COL333/671: Introduction to AI Semester I, 2021

Local Search Algorithms

Rohan Paul

Outline

- Last Class
 - Constraint Satisfaction Problems
- This Class
 - Local Search Algorithms
- Reference Material
 - AIMA Ch. 4.1

Acknowledgement

These slides are intended for teaching purposes only. Some material has been used/adapted from web sources and from slides by Doina Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy and others.

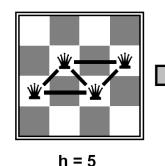
Iterative Approaches to Solving CSPs

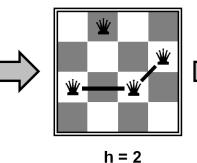
- Local search methods
 - Keep track of "complete" states, i.e., all variables assigned.
 - If there are conflicts, then try to improve the assignment iteratively till a solution is obtained.
- Local search for CSPs:
 - Take an assignment with unsatisfied constraints
 - Reassign variable values
 - Repeat: Till the CSP does not have a solution,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value for the variable that violates the fewest constraints
 - I.e., "hill climb" with h(x) = total number of violated constraints
 - Hill climbing (a general technique for search)
 - Start at a state
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

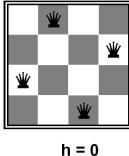
Keep track of complete assignments and explore at local changes.

Hill climbing

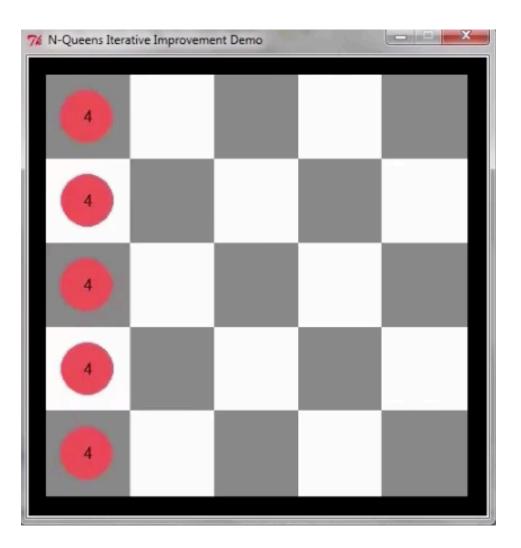
Example: 4 Queens





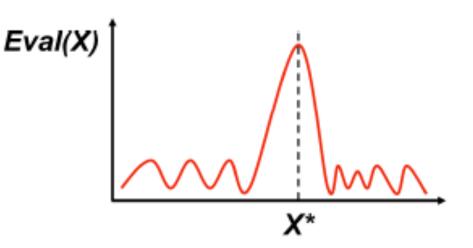


- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(x) = number of attacks (number of violated binary constraints)

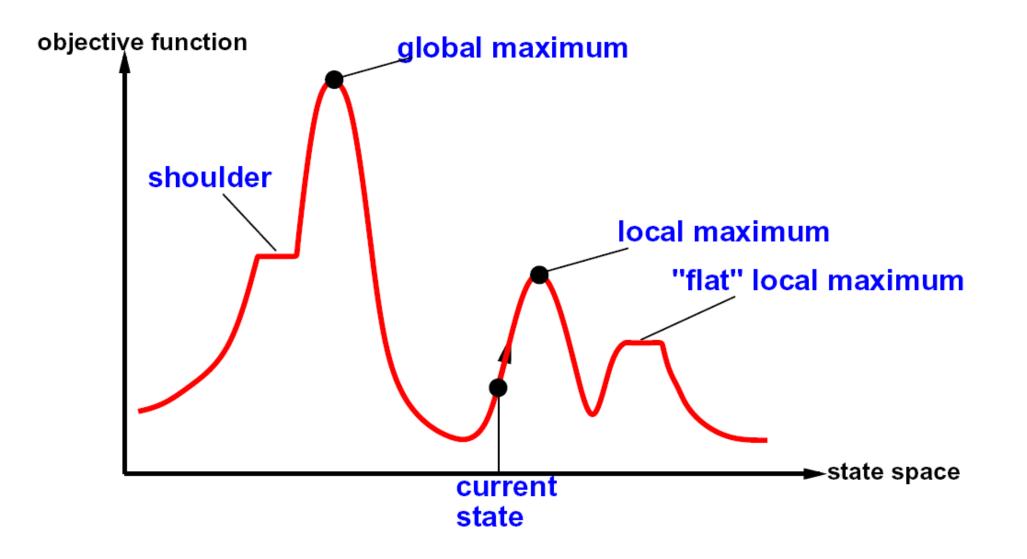


Optimization Problems: Generic Setup

- There is (discrete) combinatorial structure to the problem (maybe with constraints).
- Cost function, which we want to optimize.
- Searching all possible solutions is likely to be infeasible.
 - At least, we want a "good" solution.

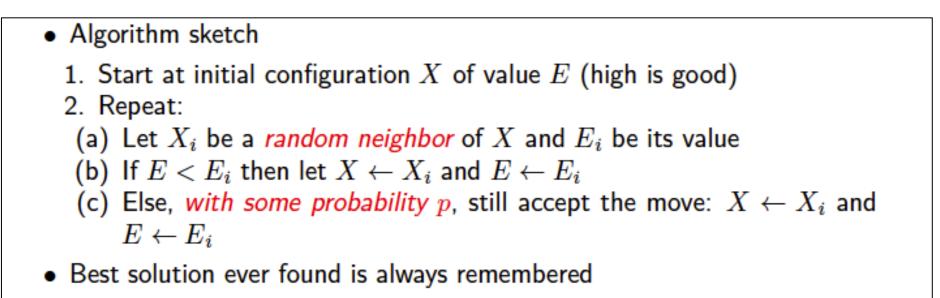


Optimization Landscape



Simulated Annealing

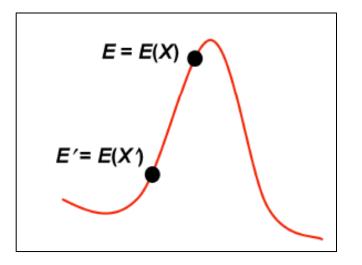
- Allows some apparently **bad moves** to escape local maxima.
- **Decrease** the size and the frequency of bad moves over time.

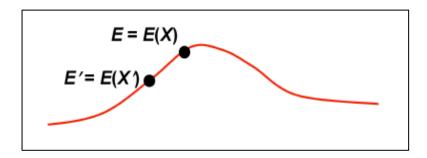


A form of Monte-Carlo Search. Move around the environment to explore it instead of systematically sweeping. Powerful technique for large domains.

Simulated Annealing: How to decide *p*?

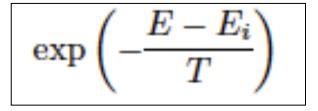
- Considering a move from state of value E to a lower valued state of E'.
- If (E E') is large:
 - Likely to be close to a promising maximum.
 - Less inclined to to go downhill.
- If (E E') is small:
 - The closest maximum may be shallow
 - More inclined to go downhill is not as bad.





Simulated Annealing: Selecting Moves

- If the new value E_i is *better* than the old value E, move to X_i
- If the new value is *worse* (E_i < E) then move to the neighboring solution as per *Boltzmann* distribution.



- Temperature (T>0)
 - **T is high**, exp is ~0, acceptance probability is ~1, high probability of acceptance of a worse solution.
 - **T is low**, the probability of moving to a worse solution is ~ 0, low probability of acceptance of a worse solution.
 - Schedule T to reduce over time.

Simulated Annealing: Properties

• T is high

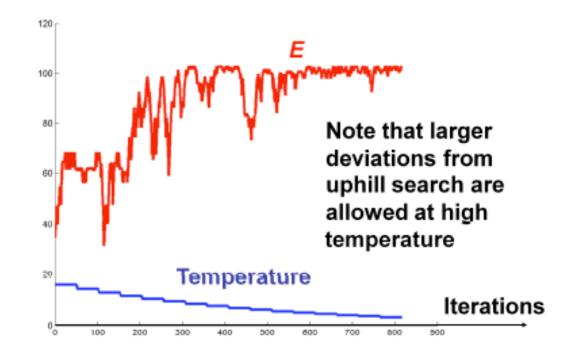
- The algorithm is in an exploratory phase
- Even bad moves have a high chance of being picked)

• T is low

- The algorithm is in an exploitation phase
- The "bad" moves have very low probability

• If T is decreased slowly enough

• Simulated annealing is guaranteed to reach the best solution in the limit.



Local Beam Search

- Look for solutions from multiple points in parallel.
- Algorithm
 - Track k states (rather than 1).
 - Begin with k randomly sampled states.
 - Loop
 - Generate successors of each of the k-states
 - If anyone has the goal, the algorithm halts
 - Otherwise, select only the k-best successors from the list and repeat.
 - Note:
 - Each run is <u>not</u> independent, information is passed between parallel search threads.
 - Promising states are propagated. Less promising states are not propagated.
 - Problem: states become concentrated in a small region of space.

Stochastic Beam Search

- Local beam search
 - Problem: states become concentrated in a small region of space
 - Search degenerates to hill climbing
- Stochastic beam search
 - Instead of taking the best k states
 - Sample k states from a distribution
 - Probability of selecting a state *increases* as the *value* of the state.