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Outline

• Last Class
• Markov Decision Processes

• This Class
• Reinforcement Learning

• Reference Material
• Please follow the notes as the primary reference on this topic. Supplementary 

reading on topics covered in class from AIMA Ch 21 sections 21.1 – 21.4.
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Reinforcement Learning Setup
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• Markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Goal is to determine a policy p(s)

• Don’t know T or R
• We don’t know which states are good or what 

the actions do
• Must actually try actions and states out to learn
• Goal is still to act optimally. 



Reinforcement Learning Setup

5

• Markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Goal is to determine a policy p(s)

• But we don’t know T or R
• I.e. we don’t know which states are good or 

what the actions do
• Must actually try actions and states out to learn

In the Car MDP (discussed previously) we now 
do not know the transition model and the 
rewards. How should the agent act in this setup 
to maximize expected future rewards. 

How should the agent act in this setup so as to maximize expected future 
rewards. Also, think of the setup as acting in an ”unknown” MDP 



Another View: Offline (MDP) vs Online (RL)
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• Offline (MDP)
• We are given an MDP
• We use policy or value iteration to learn a policy. 

This is computed offline.
• At runtime the agent only executes the 

computed policy 

• Online (RL)
• We do not have full knowledge of the MDP
• We must interact with the world to learn which 

states are good and which actions eventually 
lead to good rewards. 

The agent solves the MDP 
and computes a policy. 
Now it simply acts with it.

The agent interacts with the 
world and learns that one of 
the states is bad. 



Reinforcement Learning
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• Given
• Agent, states, actions, immediate rewards and environment.

• Not given 
• Transition function (the agent cannot predict which state will it land in once it 

takes an action)
• Does not know the reward function. Does not know what reward it will get in a 

state. 

• Agent’s Task
• A policy that maximizes expected rewards (the objective has not changed)



Reinforcement Learning (RL)

Biological motivation

• People and animals learn by interacting with our 
environment
• It is active rather than passive. 
• Interactions are often sequential — future 

interactions can depend on earlier ones 

• Reward Hypothesis
• Any goal can be formalized as the outcome of 

maximizing a cumulative reward.
• We can learn without examples of optimal 

behaviour Instead, we optimise some reward signal 



Reinforcement Learning: Setup
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• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Key characteristic of reinforcement 
learning
• Only evaluative feedback present. 
• The agent takes and action and is 

provided feedback (reward). 
• The agent is  not told which action 

it should take in a state. 



Classes of Learning Problems

Figure: Alexander Amini



Examples of RL



Initial
[Kohl and Stone, ICRA 2004]

Examples: Learning to Walk



[Kohl and Stone, ICRA 2004]

Examples: Learning to Walk

Training



Finished
[Kohl and Stone, ICRA 2004]

Examples: Learning to Walk



Examples: Game Play

15Google Deep Mind



Examples: Healthcare Domain
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Blood pressure control



Reinforcement Learning: Approaches
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• Different learning agents
• Utility-based agent

• Learn a value/utility function on states and use it to select actions that maximize the expected outcome utility. 
• Q-learning

• Learn action-utility function (or Q-function) giving expected utility of taking a given action in a given state. 
• Reflex agent. 

• Directly learn a mapping from states to action (policy).

• Approaches
• Passive Learning

• The agent’s policy is fixed. the task is to learn the utilities of states (or state-action pairs); this could involve 
learning a model of the environment. 

• It cannot select the actions during training. 
• Active Learning

• The agent can select actions, it must also learn what actions to take.  
• Issue of exploration: an agent must experience as much as possible of the environment in order to learn how 

to behave in it. 



Passive Reinforcement Learning
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• Setup
• Input: a fixed policy p(s)
• Don’t know the transitions T(s,a,s’)
• Don’t know the rewards R(s,a,s’)
• The agent executes a set of trials or 

episodes using its policy p(s)
• In each episode or trial it starts in a state 

and experiences a sequence of state 
transitions and rewards till it reaches a 
terminal state. 
• Goal: learn (estimate) the state values Vp(s)

The learner is provided with a policy (cannot change 
that), using the policy it executes trials or episodes in 
the world. The goal is to determine the value of states.



Model-Based Reinforcement Learning
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• Model-Based Idea
• Learn an approximate model (R(), T()) based on experiences
• Compute the value function using the learned model (as if it were correct). 

• Step 1: Learn an empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, to obtain the final policy. 
• Plug in the estimated T and R in the following equation:

Note: going through an 
intermediate stage of learning the 
model. In contrast, “model-free”
approaches do not learn the 
intermediate model. 



Example: Model-Based Learning
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Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…



Toy example: Model-Based vs Model-Free
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Goal: Compute expected age of COL333/671 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Eventually, we learn the right model 
which gives the right estimates. 

Bypass the model construction. Averaging works 
because the samples appear with the right frequencies. 



Model-Based vs. Model Free RL

Model-based RL:
• Explore environment and learn model, T=P(s’|s,a) and R(s,a), (almost) 

everywhere. Use model to plan a policy (solving the MDP)
• Suitable when the state-space is manageable 

Model-free RL:
• Do not learn a model; learn value function or policy directly
• Suitable when the state space is large 
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Next, we look at a model free approach to RL 



Direct Evaluation of the Value Function Vp(s)

23

• Goal: 
• Compute values for each state under the policy p
• Note: still doing passive RL (the agent does not decide the actions)

• Idea: Average together observed sample values
• Act in the environment according to the given policy p
• For a visited state, compute the sum of discounted rewards that were obtained
• The above is one sample. Continue to get more samples
• Average all the samples to get the estimate of the value/utility of the state

• A model free approach



Example: Direct Evaluation
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Input Policy p

Assume: g = 1

Observed Episodes (Training)

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

Value/utility of state c
Vp(C) = ((9 + 9 + 9 +(-11))/4)

= 4



Example: Direct Evaluation
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Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2

• Problem: we have lost the 
connection between states. 

• We go through state C, 4 times. 
We use only 2 estimates for E. 



Direct Evaluation: Pros and Cons
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• Pros
• Does not estimate a model. It does not require any 

knowledge of T(), R().
• With large number of runs it computes the correct 

average values, using just sample transitions

• Cons
• Each state must be learned separately. Loses the state 

connection information. 
• Bellman characterization is not getting used here. 
• Hence, takes a long time to learn. 

A

B C D

E

+8 +4 +10

-10

-2

• Problem: we have lost the 
connection between states. 

• If B and E both go to C under 
this policy, how can their values 
be different?

How can the Bellman equation be incorporated in this learning? Let us look at two ways. 



1. Policy Evaluation
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• We want to estimate the value V of states. Can we use Policy Evaluation?
• Simplified Bellman updates calculate V for a fixed policy:

• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• But this equation requires T and R. 

• Question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ



Sample-Based Policy Evaluation
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• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Assumes that we can rewind and 
start at state s again



2. Temporal Difference (TD) Learning
• Idea: learn from every experience (no resetting required)

• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute to updates more often

• Temporal difference learning of values
• Policy still fixed
• Move values toward the value of the successor that is encountered 
• Keep a running average
• Don’t need to store all the experience to build models.  

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

What is observed

Modify the old value

Sign and magnitude 
of the difference. 



Temporal Difference Learning: Example

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States



Recap from MDP Lecture: Optimal Utility and 
Optimal Policy

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Recap from MDP Lecture: Value of States
• Values of states are related to each other. 
• Fundamental Operation

• Compute the expectimax value of the state
• Expected utility under optimal action
• Average sum of (discounted) rewards

• Recursive definition of value:
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V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[ ]Â
s0

T(s, a, s0)
V⇤(s) = Q⇤(s, a)max

a



TD Value Learning: Problems

• TD Value Learning
• Model-free approach to perform policy evaluation
• Incorporates Bellman updates with running sample averages

• Output of TD Value Learning
• TD Value learning outputs the value function

• How to turn the learned values into a new policy?
• Can use the following relationships:

• Problem: we don’t have T and R
• Next: Can we learn the Q-values and not values? Then select actions 

for the new policy using the relationships above. 
33



From Value Iteration to Q-Value Iteration
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• Value Iteration
• Start with V0(s) = 0
• Given Vk, calculate the Vk+1 for all states as:

• Q-Value Iteration
• Start with Q0(s,a) = 0 
• Given Qk, calculate the depth Qk+1 q-values for all q-states:

Sample



Q-Learning
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• Sample-based Q-value iteration

• Estimate Q(s,a) values as:
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate
• Incorporate the new estimate into a 

running average:



Q-Learning: Procedure
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Q-Learning
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Cliff at the bottom, 
negative reward here. 

Exit with +10 reward

The agent does not know the rewards a-priori. Learns the effect of the east action over time. Only the actions we do are 
updated. Occasionally falls in the cliff and gets the negative reward. Note that the max of the Q values is propagated (green
values) to other states as it is approximating the optimal Q value.  



Q-Learning: Properties
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• Off-policy learning
• Q-learning converges to optimal policy -- even if the agent is acting sub-

optimally. 

• Some technical conditions:
• Exploration is enough
• In the limit does not matter how the actions are selected. 



SARSA
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• State-Action-Reward-State-Action (SARSA)
• Update using (s, a, r, s’, a’)

• SARSA Update equation

• Note
• SARSA waits until an action is taken and backs up the Q-value for that action. Learns 

the Q-function from actual transitions. 
• On-policy algorithm
• More realistic if the policy is partly controlled by other agents. Learns from more 

realistic values. 



Active Reinforcement Learning
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• Q-learning so far
• Q-learning allows action selection because we are learning the Q(s,a) function. 
• This means there is a policy that can be derived from the Q function learned. 
• Should the agent follow this policy exactly or should it explore at times?

• Active RL
• The agent can select actions
• Actions play two roles

• A means to collect reward (exploitation)
• Help in acquiring a model of the environment (exploration)

• Exploration vs. Exploitation trade-off
• Act according to the current optimal (based on Q-Values)
• Pick a different action to explore. 
• Example: a new tea stall opens in IIT (should you try the new one or stick to the old one? Goal is to 

maximize tea utility over time



Exploration Strategy
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• How to force exploration?
• An e-greedy approach
• Every time step: either pick a random action or act on the current policy
• With (small) probability e, pick a random action
• With (large) probability 1-e, act based on the current policy (based on the current 

Q –values in the table that the agent is updating)

• What is the problem with e-greedy?
• It takes a long time to explore. 
• Exploration is not directed towards states of which we have less information. 



Exploration Functions
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• How to direct exploration towards state-action pairs that are less explored?

• Exploration function 
• Trades off exploitation (preference for high values of u) vs. exploration (preference 

for actions that have not been tried out as yet). 
• f(u,n): Increasing in u and decreasing in n.

• What is the exploration function trying to achieve?
• The exploration function provides an optimistic estimate of the best possible value 

attainable in any state. 
• Makes the agent think that there is high reward propagated from states that are 

explored less.  



Exploratory Q-Learning
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• In Q-learning
• Explicitly encode the value of exploration 

in the Q-function
• Exploratory Q-Learning

• Effects
• The lower the N(s’, a’) is the higher is the 

exploration bonus. 
• The exploration bonus makes those 

states favorable which lead to unknown 
states (propagation). 
• Will have a cascading effect when an 

exploration action is there. 

Modified update



Multi-arm Bandits
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Source: Emma Brunskill (CS232 Course) Lecture 10

Multi-armed bandits are equivalent to a one state MDP.
Goal is to learn a policy that picks actions such that in 
the expected rewards are maximized.  



Toy Example: Treatment planning

45
Source: Emma Brunskill (CS232 Course) Lecture 10

• Consider deciding how to best treat 
patients with broken toes 
• Imagine have 3 possible options: 

• Do Surgery 
• Perform buddy taping the broken toe with 

another toe, 
• Do Nothing 

• Outcome measure / reward is binary 
variable: whether the toe has healed 
(reward +1) or not healed (reward 0) 
after 6 weeks, as assessed by x-ray 

• We can model this problem as a multi-
arm bandit problem with 3 arms

• Imagine true (unknown) Bernoulli reward 
parameters for each arm (actions) are



Toy Example: Treatment Planning

46
Source: Emma Brunskill (CS232 Course)

Exploration vs. Exploitation trade off!
If the reward variance is high then the 
epsilon-greedy approach works better 
than simply greedy. 

Avg. the rewards for each action.



Upper Confidence Bound
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• Greedy actions are those that look best at the present, but some of the 
other actions may be better.  
• Epsilon-greedy forces the non-greedy actions to be tried. 
• Indiscriminately, with no preference for those actions that are nearly greedy or 

particularly uncertain. 

• It would be better to select among the non-greedy actions according to 
their potential for being optimal. 
• Take into account how close their estimates are to being maximal and the 

uncertainties in their estimates.  



Upper Confidence Bound
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• Upper Confidence Bound (UCB) for action 
selection 
• Square-root term is a measure of uncertainty 

or variance in the estimate of the action’s 
value. 
• When a is selected then Nt(a) is incremented. The 

uncertainty reduces as denominator increases. 
• Each time when a is not selected then t increases 

but Nt(a) does not. The uncertainty estimate 
increases (numerator). 

• Natural logarithm 
• Increases get smaller over time but are 

unbounded; all actions will eventually be selected. 
• Actions with lower value estimates will be selected 

with lower frequency. 



Upper Confidence Bound
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Source: Emma Brunskill (CS232 Course)



Problem of Generalization
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• Problem when the state space is very large
• Visiting all states is not possible at training time. 
• Memory issue: cannot fit the q-table in memory.

• Need for Generalization
• Learn from  small number of training states encountered in 

training
• Generalize that experience to new, similar situations that not 

encountered before

• Feature-based Representations
• Features or properties are functions from states to real 

numbers (often 0/1) that capture important properties of the 
state.

• Example features that can be computed from the state
• Distance to closest ghost
• Distance to closest dot
• Number of ghosts

The states are similar. But for Q-
learning it will be a different entry. It 
does not know that in essence these 
states are the same. 

State space is 
raw pixels, the 
state space size 
is large, cannot 
experience all 
states. 



Linear Value Functions
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• Using a feature representation, a q function (or value function) can be expressed for any state 
using a set of weights:

• Now the goal of Q-learning is to estimate these weights from experience. Once the weights 
are learned the resulting Q-values will hopefully be close to the true Q values. 

• Main consequence: 
• A new state that shares features with a previously seen state will have the same Q-values. 

• Disadvantage
• If there are less features, actually different states (good and bad states) may start looking the same. 



Approximate Q-learning
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• Q-learning with linear Q-functions:

• Interpretation:
• Adjust weights of active features. 
• If the difference is positive (what we get is higher than previous) and the feature value is 1 then the 

weight increases and the q value increases. No change if the feature value is 0.

Exact Q function 
updates

Approximate Q 
function updates

“target” “prediction”


