COL864: Special Topics in AI Semester II, 2020-21

Search Algorithms: A*

Rohan Paul

Outline

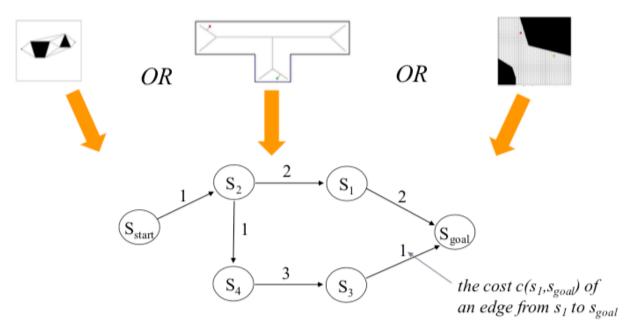
- Last Class
 - State Estimation
- This Class
 - Search Algorithms
 - Uninformed A*
 - Informed A* and extensions
- Reference Material
 - Primary reference are the lecture notes. For basic background refer to AIMA Ch. 3.

Acknowledgements

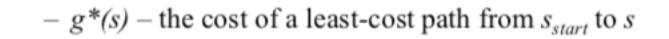
These slides are intended for teaching purposes only. Some material has been used/adapted from web sources and from slides by Nicholas Roy, Wolfram Burgard, Dieter Fox, Sebastian Thrun, Siddharth Srinivasa, Dan Klein, Pieter Abbeel, Max Likhachev and others.

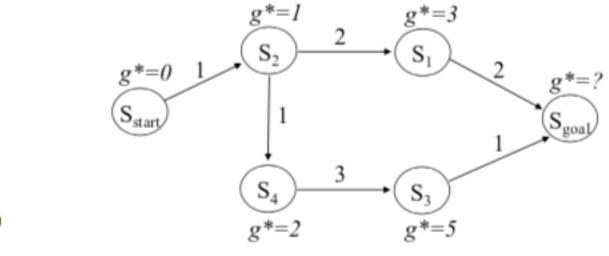
Planning Graphs

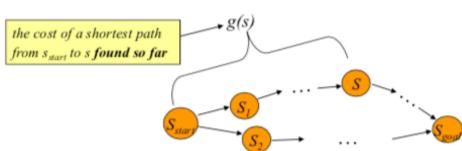
- Planning graphs
 - Nodes: possible states (designated start and goal states)
 - Edges: connection between states if an action connects the two states.
 - Goal is to find the optimal path (sequences of actions.)
- Motion planning
 - A graph is constructed (from skeletonization or cell decomposition etc.)
 - Example: PRM or grids or some other decomposition of the space.
- Other planning problems
 - Task planning where pre-condition relationships exist between tasks.



- Many search algorithms (including A*) work by computing g*(s) values for graph vertices (states).
- The g*(s) values are the "cost so far" from the start state to the state s.
- Problem: how to determine g*(s_{goal})?

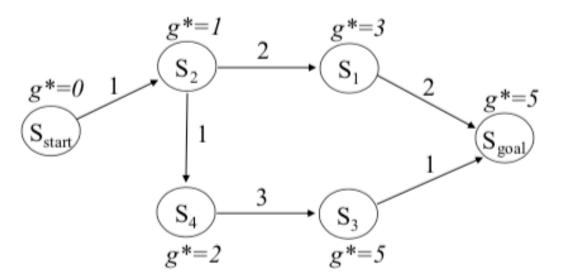






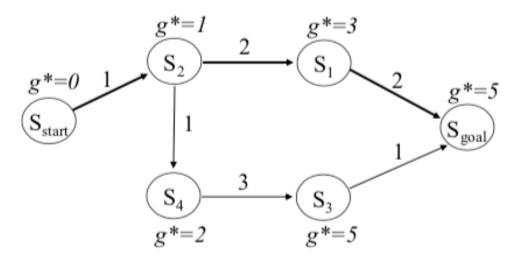
• The g*(s) values satisfy the following relationship.

 $g^*(s)$ – the cost of a least-cost path from s_{start} to sg* values satisfy: $g^*(s) = \min_{s'' \in pred(s)} g^*(s'') + c(s'',s)$



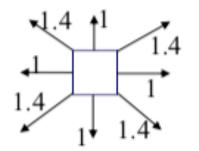
 Once the g*-values are computed a least-cost path from s_{start} to s_{goal} can be computed by backtracking.

start with s_{goal} and from any state *s* backtrack to the predecessor state *s*' such that $s' = \arg \min_{s'' \in pred(s)} (g^*(s'') + c(s'', s))$



• Example: an agent in a grid-based graph

8-connected grid



Actions and costs

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	0	1	2	3

g*(s) values for states in the grid

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	8	ł	2	3

Path obtained via backtracking

Uninformed A* Search

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath();

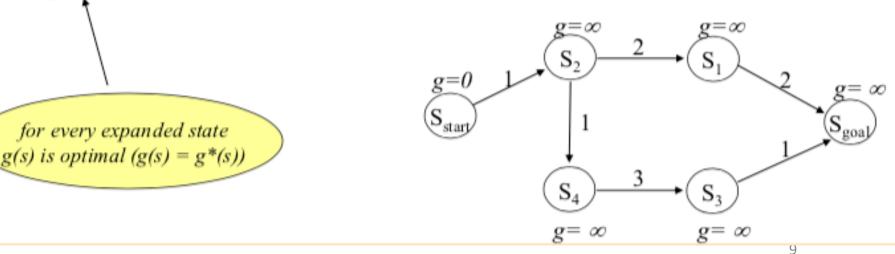
publish solution; //compute least-cost path using g-values

ComputePath function

set of candidates for expansion

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest *g(s)* from *OPEN*;

expand s;



Uninformed A* Search

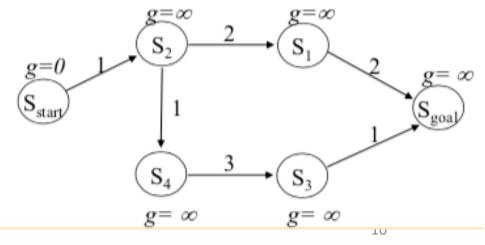
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest *g(s)* from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;

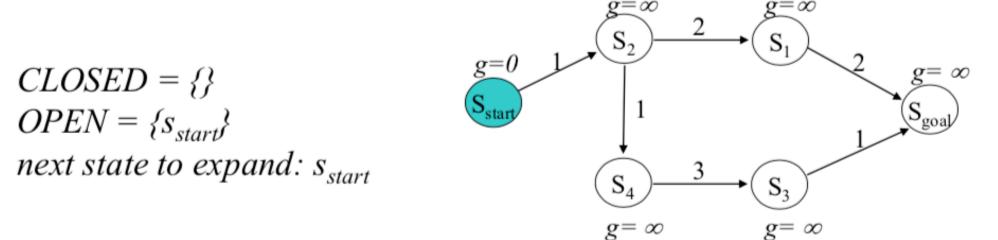
tries to decrease g(s') using the found path from s_{start} to s set of states that have already been expanded



ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*; for every successor *s* ' of *s* such that *s* ' not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');

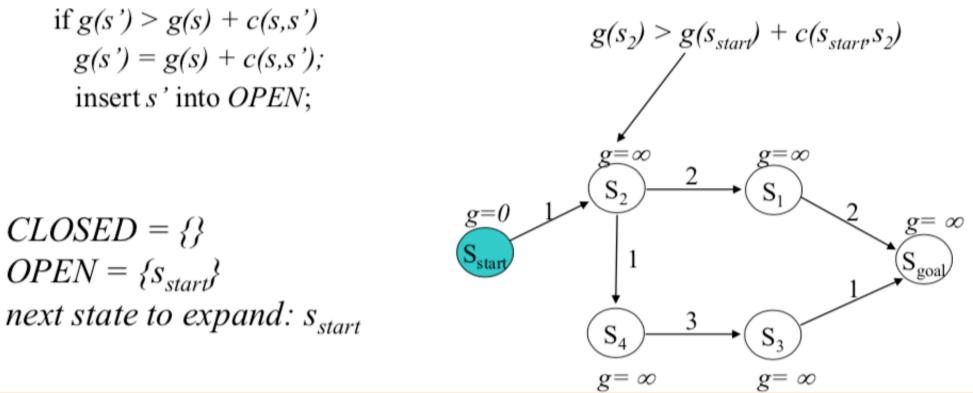
insert s' into OPEN;



ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*;

for every successor s' of s such that s' not in CLOSED



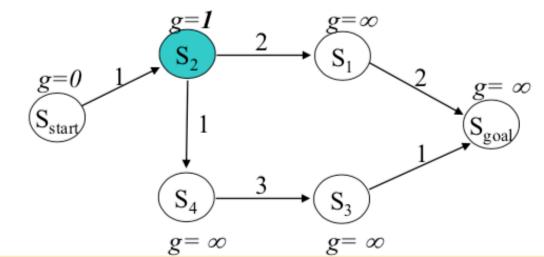
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest *g(s)* from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;



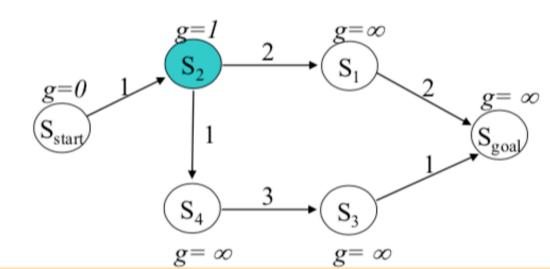
ComputePath function

while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s*' not in *CLOSED*

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;

 $CLOSED = \{s_{start}\}$ $OPEN = \{s_2\}$ $next state to expand: s_2$



ComputePath function

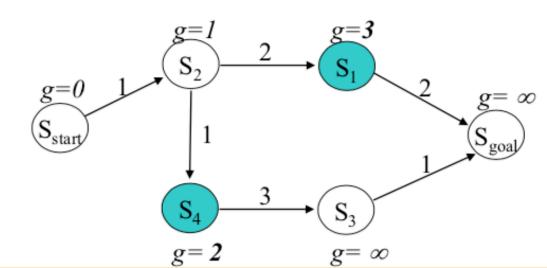
while $(s_{goal} \text{ is not expanded and } OPEN \neq 0)$ remove *s* with the smallest g(s) from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ next state to expand: ?

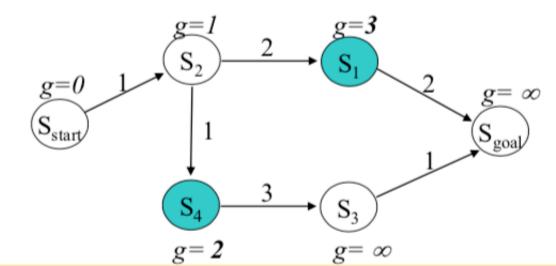


ComputePath function

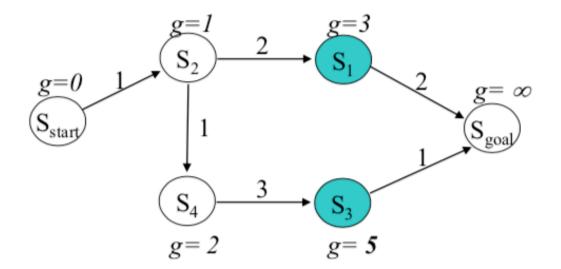
while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest g(s) from OPEN; insert *s* into *CLOSED*; for every successor *s* ' of *s* such that *s* ' not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');

insert s' into OPEN;

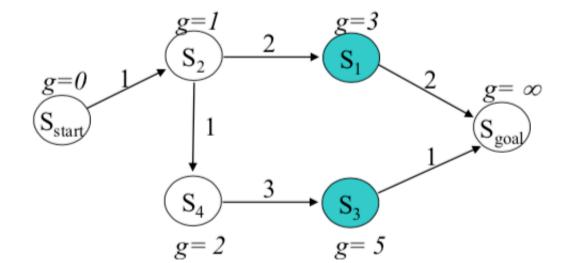
 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ next state to expand: s_4



 $CLOSED = \{s_{start}, s_2, s_4\}$ $OPEN = \{s_1, s_3\}$ next state to expand: ?



$$CLOSED = \{s_{start}, s_2, s_4\}$$
$$OPEN = \{s_1, s_3\}$$
$$next state to expand: s_1$$



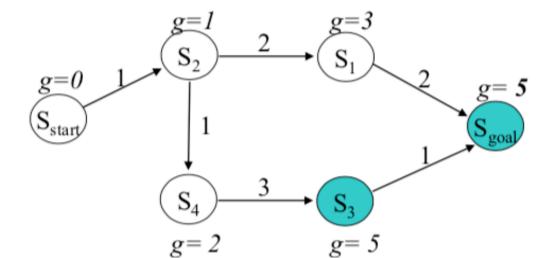
Optional optimization:

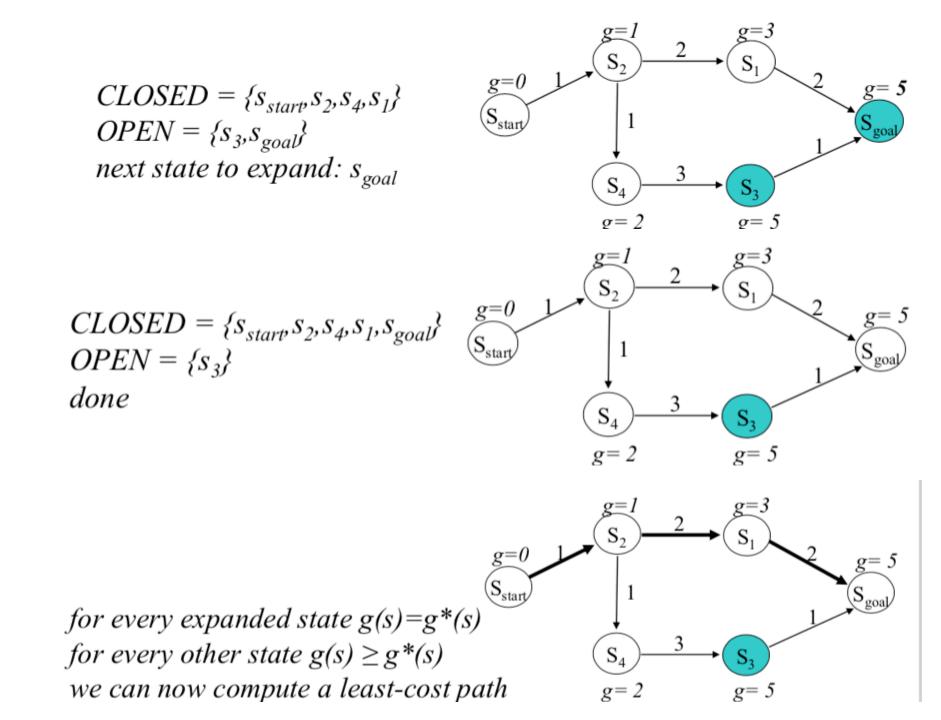
If OPEN contains multiple states with the smallest g-values and s_{goal} is one of them, then select s for expansion (as the path through the other node will be longer).

$$CLOSED = \{s_{start}, s_2, s_4, s_1\}$$

$$OPEN = \{s_3, s_{goal}\}$$

next state to expand: ?



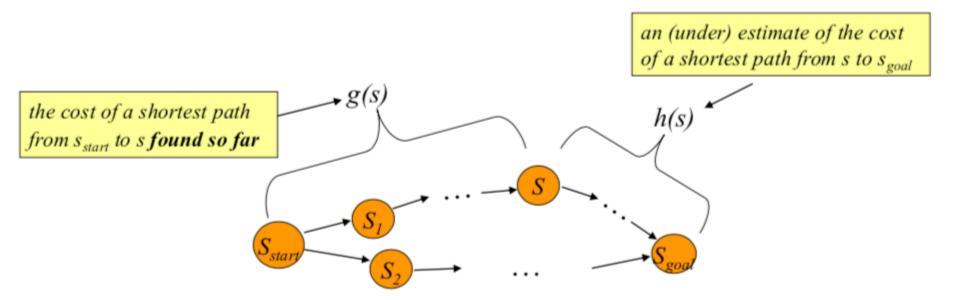


Estimating Cost-to-goal via Heuristics

- Till now we computed "cost so far"
 - The uninformed A* search expands nodes based on the cost of the node from the start node, c(s₀, s)
 - Till now, we are agnostic about the goal.
 - While planning we often have an *intuition* about *"approximate cost to goal"*.
 - If we knew the exact cost then no search would be needed.
 - But, even if we do not know c(s, s_g) exactly, we often have some intuition about this distance. This intuition is called a heuristic, h(s).
- Heuristic
 - h(s) = estimated cost of the cheapest path from the state at state s to a goal state.
 - Heuristics can be arbitrary, non-negative, problem-specific functions.
 - Constraint, h(s) = 0 if n is a goal.

A* Search

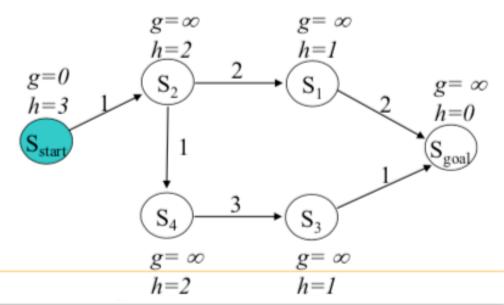
- Central Idea
 - At any given point, maintain two estimates: cost so far and cost to go.
- Always expand node with lowest f(s) first, where
 - g(s) = actual cost from the initial state to s.
 - h(s) = estimated cost from n to the next goal.
 - f(s) = g(s) + h(s), the estimated cost of the cheapest solution through s. It is the cost so



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED*

 $CLOSED = \{\}$ $OPEN = \{s_{start}\}$ next state to expand: s_{start}



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every successor s' of s such that s' not in CLOSED if g(s') > g(s) + c(s,s') $g(s_2) > g(s_{start}) + c(s_{start}s_2)$ g(s') = g(s) + c(s,s');insert s' into OPEN; $g = \infty$ $g = \infty$ h=2h=1g=0 S_2 $g = \infty$ h=3h=0 $CLOSED = \{\}$ S_{star} Sgoal $OPEN = \{s_{start}\}$

 S_4

 $g = \infty$

h=2

 $g = \infty$

h=1

next state to expand: s_{start}

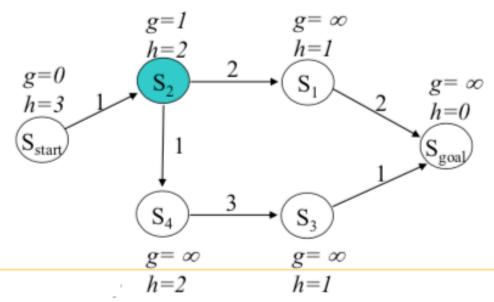
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

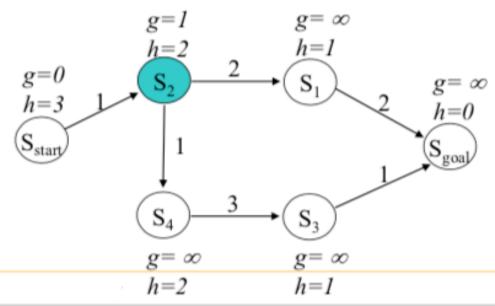
 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED*

 $CLOSED = \{s_{start}\}$ $OPEN = \{s_2\}$ $next state to expand: s_2$

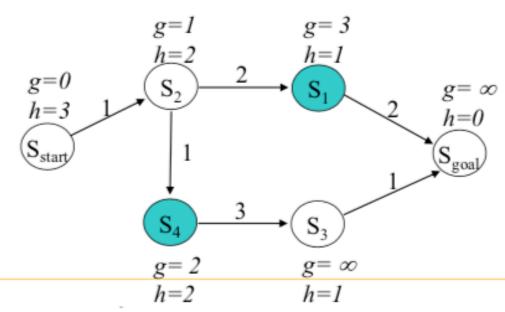


ComputePath function

while(s_{goal} is not expanded and OPEN≠0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s 'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s'); insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2\}$ $OPEN = \{s_1, s_4\}$ $next state to expand: s_1$



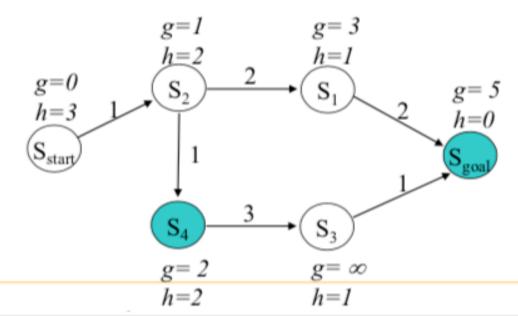
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED* if g(s') > g(s) + c(s s')

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert s' into OPEN;

 $CLOSED = \{s_{start}, s_2, s_1\}$ $OPEN = \{s_4, s_{goal}\}$ $next state to expand: s_4$

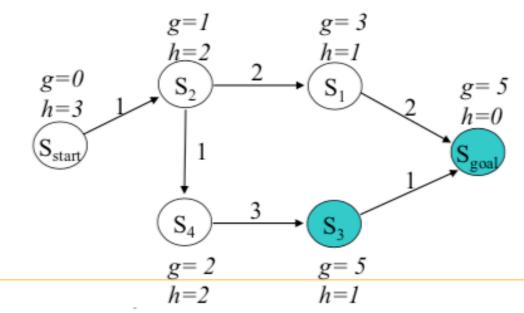


ComputePath function

while(s_{goal} is not expanded and OPEN≠0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
insert s into CLOSED;
for every successor s' of s such that s 'not in CLOSED
if g(s') > g(s) + c(s,s')

g(s') = g(s) + c(s,s');insert s' into OPEN;

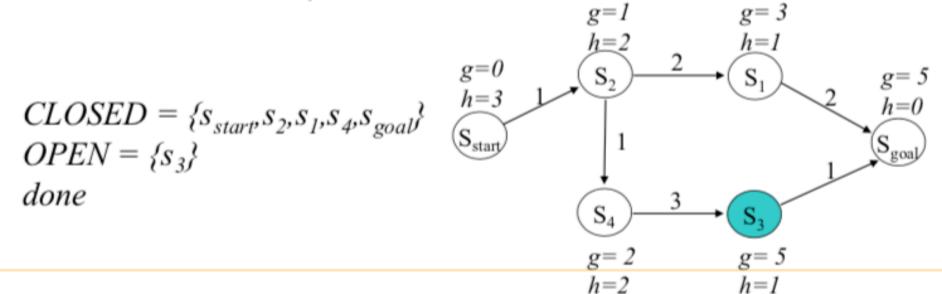
 $CLOSED = \{s_{start}, s_2, s_1, s_4\}$ $OPEN = \{s_3, s_{goal}\}$ $next state to expand: s_{goal}$



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from OPEN; insert *s* into *CLOSED*; for every successor *s*' of *s* such that *s* 'not in *CLOSED* if g(s') > g(s) + c(s,s')

f(g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert s' into OPEN;



ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; insert s into CLOSED; for every successor s' of s such that s'not in CLOSED if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');insert s' into OPEN; g=1g=3h=1g=0 S_{2} h=3(S_{start} for every expanded state g(s) is optimal for every other state g(s) is an upper bound S_4 we can now compute a least-cost path g=5g=2

h=2

h=1

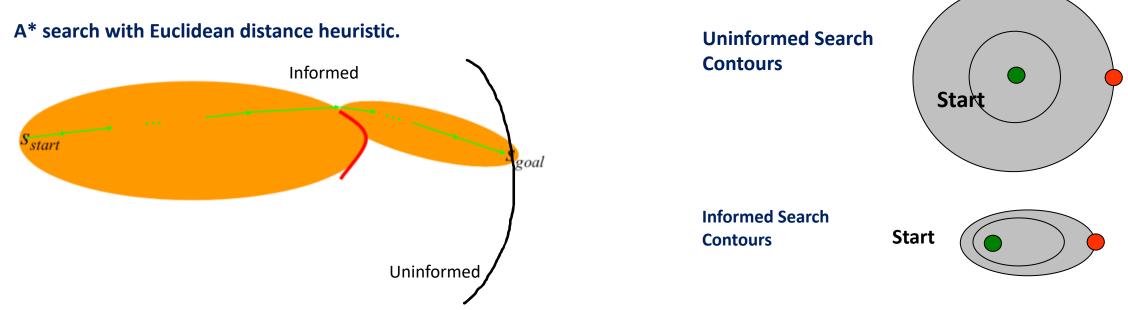
g=5

h=0

 $(\mathbf{S}_{\text{goal}})$

A*: Uninformed vs. Informed Search

- A*: expands states in the order of **f** = **g**+**h** values
- Uninformed A* or (or Uniform Cost Search) : expands states in the order of **g** values
- Intuitively: *f(s)* estimate of the cost of a least cost path from start to goal via state *s*



Implementation Details

- OPEN List
 - Priority queue (common to use a binary heap)
 - Intuition
 - The queue maintains hypothesis. Prioritization based on which states are likely to reach to the goal.
- CLOSED List
 - Typically, each state has a Boolean flag indicating that it is closed.
- Backpointers
 - After the search terminates, the least cost path is given by backtracking backpointers from s_{goal} to s_{start}

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; set all backpointers bp to NULL;

ComputePath();

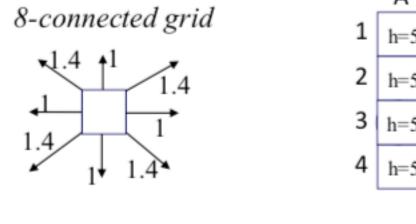
publish solution; //backtrack least-cost path using backpointers bp

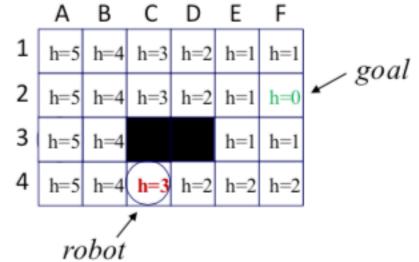
ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert *s* into *CLOSED*; for every successor *s'* of *s* such that *s'* not in *CLOSED* if g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s'); bp(s') = s; insert *s'* into *OPEN*;

• Example of a Grid-based Graph

$$h(cell < x, y >) = max(|x-x_{goal}|, |y-y_{goal}|)$$





Admissibility, Consistency & Dominance

• Admissibility

- Let **h***(**n**) be the shortest path from n to any goal state.
- Heuristic h is called *admissible* if $h(n) \le h^*(n) \forall n$.
- Admissible heuristics are optimistic, they often think that the cost to the goal is less than actual
- If h is admissible, then h(g) = 0, $\forall g \in G$
- A trivial case of an admissible heuristic is h(n) = 0, $\forall n$.

Consistency (monotonicity)

- An admissible heuristic h is called consistent if for every state s and for every successor s', h(s) ≤ c(s, s') + h(s')
- This is a version of triangle inequality, so heuristics that respect this inequality are metrics.
- Consistency is a stricter requirement than admissible. If consistent then the heuristic is admissible.

• Dominance

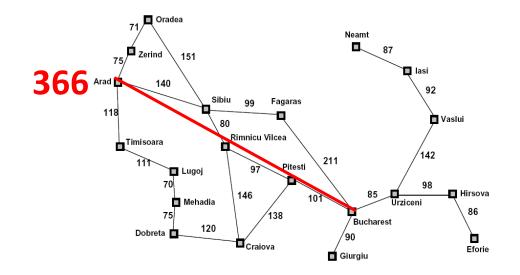
- Heuristic function h₂ (strictly) dominates h₁ if
 - both are admissible and
 - for every node n, h₂(n) is (strictly) greater than h₁(n).
- A* search with a dominating heuristic function h_2 will never expand more nodes that A* with h_1 .

A* Search Properties

- We covered the "graph-search" version of A* in this lecture.
 - I.e., we maintain a closed list.
- Optimal
 - If the heuristic is *consistent* (stronger condition than admissibility) then A* search (graph search version) will find the optimal solution.
- Completeness
 - If a solution exists, then A* will find it (eventually A* will visit all nodes)
 - Conditions
 - Every node has a finite number of successor nodes (b is finite). Number of nodes is finite.
 - Positive costs for edges.

Admissible Heuristics from Relaxed Problems

- Optimal solution in the original problem is also a solution for the relaxed problem.
- Cost of the optimal solution in the relaxed problem is an admissible heuristic in the original problem.
- Finding the optimal solution in the relaxed problem should be "easy"
 - Without performing search.



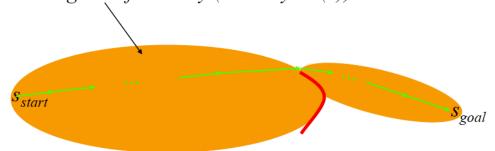
Permitting straight line movement adds edges to the graph.

A* Search: Finding sub-optimal solutions

- Problem
 - A* takes too long to find the optimal solution, memory runs out.
 - Can a sub-optimal solution be found *quickly*?



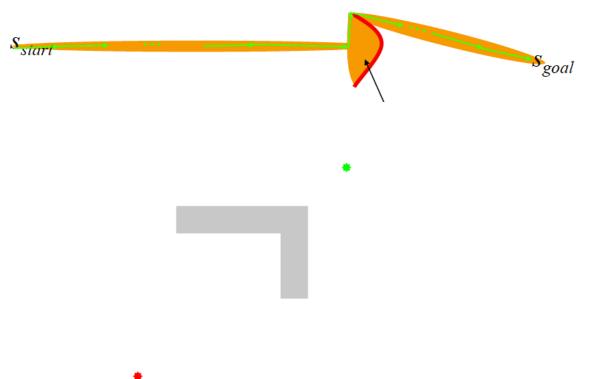
for large problems this results in A* quickly running out of memory (memory: O(n))



Weighted A*

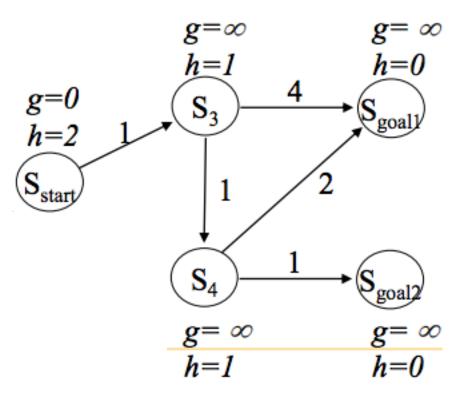
- Expands states in the order of f'(n) = g(n) + w*h(n) values, where w > 1.0
- Creates a bias towards expansion of states that are closer to goal.
- Trade off between search effort and solution quality.
- f'(n) is *not admissible* but finds good *sub-optimal* solutions *quickly*.
- Usually, orders of magnitude faster than A*.

A weighted heuristic accelerates the search by making nodes closer to the goal more attractive, the cost to goal starts to dominate.



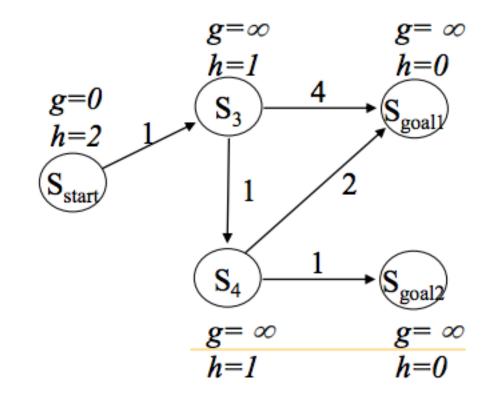
Multiple goals

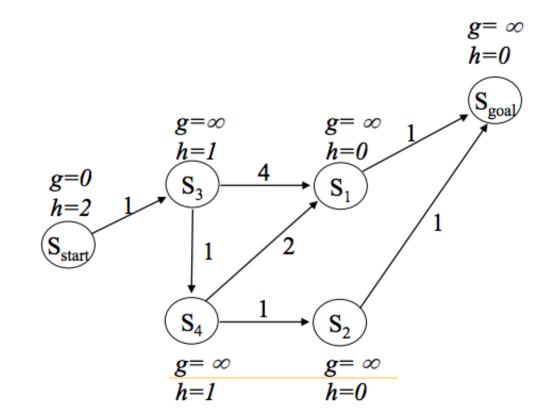
- Consider the following
 - A robot is to reach a parking location.
 - Choice of locations some are closer and some are further away.
- How to plan in the presence of multiple goals?



Multi-Goal A*

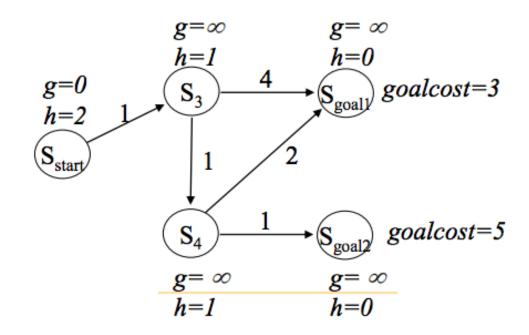
1

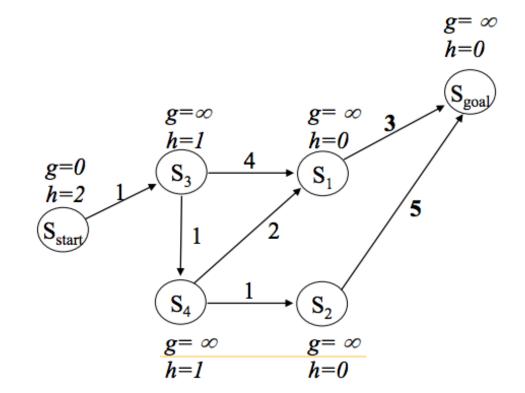




Transform the graph with an "imaginary goal". Following which run A*.

Multi-Goal A*





The non-uniform goal preferences can be encoded as edge costs.