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Reasoning: Sequence of Observations

* Reasoning over time or space

* Applications
* Monitoring a disease
* Robot localization
e Target Tracking
* Speech recognition
* User attention
* Gesture recognition



Markov Models

* Value of X at a given time is called the state.

=)0 -+

P(X1) P(X3X¢-1)

* Transition probabilities or dynamics,
* Specify how the state evolves over time
* Initial state probabilities
 Stationarity assumption: transition probabilities the same at all times.

* (First order) Markov Property
e Past and future independent given the present
* Each time step only depends on the previous



Markov Models

States: X = {rain, sun}

Initial distribution: 1.0 sun

CPT P(X; | X.,):

Xew | Xe | P(Xe|Xea)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7

Representing the Markov model

0.9

sun




Markov Models: Example

e |nitial distribution: 1.0 sun 0.9

0.7
0.1

* What is the probability distribution after one step?

P(XQ = SUﬂ) = +
P(X, = sun|Xy = rain)P(X1 = rain)

+0.3-0.0=0.9



Forward Algorithm for a Markov Chain

* What’s P(X) on some day t?
Q) ()>(x)--->

P(x1) = known

P(mt) — Z P(xi_1,x4)

Tt—1



Forward Algorithm for a Markov Chain

" From initial observation of sun

(00) (o1) (oie) {oss ) =>{ 025

P(X)) P(X3) P(X;) P(X,) P(X,,)
= From initial observation of rain

(10) (o7} {052 {oar2)=>{02s)

P(X)) P(X,) P(X;) P(X}) P(X,) Stationary distribution
" From yet another initial distribution P(X,): Poo (X) = Poo11(X) = )_ P(X|o)Pox ()

L) = {02

P(X)) P(X.)



Hidden Markov Models (HMMs)

* Markov Chains

* Assume that we observe the state @ @ @ _ e
directly.

e Often this is not the case. We only have
noisy observations of the state. @ @ @ @

* Hidden Markov Models

* Underlying Markov chain over states X

* You observe outputs (effects) at each
time step



The world state (rainy or sunny) is not directly observed. Instead have
Weath e r H M M some observation such as a person carrying an umbrella or not.

Rer | Re | P(R¢|Rea) R: U: | P(U|Ry)
* An HMM is defined by: wr | 4r | 07 wr | +u | 09
« Initial distribution: P(X1) sr| or | 03 st | -u | 01
* Transitions: P(X; | Xi_1) x| 4| 03 v | +u| 02
* Emissions: P(E; | X3) | oer 0.7 | o-u 0.8
P(X: | Xi—1)
’/ i)/;
/ / ’

Etht



HMMs — Conditional Independences

* Future depends on past via the P(X: | Xo:t-1) = P(X; | Xi-1)
present

e Current observation independent of

. P(E; | Xo..Eo.:—1) = P(E; | X;)
all else given current state



Example/Monitoring

* Filtering, or monitoring, is the task of
tracking the distribution

* B/(X) =P.X; | ey, ..., &) (the belief state) over time

* We start with B,(X) in an initial setting,
usually uniform

* As time passes, or we get observations, we
update B(X)



Example: Robot Localization

Robot can take actions N, S, E, W
T Detects walls from its sensors

N
Prob 0 1

t=0

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob. y



Example: Robot Localization

E
Prob 0 1

t=1

Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake
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Example: Robot Localization

Prob 0 1

t=2
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Example: Robot Localization

Prob 0 1

t=3
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Example: Robot Localization

Prob 0 1

t=4
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Example: Robot Localization

Prob 0 1

t=5
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Inference: Estimate State Given Evidence

* We are given evidence at each time and want to know

Bi(X) = P(Xtle1:t)

* Approach: start with P(X,) and derive B, in terms of B, ,
* Equivalently, derive B,,, in terms of B,

* Two Steps:

e Passage of time ?—’?—’?—’
* Evidence incorporation



Estimating State Given Evidence: Base Cases

. . . P(X1le1)
* Evidence incorporation

* |[ncorporating noisy observations P(Xile;) = P(Xy,e1)

of the state. @ >, P(x1,e1)

P(e1]|X1)P(X1)
e Passage of time

Y x, P(e1]x1)P(x1)
* The system state at the next P(X5)

time step given transition model
P(Xy) =) P(x1,X>)

X1

P(Xiler) =

Next, perform these two computations repeatedly P(X3) = Y P(Xa|x1)P(x1)
over each time step X1 21



Passage of Time

Assume we have current belief P(X | evidence to date)

B(X:) = P(Xtle1:t)

Then, after one time step:

P(Xt—|—1 ’61;75) — ZP(Xt+17CUt‘€1:t)

Lt

— ZP Xea1|xe, e1.4) P(xilers)
— ZP Xt-|—1’33t) (ajt‘elzt)

Basic idea: the beliefs get “pushed” through the transitions

OO
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Incorporating Observations

Assume we have current belief P(X | previous evidence):

B'(Xt41) = P(Xey1ler)

Then, after evidence comes in:

P(Xt+1‘€1:t—|—1) — P(Xt—l—la6t—|—1|€1:t)/P(€t—|—1‘€1:t)

XXi41 P(Xi11,erv1]er:t)

= P(ei41
= P(et41

€1zt,Xt+1)P(Xt+1|€1:t)
Xt—l—l)P(Xt—H‘@l:t)

View it as a “correction” of the belief using the observation
B(Xiy1) o<x, g Plets1]|Xev1) B (Xiq1)

T
®
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Inference: Weather HMM

B (+r) B’(+r) = 0.627

/ B’(-r) =0.373
B(+r) = o 5 B(+r) = 0 818 B(+r) = 0.883

B(-r) =

B(-r) =0.182 B(-r) =0.117

Rain4 Rain,

Umbrella, Umbrella,

Passage of time and
correction at each stage.

Ri | Rus1 | P(Rez1|Re) Rq U: | P(U¢|Ry)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8
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Online Belief Updates: Inference over Time

* Every time step, we start with current P(X | evidence)

* We update for time:

P(xiler:i—1) = ) P(@i—1lers—1) - P(aelzi—1) @_’@

Ti—1
* We update for evidence: @
P(xtle1:) ocx P(xtler:i—1) - P(et|xt) l

&



Forward Algorithm

We are given evidence at each time and want to know
Bi(X) = P(Xtle1:t)
We can derive the following updates

P(xtle1:t) ocx, P(xt, e1:¢)
= > P(z4_1,2t,€1:¢)

Ti_1

= Y P(zy_1,e1:4-1)P(zt|zi—1)P(et]xt)
Ti—1

= P(et|zt) > P(at|lewi—1)P(xi—1,€1:4-1)

Lt—1

Normalization can be at each step if the exact
likelihood is needed at each step or at the end.
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Large Number of States

A grid over a large space can lead
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Particle Filtering

Problem: Sometimes |X| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous (though here we focus on the discrete case)

Solution: approximate inference
= Track samples of X, not all values.
= Samples are called “particles”
= Time spent per step is linear in the number of samples
= Keep the list of particles in memory, not states
= Larger the number of particles, the better is the approximation.

0.0 0.1 0.0
0.0 0.0 0.2
0.0 0.2 0.5
@
@0
o0 ...
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Representation: Particles

* Our representation of P(X) is now a list of N particles (samples)
e Generally, N << [X]|

* P(x) approximated by number of particles with value x

* Several x can have P(x) = 0. Note that (3,3) has half the number of
particles.

* Larger the number of particles, better is the approximation.

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

29



Each particle is moved by sampling its next position

Representation: Passage of Time

from the transition model

v’ = sample(P(X'|z))

Perform simulation or sampling

= The samples’ frequencies reflect the transition
probabilities

In the example, most samples move clockwise, but some
move in another direction or stay in place.

= This is an outcome of the probabilistic transition
model.

Particles:
(3,3)

Particles:
(3,2)

o%)

—
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Representation: Incorporate Evidence

Particles:

As seen previously, incorporating evidence adjusts or (2,3
weighs the probabilities.

Attach a weight to each sample. (3,2

Weigh the samples based on the likelihood of the (2.2 .’
evidence.
w(x) = P(e|x)

B(X) x P(e|X)B/'(X) (2,3) w=.2 ool ]e

DoOoNRLOBMDO

-
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Representation: Resample

* Rather than tracking weighted samples, we
resample

* N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

* Now the update is complete for this time step,
continue with the next one

Particles:

(3,2) w=.9

(New) Particles:

(3,2)

32



Representation: Particles

Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
. ... . . (<] (©)
@ ° () )
@ 00 \.\ )
o - o [b°
@ e
Particles: Particles: Particles:
(3,3) (3,2) (3,2) w=.9
(2,3) (2,3) (2,3) w=.2
(3,3) (3,2) (3,2) w=.9
(3,2) (3,1) (3,1) w=.4
(3,3) (3,3) (3,3) w=.4
(3,2) (3,2) (3,2) w=.9
(1,2) (1,3) (1,3) w=.1
(3,3) (2,3) (2,3) w=.2
(3,3) (3,2) (3,2) w=.9
(2,3) (2,2) (2,2) w=.4




Most Likely Explanation

HMMs defined by
o States X
o Observations E
o Initial distribution: P(X1)
o Transitions: P(X|X_
o Emissions: P(FE|X)

. , arg max P(x1-¢|le1:¢)
Problem: Most-likely Explanation T1-¢ tlei:

Determine the most likely sequence of states given all the evidence.

Solution: the Viterbi algorithm

34



State Trellis

State trellis: graph of states and transitions over time

sun sun sun sun

rain rain rain rain

X1 X5 - Xu
Each arc represents some transition Lt—1 — Lt
Each arc has weight P(x¢|xi—1)P(et|zt)

Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of paths, Viterbi computes best paths



Viterbi Algorithm

X1 X2

Forward Algorithm (Sum)
ftlr] = Pz, e1:¢)

= P(et|lws) > P(xt|we—1) fr1lze—1]

Li—1

XN

Viterbi Algorithm (Max)
my[x¢] = xr??_ﬁ P(x1:4-1, Tt €1:¢)

= P(et|xt) max P(xt|zi—1)ms—1[zi—1]
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Application: tracking of a red pen. The blue dots indicate the estimated positions.
Video: https://www.youtube.com/watch?v=SV6CmEha51k
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