COL333/671: Introduction to AI Semester I, 2021

Probabilistic Reasoning over Time

Rohan Paul

Outline

- Last Class
- Probabilistic Reasoning
- This Class
- Probabilistic Reasoning over Time
- Reference Material
- AIMA Ch. 15

Acknowledgement

These slides are intended for teaching purposes only. Some material has been used/adapted from web sources and from slides by Doina Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Anca Dragan, Nicholas Roy and others.

Reasoning: Sequence of Observations

- Reasoning over time or space
- Applications
- Monitoring a disease
- Robot localization
- Target Tracking
- Speech recognition
- User attention
- Gesture recognition

Markov Models

- Value of X at a given time is called the state.

- Transition probabilities or dynamics,
- Specify how the state evolves over time
- Initial state probabilities
- Stationarity assumption: transition probabilities the same at all times.
- (First order) Markov Property
- Past and future independent given the present
- Each time step only depends on the previous

Markov Models

States: $\mathrm{X}=\{$ rain, sun $\}$

Initial distribution: 1.0 sun

CPT P($\left.X_{t} \mid X_{t-1}\right)$:
Representing the Markov model

\mathbf{X}_{t-1}	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{t-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Markov Models: Example

- Initial distribution: 1.0 sun

-What is the probability distribution after one step?

$$
\begin{aligned}
P\left(X_{2}=\text { sun }\right)=\quad & P\left(X_{2}=\operatorname{sun} \mid X_{1}=\operatorname{sun}\right) P\left(X_{1}=\text { sun }\right)+ \\
& P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9
\end{aligned}
$$

Forward Algorithm for a Markov Chain

-What's $P(X)$ on some day t ?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.x_{t-1}\right) P\left(x_{t-1}\right)}_{\text {Forward simulation }}
\end{aligned}
$$

Forward Algorithm for a Markov Chain

- From initial observation of sun
$\left\langle\begin{array}{l}1.0 \\ 0.0\end{array}\right\rangle$

$\left\langle\begin{array}{l}0.84 \\ 0.16\end{array}\right\rangle$
$\left\langle\begin{array}{l}0.804 \\ 0.196\end{array}\right\rangle$
\Longrightarrow $\left.\begin{array}{l}0.75 \\ 0.25\end{array}\right\rangle$
$\begin{array}{llll}\mathrm{P}\left(X_{1}\right) & \mathrm{P}\left(X_{2}\right) & \mathrm{P}\left(X_{3}\right) & \mathrm{P}\left(X_{4}\right)\end{array} \mathrm{P}\left(X_{\infty}\right)$
- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Hidden Markov Models (HMMs)

- Markov Chains
- Assume that we observe the state directly.
- Often this is not the case. We only have noisy observations of the state.

- Hidden Markov Models
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Weather HMM

The world state (rainy or sunny) is not directly observed. Instead have some observation such as a person carrying an umbrella or not.

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P\left(E_{t} \mid X_{t}\right)$

R_{t-1}	R_{t}	$P\left(R_{t} \mid R_{t-1}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

HMMs - Conditional Independences

- Future depends on past via the present
- Current observation independent of all else given current state

$$
\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)
$$

$$
\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)
$$

Example/Monitoring

- Filtering, or monitoring, is the task of tracking the distribution
- $\mathrm{B}_{\mathrm{t}}(\mathrm{X})=P_{\mathrm{t}}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{t}}\right)$ (the belief state) over time
- We start with $\mathrm{B}_{1}(\mathrm{X})$ in an initial setting,
 usually uniform
- As time passes, or we get observations, we update $\mathrm{B}(\mathrm{X})$

Example: Robot Localization

Robot can take actions $\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$ Detects walls from its sensors

Sensor model: can read in which directions there is a wall, never more than 1 mistake Motion model: may not execute action with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob

$\mathrm{t}=2$

Example: Robot Localization

Prob

$t=3$

Example: Robot Localization

Prob

$t=4$

Example: Robot Localization

Prob

$t=5$

Inference: Estimate State Given Evidence

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Approach: start with $\mathrm{P}\left(\mathrm{X}_{1}\right)$ and derive B_{t} in terms of $\mathrm{B}_{\mathrm{t}-1}$
- Equivalently, derive B_{t+1} in terms of B_{t}
- Two Steps:
- Passage of time
- Evidence incorporation

Estimating State Given Evidence: Base Cases

- Evidence incorporation
- Incorporating noisy observations of the state.

$$
P\left(X_{1} \mid e_{1}\right)
$$

$$
P\left(X_{1} \mid e_{1}\right)=\frac{P\left(X_{1}, e_{1}\right)}{\sum_{x_{1}} P\left(x_{1}, e_{1}\right)}
$$

$$
P\left(X_{1} \mid e_{1}\right)=\frac{P\left(e_{1} \mid X_{1}\right) P\left(X_{1}\right)}{\sum_{x_{1}} P\left(e_{1} \mid x_{1}\right) P\left(x_{1}\right)}
$$

- Passage of time
- The system state at the next time step given transition model

$$
\begin{aligned}
\left(x_{1}\right) \rightarrow & P\left(X_{2}\right) \\
& P\left(X_{2}\right)=\sum_{x_{1}} P\left(x_{1}, X_{2}\right)
\end{aligned}
$$

Next, perform these two computations repeatedly over each time step

$$
P\left(X_{2}\right)=\sum_{x_{1}} P\left(X_{2} \mid x_{1}\right) P\left(x_{1}\right)
$$

Passage of Time

Assume we have current belief $P(X \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

Then, after one time step:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

Basic idea: the beliefs get "pushed" through the transitions

Incorporating Observations

Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence $)$:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

View it as a "correction" of the belief using the observation

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

Inference: Weather HMM

Passage of time and correction at each stage.

Online Belief Updates: Inference over Time

- Every time step, we start with current $P(X \mid$ evidence $)$
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

Forward Algorithm

We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto X_{t} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

Large Number of States

A grid over a large space can lead to a large state space.

Particle Filtering

Problem: Sometimes $|\mathrm{X}|$ is too big to use exact inference

- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous (though here we focus on the discrete case)

Solution: approximate inference

- Track samples of X, not all values.
- Samples are called "particles"
- Time spent per step is linear in the number of samples
- Keep the list of particles in memory, not states
- Larger the number of particles, the better is the approximation.

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $\mathrm{N} \ll|\mathrm{X}|$
- $P(x)$ approximated by number of particles with value x
- Several x can have $P(x)=0$. Note that $(3,3)$ has half the number of particles.
- Larger the number of particles, better is the approximation.

Particles:

Representation: Passage of Time

Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- Perform simulation or sampling
- The samples' frequencies reflect the transition probabilities
- In the example, most samples move clockwise, but some move in another direction or stay in place.
- This is an outcome of the probabilistic transition model.

Representation: Incorporate Evidence

- As seen previously, incorporating evidence adjusts or weighs the probabilities.
- Attach a weight to each sample.
- Weigh the samples based on the likelihood of the evidence.

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

Particles:

Representation: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- Now the update is complete for this time step, continue with the next one
Particles:
$(3,2) \mathrm{w}=.9$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(3,1) \mathrm{w}=.4$
$(3,3) \mathrm{w}=.4$
$(3,2) \mathrm{w}=.9$
$(1,3) \mathrm{w}=.1$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(2,2) \mathrm{w}=.4$

Representation: Particles

Particles: track samples of states rather than an explicit distribution

Most Likely Explanation

HMMs defined by

- States X
- Observations E
- Initial distribution: $P\left(X_{1}\right)$
- Transitions: $\quad P\left(X \mid X_{-1}\right)$
- Emissions: $\quad P(E \mid X)$

Problem: Most-likely Explanation

$$
\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)
$$

Determine the most likely sequence of states given all the evidence.

Solution: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

Each arc represents some transition

$$
x_{t-1} \rightarrow x_{t}
$$

Each arc has weight

$$
P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)
$$

Each path is a sequence of states
The product of weights on a path is that sequence's probability along with the evidence Forward algorithm computes sums of paths, Viterbi computes best paths

Viterbi Algorithm

Forward Algorithm (Sum)

$$
f_{t}\left[x_{t}\right]=P\left(x_{t}, e_{1: t}\right)
$$

$$
=P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) f_{t-1}\left[x_{t-1}\right]
$$

Viterbi Algorithm (Max)

$$
\begin{aligned}
m_{t}\left[x_{t}\right] & =\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

Application: tracking of a red pen. The blue dots indicate the estimated positions. Video: https://www.youtube.com/watch?v=SV6CmEha51k

