
Rohan Paul

COL333/671: Introduction to AI
Semester I, 2021

Markov Decision Processes

1

Outline

• Last Class
• Utilities and Probabilities

• This Class
• Markov Decision Processes

• Reference Material
• Please follow the notes as the primary reference on this topic. Supplementary

reading on topics covered in class from AIMA Ch 17 sections 17.1 – 17.3.

2

Acknowledgement
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina
Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Anca
Dragan, Nicholas Roy, Emilio Frazzoli and others.

3

Deterministic vs. Stochastic Actions

4

Deterministic Action Outcomes Stochastic Action Outcomes

Need to plan for contingencies

Example: Sample paths through an MDP

A sample path through the MDP State visitations after multiple runs

Grid World Example

6

§ Actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Large rewards come at the end (negative or positive)

§ Overall Goal: maximize sum of rewards
§ Fundamentally a sequential decision-making problem.
§ Taking an action now can have an impact later.

Markov Decision Processes

7

Markov Decision Processes

8

Markov Decision Processes

9

Note: two notations are followed in literature. One in which rewards are
associated with states and in the other rewards are associated with state
transitions. Both the notations are equivalent and accepted.

Markov Decision Processes

10

Policies

11

Optimal policy when R(s, a, s’) = -0.03 for
all non-terminals s

• Deterministic single-agent search problems
• We determined the optimal plan, or sequence of

actions, from start to a goal

• For MDPs, we want an optimal policy p*: S → A
• A policy p gives an action for each state
• An optimal policy is one that maximizes the expected

utility if followed
• The agent arrives at a state and looks up the action

according to the policy.

• Note: there can be many policies, we are to
determine the optimal one.

There can be other policies that prescribe
different actions in a state.

Markov Assumption in MDPs

12

• “Markov”
• Given the present state, the future and the past are independent

• For Markov decision processes
• “Markov” means action outcomes depend only on the current state
• The next state depends on the action and the current state.
• The past actions taken the past states encountered do not affect the next state.

Optimal policies for different living rewards

13

• Interpret reward as the cost of
breathing (living reward).
• The value of R(s) balances the risk

and reward that the agent takes.

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing Car

14

§ A robot car wants to travel far, quickly
§ Three states: Cool, Warm, Overheated
§ Two actions: Slow, Fast
§ Going faster gets double reward
§ Find a policy from states to actions

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Slow

-10

Example: Racing Car

15

§ A robot car wants to travel far, quickly
§ Three states: Cool, Warm, Overheated (terminal state)
§ Two actions: Slow, Fast
§ Going faster gets double reward
§ Find a policy from states to actions

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Slow

-10

MDP as a Search Tree

16

a

s

s’

s, a

(s,a,s’) - Transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’) – Reward the agent gets

s,a,s’

s is a state

(s, a) is a q-state

Target: Need to find the optimal policy.
The one that maximizes the expected
utility if followed.

Need a way to calculate the
utility of a sequence of states!

Example: Racing Car

17
Visualizing an MDP as an Expectimax tree. Imagining the consequences of actions into the future.

Utility of Reward Sequences

18

Maximize the sum of rewards
Prefer rewards now to rewards later -
discounting

What preferences should an agent have over
reward sequences?

Assigning Utilities to Reward Sequences

19

Discounting appears to be a good
model for both animal and human
preferences over time.
Computationally, helps us converge
utilities of infinite sequences.

With discounted rewards, the utility of an infinite
sequence is finite.

MDP Formulation
• Markov decision processes:

• Set of states S
• Start state s0
• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

• Next: How to solve the MDP?
• How to determine the optimal policy?

a

s

s, a

s,a,sʼ
sʼ

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Function Example
Value (utility) of states V(s) for all states Value (utility) of a q-states Q(s,a) for all states

and all actions at each state.

Value of States
• Values of states are related to each other.
• Fundamental Operation

• Expected utility under optimal action for this state. What is the best we can
do from this state?

• Average sum of (discounted) rewards

• Recursive definition of value:

23

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â
s0

T(s, a, s0)
V⇤(s) = Q⇤(s, a)max

a

Bellman Equations

• Definition of “optimal” utility gives a simple one-step lookahead
relationship amongst optimal values.

24

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â
s0

T(s, a, s0)

V⇤(s) = Q⇤(s, a)max
a

• The utility of a state is the immediate reward for that state plus the
expected discounted utility of the next state assuming that the agent is
acting optimally.

Value Iteration

• Calculate the utility of each state and then use the state utility to
select an optimal action in each state.

25

• Bellman equations characterize the optimal values:

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

• Value iteration computes them:

• Value iteration is a fixed-point solution method

Value Iteration Algorithm
• Start with V0(s) = 0

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence
• Determine by looking at the max. change in utility of any state in an iteration.

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• the start state does not matter

a

Vk+1(s)

s, a

s,a,sʼ
Vk(s’)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

In the first iteration
the terminal states
reflect the reward.

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

Adjacent states start
to get updated.

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

Extracting Policy from the Optimal Value Function

• Our goal is to determine the policy for the MDP

• Step I: Estimate the optimal values V*(s)
• Through Value Iteration algorithm

• Step II: Policy Extraction
• Obtain the policy implied by the values (using 1-step

look ahead).
• Use the policy to act in the environment.

Asynchronous Dynamic Programming

• Dynamic programming methods (Bellman updates) used synchronous
updates (all states in parallel)
• Asynchronous DP

• backs up states individually, in any order
• can significantly reduce computation
• guaranteed to converge if all states continue to be selected

In place Dynamic Programming

Prioritized Sweeping

Problems with Value Iteration

• Value Iteration
• Repeats the bellman updates

• Problems
• Slow: O(S2A) per iteration
• The “max” at each state rarely changes. The policy often converges

long before the values converge.

Example

Example: 4*4 Grid World MDP

The optimal policy converges before
the values converge.

The optimal policy can be obtained
even when the utility function
estimate is inaccurate.

The extracted policy
visualized at each stage.

Policy Iteration

• Observations
• It is possible to get an optimal policy even

when the utility function is inaccurate.
• If one action is clearly better than all others,

then the exact magnitude of the utilities on
states involved need not be precise.

• Policy iteration provides an alternative way
to arrive at optimal policies.

47

The maximum error of the utility estimates and
the policy loss as a function of the number of
iterations of value iteration.

Policy Iteration

• Policy Iteration:
• Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence.
• Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal) utilities as future values.
• Repeat steps until policy converges.

• Converges to the optimal policy. In practice, can converge faster*.

*conditions beyond the scope of this course.

Step I: Policy Evaluation

49

• Policy Evaluation: Calculating the value function V for a fixed policy p

• Perform a number of simplified Bellman updates (given a policy)

• The Bellman equations are a linear system of equations without the max operator.
• Can be solved in O(n3) time by standard linear algebra solvers.
• It is not necessary to obtain the exact solution.
• Can perform some number of simplified value iteration steps (simplified because the policy is fixed)

to give a good approximation of the utility values of the states.

• Efficiency: O(S2) per iteration

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Evaluate the utilities for states
under the actions provided by the
given policy

Toy Example: Evaluating two different policies

50

Policy I: Always Go Right Policy II: Always Go Forward

Bridge passing task. The agent must move towards the end of a bridge. Undesirable states to the left and the right.

Step II: Policy Improvement

51

• Improvement
• Given fixed utility values for states (obtained via policy evaluation)
• Examine if there is a better policy (policy extraction) using one-step look-ahead

Toy example

Policy Iteration: Evaluation and Improvement

52

• Pick an arbitrary policy
• Iterate (until the policy changes)

• Policy Evaluation: For fixed current policy p, find values with policy evaluation:
• Iterate until values converge:

• Policy Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:

Policy Iteration: Evaluation and Improvement

53

Policy Iteration: Example

54

Policy Iteration: Example

55
Convergence in 4 iterations

Policy Iteration: Jack’s Car Rental

56
Source: Sutton and Barto Section 4.2

Policy Iteration: Jack’s Car Rental

57

Policy Iteration:
Jack’s Car Rental

58

Value Iteration and Policy Iteration

59

• Both value iteration and policy iteration compute the optimal values.

• Policy iteration has the advantage of finite-time convergence to the optimal policy.

• Both are dynamic programs for solving MDPs

