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Today’s lecture

* Last Class
* Planning Motions

e This Class

* State Estimation
* Recursive State Estimation
* Bayes Filter
* References
* Probabilistic Robotics Ch1 & 2
* AIMA Ch 15 (till sec 15.3)
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Robot Environment Interaction

Environment or world
* Objects, robot, people, interactions
* Environment possesses a true internal state

Observations

* The agent cannot directly access the true
environment state.

* Takes observations via its sensors which are error
prone.

Belief

* Agent maintains a belief or an estimate with respect
to the state of the environment derived from
observations.

* The belief is used for decision making

Actions

. Aﬁen_t can influence the environment through its
physical interactions (actuations, motions, language
Interaction etc. )

* The effect of actions may be stochastic.

* Taking actions affects the world state and the robot’s
internal belief with regard to this state.

World model, belief

Y

Control system

Perceptual/action data

Actions




Robot Environment Interaction

* Sensing: Receive sensor data and
estimate “state”

-

* Plan: Generation long-term plans Sense Plan

(action sequences) based on the
Act

state & goal

e Act: Execute the actions to the
robot




State Estimation

* Framework for estimating the state from sensor data.

* Estimating quantities that are not directly observable. But can be
inferred if certain quantities are available to the agent.

e State estimation algorithms compute belief distributions over possible
states of the world.

* Traditionally, probabilistic in nature. Can also be via function
approximation.



State

* Environment is characterized by the
state.

e “A collection of all aspects of the
agent and its environment that can
impact the future”

* A sufficient statistic of the past
observations and interactions
required for future tasks.

Figure courtesy Byron Boots

data about past data about future

State: statistic of history sufficient to predict the future

Markovian assumption:

Future is independent of past given present
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State

 What is typically part of the state, x?

* Robot pose: position and orientation or
kinematic state

Velocities: of the robot and other objects like
people.

Location and features of surrounding objects
in the environment.

Semantic states: is the door open or closed?

* What is put in the state is influenced by
which task we seek to perform

* Navigation
 More complex example (e.g., delivery of

hospital supplies)

Figure courtesy Byron Boots

State:

data about past

compress

statistic of history sufficient to predict the future



Environment Interaction

* Environment Sensor Measurements
 Camera, range, tactile, language query etc.
* Denote measurement data as z,
* Noisy observations of the true state.
 Measurements typically add information, decrease uncertainty.

* Actions (or Controls)
e Physical interaction: robot motion, manipulation of objects, NO_OP etc.
Carry information about the change of state.
Source of control data: odometers or wheel encoders.
Denote control data as u,
Actions are never carried out with absolute certainty.
In contrast to measurements, actions generally increase uncertainty.



Uncertainty

Explicitly represent uncertainty
using probability theory.

environmental
dynamics

approximate

computation
random inaccurate

action effects models
sensor

limitations

10



Probability

Independence

m XandY are independent iff
P(x,y) = P(x) P(y)

m P(x [ y)is the probability of x given y
P(x [ y) = P(x,y) / P(y)
P(xy) =P(x[y)Ply)

s If XandY are independent then
P(x | y) = P(x)

Marginalization

Discrete case

D P(x)=1
P(x)=)_P(x,y)

P(x)=) P(x| y)P(y)

Continuous case

jmmmzl
p(x)= Ip(x, y)dy

p(x)= j p(x|y)p(y) dy
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Bayes Rule

P(x,y)=P(x| y)P(y)=P(y|x)P(x)

—
P(x‘ ) = P(y|x) P(x) likelihood -prior
- P(y) ~ evidence

P P
P(x|y)= S ;)y) &) _ n P(y|x)P(x)
I 1
n=r) =

S P(y| x)P(x)
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Conditioning
= Law of total probability:
P(x) = | P(x,2)dz

P(x) = j P(x|2)P(2)dz

P(x|y)= [ P(x|y,2) P(z| y) dz



Bayes Rule with Background Knowledge

P(y|x,z) P(x|z)
P(y|z)

P(x|y,z)=



Conditional Independence

 Xand Y are conditionally
independent given Z.

P(x,y|z)=P(x|z)P(y| z) P(x|z)=P(x|z,y)

P(y|z)=P(y|z,x)



Example of State Estimation

* The robot wants to estimate the state of the door as closed or open
* Has a noisy sensor that produces measurement, z

e Estimate: P(open|z)?
 Likelihood that the true state of the door is open given that it was measured as open.

L
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Causal vs. Diagnhostic Reasoning

P(open|z) is diagnostic reasoning

P(z| open) is causal reasoning (can estimate by counting frequencies)

Often causal knowledge is easier to obtain.

Bayes rule enables the use of causal knowledge:

P(z|open)P(open)
P(2)

P(open|z)=

17



Example

* Higher likelihood of observation z P(zlopen)=0.6 P(z|—open)=0.3

when the door is open compared to
when the door is closed. P(open) = P(—open)=0.5

* The incorporation of the
measurement z raises the
probability that the door is open.

P(z|open)P(open)
P(z|open)p(open)+ P(z|—open) p(—open)
0.6-0.5 2

P(open|z)= =—=0.67
(Open|2) = e 0570305 3

P(open|z) =




Combining Evidence

* Suppose the robot has another sensor that produces a second
observation z,

* How can we combine the measurement of the second sensor

* What is P(open|z; z,)?

* In general, how to estimate  Px|z,..z,) /




Recursive Bayesian Updating

P(Zn|x,Zl,...,Zn—1) P(X|Zl,...,Zn—l)

P(x ZlyeeegZn) =
( | ) P(Zn|Zl,...,Zn—1)

Markov assumption: z, is conditionally independent of z,,...,z,_; given x.

P(Zn|.X) P(X|Zl,...,Zn—1)
P(Zn|Zl,...,Zn—1)
=N P(z:|x) P(x|z1,...,20-1)

=1, |1 P(z1x) P(x)

i=l..n

P(x | Zl,...,Zn) =

In our causal modeling view, the world state is causing all the observations.
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Incorporating second sensor measurement

* Higher likelihood of observation z when P(z, lopen) = 05 P(z, | —open)=10.6

the door is not open compared to when
the door is open. P(openlz)=2/3  P(—openlz)=1/3

 The inclusion of the second measurement
Z, lowers the probability for the door to be

open.

P(z, |open) P(open| z,)
P(z, |open) P(open|z,)+ P(z, | —open) P(—open | z,)

P(open|z,,z,) =

12
23 5
"T2.31 8 ¥

23 53 21



Modeling the Sensor

e Sensor model

* Generative model of a sensor measurement
given the true state.

* A conditional distribution over observations
given the true state.

* Observations or measurements can be
considered as the noisy projection of the state

p(2t|w)

22



Modeling Actions

e Action or Motion model

* Actions or controls change the state of the
world.

* Incorporate the outcome of an action u into
the current “belief”, we use the conditional
distribution.

* Specifies how does the state change by
application of the action (from the state, x,; to
the state, x, by executing the action, u,).

p(xt ‘xt—la Ut)



Belief

* Belief
* Expresses the agent’s internal Bel(wt) — p(a?t ‘leta ul:t)
knowledge about the state of an
aspect of the world.

 Note: we do not know the true
state.

* The belief estimated from the
sensor measurement data and the
actions taken till now.



Example: Closing the door

State Transitions

/ P(x[u,x’) for u = “close door”:

0.9

0.1 ( open m

If the door is open, the action “close door” succeeds in 90% of all cases.
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Example: The Resulting Belief

Marginalizing (integrating) out the outcome
of actions P(closed | u) = E P(closed | u.x")P(x")

= P(closed |u.open)P(open)
+ P(closed | u.closed)P(closed)

Continuous case:

P(x[u) = [P(x|u, x")P(x")dx’ _9,3,1,3 15
| 10 8 1 8 16
Discrete case: P(open|u)= 2 P(open|u,x")P(x")

= P(open |u,open)P(open)

P(x|u) = EP(x |u, x")P(x")

+ P(open | u.closed)P(closed)
1.5 0,3 1

=—Ff—t—F—=—
10 8 1 8 16
=1- P(closed | u)



Incorporating Measurements

= Bayesrule

P(zlx)P(x) likelihood - prior

P(x|z)=

P(2) evidence



Bayes Filter

* Given:
* Stream of observations z and action data u:
e Sensor model
* Action model
* Prior probability of the system state P(x).

 What we want to estimate?
* The state at time t
* A belief or the posterior over the states:

dt = Uy, 2, - "9ut—192t}
p(2¢|x¢)

p(xt |Q?t—1, Ut)

Bel(xt) ZP(xt |u1922 e Uy g

Z,

28



Generative Model

Assumptions

Static world
Independent noise
Perfect model, no approximation errors

Markov assumption (once you know the
state the past actions and observations
do not affect the future).

p(Zt | xO:t9ZI:t—19u1:t) — p(Zt | xt)

(X, | Xy 2y ty,) = P(X | X,5u,)



Z = observation

Bayes Filters Y < state
Bel(x,)|=P(x, |u,z, ...,u,,z,)
Bayes =n P(z, | x,,u,z,...u) P(x, |u,z,...u)
Markov =1 P(Zz‘ |XI)P(.Xt |M1,Zl,...,l/lt)
Total prob.

Markov =7 P(Zt |xt) jP(xt |ut,xt_1) P(xt—l |u1?ZI’ ...,Mt) dxt_l

=N P(Zt | xt) _[P(xt | utaxt—l) Bel(xt—l) dxt—l

=1 P(z, I x,) JP(xt lu,,z,,....u,,x,_ )P(x,_ lu,z,,....,u,)dx,,

30



Bayes Filters Algorithm

Algorithm Bayes_filter ( Bel(x), d):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z | x)Bel (x)
1n=n+ Bel'(x)
For all x do
Bel'(x) =n"'Bel'(x)
Else if d is an action data item u then
For all x do
Bel'(x) = JP(x lu,x") Bel(x") dx'
12. Return Bel’(x)

© 0 NS U w o=

—_ =
_ O

Bel(xt) = 77 P(Zt | xt) P(xt | utaxt—l) Bel(xt—l) dxt—l




Bayes Filter: Takeaways

* Bayes filters are a probabilistic tool for estimating the state of with
observations acquired over time.

* Bayes rule allows us to compute probabilities that are difficult to
determine otherwise.

* Under the Markov assumption, recursive Bayesian updating can be
used to efficiently combine evidence.



Hidden Markov Models

* The state of the world changes
with time.

e Predict it with successive
observations.

e Discrete states and
observations.

X, = set of unobservable state variables at time /

)] ] O "4 | v f §
e.g., /)"’ruu]\',""7:,,"' f Stomach( onteni St, etc.

£, = set of observable evidence variables at time /
e.g., _‘\/r (IS¢ r,r"./))“:vuu,r'7 \4'1'1/'1,.',’ y /)q’,’r\r /';’(jv"r f /‘.;u;,j"];,',' {1

This assumes discrete time; the step size depends on the problem

Notation: X X, X, i1..... X, 1. X



HMMs: Conditional Independences

* Future depends on past via the present @ @ @ @ --=»

e Current observation independent of all
else given current state @ @ @
* Note: there is no explicit notion of
controls or actions.
P(X; | Xo:t-1) =P(X; | X¢1)

P(Et ‘X():t-E(’):t—l) — P(Et \Xt)



Example: Rain HMM

* Observations: a person carries an
umbrella or not. :

Rain,

* States: rainy or not.

* Noisy transition and observation
models.



Inference Tasks

Filtering: P(X, e, ;)
to compute the current belief state given all evidence
better name: state estimation

Prediction: P( X, e, for k > ()
to compute a future belief state, given current evidence
(it's like filtering without all evidence)

Smoothing: P( X, e, ;) for 0 < Lk <t
to compute a better estimate of past states

Most likely explanation: arg maxy , P(x; /e )
to compute the state sequence that is most likely, given the evidence



HMM Filtering

P(Xt+1|elzt+l) = f(et+1, P(Xt|91:t))

P(Xt+1|e1;t+1) — P(Xt-l-llel:ta et+1)
= aP(et+1|Xt+1; el:t)P(Xt-l-llel!t)
= aP(ey1]|X¢1)P(X¢s1lers)

P(Xt+1|91:t+1) = aP(et+1|Xt+l)thP(Xt+1|xt; el:t)P(xtlelzt)
= a’P(et+1Ixt+1)2xtP(Xt+lIxt)P(xtlelzt)



Inference: Estimate State Given Evidence

* We are given evidence at each time and want to know

Bi(X) = P(Xtle1:t)

* Approach: start with P(X,) and derive B, in terms of B, ,
* Equivalently, derive B,,, in terms of B,

* Two Steps:

e Passage of time ?—’?—’?—’
* Evidence incorporation



Passage of Time

Assume we have current belief P(X | evidence to date)

B(X:) = P(Xtle1:t)

Then, after one time step:

P(Xt—|—1 ’61;75) — ZP(Xt+17CUt‘€1:t)

Lt

— ZP Xea1|xe, e1.4) P(xilers)
— ZP Xt-|—1’33t) (ajt‘elzt)

Basic idea: the beliefs get “pushed” through the transitions

OO
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Incorporating Observations

Assume we have current belief P(X | previous evidence):

B'(Xt41) = P(Xey1ler)

Then, after evidence comes in:

P(Xt+1‘€1:t—|—1) — P(Xt—l—la6t—|—1|€1:t)/P(€t—|—1‘€1:t)

XXi41 P(Xi11,erv1]er:t)

= P(ei41
= P(et41

€1zt,Xt+1)P(Xt+1|€1:t)
Xt—l—l)P(Xt—H‘@l:t)

View it as a “correction” of the belief using the observation
B(Xiy1) o<x, g Plets1]|Xev1) B (Xiq1)

T
®
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Example: Robot Localization

Robot can take actions N, S, E, W
T Detects walls from its sensors

N
Prob 0 1

t=0

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob. i



Example: Robot Localization

E
Prob 0 1

t=1

Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake

42



Example: Robot Localization

Prob 0 1

t=2

43



Example: Robot Localization

Prob 0 1

t=3

44



Example: Robot Localization

Prob 0 1

t=4

45



Example: Robot Localization

Prob 0 1

t=5

46



Particle Filtering

* Problem:

| X| may be too big to even store B(X)

E.g. X is continuous (though here we focus on the
discrete case)

* Particle filtering

Track samples of X, not all values. Samples are called
particles

Time per step is linear in the number of samples. Keep
the list of particles in memory, not states

An approximation. Larger the number of particles,
better the approximation.

0.0 0.1 0.0
0.0 0.0 0.2
0.0 0.2 0.5
@
@0
o0 ...




Particles

* Our representation of P(X) is now a list of N particles (samples)
e Generally, N << [X]|

* P(x) approximated by number of particles with value x

* Several x can have P(x) = 0. Note that (3,3) has half the number of
particles.

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)
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Passage of Time

Each particle is moved by sampling its next position
from the transition model

v’ = sample(P(X'|x))

= Example

= Most samples move clockwise, but some move in
another direction or stay in place.

= An outcome of the probabilistic transition model.

Particles:
(3,3)

Particles:
(3,2)

o%)

o

49



Incorporate Evidence

Incorporating evidence adjusts or weighs the
probabilities.

Attach a weight to each sample.

Weigh the samples based on the likelihood of the
evidence.

w(x) = P(e|x)

B(X) x P(e|X)B/'(X)

Particles:

Particles:

(3,2) w=.9

£ £ s ssg <5 ¢< =
DoNROPD O

/
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Representation: Resample

* Rather than tracking weighted samples, we
resample.

* We choose, N times, from our weighted sample
distribution (i.e. draw with replacement)

* Now the update is complete for this time step,
continue with the next one.

Key idea: maintain hypotheses (particles) in the
region of probable states, discard others. Note that
the sampling is with replacement.

Particles:

(3,2) w=.9

(New) Particles:

(3,2)

51



Representation: Particles

Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
. ... . . (<] (©)
@ ° () )
@ 00 \.\ )
o - o [b°
@ e
Particles: Particles: Particles:
(3,3) (3,2) (3,2) w=.9
(2,3) (2,3) (2,3) w=.2
(3,3) (3,2) (3,2) w=.9
(3,2) (3,1) (3,1) w=.4
(3,3) (3,3) (3,3) w=.4
(3,2) (3,2) (3,2) w=.9
(1,2) (1,3) (1,3) w=.1
(3,3) (2,3) (2,3) w=.2
(3,3) (3,2) (3,2) w=.9
(2,3) (2,2) (2,2) w=.4
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