain, which describes a class of tasks.

• Predicates and operators.

• A task, which is an instance of domain.
• Objects.
• Start and goal states.

• A predicate is a first-order logic function returning True or
False, given a set of objects. 7

PDDL: Predicates

• A predicate returns True or False
given a set of objects.

8

PDDL: Operators

9

PDDL: Problem Instance

10

Start state

Goal state

PDDL: States

• A state describes the configuration
of the world at a moment of time.
• A conjunction of positive literal

predicates.
• Closed world assumption

• Those not mentioned are assumed to
be False.

• Implications
• Avoid inference
• No uncertainty about which actions can

be executed.
• No uncertainty about the goal.
• Consistency with knowledge base

semantics.

11

PDDL: Operators

• Implicit Markov assumption.

12

PDDL: Goals

• A conjunction of literal predicates.
• (and (on a b) (on b c))

• Predicates not listed are don’t cares.
• Each goal is thus a partial state expression.
• Implies a set of goal states.

13

PDDL: Action Execution

14

PDDL: Example

15

PDDL: Example

16

PDDL: Example

17

PDDL: Example

18

PDDL: Example

19

PDDL: Example

20

PDDL: Example

21

PDDL: Example

22

PDDL: Example

23

PDDL: Example

24

Formal Specification

25

• Predicates P
• A set of predicates P, each with pn parameters.

• Objects O
• Literal predicates L

• A set of predicates from P with bound parameters from O.
• States

• A list of positive ground literals, s L
• Goal test : a list of positive ground literals, g L

• Operator List:
• Name
• Parameters
• Preconditions
• Effects

Planning: As a Graph Search

26

• Search Problem
• Nodes are states
• Actions are applicable operators
• Goal expression as a goal test

• How to search the graph for a plan?
• Direct search
• Informed search

• Domain independent heuristics.

Searching for a Plan

27

• Forward planning
• Begin from the initial state and examine the effects

of all actions applicable on that state.
• Determine successor states and continue the

process till you reach the goal state.
• Often the branching factor is large.

• Backward or regression search
• Start at the goal state, apply actions backward until

we find the sequence of actions that reaches the
initial state.

• Computes the predecessor state s’ for a final state s
reached by action a.

• Check for only those actions that are relevant for
the goal
• At least one of the action’s effects (positive or

negative) should unify with the goal.
• Often the branching factor is low.

Forward search

Backward search

Heuristics for Planning

28

• Informed Search
• Can try to search with A* by constructing a

heuristic.
• Domain-specific heuristics can be derived from

the problem structure.
• Requires careful engineering.

• Domain-independent heuristics
• Once a planning problem is encoded in the

PDDL form then can the search be
independent of the domain.

• The number of literals that are NOT yet
satisfied.

• Obtain a relaxation on the problem
• Work for any problem encoded in PDDL.

Fast Forward (FF) Planner

29

• Recap: Notion of a relaxed problem
• Make simplifying assumption on the original planning problem i.e., address a

relaxed problem.
• Solve the relaxed problem optimally. Use the optimal plan in the relaxed

problem as a heuristic for the hard problem.

• FF Planner (2000)
• Relax the problem by deleting the negative effects of actions.
• Solve the relaxed problem using a planner.

FF Planner

30

• Deleting negative effects of actions leads to a relaxation of the problem.
• Setup

• Goal: conjunction of positive literals.
• Actions

• Precondition (conjunction of positive literals)
• Effects (adds and deletes)

• Monotonic progress towards the goal
• Each action execution monotonically adds the applicable actions.

• Once a literal is made true, it is not deleted. Progress made is not undone.
• Some of the the complex interactions between actions is ignored

• Intuitively, If there is an action that deletes the preconditions for another action then the plan length will be
longer as effort is needed to set the deleted predicate as true.

• By ignoring delete effects, the problem gets relaxed as the actual plan is going to be at least as long.

• Planning
• Central idea: FF Planner searches for a plan making use of the heuristic computed from the

relaxed problem.
• Other strategies are also applied to aid plan search.

31

FF Planner

• Still NP hard to compute the
optimal solution in the relaxed
problem
• Approximate solution can be

found via hill climbing.

• Figure
• Visualizes state space for two

problems using the ignore delete
list heuristic.

• Dots (states), edges (actions) and
height (heuristic cost).

• Hill climbing search will provide
an approximate solution. AIMA Ch 10

32

Planning Graphs

• Motivation
• A planning problem asks if we can reach a goal state from the initial state.
• If we have a tree of all possible actions from the initial state to successor states and so on.

• We can determine if there is a plan from start to the goal.
• Problem: this tree is exponential in size.

• Planning Graphs
• Planning graph is a polynomial-size approximation to this tree. Trade off is that the

planning graph indicates states that can possibly be reached.
• It cannot definitively answer if the goal G is attainable from s0

• But, it can estimate how may steps it takes to reach G.
• The estimate is always correct when it reports the goal is not reachable.

• It never overestimates the number of steps (hence an admissible heuristic)

AIMA Ch 10 Sec 10.3

33

Planning Graphs

• Construction
• Layered Graph
• Si contains all the literals that could hold at time i.
• Ai contains all the actions that could have their pre-

conditions satisfied at time i.
• No variables. All grounded literals and grounded actions.

• What does a planning graph encode?
• A planning graph only records a restricted subset of

negative interaction between actions.
• Allows quick elimination of some impossible alternatives

in the search process.
• The level at which a literal appears is a good estimate of

how difficult it is to attain a literal from the initial state.

• How are planning graphs used?
• Computing a heuristic
• Extracting a plan (GraphPlan)

34

Planning graph: Construction

• Start with the initial state (given)
• Add applicable actions and effects

• Add actions with satisfied pre-conditions
• Add all effects of actions at previous levels
• The action layer will contain all actions

whose pre-conditions are satisfied.

• Add maintenance actions
• Ensures that once a literal is reached it is

“maintained” in the planning graph for
every subsequence layer. Add actions with satisfied

pre-conditions
Add maintenance
operations.

35

Mutually Exclusive Actions

• Two action instances at level i are mutex if:
• Inconsistent effects

• The effect of one action is negation of another.
• Interference

• One action deletes the precondition of another.
• Competing needs

• The actions have preconditions that are mutex at level i-
1

• What do the mutexes model?
• Some conditions under which two actions cannot

be performed together (i.e., only one of them
must be selected)

• Detection of certain obvious flaws (there may be
other conflicts that are not encoded by the
planning graph)

Inconsistent
support

Actions
considered as
mutex

36

Mutually Exclusive Actions

• Inconsistent effects
• Eat(Cake) and the persistence of

Have(cake) have inconsistent
effects.

• Interference
• Eat(Cake) interferes with the

persistence of Have(Cake) by
negating its pre-conditions.

• Competing needs
• Bake(Cake) and Eat(Cake) are

mutex because they compete on
the value of the Have(Cake)
precondition.

37

Mutually Exclusive Propositions

• Two propositions at level I are
mutex if:
• Negation

• They are negations of one another
• Inconsistent support

• All ways of achieving the propositions
at level i-1 are pairwise mutex.

• Example
• Inconsistent support

• Have(Cake) and Eaten(Cake) are
mutex in S1 because the only way of
attaining Have(Cake) which is
maintenance action is mutex with the
only way of achieving Eaten(Cake)
which is Eat(Cake)

38

Planning Graphs for Heuristic Estimation

• Using Planning Graphs for Heuristic Estimation
• The planning graph is polynomial in size (hence tractable to compute)
• The planning graph can be used to estimate the cost to go from a current state s to the goal, serving as a

heuristic.
• If any goal literal fails to appear in the final level of the planning graph, then the problem is unsolvable.

• Level-cost
• Cost of attaining any goal gi from a state s as the level at which gi first appears in the planning graph

constructed from the initial state s.

• Cost of attaining Multiple Goals
• Max-level heuristic
• Level-sum heuristic
• Set level heuristics

39

Example: flashlight domain

• Problem involves putting batteries into
a torchlight.

Object
Instances

Actions

40

Example: flashlight domain

Plan

Goal

State

41

Example: flashlight domain

Planning graph

• In L1 only remove cap action can apply
• Appearance of Not(On(Cap, Flashlight)) enables the

battery insertion operation to apply.

• Finally, L3 and L4 are the same and the graph stabilizes.

42

Graph Plan

• Central Idea
• Use the planning graph to extract a plan
• Instead of using the graph for providing a

heuristic.

• Graph Plan
• Look for a plan of depth K.
• Then search for a solution.
• If you succeed return a plan, else increase the

plan depth to K+1
• Interleaves graph extension and plan search
• Once all the goals appear as non-mutex in the

graph then call a plan search.

43

Plan Extraction

• There can be several actions in an action
layer.

• How to extract the plan?
• Start from layer k and search backwards.
• Perform an And/Or search.
• All literals in the target state are to be satisfied

(AND part)
• Try the possible operators under mutex constraints

(OR part)

Procedure for plan extraction

Planning graph has multiple actions at a level.

