COL333/671: Introduction to Al

Semester I, 2021

Markov Decision Processes

Rohan Paul

Outline

e Last Class
e Utilities and Probabilities

* This Class

* Markov Decision Processes

 Reference Material

* Please follow the notes as the primary reference on this topic. Supplementary
reading on topics covered in class from AIMA Ch 17 sections 17.1 —17.3.

Acknowledgement

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina
Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Anca
Dragan, Nicholas Roy, Emilio Frazzoli and others.

Deterministic vs. Stochastic Actions

Deterministic Action Outcomes Stochastic Action Outcomes

Need to plan for contingencies

Example: Sample paths through an MDP

A sample path through the MDP State visitations after multiple runs

Lo e ot R S

oooooooooooooooo

Grid World Example

= Actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f there is a wall in the direction the agent would have 3
been taken, the agent stays put

* The agent receives rewards each time step

- . 2
= Small “living” reward each step (can be negative)
= Large rewards come at the end (negative or positive)
" Overall Goal: maximize sum of rewards 1 START] 0 L
= Fundamentally a sequential decision-making problem.

= Taking an action now can have an impact later.

Markov Decision Processes

* An MDP is defined by:
= Asetof statessinS
= AsetofactionsainA
= A transition function T(s, a, s')
* Probability that a from s leads to s’, i.e., P(s’] s, a)
* Also called the model or the dynamics

(T (ST EREE N

T is a Big Table!
11 X4 x11 =484 entries

T{sw N, s32i

‘ For now, we give this as input to the agent

Markov Decision Processes

= An MDP is defined by:

» Asetofstatessin$
» AsetofactionsainA

» Atransition function T(s, a, s’)

= Probability that a from s leads to &', i.e., P(s’| s, a)
= Also called the model or the dynamics

» Areward function R(s, a, s’)

-

R(saz, N, S4,) =-1.01
R(S33, E S43) = 0.99

\

R(S3,, N S33) =-0.01 < Cost of breathing

J

R is also a Big Table!

For now, we also give this to the agent

Markov Decision Processes

= An MDP is defined by:
= AsetofstatessinS
= AsetofactionsainA
= A transition function T(s, a, s’)
= Probability that afrom s leads tos’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

- p

R(s33) =-0.01
R(s,,) =-1.01

R(s43) = 0.99 Note: two notations are followed in literature. One in which rewards are
\ / associated with states and in the other rewards are associated with state
transitions. Both the notations are equivalent and accepted.

Markov Decision Processes

= An MDP is defined by:

= Asetofstatessin$S

= AsetofactionsainA

= A transition function T(s, a, s’)
* Probability that a fromsleadstos’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
* Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

10

Policies

* Deterministic single-agent search problems

* We determined the optimal plan, or sequence of
actions, from start to a goal

* For MDPs, we want an optimal policy n*: S - A
* A policy 7 gives an action for each state

* An optimal policy is one that maximizes the expected
utility if followed

* The agent arrives at a state and looks up the action
according to the policy.

* Note: there can be many policies, we are to
determine the optimal one.

2|4 t | =0
1 1 ~-— - —-—
1 2 3 4

Optimal policy when R(s, a, s’) =-0.03 for
all non-terminals s

»>| »|» | = | » |1
A ad =R (W=

There can be other policies that prescribe
different actions in a state. »

Markov Assumption in MDPs

* “Markov”
* Given the present state, the future and the past are independent

* For Markov decision processes
* “Markov” means action outcomes depend only on the current state
* The next state depends on the action and the current state.
* The past actions taken the past states encountered do not affect the next state.

P(St—l—l — Sl\st = s¢, Ay = a4, St—1 = 841, Ar—1,...50 = So)

— P(St_|_1 = S,‘St = St,At — CLt)

12

Optimal policies for different living rewards

* Interpret reward as the cost of
breathing (living reward).

* The value of R(s) balances the risk
and reward that the agent takes.

Example: Racing Car

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-5

Find a policy from states to actions
Slow

Slow

Example: Racing Car

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated (terminal state)
Two actions: Slow, Fast

Going faster gets double reward 0-5

Find a policy from states to actions
Slow

Slow

Overheated
-10

15

MDP as a Search Tree

Target: Need to find the optimal policy.
The one that maximizes the expected
utility if followed.

(s, a) is a g-state '

(s,a,s’) - Transition
T(s,a,5") =P(s’ |s,a)

R(s,a,s’) — Reward the agent gets

Need a way to calculate the
utility of a sequence of states!

Example: Racing Car

17

Visualizing an MDP as an Expectimax tree. Imagining the consequences of actions into the future.

Utility of Reward Sequences

What preferences should an agent have over
reward sequences?

= Moreorless? [1,2,2] or [2, 3, 4]

= Noworlater? [0,0,1] or [1,0,0]

Maximize the sum of rewards
Prefer rewards now to rewards later -
discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Sooner rewards probably do have
higher utility than later rewards

» Also helps our algorithms converge

= Example: discount of 0.5
* U([1,2,3]) =1*1 + 0.5*%2 + 0.25*3
* U([1,2,3]) < U([3,2,1])

18

Assigning Utilities to Reward Sequences

= Additive utility: U([To,’rl, 7151 18]) =70 -+ r1 -+ T 4+ ...

* Discounted utility: U(["’Oa A b Bt B {0 o 4 b ’727’2 ikt Discounting appears to be a good
model for both animal and human
preferences over time.
Computationally, helps us converge
utilities of infinite sequences.

With discounted rewards, the utility of an infinite
sequence is finite.

U([rg,-..moo]) = > 7¥'re < Rmax/(1 —7)
=0

19

MDP Formulation

* Markov decision processes:
e Set of states S

Start state s,

Set of actions A)

Transitions P(s’|s,a) (or T(s,a,s’)) o

Rewards R(s,a,s’) (and discount v)

e MDP quantities: o
* Policy = Choice of action for each state
» Utility = sum of (discounted) rewards

* Next: How to solve the MDP?
* How to determine the optimal policy?

Optimal Quantities

* The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

* The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

= The optimal policy:
n'(s) = optimal action from state s

Sis a
state

(s, a)is a
g-state

(s,a,s’) is a
transition

Value Function Example

Value (utility) of a gq-states Q(s,a) for all states
Value (utility) of states V(s) for all states ue (utility) q Q(s,a)

and all actions at each state.

VALUES AFTER 100 ITERATIONS O-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Value of States

e Values of states are related to each other.

* Fundamental Operation

* Expected utility under optimal action for this state. What is the best we can
do from this state?

* Average sum of (discounted) rewards

* Recursive definition of value:
V*(s) = max Q(s,a)
Q*(s,a) :Z T(s,a, S/)[R(S, a,s)+ 7Y V* (s’)]
V*(s) = mgxz T(s,a,s)[R(s,a,s") +yV*(s")]

23

Bellman Equations

I”

* Definition of “optimal” utility gives a simple one-step lookahead
relationship amongst optimal values.

V*(s) = max Q*(s,a)
Q*(s,a) :Z T(s,a,")[R(s,a,s")+ Y V*(s")]

V*(s) = m;le,:T(s, a,s)[R(s,a,s") +yV*(s)

* The utility of a state is the immediate reward for that state plus the
expected discounted utility of the next state assuming that the agent is
acting optimally.

24

Value lteration

 Calculate the utility of each state and then use the state utility to
select an optimal action in each state.

* Bellman equations characterize the optimal values:

V*(s) = maaxZ/:T(s, a,s)[R(s,a,s") +yV*(s)

* Value iteration computes them:
/ / /
Vit1(s) « max3 T (s,a,s) R(s,a,8") + 7 Vi(s)]

S

* Value iteration is a fixed-point solution method

25

Value Iteration Algorithm

Start with Vy(s)=0

Given vector of V,(s) values, do one ply of expectimax from each state:

Vieg1(8) < maaXZT(s,a, s") {R(s,a,s/) nyk(s’)}

Repeat until convergence Sa X
« Determine by looking at the max. change in utility of any state in an iteration.”

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
* the start state does not matter

K

Value lteration

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Value lteration

In the first iteration VALUES AFTER 1 ITERATIONS Noise = 0.2
the terminal states Discount = 0.9

reflect the reward. Living reward =0

Value lteration

Adjacent states start VALUES AFTER 2 ITERATIONS NPise =0.2
Discount = 0.9

Living reward =0

to get updated.

K

Value lteration

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Value lteration

Gridworld Display

'.
A

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Value lteration

Cridworld Display

.
.H

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Value lteration

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Value lteration

GCridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Value lteration

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Value lteration

Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Value lteration

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Value lteration

GCridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Value lteration

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Value lteration
k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Extracting Policy from the Optimal Value Function

* Our goal is to determine the policy for the MDP

 Step I: Estimate the optimal values V*(s)
* Through Value Iteration algorithm

* Step ll: Policy Extraction

e Obtain the policy implied by the values (using 1-step
look ahead).
e Use the policy to act in the environment.

m*(s) = arg max Z T(s,a,s)[R(s,a,s") +~V*(s)]

Asynchronous Dynamic Programming

* Dynamic programming methods (Bellman updates) used synchronous
updates (all states in parallel)

* Asynchronous DP
* backs up states individually, in any order
 can significantly reduce computation
e guaranteed to converge if all states continue to be selected

In place Dynamic Programming

» Synchronous value iteration stores two copies of value function

forall sin S : VneW(S) — m;axlE[RtH + A}"Vold(5t+1) | St — S]

Vold €<= Vnew
» In-place value iteration only stores one copy of value function

for all s in S . V(S) maXE[Rt+1 -+ A,"V(St+1) | St — 5]
a

Prioritized Sweeping

» Use magnitude of Bellman error to guide state selection, e.g.
maxE [Rei1 4+ 9v(Se+1) | St = s] — v(s)
Backup the state with the largest remaining Bellman error

Update Bellman error of affected states after each backup

Requires knowledge of reverse dynamics (predecessor states)

yvyvyy

Can be implemented efficiently by maintaining a priority queue

Problems with Value Iteration

* Value Iteration
* Repeats the bellman updates

Vieg1(8) < maaXZT(s,a, s") [R(s,a,s/) nyk(s’)}

S

* Problems
 Slow: O(S?A) per iteration

* The “max” at each state rarely changes. The policy often converges
long before the values converge.

Example

Example: 4*4 Grid World MDP

1 2 3
- 5 |6 7
8 9 J1o
actons 12 13 |4

R =

on all transitions

The optimal policy converges before

the values converge.

The optimal policy can be obtained
even when the utility function
estimate is inaccurate.

k=0
k=1
k=2
k=3
k=10
k=oo

0.0]-

-2.0|-

-2.0|-

00]-2.4

-3.0

-2.4]-2.9]-3.

-2.9

-2.9|-3

2.4

-3.0]-

00

0.0

-6.1]-

-9.0

-6.1

-7.7]-

-8.4

-8.4

-8.4|-

6.1

-9.0

-8.4|-

0.0

0.0

-14.

-20.

.

-14.

-18

-20.

-20.

-20.

-20.

-18.

-14.

b

-20.

-14.

0.0

random

.

‘-.

|
[

-

T
N

L]

e

d

'IJ T

r—‘

GE

policy

The extracted policy
visualized at each stage.

optimal
policy

/

Policy Iteration

—
)

e Observations

* |tis possible to get an optimal policy even
when the utility function is inaccurate.

* |f one action is clearly better than all others,
then the exact magnitude of the utilities on
states involved need not be precise.

Max error
Policy loss =======-

-~ -~
-y 0
A

=

Max error/Policy loss

0 2 R 6 8 10 12 14

* Policy iteration provides an alternative way
to arrive at optimal policies.

Number of iterations

The maximum error of the utility estimates and
the policy loss as a function of the number of
iterations of value iteration.

47

Policy Iteration

* Policy Iteration:

 Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence.

* Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal) utilities as future values.

* Repeat steps until policy converges.

* Converges to the optimal policy. In practice, can converge faster*.

*conditions beyond the scope of this course.

. 1 ! Evaluate the utilities for states
Ste p I . PO | l Cy Eva I U at l O n under the actions provided by the
given policy

Policy Evaluation: Calculating the value function V for a fixed policy &

Perform a number of simplified Bellman updates (given a policy)
Voi(s) =0

Vi1(s) < Y T(s,7m(s),) R(s, w(s),) + Vi (s)]

S

The Bellman equations are a linear system of equations without the max operator.
* Can be solved in O(n3) time by standard linear algebra solvers.
* It is not necessary to obtain the exact solution.

* Can perform some number of simplified value iteration steps (simplified because the policy is fixed)
to give a good approximation of the utility values of the states.

Efficiency: O(S?) per iteration 4s

Toy Example: Evaluating two different policies

Bridge passing task. The agent must move towards the end of a bridge. Undesirable states to the left and the right.

Policy I: Always Go Right Policy II: Always Go Forward

— -10.00 100.00 -10.00 -10.00 100.00 -10.00

-~
— -10.00 1.09 »}j| -10.00 -10.00 70.20 -10.00

-

— -10.00 -7.88 »p|| -10.00 -10.00 48.74 -10.00
A~

ﬁ _10-00 "‘8.69 ’ _10.00 _10-00 33.30 —10.00

50

Step Il: Policy Improvement

* Improvement
* Given fixed utility values for states (obtained via policy evaluation)
* Examine if there is a better policy (policy extraction) using one-step look-ahead

m;+1(s) = arg maXZT(S, a,s) {R(s, a,s) + Wvﬂi(s’)}

S/

| -10.00 || 100.00 || -10.00 |

()
2 9

Toy example

‘ -10.00 I 48.74 | -10.00 \

51

Policy Iteration: Evaluation and Improvement

* Pick an arbitrary policy

* Iterate (until the policy changes)

* Policy Evaluation: For fixed current policy =, find values with policy evaluation:
 lterate until values converge:

Vit 1 (s) < ZT(s mi(s), ') |R(s,mi(s),s") + vV, (5]

* Policy Improvement: For fixed values, get a better policy using policy extraction
* One-step look-ahead:

mit1(s) = argmaxy_T(s,a,s") |[R(s,a,s") + V()]

3/

52

Policy Iteration: Evaluation and Improvement

evaluation

o %

n—>greedy(V)

improvement

Policy evaluation Estimate v™ o

Policy improvement Generate 7’ > 7

53

Policy Iteration: Example

Policy Iteration: Example

Convergence in 4 iterations

55

Policy Iteration: Jack’s Car Rental

Example 4.2: Jack’s Car Rental Jack manages two locations for a nationwide car

rental company. Each day, some number of customers arrive at each location to rent cars.
If Jack has a car available, he rents it out and is credited $10 by the national company.

If he is out of cars at that location, then the business is lost. Cars become available for
renting the day after they are returned. To help ensure that cars are available where
they are needed, Jack can move them between the two locations overnight, at a cost of
$2 per car moved. We assume that the number of cars requested and returned at each
location are Poisson random variables, meaning that the probability that the number is
n is)T‘L—r;e_)‘, where A is the expected number. Suppose A is 3 and 4 for rental requests at
the first and second locations and 3 and 2 for returns. To simplify the problem slightly,
we assume that there can be no more than 20 cars at each location (any additional cars
are returned to the nationwide company, and thus disappear from the problem) and a
maximum of five cars can be moved from one location to the other in one night. We take
the discount rate to be v = 0.9 and formulate this as a continuing finite MDP, where
the time steps are days, the state is the number of cars at each location at the end of
the day, and the actions are the net numbers of cars moved between the two locations
overnight. Figure 4.2 shows the sequence of policies found by policy iteration starting

from the policy that never moves any cars.

Source: Sutton and Barto Section 4.2

56

Policy Iteration: Jack’s Car Rental

» States: Two locations, maximum of 20 cars at each
» Actions: Move up to 5 cars overnight (-$2 each)

» Reward: $10 for each available car rented, v = 0.9

» Transitions: Cars returned and requested randomly

» Poisson distribution, n returns/requests with prob f‘)—!"e
» 1st location: average requests = 3, average returns = 3
» 2nd location: average requests = 4, average returns = 2

—A

57

0

Policy Iteration:
Jack’s Car Rental :

=
(o\]

c

i)

=

©

o

o

——

17}

S
=

—

©

»

p—

©
O
** -1

l_-ﬂi
o 32

0 #Cars at second location 20

Figure 4.2: The sequence of policies found by policy iteration on Jack’s car rental problem,
and the final state-value function. The first five diagrams show, for each number of cars at
each location at the end of the day, the number of cars to be moved from the first location to
the second (negative numbers indicate transfers from the second location to the first). Each
successive policy is a strict improvement over the previous policy, and the last policy is optimal. B

58

Value Iteration and Policy Iteration

* Both value iteration and policy iteration compute the optimal values.

* Policy iteration has the advantage of finite-time convergence to the optimal policy.

* Both are dynamic programs for solving MDPs

59

