
Rohan Paul

COL333/671: Introduction to AI
Semester I, 2021

Adversarial Search

1

Outline

• Last Class
• Local Search

• This Class
• Adversarial Search

• Reference Material
• AIMA Ch. 5 (Sec: 5.1-5.5)

2

Acknowledgement
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina
Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Anca
Dragan, Nicholas Roy and others.

3

Game Playing and AI

• Games: challenging decision-making
problems
• Incorporate the state of the other agent in

your decision-making. Leads to a vast
number of possibilities.
• Long duration of play. Win at the end.
• Time limits: Do not have time to compute

optimal solutions.

4

Games: Characteristics

5

• Core: contingency problem
• The opponent’s move is not known ahead of time. A player must respond

with a move for every possible opponent reply.

• Output
• Calculate a strategy (policy) which recommends a move from each state.

• Zero-Sum Games
• Adversarial: agents have opposite

utilities (values on outcomes)

• Axes:
• Players: one, two or more.
• Actions (moves): deterministic or

stochastic
• States: fully known or not.

Playing Tic-Tac-Toe: Essentially a search problem!

6
Slide adapted from Dan Klein and from Mausam

Terminal nodes we get -1, 0 or 1 for loss, tie or
win. Think of this value as a ”utility” of a state.

Single-Agent Trees

7

8

2 0 2 6 4 6… …

Computing “utility” of states to decide actions

8

Non-Terminal States:

8

2 0 2 6 4 6… …

Value of a state:
The best achievable

outcome (utility)
from that state

Terminal States:

Game Trees: Presence of an Adversary

-20 -8 -18 -5 -10 +4… … -20 +8

The adversary’s actions are not in our control. Plan as a contingency considering all possible actions taken by the adversary.

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Adversarial Search (Minimax)
• Consider a deterministic, zero-sum game
• Tic-tac-toe, chess etc.
• One player maximizes result and the other minimizes result.

• Minimax Search
• Search the game tree for best moves.
• Select optimal actions that move to a position with the highest minimax

value.
• What is the minimax value?

• It is the best achievable utility against the optimal (rational) adversary.
• Best achievable payoff against the best play by the adversary.

Minimax Algorithm
• Ply and Move

• Move: when action taken by both players.
• Ply: is a half move.

• Backed-up value
• of a MAX-position: the value of the largest successor
• of a MIN-position: the value of its smallest successor.

• Minimax algorithm
• Search down the tree till the terminal nodes.
• At the bottom level apply the utility function.
• Back up the values up to the root along the search

path (compute as per min and max nodes)
• The root node selects the action.

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation
def value(state):

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Useful, when there are multiple adversaries.

Minimax Properties

• Completeness
• Yes

• Complexity
• Time: O(bm)
• Space: O(bm)

• Requires growing the tree till the
terminal nodes.

• Not feasible in practice for a game
like Chess.

Minimax Properties

• Optimal
• If the adversary is playing optimally (i.e.,

giving us the min value)
• Yes

• If the adversary is not playing optimally
(i.e., not giving us the min value)
• No. Why? It does not exploit the opponent’s

weakness against a suboptimal opponent).

10 10 9 100

MAX

MIN

You: Cricle. Opponent: Cross

If min returns 9? Or 100?

Necessary to examine all values in the tree?

12 8 5 23 2 14

3 <=2 2

3

Alpha-Beta Pruning: General Idea
• General Configuration (MIN version)

• Consider computing the MIN-VALUE at some node n,
examining n’s children

• n’s estimate of the childrens’ min is reducing.

• Who can use n’s value to make a choice? MAX
• Let a be the best value that MAX can get at any choice

point along the current path from the root

• If the value at n becomes worse than a, MAX will not pick
this option, so we can stop considering n’s other children
(any further exploration of children will only reduce the
value further)

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Pruning: General Idea
• General Configuration (MAX version)

• Consider computing the MAX-VALUE at some node n,
examining n’s children

• n’s estimate of the childrens’ min is increasing.

• Who can use n’s value to make a choice? MIN
• Let b be the lowest (best) value that MIN can get at any

choice point along the current path from the root

• If the value at n becomes higher than b, MIN will not pick
this option, so we can stop considering n’s other children
(any further exploration of children will only increase the
value further)

MIN

MAX

MIN

MAX n

b

Pruning: Example

Pruning: Example

8 <=4

Pruning: Example

10

10

>=100 2

<=2

Pruning: Example

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning - Properties

1. Pruning has no effect on the minimax value at the root.
• Pruning does not affect the final action selected at the root.

2. A form of meta-reasoning (computing what to compute)
• Eliminates nodes that are irrelevant for the final decision.

26

Alpha-Beta Pruning – Order of nodes matters

27

12 8 5 23 2 14

3 <=2 2

3

Alpha-Beta Pruning – Order of nodes matters

28

12 8 5 143 2 2

3 <=2

3

<=2

Alpha-Beta Pruning - Properties

1. Pruning has no effect on the minimax value at the root.
• Pruning does not affect the final action selected at the root.

2. A form of meta-reasoning (computing what to compute)
• Eliminates nodes that are irrelevant for the final decision.

3. The alpha-beta search cuts the largest amount off the tree when we
examine the best move first

• However, best moves are typically not known. Need to make estimates.

29

Alpha-Beta Pruning – Order of nodes matters

30
Slide adapted from Prof. Mausam

If the nodes were indeed encountered as “worst
moves first” – then no pruning is possible

If the nodes were encountered as “best moves first”
– then pruning is possible

Note: In reality, we don’t know the ordering.

Alpha-Beta Pruning - Properties

1. Pruning has no effect on the minimax value at the root.
• Pruning does not affect the final action selected at the root.

2. A form of meta-reasoning (computing what to compute)
• Eliminates nodes that are irrelevant for the final decision.

3. The alpha-beta search cuts the largest amount off the tree when we
examine the best move first

• Problem: However, best moves are typically not known.
• Solution: Perform iterative deepening search and evaluate the states.

4. Time Complexity
• Best ordering - O(bm/2). Can double the search depth for the same resources.
• On average – O(b3m/4) if we expect to find the min or max after b/2 expansions.

31

Alpha-Beta for Chess

Slide adapted from Prof. Mausam

Minimax for Chess

Cutting-off Search
• Problem (Resource costraint):

• Minimax search: full tree till the terminal nodes.
• Alpha-beta prunes the tree but still searches till the

terminal nodes.
• We can’t search till the terminal nodes.

• Solution:
• Depth-limited Search (H-Minimax)
• Search only to a limited depth (cutoff) in the tree
• Replace the terminal utilities with an evaluation function

for non-terminal positions.

? ? ? ?

-1 -2 4 9

4
MIN

MAX

-2 4

Cut off

Terminal nodes

Evaluations

Evaluation Functions
• Evaluation functions score non-terminals in depth-limited search.
• Estimate the chances of winning.

• Ideal function: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

• e.g. fi(s) = (number of pieces of type i), each weight wi etc.

Evaluation Functions and Alpha-Beta

• Evaluation functions are always imperfect.

• Value at a min-node will only keep going down. Once value of min-node lower than
better option for max along path to root, can prune

• Evaluation function as a guidance for pruning
• IF evaluation function provides upper-bound on value at min-node, and upper-bound already

lower than better option for max along path to root THEN can prune

Determining “good” node orderings
• The ordering of nodes helps alpha-beta pruning.

• Worst ordering O(bm). Best ordering O(bm/2).

• How to find good orderings
• Problem: we only know them when we evaluate the nodes.

• One approach – iterative deepening to determine
evaluations for nodes
• What if we can do iterative deepening to a certain depth. Use the

evaluation function at the set depth and then compute the values for the
nodes in the tree that is generated.

• Next time, use the evaluations of the previous search to order the nodes.
Use them for pruning.

• Use evaluations of the previous search for order.

Incorporating Chance: Expectimax Search

• When the result of an action is not known.

• Incorporate a notion of chance
• Include chance nodes

• Unpredictable opponents: the ghosts move
randomly in Pacman.

• Explicit randomness: rolling dice by a player in a
game.

• Expectimax search:
• At chance nodes the outcome is uncertain
• Calculate the expected utilities: weighted average

(expectation) of children

37

10 10 9 100

max

Expectimax Search
def value(state):

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

Expectimax Search

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax Search

12 9 6 03 2 154 6 12 93 2

Can we perform pruning?

Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true

expectimax value

• Depth-limit can be applied in
Expectimax search.
• Use heuristics to estimate the

values at the depth limit.

• Other games: non zero-sum, or multiple players

• Generalization of minimax:
• Terminals have utility tuples
• Node values are also utility tuples
• Each player maximizes its own component

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Multiple players and other games

43

“Games are to AI as grand prix is to automobile design”
Games viewed as an indicator of intelligence.

• A random variable represents an event whose outcome is unknown
• A probability distribution is an assignment of weights to outcomes

• Example: Traffic on freeway
• Random variable: T = whether there’s traffic
• Outcomes: T in {none, light, heavy}
• Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

• Some laws of probability:
• Probabilities are always non-negative
• Probabilities over all possible outcomes sum to one

• As we get more evidence, probabilities may change:
• P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
• Methods for reasoning and updating probabilities later.

0.25

0.50

0.25

Probabilities (Recap)

• The expected value of a function of a random variable is the average, weighted by
the probability distribution over outcomes

• Example: How long to get to the airport?

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

Expectations (Recap)

• In expectimax search, we have a probabilistic model of
how the opponent (or environment) will behave in any
state
• Model could be a simple uniform distribution (roll a die)
• Model could be sophisticated and require a great deal of

computation. The model might say that adversarial actions
are likely.

• For now, assume each chance node magically comes
along with probabilities that specify the distribution
over its outcomes (later formal ways).

Probabilities for Expectimax

• Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

• Providing utilities
• In a game, may be simple (+1/-1)
• Utilities summarize the agent’s goals

• We specify the utilities for a task, let the
behaviour emerge from the action.

Getting ice cream

Get Single Get Double

Oops Whew!

Utilities and Decision-making

•Maximum expected utility (MEU) principle:
• Choose the action that maximizes expected

utility
• The agent can be in several states, each with a

probability distribution. Utilities map states to a
value. Compute the expectation.

•We try to build models that maximize the
expected utility.

Maximum Expected Utility

