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Uncertainty in Al

* Uncertainty:

* Observed variables (evidence): Agent knows certain things about
the state of the world (e.g., sensor measurements or symptoms)

* Unobserved variables: Agent needs to reason about other aspects

(e.g. what disease is present, is the car operational, location of the
burglar)

* Model: Agent knows something about how the known variables
relate to the unknown variables

* Probabilistic reasoning gives us a framework for managing
our beliefs and knowledge.

| hear an unusual sound and a
burning smell in my car, what
fault is there in my engine?

| have fever, loss of smell, loss
of taste, do | have Covid?

| hear some footsteps in my
house, where is the burglar?



Random Variables

* Arandom variable is some aspect of the world about which
we (may) have uncertainty
* R=Do Il have Covid?
* T =Engine is faulty or working?
* D =How long will it take to drive to IIT?
 L=Where is the person?

* Domains
* Rin {true, false} (often write as {+r, -r})
* Tin {faulty, working}
* Din [0, )
e Lin possible locations in a grid {(0,0), (0,1), ...}

| hear an unusual sound and a
burning smell in my car, what
fault is there in my engine?

| have fever, loss of smell, loss
of taste, do | have Covid?

| hear some footsteps in my
house, where is the burglar?



Joint Distributions

A joint distribution over a set of random variables: X1, Xo,... Xy
specifies a real number for each assignment (or outcome):

P(X1=z1,Xo=xo,... Xy, = xn)

P(T, W)
P(xq,z5,...2n) ’
T W P
* Must obey:

P(azl, T, ... xn) > (0 hot | sun 0.4
hot rain 0.1
Z P(x1,z0,...2n) = 1 cold | sun | 0.2
(z1,22,...T1n) cold | rain | 0.3

Note: Joint distribution can answer all probabilistic queries.
Problem: Table size is d". 6



Events

* An event is a set E of outcomes P(Ey= )  P(z1...zn)

* From a joint distribution, we can calculate the
probability of any event

* Probability that it’s hot AND sunny? 4 P(T,W)
T W P
. il it’ ? 4+.1
Probability that it’s hot: + hot “un 04
hot ' 0.1
* Probability that it’s hot OR sunny?  .4+.1+.2 - l
cold sun 0.2

cold rain 0.3




Marginalization

= From a joint distribution (>1 variable) reduce it to a distribution over a smaller set of variables
= Called marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding likelihoods

P(T)
T P
P(T,W) hot | 0.5
— :
- W b ( ) Z ( ) cold 0.5
P(t) = P(t,s
h 0.4 ’
ot su-n S P(W)
hot rain 0.1
cold sun 0.2 —) — :
- sun 0.6
cold rain 0.3 P(s) = ZP(ta s) rain 0.4
t

P(X1=uz1) =) P(X1=u11,Xo =)
T2



Conditional Probabilities

Conditional distributions are probability distributions
over some variables given fixed values of others

P(a,b)
P(b)

P(alb) =

P(a,b)

Joint Distribution

P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Conditional Distributions

P(W|T)

[

P(W|T = cold)

W P
sun 0.4
rain 0.6

P(W|T = hot)

W P
sun 0.8
rain 0.2




Inference by Enumeration

* P(W)? S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

. P(W)? S T W P
summer | hot sun 0.30
P(sun)=.3+.1+.1+.15=.65 summer | hot rain 0.05

summer | cold sun 0.10

summer | cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20




Inference by Enumeration

« P(W)? S T Y P
summer | hot sun 0.30
P(sun)=.3+.1+.1+.15=.65 summer | hot rain 0.05

P(rain)=1-.65=.35
(rain) summer | cold sun 0.10

summer | cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20




Inference by Enumeration

 P(W | winter, hot)?

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05

winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Inference by Enumeration

 P(W | winter, hot)?

P(sun|winter,hot)~.1

P(rain|winter,hot)~.05
P(sun|winter,hot)=2/3
P(rain|winter,hot)=1/3

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05

winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20




Product Rule

* Marginal and a conditional provides the joint distribution.

P(y)P(zly) = P(z,y) @am) P(zly)= P,y)

P(y)
* Example: P(D|W) P(D, W)
P(W) D W | P D W p
R P wet sun 0.1 wet Sun
cun 0.8 dry sun | 0.9 “ dry sun
rain 0.2 wet rain 0.7 wet rain
dry rain 0.3 dry rain




Chain Rule

Chain rule is derived by successive application of product rule:

P(Xy,...,X,) =
— P(Xl,...,Xn_l)P(Xn|X1,...,Xn_l)
P(Xi,..., X0 2)P(Xn1| X1y ooy Xn2)P(Xn| X1y .., Xn1)

l_[ P(lexl’ ey Xi—l)
i=1

Constructing a larger distribution by simpler distribution.
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Bayes Rule

e Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|ly)P(y) = P(ylz) P(z)

* Dividing, we get: P(y|x)
Paly) = L
P(y)

* Example: Diagnostic probability from causal probability:

P(x)

P(effect P
P(cause|effect) = (effect|cause) P(cause)

P(effect)
e Usefulness

* Lets us build one conditional from its reverse.

. O_fter|1 one conditional is difficult to obtain but the other one is
simple.

17



P(X1)

Independence [ Tos
T 0.5
* Two variables are independent if: P(X>5)
Vo,y : P(x,y) = P(x)P(y) H |05
n smaller < T 0.5

, L s : _ distributions
* This says that their joint distribution factors into a

product two simpler distributions P(.)('n,)
* Another form: Vz,y : P(x|y) = P(x) H |05
T |05

\

* Wewrite: X |lY

P(Xl: X2: v Xﬂ)
 Example

* N-independent flips of a fair coin.




Bayesian Networks

* Problem with using full joint distribution tables as our probabilistic models:
* Unless there are only a few variables, the joint is hard to represent explicitly.

* Bayesian Networks:

* A technique for describing complex joint distributions (models) using simple, local
distributions (conditional probabilities)

* Also known as probabilistic graphical models

* Encode how variables locally influence each other. Local interactions chain together
to give global, indirect interactions

19



Examples
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Bayesian Networks: Semantics

* A directed, acyclic graph, one node per random variable

* A conditional probability table (CPT) for each node
* A collection of distributions over X, one for each combination of parents’ values
P(X|ay...an)
* Bayesian Networks implicitly encode joint distributions

* As a product of local conditional distributions

* To see what probability a BN gives to a full assignment, multiply all the relevant conditionals:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1



B P(B)

+b | 0.001

-b | 0.999
A J
+a | 4 0.9
+a - 0.1
-a +j 0.05
-a -) 0.95

+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)
+e | 0.002

e | 0.998 |

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b -e -a 0.999




Example: The Alarm Network

P(B)

+b

0.001

0.999

PUIA)

+a

+]

0.9

+a

0.1

+]

0.05

0.95

€, | a, _ja —I_m) —

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+3a -m 0.3
-a +m 0.01
-a -m 0.99

I

iy

B | E| A | PA|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




i

iy

Example: The Alarm Network
B | P(B) E | P(E)
+b | 0.001 e e +e | 0.002 | .

-b | 0.999 ° -e | 0.998 ﬁ

Al ) | PUIA) A | M | P(M|A)

va | 4+ 09 o Lo | s B | E| A | PAIBE)

+a | - | 01 ta| -m | 03 th | te | *a 0.95

a | 4 0.05 0 @ a2 | +m | 001 +b | +e | -a 0.05

a | - | 095 a | -m | 0.99 w9 || <2 || B ] G

+b | -e | -a 0.06

) -b | +e | +a 0.29

P( | b? €, | a, —7, _l_m) — b | +e | -a 0.71
P(+b)P(—e)P(+a|+b,—e)P(—j|+a)P(+m|+a)=| b | = |+ | 000
b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Inference by Enumeration in a Bayes Net

* Inference by enumeration is one way to perform
inference in a Bayesian Network (Bayes Net).
P(B\—I—j,—l—m) XB P(Ba_l_]a—l_m) °
—ZP B,e,a,+7,+m)
— ZP P(a|B,e)P(+jla)P(+mla)

=P(B)P(+e)P(+a|B, +e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e) P(+j| — a) P(+m| — a)
P(B)P(—e)P(+4a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)



Bayesian Networks: Inference

* Bayesian Networks n
* Implicitly encode a probability distribution P(xq,22,...2n) = H P(xz;|parents(X;))
* As a product of local conditional distributions =1

e Variables
* Query variables Q@ X1,X0,...Xn

El...EkZel...ek

* Evidence variables All variables

* Hidden variables Hy...Hy
* Inference: What we want to estimate?
e Estimating some useful quantity from the joint
distribution.
* Posterior probability P(Q|E1 =e1,... By, = e)

* Most likely explanation
argmax, P(Q =q|E1 =e1...)



Inference by Enumeration

* Setup: A distribution over query variables (Q) P(Qle1...ex)
given evidence variables (E)
* Select entries consistent with the evidence.

e E.g., Alarm rang, it is rainy, disease present

’ ’ ’ _ P(Q,h1...hr,eq1...ex)
[ ] [ ] [ ] [ ] [ ] P e o o _— Z , 1 T, 1 k.
Compute the joint distribution (@ e er) hy.hy

Sum out (eliminate) the hidden variables (H)

Normalize the distribution
.Next Z:ZP(Qael'”ek)
q

* |ntroduce a notion called factors

e Understand this computation using joining and 1
marginalization of factors. P(Qley---ex) = EP(Q’ e1---ek)



Example: Traffic Domain

* Random Variables
* R: Raining
e T: Traffic
* L: Late for class

P(R)

+r 0.1

-r 0.9
P(T|R)
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

P(L|T)

+t +l 0.3
+t -1 0.7
-t + 0.1
-t -1 0.9




Example: Traffic Domain

e What are factors?

* A factor is a function from some set
of variables into a specific value.

* Initial factors
* Conditional probability tables (one
per node)

e Select the values consistent with
the evidence

* Inference by Enumeration

* Procedure that joins all the factors
and then sums out all the hidden
variables.

* Define “joining” and “summing”
next.

Traffic domain

P(R)

P(T|R)

P(L|T)

+r

0.1

+r

+t

0.8

+t

+

0.3

-r

0.9

+r

-t

0.2

+t

0.7

L — —I—E applied to the initial factors

P(R)

-r

+t

0.1

-t

+

0.1

-r

-t

0.9

0.9

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(+£|T)

-t

+

0.1




Operation |: Joining Factors

* Joining

* Get all the factors over the joining variables.
 Build a new factor over the union of variables involved.

* Computation for each entry: pointwise products

P(R) X P(T|R) wmmp P(R,T)

+r

0.1

+r

+t

0.8

-r

0.9

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

vr,t .

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

P(r,t) = P(r) - P(t|r)



Joining Factors

A| B | f(AB) B| C| fB,C)| A| B| C | £A,B,0C)
T| T 3 T| T 2 T| T| T/| 3x2=.06
T| F 7 T| F 8 T| T| F| 3x8=.24
F| T 9 F| T 6 T| F| T| 7x.6=.42
F| F 1 F| F 4 T| F| F | 7x.4=.28
F| T | T| 9x.2=.18
F| T | F| 9x.8=.72
F| F| T | 1x.6=.06
F| F| F| 1x.4=.04

Figure 14.10  [llustrating pointwise multiplication: f, (A, B) x £,(B,C) = f3(A, B, C).

(X, .. X;.Yi.. Y02 ... Z) =f(X1... X; V.. Y) (V1. Vi Z ... Z).

Source: AIMA Ch 14.



Joining Multiple Factors

P(R)
+r | 0.1
+r | +t ] 0.08
P(T|R) ‘ +r | -t | 0.02 ‘
G +r | +t (0.8 | +t]0.09
| t]02 -r | -t [0.81 R, T P(R,T, L)
or |+t (0.1 +r | +t | + ]0.024
e r|-t]0.3 @ +r | +t -1 | 0.056
+r -t + | 0.002
P(L|T) P(L|T) +r | -t -1 [ 0.018
+t | +1 |0.3 +t | + (0.3 -r +t + | 0.027
+t | -l (0.7 +t | -1 |0.7 -r +t | 0.063
-t | +1 |0.1 -t | +1 |0.1 -r -t + | 0.081
-t |-l 0.9 -t |-l 10.9 -r -t -1 | 0.729




Operation Il: Eliminating Factors
P(R,T)

* Marginalization
e Take a factor and sum out a variable
e Shrinks the factor to a smaller one

P(R,T, L)

+r

+t

+l

0.024

+r

+t

0.056

+r

-t

+l

0.002

+r

-t

0.018

+t

+|

0.027

+t

0.063

-t

+l

0.081

1 1 1 1
- - - -

-t

0.729

Sum out R

>

+r

+t

0.08

+r

-t

0.02

+t

0.09

-t

0.81

Lo

P(T, L)

+t

+l

0.051

+t

0.119

-t

+l

0.083

-t

0.747

Sum out R P(T)
‘ +t | 0.17
-t | 0.83
SumoutT P(L)
‘ +l [ 0.134
-1 10.866




Inference by Enumeration

Multiple join operations and multiple eliminate operations

) P (L)

P(R)

+r | 0.1

P(T' R)

+r | +t 0.8

+r| -t |0.2

P(L|T)

+t | + [0.3

+t | -l (0.7

JoinR

P(R,T)

+r

+t

0.08

+r

0.02

+t

0.09

0.81

P(L|T)

+t

+

0.3

+ | -

0.7

+

0.1

0.9

R
by L) ="

JoinT

P(R,T,L)

P(R,T, L)

+r

+t

+|

0.024

+r

+t

0.056

+r

+|

0.002

+r

0.018

+t

+|

0.027

+t

0.063

+|

0.081

| | | |
- - - -

0.729

SumoutR

—— >

<>

P(T,

L)

+t

+|

0.051

+t

0.119

-t

+]

0.083

-t

0.747

SumoutT

—— >

®

P(L)

+

0.134

0.866




Variable Elimination

* Inference by Enumeration
* Problem: the whole distribution is “joined up“ before “sum out” the hidden variables

 Variable Elimination
* Interleaves joining and eliminating variables
e Does not create the full joint distribution in one go

* Key ldea:
* Picks a variable ordering. Picks a variable.
* Joins all factors containing that variable.
e Sums out the influence of the variable on new factor.

* Leverage the structure (topology) of the Bayesian Network
* Marginalize early (avoid growing the full joint distribution)



Inference by Enumeration vs. Variable
Elimination

(®) P(L) =7

Inference by Enumeration Variable Elimination

S PP ~ 3 P Y PG
G PR \_'_I

Joinonr Jom onr
i [ [ | | |
| |
Joinont Eliminate r
J 1 J
T n
Eliminate r Joinont
| J

EIimllnate t Eliminate t



Variable Elimination

JoinR P(R, T) Sum out R JoinT SumoutT
P(R
(1) » +r | +t | 0.08 » P(T) » »
+r | 0.1 +r | -t | 0.02
-+ 103 -r | +t | 0.09 +tt 8';;
-r| -t |0.81 :
e P(T|R)
+r | -t |0.2 ( )
-r | +t |0.1 P(T, L
(D ilos | P(L)
r]-tjo. +t | +l | 0.051
+t | -1 [0.119 + 10134
P(L|T) P(LIT) P(L|T) T 0083 1 [0.866
e +t | + (0.3 +t | + (0.3 t| -l 1]0747
+t | -l [0.7 :: J_rll 8'3 +t | -l [0.7
-t |+ (0.1 < 1 0'1 -t | + 0.1
-t | -l [0.9 PR 0'9 -t | -l [0.9




Incorporating Evidence

* Till Now, we computed P(Late)? P(R) P(T|R) P(L|T)
* What happens when P(Late| Rain)? —— Ry e
* How to incorporate evidence in Variable — 8; - :I 8;
Elimination.
* Solution
* |f evidence, then start with factors and select P(‘I'T) P(T| + T) P(L|T)
the evidence. +r 0.1 +r | +t | 0.8 +t + | 0.3
 After selecting evidence, eliminate all variables ol 102 +: ;ll 8:1
other than query and evidence. | -1 o9

Evidence incorporated in the initial factors



General Variable Elimination
* Query: P(Q|E1 =e1,... E, =€)

e Start with initial factors:
* Local conditional probability tables.
* Evidence (known) variables are instantiated.

* While there are still hidden variables (not Q or evidence):
* Pick a hidden variable H (from some ordering)
 Join all factors mentioning H
* Eliminate (sum out) H

* Join all the remaining factors and normalize



Example: Alarm Domain (& (&

P(B|j,m) « P(B,j,m) O
. ORNO

P(B)  P(E) P(A|B, E) P(jlA)  P(ml|A)
P(B‘j’ m) X P(B7 7, m) marginal can be obtained from joint by summing out

= Z P(B,j,m,e,a) use Bayes’ net joint distribution expression

- ZP P(a|B, €)P(j]a) P(m]a) use x*(y+2) = xy + xz

— Z P(B Z P(a|B,e)P(jla)P(m|a)  joining on a, and then summing out gives f,

= Z P(B e)f1(j,m|B,e) use x*(y+z) =xy + xz

B Z P(e)f1(j, m|B,e) joining on e, and then summing out gives f,

= P(B)fa2(j,m|B)



Example: Alarm Domain
P(B|j,m) o< P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA)  P(m|A)

Choose A
P(A|B,E)

P(j|A) » P(j,m, A|B, E) » P(j,m|B, E)

P(m|A)

P(B) P(E) P(j,m|B, E)




Example: Alarm Domain

P(B) P(E) P(j,m|B, E) O (&
Choose E °

P(E) » P(j,m, E|B) » P(j,m|B) (@ ()
P(j,m|B, E)

P(B) P(j,m|B)

Finish with B

P(B) . '
oo W) PGmp) S P(Blm)



Variable Elimination: Structuring Computation

P(—alb,e) P(alb,—e)
05 94

P(jla) P( jl=a) P( jla) P( jl~a)
90 05 90 05
O O O O
P(mla) P(ml—a) P(mla) P(ml—-a)
70 0l 70 0l
O O O O

Figure 14.8  The structure of the expression shown in Equation (14.4). The evaluation
proceeds top down, multiplying values along each path and summing at the “+" nodes. Notice
the repetition of the paths for j and m. Source: AIMA Ch 14.




Example

Query: P(X3|Y1 =y1,Y2 = y2,Y3 = y3)
Start by inserting evidence, which gives the following initial factors:

P(Z)?P(Xllz)aP(XZ‘Z)vP(X3|Z)7P(yl|X1)7P(y2’X2)7P(y3‘X3)

There are three variables to eliminate { X, X, and Z}. The Y
variables are observed (instantiated).




Example

Query: P(X3|Y: =y1,Ys =y, Y3 = y3)

Start by inserting evidence, which gives the following initial factors:

P(Z)| P(X1]|2),IP(X2]Z), P(X3|2)|P(y1]|X1),|P(y2|X2), P(ys| X3)

Eliminate X1, this introduces the factor fi(y1|Z) = >_, P(x1]|2)P(y1|z1),
and we are left with:

P(Z), P(X2|Z2){ P(X3|2)| P(y2| X2)} P(y3|X3){ f1(y1|Z)

Eliminate Xj, this introduces the factor fo(y2|Z) = >, P(x2]|2)P(yz2|r2),
and we are left with:

x

P(Z2), P(X3|2){P(ys| X3),|f1(y1|2),|fa(y2]2)

Eliminate Z, this introduces the factor f5(y1,y2, X3) =), P(2)P(X3|2) fi(y1|Z) f2(y2]Z),
and we are left with:

P(y3|X3)| f3(y1,y2, X3)

No hidden variables left. Join the remaining factors to get:

fa(y1,y2,y3, X3) = P(y3|X3), f3(y1,y2, X3)

Normalizing over X3 gives P(X3|y1,y2,y3) = fa(y1,y2,¥3, X3)/ >, fa(y1,v2, Y3, 73)



Example

Query: P(X3|Y: =y1,Ys =y, Y3 = y3)

Start by inserting evidence, which gives the following initial factors:

P(Z){ P(X1]2),|P(X2|Z), P(X3]Z),
Eliminate X1, this introduces the factor fi(y1|Z) = >_, P(x1]|2)P(y1|z1),

and we are left with:

P(2)[P(Xal2)] P(X3]2)
Eliminate Xj, this introduces the factor fo(y2|Z) = >, P(x2]|2)P(yz2|r2),

and we are left with:

P(Z), P(X5|2),

Eliminate Z, this introduces the factor f5(y1,y2, X3) =), P(2)P(X3|2) fi(y1|Z) f2(y2]Z),

and we are left with:

P(y1|X1),

P(y2| X5)

P(ys\X?)),

P(y2| X2), P(ys]| X3)

P(ys| X3)| f1(y1]2)

fl(y1’Z)7

f2(y2|Z2)

P(y3|X3)| f3(y1,y2, X3)

No hidden variables left. Join the remaining factors to get:

f4(y17y27y37X3) — P(y3|X3)7f3(y17y27X3)

Normalizing over X3 gives P(X3|y1,y2,y3) = fa(y1,y2,¥3, X3)/ >, fa(y1,v2, Y3, 73)

Computational complexity

* Depends on the largest factor
generated in VE.

e Factor size = number of entries
in the table.

* In this example: each factor is of
size 2 (only one variable). Note
that y is observed.

* Xy, Xy, Z, X3




Effect of Different Orderings

* For the query P(X, |Y4,...,¥,)

* Two different orderings as
* Eliminate Z first. Z, X4, ..., X4
* Eliminate Z last. X, ..., X,.1, Z.

* What is the size of the maximum factor
generated for each of the orderings?




Example

Eliminate Z First

P(Xn,|y1, 92, -+ yn) = aP(Z)P(X1|Z)P(X2]Z), ..., P(Xn|Z)P(

This factor is 2" H f1(X1, Xo, ..., Xp) = >, P(2)P(X1]2), P(X1]z2),..., P(X1]?)

P(Xn7|y17y27“'7yn) — afl(XhXZa7Xn)P(y1|X1)P(y2|X2)77P(yn|Xn)

fQ(Xl,XQ, .. 7Xn—1) = an fl(Xl,XQ, “ e ,Xn_l,xn)P(yn|xn)

P( X, ly1,y2, -y yn) = afo(X1, Xo, ..o, X 1) P(y1| X1) P(y2| X2), - - oy P(Yn—1]|Xn-1)



Example

Eliminate Z Last

P(Xn,|y1, 92, -+ yn) = aP(Z)P(X1|Z)P(X2]Z), ..., P(Xn|Z)P(

This factor is size 2 H fiwilZ) = >_,, Pyilz1)P(x1]|Z)

P( X, [y1,92, -y yn) = aP(Z) f1(1|2) P(X2]Z), ..., P(Xa|Z) P(y2| X2), - - ., P(yn| Xn)

Other steps are like the previous example. Each factor is of size 2 consisting of one variable.
Variable ordering can have considerable impact.



Properties

* Variable elimination is dominated by the size of the largest
factor constructed during the operation of the algorithm.

e Can pose the problem of finding good ordering as a search.
* Use heuristics.

e Depends on the structure of the network and order of @ @
elimination of the variables. P ,
* Finding the optimal ordering is intractable. @ s

\
®

N\

S / \\ \\
. . . . A/"// f/< \ \\
* Min-fill heuristic z AR
* Eliminate the variable that creates the smallest sized factor (greedy @ @ © 00 @
approach).

* Min-neighbors

* Eliminate the variable that has the smallest number of neighbors in :
the current graph. Rank A, B and D with

the Min-Fill heuristic.



Polytrees

* A polytree is a directed graph with no undirected cycles.

* For polytrees the space and time complexity of exact inference is
linear in the size of the network.

o ONORO
@@@
) 10

Which of these are polytrees?

7\
G G @ O, ©—@)
@\
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Irrelevant Variables

Burglary Earthquake

P(J)
= Xy ase PWJ,M,AB,E)
= Zyazse P(JIA)P(B)P(A|B, E)P(E)F’(MI»‘\)

Every variable that is not an ancestor of a query variable or

evidence variable is irrelevant for the query. Slide adapted from Frof. Mausam



Bayesian Networks: Independence

* Bayesian Networks P(Xlai...an)
* Implicitly encode joint distributions n
* A collection of distributions over X, one for P(x1,zo,...xn) = H P(x;|parents(X;))
each combination of parents  values —1

* Product of local conditional distributions

* Inference
* Given a fixed BN, what is P(X | e)
e Variable Elimination

* Modeling

* Understanding the assumptions made when
choosing a Bayes net graph

A Bayesian Network Model for Diagnosis of Liver Disorders. Onisko et al. 99.



Conditional Independence

e Xand Y are independent if
Ve,y P(z,y) = P(z)P(y) ---=> X1Y
 Xand Y are conditionally independent given Z

Va,y,z P(z,y|z) = P(a|z)P(ylz) -- - X LY|Z

 (Conditional) independence: Given Z, Y has no more information to
convey about X or Y does not probabilistically influence X.

* Example: Alarm 1L Fire|Smoke

Smoke causes the alarm to be triggered. Once there is smoke it does not
matter what caused it (e.g., Fire or any other source).




Bayesian Network: Independence
Assumptions

* The conditional distributions defining the Bayesian Network (BN)
assume conditional independences.

P(x;|xy - - x;_1) = P(x;|parents(X;))

e Often there are additional conditional independences that are
implicit in the network.

* How to show if two variables (X and Y) are conditionally independent
given evidence (say Z)?
* Yes. Provide a proof by analyzing the probability expression.

* No. Find a counter example. Instantiate a CPT for the BN such that Xand Y are
not independent given Z.



Bayesian Network: Implicit Assumptions

* Conditional independence assumptions directly from simplifications in chain rule:

R(alyzrYw) = P(x)P(y|x)P(z|x, y) P(w|z,y, )
Wladly{ X 18] 2P (x) P(y|2) P(z]y) P(w|2)

* Additional implied conditional independence assumptions?

Wl X|Y

Can we work out such independence by examining the structure of
the graph? Answer: D-separation.



Causal Chains

* Is X guaranteed to be independent of Z2?
OO ORI

Mo Mok * Intuitively
: No Mas Y: Covid Z: Fever . . ..
Transmission * Wearing no masks causes virus transmission

which causes fever.

* Wearing masks causes no virus transmission
causes no symptom.

e Path between X and Z is active.

* Instantiate a CPT
P(+y | +x)=1,P(-y | -x)=1,
P(+z | +y)=1,P(-z|-y)=1



Causal Chains

(O—O—)

X: No Mask Y: Covid Z: Fever
Transmission

P(xz,y,z) = P(z)P(y|z)P(z]y)

* Is X guaranteed to be independent of Z

given Y?
* Yes
PG:lo.y) = o)
_ P(z)P(y|z) P(z]y)
P(z)P(y|z)
= P(z]y)

* Evidence along the chain blocks the
influence (inactivates the path).



Common Cause

Y: Covid infection
* Is X guaranteed to be independent of Z2?
° No

* Intuitively
e Covid infection causes both Fever and Loss

of Smell.

 Path between X and Z is active.
* Instantiate a CPT

P(+x | +y)=1,P(x|-y)=1,
P(+z | +y)=1,P(-z|-y)=1

X: Fever Z: Loss of smell



Common Cause

¥: Covid infection * Is Xindependent of Z given Y?
* Yes
P(z,y,z)
P(z|z,y) =
P(z,y)

_ PQ)P(zly) P(z]y)

P(y)P(z|y)
@ = P(z|y)
* If you have Covid, then belief over the loss of

X: Fever Z: Loss of smell

smell is not affected by presence of fever

P(z,y,2) = P(y)P(z|y) P(zly) * (?bserymg the cause blocks the influence
(inactivates the path).



Common Effect

X: Covid Y: Tuberculosis

* Are X and Y independent?
* Yes

* Covid and TB both cause Fever. But can’t say
that if you have Covid then you are more or
less likely to have TB (under this model)

:ZP(Qjayaz)
—ZP (2], y)
)P(y) Y P(zlz,y)

= P(z)P(y)

Z: Fever



Common Effect

* Is X independent of Y given Z?
° No

* Seeing the fever puts Covid and TB in
competition as possible causal explanations.

X: Covid Y: Tuberculosis

* [t is likely that one of them is the cause, rare for
both. If Covid is present then the likelihood of
TB being present is low (reduces its chances).

e Observing the cause activates influence
between possible causes.

Z: Fever



Active and Inactive Paths

* Question: Are X and Y conditionally independent given  Active Triples Inactive Triples
evidence variables {Z}?
* Yes, if Xand Y “d-separated” by Z O—O—O
* Consider all (undirected) paths from Xto Y
* No active paths = independence. O

* A pathis active if each triple is active:
e Causal chain A-> B -> C where B is unobserved (either direction)
* Common cause A <- B -> C where B is unobserved
* Common effect (aka v-structure)
A -> B <- C where B or one of its descendants is observed

* A path is blocked with even a single inactive segment

nS



D-Separation

"Query: X, J_LXj‘{Xkl,...,an} ?

® Check all (undirected) paths between X; and X

" |f one or more active, then independence not guaranteed

Xi N X Xy ooy X, }

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

Xi W Xi{ X,y oo Xk, |



D-Separation: Examples

R1 B Yes
R 1l B|T

R B|T'



D-Separation: Examples

LILTT Yes
L1 B Yes
L1 B|T

L1 B|T'
LI B|T,R Yes



D-Separation: Examples

~
>

~
S
oy

Yes




Approximate Inference

* Problem with Exact Inference
* Exact inference is often intractable in large and multiply connected networks.
* In the worst case, we need to build the entire joint distribution table.

* Alternatively: Sampling-based approach
* Provide approximate probability estimates
* Estimated using samples from the distribution.
* Accuracy of the estimate depends on the number of samples
* In the limit the estimate converges to the correct distribution.



Approximate Inference: Sampling

* Key Ideas
* Draw N samples from a sampling distribution S
 Compute an approximate posterior probability
* Show that you have sampled from the correct distribution, convergence to

the true probability P
* Essentially this is forward simulation of the probabilistic model of the domain

* Advantage?
* Getting a sample is faster than computing the right answer (e.g. with variable
elimination)



Sampling: What is assumed?

* Sampling from given distribution

e Step 1: Get sample u from uniform
distribution over [0, 1)

e Step 2: Convert this sample u into an
outcome for the given distribution by
having each outcome associated with a
sub-interval of [0,1) with sub-interval
size equal to probability of the
outcome

 Utility? We should be able to sample
from a CPT defining the probabilistic
model.

* Next, we look at approaches for
sampling from a Bayes Net.

Example:
C P(C)
red 0.6
green 0.1
blue 0.3

0<u<0.6,—C =red
0.6 <u<0.7, - C = green
0.7<u<1,— C = blue

= |f random() returns u =0.83,
then our sample is C = blue

= E.g, after sampling 8 times:



Approach I: Prior Sampling

* Fori=1, 2, ..., n
* Sample x; from P(X; | Parents(X;))

* Return (x4, X5, ..., X,)

Ancestral pass for directed graphical models:
— sample each top level variable from its marginal

— sample each other node from its conditional
once its parents have been sampled

Sample:

A~ P(A)

B ~ P(B)

C ~ P(C|A,B)
D~ P(D|B,C)
E~P(D|C,D)

P(A,B,C,D,E) = P(A) P(B) P(C|A,B) P(D|B,C) P(E|C, D)

Source MLSS 2009. http://videolectures.net/mlss09uk_murray_mcmc/



Approach I: Prior Sampling

* Fori=1, 2, ..., n

* Sample x; from P(X; | Parents(X;))

e Return (xq, Xy, ..., X,)

P

+C

(00)5

-C

0.5

P(S|C)
+c | +s [ 0.1
-s (0.9
-c | +s [ 0.5
-s 1 0.5
P(W|S, R)

+S +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-S +r +w | 0.90

-W 0.10

-r +w | 0.01

-w | 0.99

P(R|C)

+C

+r

0.8

0.2

+r

0.2

0.8

Samples:

+C, -S, +r, +W

-C, +S, -I, +W




Prior Sampling

* This process generates samples with probability:

T
Sps(zy...zn) = |[ P(x;|Parents(X;)) = P(z1...zn)
1=1

* Let the number of samples of an eventbe Npg(z1...xp)

e Then lim P(xq,...,zn) = lim Npg(xzq1,...,2n)/N
! N—o0 N —o0
= Spg(x1,...,2n)

* Prior sampling procedure is consistent .In the limit, the estimated distribution converges
to the correct distribution.



Prior Sampling

Potential samples from the Bayes Net:
+C, -S, +I, +W
+C, +S, +1, +W
-C, +S, +r, -W
+C, -S, +I, +W
-C, -S, -I, +W

What can we do with these samples?
* Can empirically estimate the probabilistic queries

Estimating P(W)
* We have counts <+w:4, -w:1>
* Normalize to get P(W) = <+w:0.8, -w:0.2>

Can estimate other probabilistic queries as well:
e P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
* Note: if some evidence is not observed then we cannot estimate it

Prior sampling is unaware of the types of probabilistic queries that will be asked later?
Can we be more efficient if we knew the queries from the Bayes Net?



Approach II: Rejection Sampling

* |[N: evidence instantiation

* Fori=1, 2, ..., n
* Sample x; from P(X; | Parents(X;))

* If x; not consistent with evidence
* Reject: Return, and no sample is generated in this cycle

* Return (x4, X5, ..., X,)

Rejection Sampling

* Estimate P(C| +s) +C, -S, +I, +W
* Tally the C outcomes, but reject samples which do not have S=+s. +C, +S, +I, +W
* As you are sampling successively from the conditional probabilities, return -C, +S, +I, -W

if you find a sample inconsistent with the instantiated variables.

* We can reject earlier, say, if there are 1000 variables and at the third
variable we detect an inconsistency, we can reject the entire sample. -C, =S, -, +W

* Rejection sampling is consistent for conditional probabilities in the limit.

+C, -S, +, +W



Approach lll: Likelihood Weighting

Example: P(Shape|blue) ,
Byrarrie—zzo0n

* Rejection Sampling i I
* Problem: iff the evidence is unlikely, the sampling ’
will reject lots of samples. sphere, blue

* Wait for a long time before you get a sample that is cube,—+

in agreement with the evidence. sphere,—green
* Evidence is taken into account after you have '

sampled, not exploited as you sample. Sample and then throw

away the inconsistent ones.

* Likelihood Weighting

+ Generate only events that are consistent with the EX@MPle: P(Shape|blue)

pyramid, blue

evidence. pyramid, blue
* Fix evidence variables and sample the rest sphere, blue
* Problem: sample distribution not consistent. cube, blue
« Solution: weight by probability of evidence given sphere,  blue

arents. ,
P Sample only the consistent values.



Likelihood Weighting

IN: evidence instantiation
w=1.0

fori=1,2, .., n
e if X; is an evidence variable
e X; = observation x; for X;
* Setw=w * P(x, | Parents(X;))
* else
* Sample x; from P(X; | Parents(X;))

return (x4, X,, ..., X)), W

P(S|C)
+c | +s [ 0.1
-s [ 0.9
-c | +s | 0.5
-s [ 0.5
P(W|S, R)
+S +r +w | 0.99
-W 0.01
-r +w | 0.90
-W 0.10
-S +r +w | 0.90
-W 0.10
-r +w | 0.01
-w | 0.99

P(C)
+C 0.5
-C 0.5

P(R|C)

+c | +r | 0.8

-r (0.2

-c | +r | 0.2

-r 0.8

Samples:

+C, +S, +I, +W

w=1.0x0.1x0.99

When an evidence variable adjusted the weight.



Likelihood Weighting

e Sampling distribution if z sampled and e fixed evidence

[

Sws(z,e) = || P(z]|Parents(Z;)) <

1=1
* Now, samples have weights

w(z,e) = ﬁ P(e;|Parents(E;))
i=1

* Together, weighted sampling distribution is consistent

[ m
Sws(z,€) - w(z,e) = | | P(zi|Parents(z;)) | | P(e;|Parents(e;))

1=1 1=1
. P( ) Weighting corrects the distribution. It also
T Z, € represents the importance of the distribution.



Approach IV: Gibbs Sampling

* Likelihood weighting
* Evidence is taken into account during the sampling process.

* Problem?

* Evidence variables influence the choice of down stream variables and not the upstream
ones.

* During the sampling process there may be a low probability evidence encountered later,
the sample will look promising for very long.

* Gibbs Sampling
e Consider evidence when we sample every variable (both downstream and
upstream)

82



Gibbs Sampling

* Procedure:
* Track of a full instantiation x4, x5, ..., X,,.
e Start with an arbitrary instantiation consistent with the evidence.
* Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.
* Keep repeating this for a long time.
» After repeating you get one sample from the distribution.
» To get more samples: start again.
* Note: this is like local search.

* Property: in the limit of repeating this infinitely many times the resulting sample is
coming from the correct distribution.

e Rationale: both upstream and downstream variables condition on evidence.

* Note: Enough to sample from the Markov Blanket.



Conditional Independences and Markov
Boundary

(a) (b)

(b) A node is conditionally independent of all other
nodes in the network given the Markov blanket, i.e.,
its parents, children and children’s parents.

(a) A node is conditionally independent of its
non-descendants given its parents.
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Gibbs Sampling: Example

Estimating P(S | +r)

Step 2: Initialize other variables
= Randomly

Step 1: Fix evidence
* R=+r

Steps 3: Repeat
* Randomly select a non-evidence variable X
* Resample X from P( X | all other variables)

Q Q) Q) Q) Q) Q)
LB~ € ©~> e B~ ¢ B¢ B~ ¢ L
W
Sample from P(S|+ ¢,—w,+r)  Sample from P(C|+ s, —w,+r) Sample from P(W|+ s, +c, +7)
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Sampling from the conditional

e Sample from P(S | +c, +r, -w)

P(S,+c,+r, —w)
P(+c, +r, —w)

_ P(S,+c,+r, —w)

N > P(s,+c,+r,—w)

_ P(+c¢)P(S|+c)P(+r| + c)P(—w|S, +1)
> P(+¢)P(s| + ¢)P(+r| + ¢) P(—wl|s, +7)
P(4+c)P(S|+ ¢)P(+r| + ¢)P(—w|S, +1)
P(+c)P(+r|[+c) 3, P(s| + ¢) P(—wls, +7)

_ P(S|+c)P(—w|S,+r)
> P(s|+c)P(—wls, +r)

P(S|+ ¢, +r,—w) =

Sampling from the conditional distribution is needed as a sub-routine for Gibbs sampling. It is typically easier to sample

from. The expression is simpler due to instantiated variables, can even construct the probability table if needed. o



Markov Chain Monte Carlo

Construct a biased random walk that explores target dist P*(x)

—
Markov steps, z; ~ T'(zt«z¢—1) .§ 1 :ggg;))
+0.8
; I0g(B-2)
80'6 mean(A)
0.4 log(det(R))
8 log(det(W))
g0.2
<)
g0 | . . | ,
@ O 200 400 600 800 1000

iteration lag time

Usually, there is a burn in period after which one

MCMC gives approximate, correlated samples from P*(z) accepts the samples.
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