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Reasoning: Sequence of Observations

• Reasoning over time or space

• Applications
• Monitoring a disease
• Robot localization
• Target Tracking
• Speech recognition
• User attention
• Gesture recognition
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Markov Models
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• Value of X at a given time is called the state.

• Transition probabilities or dynamics, 
• Specify how the state evolves over time 
• Initial state probabilities

• Stationarity assumption: transition probabilities the same at all times. 
• (First order) Markov Property

• Past and future independent given the present
• Each time step only depends on the previous

X2X1 X3 X4



Markov Models
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States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Initial distribution: 1.0 sun

CPT P(Xt | Xt-1):
Representing the Markov model



Markov Models: Example

• Initial distribution: 1.0 sun

• What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1



Forward Algorithm for a Markov Chain
• What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)



Forward Algorithm for a Markov Chain
§ From initial observation of sun

§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

Stationary distribution



Hidden Markov Models (HMMs)

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

• Markov Chains
• Assume that we observe the state 

directly. 
• Often this is not the case. We only have 

noisy observations of the state. 

• Hidden Markov Models
• Underlying Markov chain over states X
• You observe outputs (effects) at each 

time step



Weather HMM
Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

• An HMM is defined by:
• Initial distribution:
• Transitions:
• Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)

The world state (rainy or sunny) is not directly observed. Instead have 
some observation such as a person carrying an umbrella or not. 



HMMs – Conditional Independences

• Future depends on past via the 
present
• Current observation independent of 

all else given current state

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example/Monitoring
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• Filtering, or monitoring, is the task of 
tracking the distribution 
• Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

• We start with B1(X) in an initial setting, 
usually uniform

• As time passes, or we get observations, we 
update B(X)

X2

E1

X1 X3 X4

E2 E3 E4

Xt

Et



Example: Robot Localization
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t=0
Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Robot can take actions N, S, E, W
Detects walls from its sensors



Example: Robot Localization
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t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob



Example: Robot Localization
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t=2

10Prob



Example: Robot Localization
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t=3

10Prob



Example: Robot Localization
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10Prob

t=4



Example: Robot Localization
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t=5

10Prob



Inference: Estimate State Given Evidence
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•We are given evidence at each time and want to know

• Approach: start with P(X1) and derive Bt in terms of Bt-1
• Equivalently, derive Bt+1 in terms of Bt

• Two Steps:
• Passage of time 
• Evidence incorporation

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)



Estimating State Given Evidence: Base Cases
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• Evidence incorporation
• Incorporating noisy observations 

of the state. 

• Passage of time
• The system state at the next 

time step given transition model

E1

X1

X2X1

Next, perform these two computations repeatedly 
over each time step

P(X1|e1) =
P(X1, e1)

Âx1
P(x1, e1)

P(X1|e1) =
P(e1|X1)P(X1)

Âx1
P(e1|x1)P(x1)

P(X2) = Â
x1

P(x1, X2)

P(X2) = Â
x1

P(X2|x1)P(x1)



Passage of Time
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Assume we have current belief P(X | evidence to date)

Then, after one time step:

Basic idea: the beliefs get “pushed” through the transitions

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

P (Xt+1|e1:t)



Incorporating Observations
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Assume we have current belief P(X | previous evidence):

Then, after evidence comes in:

View it as a “correction” of the belief using the observation

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

E1

X1



Inference: Weather HMM
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Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117

Passage of time and 
correction at each stage.



Online Belief Updates: Inference over Time
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• Every time step, we start with current P(X | evidence)
• We update for time:

• We update for evidence:

X2X1

X2

E2



Forward Algorithm
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Normalization can be at each step if the exact 

likelihood is needed at each step or at the end. 

t

We are given evidence at each time and want to know

We can derive the following updates



Large Number of States
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A grid over a large space can lead 
to a large state space.



Particle Filtering
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0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

Problem: Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store B(X)
§ E.g. X is continuous (though here we focus on the discrete case)

Solution: approximate inference
§ Track samples of X, not all values. 
§ Samples are called “particles”
§ Time spent per step is linear in the number of samples
§ Keep the list of particles in memory, not states
§ Larger the number of particles, the better is the approximation. 



Representation: Particles
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• Our representation of P(X) is now a list of N particles (samples)
• Generally, N << |X|

• P(x) approximated by number of particles with value x
• Several x can have P(x) = 0. Note that (3,3) has half the number of 

particles.  
• Larger the number of particles, better is the approximation. Particles:

(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Representation: Passage of Time
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Each particle is moved by sampling its next position 
from the transition model

§ Perform simulation or sampling
§ The samples’ frequencies reflect the transition 

probabilities

§ In the example, most samples move clockwise, but some 
move in another direction or stay in place.
§ This is an outcome of the probabilistic transition 

model. 

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Representation: Incorporate Evidence
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§ As seen previously, incorporating evidence adjusts or 
weighs the probabilities. 

§ Attach a weight to each sample. 

§ Weigh the samples based on the likelihood of the 
evidence.

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Representation: Resample
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• Rather than tracking weighted samples, we 
resample

• N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

• Now the update is complete for this time step, 
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Representation: Particles
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Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Most Likely Explanation
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HMMs defined by
o States X
o Observations E
o Initial distribution:
o Transitions:
o Emissions:

Problem: Most-likely Explanation
Determine the most likely sequence of states given all the evidence. 

Solution: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



State Trellis
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State trellis: graph of states and transitions over time

Each arc represents some transition
Each arc has weight
Each path is a sequence of states
The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of paths, Viterbi computes best paths

sun

rain

sun

rain

sun

rain

sun

rain



Viterbi Algorithm
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sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)
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Application: tracking of a red pen. The blue dots indicate the estimated positions.
Video: https://www.youtube.com/watch?v=SV6CmEha51k 


