COL333/671: Introduction to Al

Semester I, 2021

Learning — 11

Rohan Paul

Outline

* Last Class
* Basics of machine learning

* This Class

 Neural Networks

 Reference Material

* Please follow the notes as the primary reference on this topic. Additional
reading from AIMA book Ch. 18 (18.2, 18.6 and 18.7) and DL book Ch 6

sections 6.1 — 6.5 (except 6.4).

Acknowledgement

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina

Precup, Dorsa Sadigh, Percy Liang, Mausam, Parag, Emma Brunskill,
Alexander Amini, Dan Klein, Anca Dragan, Nicholas Roy and others.

Neuron

A simplified view /
* Activations and inhibitions el e

\ Axon from another cell

e Parallelism

Synapse

e Connected networks Dendrite

Nucleus \ /
Synapses

Cell body or Soma

Modeling a Neuron

impulses carried

toward cell body
branches

of axon

dendrites

nucleus

impulses carried
away from cell body

7 "-f_. axon

terminals

Output

Input Activation
Function Function

Output

ai=g() _ Wj.a))
j

Main processing unit

* Setup where there is a function that connects the inputs to the output.

* Problem: learning this function that maps the input to the output.

Y

Links

Perceptron

* Introduced in the late 50s
* Minsky and Papert.

* Perceptron convergence theorem
Rosenblatt 1962:

* Perceptron will learn to classify any
linearly separable set of inputs

 Note: the earlier class talked about
model-based classification. Here,

we do not build a model. Operate
directly on feature weights.

Input Output
Units Units

Perceptron Network

Input Output
Units Unit

Single Perceptron

Feature Space

T f(z) Y

e Extract Features from data

Hello, 4 free SPAM

e Learn a model with these o e et o e o ‘ o

cartriges? Why pay more when
you can get them ABSOLUTELY

features

e Data can be viewed as a
point in the feature space.

PIXEL-7,12 : 1
PIXEL-7,13 : llz”
free 1 .
(:L‘) YOUR NAME : 0 NUM LOOPS : 1
1 S Y
0

o

MISSPELLED
FROM FRIEND :

MISSPELLED
FROM FRIEND :

free : 0

f ('CB 2) YOUR_NAME 1
1

1

Linear Classification

* A decision boundary is a activationy(z) = > w; - fi(z) = w - f(x)
hyperplane orthogonal too i
the weight vector.

Feature 2 2

+1 =Class A

0
-1 =Class B
0 1 Feature 1

Perceptron

7.5 1

s °800 O

55 | L §°gg
Decision rule (Binary case) 43 : @_o.--'»e"i:;iz

s e TSt

2.5 4=

4.5 5 55 6 6.5

Binary classification task

hy(x) = 1if w- x > 0 and 0 otherwise,

hw(x) = Threshold(w - x) where Threshold(z)=1if z > 0 and 0 otherwise.

One side of the decision boundary is class. A and the other is class B. A threshold is introduced.

Perceptron

Learning rule

* Classify with the current weights
* |f correct no change.

* |f the classification is wrong: adjust the

weight vector by adding or subtracting the

feature vector.
w

w; — w; + a(y — hy(X)) X x;

XZ A

Subtracting f

x1

Binary classification task

Perceptron

Case: Linearly-separable Case: Not Linearly-separable
1. 7.5
7 1 o 7 &
6.5 1 Cgoo 6.5 - O?go @
6 - o .8 28 . 6 o 8§ 28 &
5.5 3 00 O 307 .- 5.5 oo & 508000
"‘:. -? 1 o 8 9 “4‘.. ;. -? O O o S '.:..
4.3 g O] 0O ..'!. 4.) (O] v‘.,- ...!.
0 0 .
4 1 . . 4 T ee .
3.5 1 ™ ™ 3.5 e g ™
3 1 3
2.5 - 2.5
4.5 5 5.5 6 6.5 7 4.5 5 5.5 6 6.5 7
\l '\-1

Perceptron learning rule converges to a perfect linear separator when the data points
are linearly separable. Problem when there is non-separable data.

Threshold Functions

A g, A g,
+1 l e Till now, threshold functions
were linear.
. - e Can we modify the threshold
t in; s function to handle the non-
. separable case?

 Can we "soften” the outputs?

(a) Step function (b) Sign function

Boolean Functions and Perceptron

S-S e

AND OR NOT

(@ I, and I,

45F

39 F

2ar

19F

09 F

Non-separable case

Deterministic Decisions

Probabilistic Decisions

0.9 | 0.1

0.7 | 0.3
0.5 | 0.5

0.3]0.7

Logistic Output

* Logistic Function

L 1

* Very positive values. Probability -> 1 Logistic(z) = | + ¢

. : ity -> 0. | | 1
Very negative vz?lu.es. Probability -> 0 h(x) = Logistic(w - x) = _

* Makes the prediction. Converts to a | 1 + e WX
probability

* Softens the decision boundary. Lo|
. . . j |

* Logistic Regression @)= Tve=

* Fitting the weights of this model to
minimize loss on a data set is called
logistic regression.

=05}

0.0

Example (red or blue classes)

P(red|x)
i almost 1.0
almost 0.0 i
- 9 @ o —0 0 0 0606 00606 @
\ J \ J \) L
Y Y Y
definitely blue not sure definitely red

probability increases exponentially as

. /
ewred x we move away from boundary

P(red|z) =

eWred'T | eWblue'T Normalizer

Estimating weights using MLE

Logistic Regression
Maximize the log-likelihood

max [l(w) = max ZlogP(y(i)\z(i);w)

i i 1

1
1+ e—w =)

Py = 1]z w) =1

Softmax Output

* Multi-class setting

* A probability distribution over a
discrete variable with n possible
values.

* Generalization of the sigmoid
function to multiple outputs.

e Qutput of a classifier

e Distribution over n different
classes. The individual outputs
must sum to one.

Prediction of the unnormalized probabilities.

zi = log Py = i | x)

Exponentiate and normalize the values.

exp(z;)

> exp(z)

softmax(z); =

Softmax Example

P(red|z) oB5Wred

A

eOWred " & + eOWhlue &

6100wred X

elOOwred T 4 elOOwblue ¥

« —— looks like max, w, - x

ewred L

ewred'w + ewblue°x

O O O o0 0 0 6060 60606 @

ewred L

e'wred'x —|_ e'wblue'a3

P(red|z) =

Multi-class Logistic Regression

w

max [l(w) = max ZlogP(y(i)\az(i);w)

Can a perceptron learn XOR?

S-S e

AND OR NOT

(@ I, and I,

Non-separability and Non-linear Functions

* The original feature space is

mapped to some higher-
dimensional feature space wher
the training set is separable.

* Need a non-linear function to
describe the features.

* Applying a non-linear kernel
map. Affine transformation.

Non-separable

Kernel map
&N g
s}
Q: x— ¢(x) ° E
| ° Y
o ®e .
o [

Separable in a higher
dimension

Figure from Ray Mooney

Example: Kernel Map

Data projected to R”2 (nonseparable)

15
Data in R™3 (separable)
B
° °
. .
1.0t . o o0
o o3 '8 ° o°
r o ° . o 4 °
o K 14 ° °
Ay 0, * . bal 70
° °, o °2 ° o° N -
- o 12 o ol oo oo,y
0.5} ° 0o o
.. AA‘{ ‘°o 1 L T P con @
o ° 4, N ° 3, e 10 L4 % o ® 4@ o 9%8f°
“ e . N ®o % o0 8 oo o° © 0%
— ° o s 0° o ° ¢
g o a My, At 5 08 L . el
T 00f . . ah e % 8 LR B o
>) ab ee 0.6
.'? s ‘e ot e ® .
. J
‘. aaatta o 2 04 s
0.5} oo a a 23 4 4 A
e . oo 02 1 ’.?.‘u‘ g due
00 o o . -... ‘::i“‘A‘
'. ° ° ° o0 °
. -1.0
1ol . ®% aoge w® T @ =03 40 -05 10
o . . o Yia 05 1o o 0.0 :
be/ 1.0 X Label
133 -1.0 -0.5 0.0 0.5 1.0 15

X Label

Left) A dataset in R2, not linearly separable. (Right) The same dataset transformed by the transformation:

[x1,X2] = [x1, %2, x12 + x2%] .

Data in R™ 3 (separable w/ hyperplane)

14 1 .
. = .
127 - M WL Lle [o ¢
Yo, *0 & ',“
10 l" 20 g% %3
- % ane
N 1'0 . ? . . -'.'I")
g 08 .« * e al®, .
g Lo o« 8
06
- re
02 1 i, st
L ?‘ AV
= .
10 - —_—
05 = -
0.0 0s 10
-05 0.0
Y - -05
Labey 10 -10 x Label

8: (Left) The decision boundary w shown to be linear in R3. (Right) The decision boundary w, when transformed back

15

Data projected to R~ 2 (hyperplane projection shown)

10

05

00

Y Label

-0.5

to R2, is nonlinear.

X Label

15

Till now, the features were hand-crafted

¥ o 83 ¢t -Hh O W

——»

——»

——»

e*1

P : =
(y1|£E,U)) e?1 4 e?2 4 o3
e*2
P : =
(y2|x7w) e*1 | e?2 } %3
e*3
P(y3|$;w) =

el + e*2 + e*3

Still, we are designing these features. Can these be acquired in a data-driven manner? Can the
parameters controlling these non-linear functions be learned?

Neural networks: learning the features

A
(1)
1

/°\ i @
N =\
(RS AR AL

PO

\ XL K (1)

1)
(k) } : (k—1,k) (k—1)
Zi — g(Wz j Tz) g = nonlinear Structure these models by composing many units.
’ activation functio

J ion Paradigm is called deep learning.

=

z

J

Representation of complex functions

3 hidden neurons 6 hidden neurons 20 hidden neurons

Larger Neural Networks can represent more complicated functions. The data are shown as circles colored by their class, and
the decision regions by a trained neural network are shown underneath. You can play with these examples in this ConvNetsJS
demo.

Deep Neural Networks

* Last layer
* Logistic regression

* Several Hidden Layers
* Computing the features. The features are learned rather than hand-designed.

* Universal function approximation theorem
e If neural net is large enough
* Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
* Note: overfitting is a challenge.
* |In essence, hyper-parametric function approximation.

Neural Networks: Successes

ImageNet Error Rate 2010-2014 TIMIT Speech Recognition

Traditional CV. @ Deep Leamning ® Traditional ® Deep Learning

1998 2000 2002 2004 2006 2008 2010 2012

Learning XOR

XOR is not linearly separable. Rectified Linear Activation Network Diagram

Original & space

T T T
v

v

oF o 1 ' "
L 1) B
0 1 -
0
T

Figure 6.1, left Figure 6.3 Figure 6.2 More compact
representation

z}

max{0,

)

~

g(

s

Example from Ch 6, DL Book

Learning XOR

Model

Network Diagram XOR is separable in the transformed space

fl:W.cow.b) =w max{0.W z+ ¢} + b.
’ 0 Original @ space Learned h space
T I 1 T Ll

A |1 1 0 — 1 0 -
0 G 0 W =]
_ 5 £
" 0
Cc =
1 OF 0 1 - 0F 0 1 -
Figure 6.2 w =) . ! ! !] !
-2 0 1 0 1 2

Figure 6.1

Takeaway: Applying ReLU to the output of a linear transformation yields a non-
linear transformation. The problem can be solved in the transformed space.

Example from Ch 6, DL Book

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1¢ - = 1 . 5
9(2) Vi 2z
0.8} { 9'2) 0.5 S‘u’, } 4 3‘(,’,
06} 1 3 J
0
04} 2
0.2} 4 0 1
0« S A ~ -1 . 0 x
-5 0 5 -5 0 5 -5 0 5
1 e? — e~ ?
= = z)=max (0, z
9@)= 1= g(z) T oz g(z) (0,2)
' - ' =1 2 ' _ 1, z>0
g'(z)= g(2)(1-g(2) g'(z)=1-g(2) 9 (2) =10 otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Activation Functions

Sigmoid 1
o(x) = 1+i—w 0
]

tanh
tanh(x)

RelLU
max (0, x)

Leaky RelL U
max(0.1x, x)

Maxout

10 f
10

max(wi T + by, wi x + by)

ELU

T x>0
ale® —1) <0

10

= ,

Backpropagation and Computation Graphs

Compute loss

* Backpropagation a

* Ina NN, need a way to
optimize the output loss with
respect to the inputs.

* Apply the chain rule to obtain
the gradient.

Compute activations
Forward prop
doxd-yoeg

SOATYRALIDD 9nduwo))

dz dzdy

de dydx’
(' o .

V;BZ (8:3) Vy,c

Material from Ch 6, DL Book

Backpropagation and Computation Graphs

* Computation Graphs

* A way to organize the computation in
a neural network.

* Also enables identification and ' " Oy Oz dw
caching of repeated sub-expressions.

Back-prop avoids computing this twice
Figure 6.9

Material from Ch 6, DL Book

Backpropagation: Toy Example

Backpropagation: a simple example | x 2

fevd=@ro: |, OF

eg.x=-2,y=95,z=-4

F-12

Example from: http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecture04.pdf

Backpropagation: Toy Example

Backpropagation: a simple example
f(z,y,2) = (z +y)z
e.g.Xx=-2,y=95,z=-4

g=x+y @:1,&1—1

=12

oz oy
of of
f=qz e A

. Of of of
Want: oz By’ 0z

Backpropagation: Toy Example

Backpropagation: a simple example

f(z,y,2) = (z +y)z
e.g.Xx=-2,y=95,z=+4

- dq dq
of of
= 5 — %8 — 4

of 9f of

Want: e Ty Bz

Backpropagation: Toy Example

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

=12

q=—+Yy %:1,%:1
of of
f=gqz 9 %8 1
of of 0
Want: -

Ox? Oy’ Oz

of

0z

Backpropagation: Toy Example

Backpropagation: a simple example | x 2

fl@,9,2) = (¢ +9)2 3@ -

eg9.Xx=-2,y=95,z=-4

0q dq

of of
f=gqz g %8 1
of of 9of

Want:

Oz ? Oy? Oz

Backpropagation: Toy Example

Backpropagation: a simple example | x 2

f(z,y,2) = (x+ y)= yD@q

eg.x=-2,y=95,z=-4

_ dqg dqg
g=x+Yy %—I,E—l

_ of _ _ of _ Chain rule: Ay
f—qz aq—Z7az—q ﬂ_(?f .

warg. O 0 OF by — 0q By

ant 3z 3y’ B2 z

X\
Upstream Local
gradient gradient

Backpropagation

/ S
“local gradient”
=

“Downstream

Z

gradients oL

0z

8=
ol =, “Upstream
gradient”

Backpropagation: Example

1

l1+e —(wpzg+wyzy+ws)

Another example: flw,z) =

1/x

®
®

Backpropagation: Example

Another example: f(w,z) = .

14 e —(wozo+wyz1 +w2)

w0 2.00

f(z) =€" — % = o f(z) = é
fule) = az - Voo | f@=c+o

Other Links

* Visualization
e http://playground.tensorflow.org

e Libraries
* https://pytorch.org/
* https://www.tensorflow.org/
* https://pypi.org/project/Theano/

* http://pyro.ai/

http://playground.tensorflow.org/
https://pytorch.org/
https://www.tensorflow.org/
https://pypi.org/project/Theano/

Locality and Translational Invariance

45

Fully connected network.

Example: 1000x1000 image
1M hidden units
m) 10712 parameters!!!

Traditional NNs receive input as single vector &

transform it through a series of (fully connected)

hidden layers

For an image (32w, 32h, 3c), the input layer has

32x32x3=3072 neurons,

« Single fully-connected neuron in the first hidden
layer would have 3072 weights ...

Two main issues:

« Space-time complexity

« lack of structure, locality of info

Ranzatot‘.'

Locality of Information: Receptive Fields

Convolutional NN

Example: 1000x1000 image
1M hidden units

Filter size: 10x10
100M parameters

Filter/Kernel/Receptive field:
input patch which the hwdden unit is

connected 10

luuu!o'?'

Q0000

E EE § Hidden neuron
—— >,

3Ee—

46

\\l\ N

From Globally to Locally Connected

IR RV

\

seoEnEN
BN
i oy,
Y = E w;X; + b
fully-connected unit 1€3%3
——"“;
— \\\L
¢ Y= Z wiX; +b RSN locally-connected units
1€1mage ~§ 3X 3 receptive field

47

Convolutional NN

Feature Maps

Ranulo':’

@ The map from the input layer to

the hidden layer is therefore a
feature map: all nodes detect
the same feature in different
parts

The map is defined by the
shared weights and bias

The shared map is the result of
the application of a
convolutional filter (defined by
weights and bias), also known as
convolution with learned kernels

lnp

x[!,

o ocoocoococoocoXoooooooX ooo oo oo

S = = S NN OT

it Vo

I —

S NN - - - 0T

S \= ==

lume (*pad 1) (7x7x3)

0

0

Filter WO (3x3x3)
wh[!,:,0
0]l

Blas b0 (Ix1x1)

‘Ioii ' 0)

48

Pooling layers

Pooling layers are usually used immediately after
convolutional layers.

Pooling layers simplify / subsample / compress the
information in the output from convolutional layer

A pooling layer takes each feature map output from
the convolutional layer and prepares a condensed
feature map

81753

2x2 pooling,
121915 stride 2
13121103
914|514

/

Max pooling
12| 7
13| 14
Average pooling
915
71 8

49

Convolution NN

Convoluton Pooling (onvoilutBon Poolng F Uiy Fully Output Predichons

dog 001

cat 10 O4)
boat (0)
bird (0 02)

Consider local structure and common extraction of features

Not fully connected. Locality of processing

Weight sharing for parameter reduction

Learn the parameters of multiple convolutional filter banks

* Compress to extract salient features & favor generalization

50

Application

Example: Atari Breakout

It can be very difficult for humans to

accurately estimate Q-values

-

\
Action + State
i —_ Expected Return
S
state, s Dee
P — (s, a)
— NN
‘move __|
right”
action, a
Input Agent Output)

Output: Q(s, left), Q(s, right),

FC-4 (Q-values) B

|

Current state s,: 84*84*4 stack of last four frames. After RGB-> grayscale
conversion, downsampling and cropping.

51

Sequences

“Sequences really seem to be
everywhere! We should learn how Vi G B OB P e -
to model them. What is the best :
ey 30 Go e Atey Hampclt Collection of elements where

elements can be repeated,
Words, letters Speech Videos order matters and can be of
variable or infinite length.

i3
N
it 3
/7
34 e?

I
o i

*

Images Programs Decision making

52

Sequences

Supervised learning Sequence modelling
Data {z,y}i {z}i
Model y ~ fo(x) p(z) =~ fo(z)
N N
L(6) =) _Ufo(:).3:) L(6) =) logp(fo(:))

Optimisation p* = arg mOin C(O) g = arg mgx L(g)

53

Modeling the conditional distribution

The chain rule
Computing the joint p(x) from conditionals

Modeling
word
probabilities
IS
really

difficult

plx
p(x
pla
plx
plas
p(g

Lo, '))
3, T2, T1)

‘5 Lq, L3, T,)
s, x4, 3,29, 2))

54

Vectorizing the conditional likelihood

S——

“Modeling” “word” “probabilities” "is" "really”

Desirable properties for f:

Order matters

Variable length

Learnable (differentiable)

Individual changes can have large effects
(non-linear/deep)

55

Recurrent Neural
Networks (RNNs)

Persistent state variable h stores information from the context
observed so far.

h, @ b, h; = tanh(W,h,_, + W_x;)

56

Recurrent Neural
Networks (RNNs)

RNNs predict the target y (the next
word) from the state h.

P(Ye1) = softmax(Wyhy)

Softmax ensures we obtain a
distribution over all possible words.

57

Recurrent Neural
Networks (RNNs)

ho - Input next word in sentence x,

53

Recurrent Neural
Networks (RNNs)

59

Recurrent Neural
Networks (RNNs)

Weights are shared
over time steps

n [RS

RNN

2080
.| nf .|

RNN rolled out over time

Loss: Cross Entropy

Next word prediction is essentially a classification task where
the number of classes is the size of the vocabulary.

As such we use the cross-entropy loss:

For one word: Ly (y, y)t = —Vi log S’t

For the &

sentence: Lo(y,V) = — Z y:logy:
t=1

With parameters ¢ = {W,, W,, W;,}

61

Backprop through Time

Forward through entire sequence to
compute loss, then backward through

entire sequence to compute gradient

Loss

4“ ZABANNSS

<

RNNs can have long or short dependencies. When there are long
dependencies, gradients have trouble back-propagating through.

Other models such as LSTMs and beyond address that problem.

Applications

Google Neural Machine Translation

Encoder e * @ * 0y I ' O S * Oy

Wu et al, 2016
(Kalchbrenner et al, 2013; Sutskever et al, 2014; Cho et al, 2014; Bhadanau et al, 2014; ...)

63

Applications

p(language, | language,) — p(language, | image)

etblbapapl

|||vl|l!§|i§||!§|

i
ll‘:"

Human: A brown dog
laying in a red wicker
bed.

Best Model: A small dog
is sitting on a chair.

64

Generative Models

e data
model E i
N

Rad| sl Unsupervised
Denton, et al Deep Generative Imag
Goodieson et sl Generative adversarisl AL G & [AR PRl o Representation Leaming withDeep Miyato et & Spectral nommalization for
networks. NIPS (2014) Adversarisl Networks. NiP S (2015) Convolutional Generative Adversarial Generative Adversarial Networls
Networks ICLR (2015) ICLR (2018)

Goal of generative modeling is to kearn a model of
the true (unknown) underlying data distribution from
samples. e e S [e

Networks CVPR (2019)

65

Generative Adversarial Networks

Discriminator Generator

Learns to generate data
to “fool” the discriminator.

Learns to distinguish
between real and
generated data.

66

Generative Adversarial Networks

latent (“noise”) vector generator G: generated data latent (“noise”) vector generator G: generated data
z~P(z) a deep neural network G(2) z~P(z) a deep neural network G(z)

It was the best of
times, it was the worst
of times, it was the age
of wisdom, it was the
age of foolishness...

Generation of image data Generation of text data

67

Generative Adversarial Networks

Discriminator

generator G

real déta x ~ P*(x) \

generated data

D real or generated?

/

68

Generative Adversarial Networks

G

minmax V (D, G) = Egmpy (@) 108 D(z)] + Exnp, (2)[log(1l — D(G(2)))]

D

'\ J’

’ Y
log-probability that D correctly log-probability that D correctly predicts
predicts real data x are real generated data G(z) are generated

discriminator’s (D) goal: maximize prediction accuracy

generator's (G) goal: minimize D's prediction accuracy,

by fooling D into believing its outputs G(z) are real as often as
possible 0

69

Applications

Labels to Street Scene Labels to Facade BW to Color

- Train a generator to
translate between images of
two different domains

- Standard GAN objective

combined with
output nput output reconstruction error
Day to Night Edges to Photo

Lcan(G, D) =E,[log D(y)]+

E; . [log(1 — D(G(z, 2))].
Lr1(G) = IEI.y,Z[”y = G(z, 2) 1]
i l) G = i L G,D)+ AL (G

input output input output input output = argminmax Logan (G, D) + A1 (G).

Example results on several image-to-image translation problems. In each case we use the same architecture and objective, simply training on different data.

Pix2Pix (Isola et al.)

70

Neural Networks in RL

raw pixels hidden layer

N7 il
Qfll:{ prob'ablllty of
%' moving UP
L N\
X

Sequential Task

DOWN DOWN DOWN

@@ »@ WIN
LOSE

o
o

UP UP

|

UP

>® LOSE

WIN

Parameterized Policy

Class of policies defined by parameters 6’

mo(als) : S — A

Eg: @ can be parameters of linear transformation, deep network, etc.

Want to maximize:

In other words,

7" = arg max [E
m:S—A

) (* — argmax E

0

Training signal comes from reward

forward pass . Supervised Learning
> log probabilities (correct label is provided)

-1.2 | -0.36
: block of differentiable compute .
image (e.g. neural net) P gradients
1.0 0
backward pass |
forward pass Reinforcement Learning
» log probabilities
-1.2 |-0.36 | —— sample an action:
. block of differentiable compute .
'mage (e.g. neural net) i gradients /
0 -1.0 Y

eventual reward -1.0

A

backward pass

Image Source: http://karpathy.github.io/2016/05/31/rl/

Gathering Experience

Slightly re-writing the notation

Let 7T = (80, ag,...ST, GT) denote a trajectory

7T9(T) — p@(T) — Do (807%97 . STaaT)

= p(s0) Hp9 (at | st) - p(St+1 | ¢, at)
t=0

arg mgx 4:T~p9 (1) [R(T)]

Gathering Experience

J(0) = E

.|

“T~pg (T)

How to gather data?

R(7)]

4
“ai~7(-|st),st+1~p(+|st,at)

We already have a policy: 7Ty

T

ZR(st, a)

t=0

Sample N trajectories {Ti}fvzl by acting according to 7Tg

1
TN

N
\:\

1=1 t=1

(s, ap)

Reinforce Algorithm

Sample trajectories 7, = {51, ai,...Sr, aT}iby acting accordingto 7Tg

Compute policy gradient as

] - _
VoJ(0) ~ NS: YV@logﬂ'@ (ay | s}) ZR sy | ay)
L t=1 t=1

Update policy parameters: () < § + oV J(@)

Run the pc?llcy ar1d Comput.e policy
sample trajectories gradient

t |

— Update policy

Slide credit: Sergey Levine

