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Outline

• Last Class
• A* search

• This Class
• Symbolic Representations for Task Planning

• How can we represent such problems?
• How can we (efficiently) search for a plan?

• Reference Material
• Primary reference are the lecture notes. For basic background refer to AIMA 

Classical Planning Ch. 10 (Sec 10.1 - 10.3)
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Task Planning 
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Other examples: 
https://www.youtube.com/watch?v=lY4PKBqp9ZM&t=179s

• Motion planning
• Generating collision free trajectories. 

• Task Planning
• Presence of Semantic constraints

• Till now, generating collision free trajectories. 
• Now, consider when an action ai must be performed before 

action aj (opening a box before placing and object inside it) 
• Need to scale decision making

• Consider an assembly task: packing objects in a container and 
transporting it.

• Intuitively, we solve such problems by thinking about abstract 
actions “picking an object and placing in the box” assuming 
that precise motions can be determined later. 

• Characteristic of long-horizon tasks. 

• Planning vs. Scheduling
• Scheduling

• Tasks are fixed (scheduling classes in a week). There may be constraints 
on the tasks. Don’t need to determine ”which” tasks are to be done. 

• Planning
• We need to decide “which” set of tasks or steps we need to them as well 

as to schedule them. 



Example: Blocksworld

• Problem
• Re-order the blocks from the start state to the goal state. 
• Assume that the arm can reach/move all the top blocks. 
• Planning task: determining the order of actions.

• Abstraction
• The precise poses of B and C are less relevant, what 

matters is whether B is on C or not. 
• The precise motion of the gripper is less relevant. Its 

symbolic effect matters, i.e., the block went on top of 
another. 

• Symbolic Representation
• States: “On(X, Y)” that aggregate low level positions that 

represent this relationship.  
• Actions: “Move(X, Y)” to denote all ways in which the 

robot can move X on Y. 
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Symbolic Planning

• World or Domain
• Describe the world (domain) using logic. 

• Actions
• Describe the actions available to the agent as 

• When they can be executed. 
• What happens if they are. 

• Initial and Goal states
• Task

• Find a plan that moves the agent from start state to goal 
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STRIPS Planning

• STRIPS: Stanford Research Institute Problem Solver
• Represent the world using a knowledge-base of first-order logic. 
• Actions change what is currently true. 
• Describe the actions available, defined by preconditions and 

effects 
• Planning Domain Description Language 

• Standard language for planning domains 
• International programming competitions 

• Separate definitions of: 
• A domain, which describes a class of tasks. 

• Predicates and operators. 

• A task, which is an instance of domain. 
• Objects. 
• Start and goal states. 

• A predicate is a first-order logic function returning True or 
False, given a set of objects. 7



PDDL: Predicates

• A predicate returns True or False 
given a set of objects. 
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PDDL: Operators
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PDDL: Problem Instance
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Start state

Goal state



PDDL: States

• A state describes the configuration 
of the world at a moment of time.
• A conjunction of positive literal 

predicates. 
• Closed world assumption

• Those not mentioned are assumed to 
be False. 

• Implications
• Avoid inference
• No uncertainty about which actions can 

be executed. 
• No uncertainty about the goal.
• Consistency with knowledge base 

semantics. 
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PDDL: Operators

• Implicit Markov assumption. 
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PDDL: Goals

• A conjunction of literal predicates. 
• (and (on a b) (on b c) )

• Predicates not listed are don’t cares. 
• Each goal is thus a partial state expression. 
• Implies a set of goal states. 
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PDDL: Action Execution
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PDDL: Example
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PDDL: Example
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PDDL: Example
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PDDL: Example
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PDDL: Example
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PDDL: Example
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PDDL: Example
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PDDL: Example
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PDDL: Example
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PDDL: Example
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Formal Specification
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• Predicates P
• A set of predicates P, each with pn parameters. 

• Objects O
• Literal predicates L

• A set of predicates from P with bound parameters from O.
• States 

• A list of positive ground literals, s    L
• Goal test : a list of positive ground literals, g    L 

• Operator List: 
• Name 
• Parameters 
• Preconditions 
• Effects 



Planning: As a Graph Search
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• Search Problem
• Nodes are states
• Actions are applicable operators
• Goal expression as a goal test

• How to search the graph for a plan?
• Direct search
• Informed search

• Domain independent heuristics. 



Searching for a Plan
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• Forward planning
• Begin from the initial state and examine the effects 

of all actions applicable on that state.
• Determine successor states and continue the 

process till you reach the goal state. 
• Often the branching factor is large. 

• Backward or regression search
• Start at the goal state, apply actions backward until 

we find the sequence of actions that reaches the 
initial state. 

• Computes the predecessor state s’ for a final state s 
reached by action a. 

• Check for only those actions that are relevant for 
the goal 
• At least one of the action’s effects (positive or 

negative) should unify with the goal. 
• Often the branching factor is low. 

Forward search

Backward search



Heuristics for Planning
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• Informed Search
• Can try to search with A* by constructing a 

heuristic. 
• Domain-specific heuristics can be derived from 

the problem structure. 
• Requires careful engineering. 

• Domain-independent heuristics 
• Once a planning problem is encoded in the 

PDDL form then can the search be 
independent of the domain. 

• The number of literals that are NOT yet 
satisfied. 

• Obtain a relaxation on the problem
• Work for any problem encoded in PDDL. 



Fast Forward (FF) Planner
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• Recap: Notion of a relaxed problem
• Make simplifying assumption on the original planning problem i.e., address a 

relaxed problem.  
• Solve the relaxed problem optimally. Use the optimal plan in the relaxed 

problem as a heuristic for the hard problem. 

• FF Planner (2000)
• Relax the problem by deleting the negative effects of actions.  
• Solve the relaxed problem using a planner. 



FF Planner
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• Deleting negative effects of actions leads to a relaxation of the problem. 
• Setup

• Goal: conjunction of positive literals.
• Actions

• Precondition (conjunction of positive literals)
• Effects (adds and deletes)

• Monotonic progress towards the goal
• Each action execution monotonically adds the applicable actions. 

• Once a literal is made true, it is not deleted. Progress made is not undone.
• Some of the the complex interactions between actions is ignored

• Intuitively, If there is an action that deletes the preconditions for another action then the plan length will be 
longer as effort is needed to set the deleted predicate as true. 

• By ignoring delete effects, the problem gets relaxed as the actual plan is going to be at least as long. 

• Planning
• Central idea: FF Planner searches for a plan making use of the heuristic computed from the 

relaxed problem. 
• Other strategies are also applied to aid plan search. 
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FF Planner

• Still NP hard to compute the 
optimal solution in the relaxed 
problem 
• Approximate solution can be 

found via hill climbing. 

• Figure
• Visualizes state space for two 

problems using the ignore delete 
list heuristic. 

• Dots (states), edges (actions) and 
height (heuristic cost). 

• Hill climbing search will provide 
an approximate solution.  AIMA Ch 10
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Planning Graphs

• Motivation
• A planning problem asks if we can reach a goal state from the initial state. 
• If we have a tree of all possible actions from the initial state to successor states and so on.

• We can determine if there is a plan from start to the goal. 
• Problem: this tree is exponential in size. 

• Planning Graphs
• Planning graph is a polynomial-size approximation to this tree. Trade off is that the 

planning graph indicates states that can possibly be reached. 
• It cannot definitively answer if the goal G is attainable from s0 

• But, it can estimate how may steps it takes to reach G. 
• The estimate is always correct when it reports the goal is not reachable. 

• It never overestimates the number of steps (hence an admissible heuristic)

AIMA Ch 10 Sec 10.3
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Planning Graphs

• Construction
• Layered Graph
• Si contains all the literals that could hold at time i. 
• Ai contains all the actions that could have their pre-

conditions satisfied at time i. 
• No variables. All grounded literals and grounded actions. 

• What does a planning graph encode?
• A planning graph only records a restricted subset of 

negative interaction between actions. 
• Allows quick elimination of some impossible alternatives 

in the search process. 
• The level at which a literal appears is a good estimate of 

how difficult it is to attain a literal from the initial state. 

• How are planning graphs used?
• Computing a heuristic
• Extracting a plan (GraphPlan)
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Planning graph: Construction

• Start with the initial state (given)
• Add applicable actions and effects

• Add actions with satisfied pre-conditions
• Add all effects of actions at previous levels
• The action layer will contain all actions 

whose pre-conditions are satisfied. 

• Add maintenance actions
• Ensures that once a literal is reached it is 

“maintained” in the planning graph for 
every subsequence layer. Add actions with satisfied 

pre-conditions
Add maintenance 
operations.
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Mutually Exclusive Actions

• Two action instances at level i are mutex if:
• Inconsistent effects 

• The effect of one action is negation of another. 
• Interference

• One action deletes the precondition of another. 
• Competing needs

• The actions have preconditions that are mutex at level i-
1

• What do the mutexes model?
• Some conditions under which two actions cannot 

be performed together (i.e., only one of them 
must be selected)

• Detection of certain obvious flaws (there may be 
other conflicts that are not encoded by the 
planning graph)

Inconsistent 
support

Actions 
considered as 
mutex
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Mutually Exclusive Actions

• Inconsistent effects 
• Eat(Cake) and the persistence of 

Have(cake) have inconsistent 
effects. 

• Interference
• Eat(Cake) interferes with the 

persistence of Have(Cake) by 
negating its pre-conditions. 

• Competing needs
• Bake(Cake) and Eat(Cake) are 

mutex because they compete on 
the value of the Have(Cake) 
precondition. 
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Mutually Exclusive Propositions

• Two propositions at level I are 
mutex if:
• Negation

• They are negations of one another
• Inconsistent support

• All ways of achieving the propositions 
at level i-1 are pairwise mutex. 

• Example
• Inconsistent support

• Have(Cake) and Eaten(Cake) are 
mutex in S1 because the only way of 
attaining Have(Cake) which is 
maintenance action is mutex with the 
only way of achieving Eaten(Cake) 
which is Eat(Cake)
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Planning Graphs for Heuristic Estimation

• Using Planning Graphs for Heuristic Estimation
• The planning graph is polynomial in size (hence tractable to compute)
• The planning graph can be used to estimate the cost to go from a current state s to the goal, serving as a 

heuristic. 
• If any goal literal fails to appear in the final level of the planning graph, then the problem is unsolvable. 

• Level-cost
• Cost of attaining any goal gi from a state s as the level at which gi first appears in the planning graph 

constructed from the initial state s. 

• Cost of attaining Multiple Goals
• Max-level heuristic
• Level-sum heuristic
• Set level heuristics
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Example: flashlight domain

• Problem involves putting batteries into 
a torchlight. 

Object 
Instances

Actions
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Example: flashlight domain

Plan

Goal

State
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Example: flashlight domain

Planning graph

• In L1 only remove cap action can apply
• Appearance of Not(On(Cap, Flashlight)) enables the 

battery insertion operation to apply. 

• Finally, L3 and L4 are the same and the graph stabilizes. 
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Graph Plan

• Central Idea
• Use the planning graph to extract a plan
• Instead of using the graph for providing a 

heuristic. 

• Graph Plan
• Look for a plan of depth K. 
• Then search for a solution. 
• If you succeed return a plan, else increase the 

plan depth to K+1
• Interleaves graph extension and plan search
• Once all the goals appear as non-mutex in the 

graph then call a plan search. 
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Plan Extraction

• There can be several actions in an action 
layer. 

• How to extract the plan?
• Start from layer k and search backwards. 
• Perform an And/Or search. 
• All literals in the target state are to be satisfied 

(AND part)
• Try the possible operators under mutex constraints 

(OR part) 

Procedure for plan extraction 

Planning graph has multiple actions at a level. 


