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• A* Search: evaluation Function

• Reference Material
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Uninformed Search

• Uniform Cost Search
• Expand the lowest cost path
• Complete 
• Optimal

• Problem
• Explores options in every “direction”
• No information about goal location

• Informed Search
• Use problem-specific knowledge beyond the 

definition of the problem to guide the search 
towards the goal. 
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Recall: Tree Search
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Best First Search
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• Best First Search
• Always choose the node from frontier that has the best evaluation (according 

to a function). 
• The search orders nodes in the frontier (via priority queue) for expansion using 

this evaluation. 

• Incorporate an evaluation of every node
• Lets say we evaluate a node with a function f() value.
• Estimates the desirability of a node for the purposes of potentially reaching 

the goal. A search strategy is defined by picking the order of node expansion.
• Expand most desirable unexpanded node. Order the nodes in frontier in 

decreasing order of desirability.



Evaluation Functions for Uninformed and 
Informed Search

• Uninformed search methods expand nodes based on the distance of the 
node from the start node, d(s0, s)
• Informed search methods also use some estimate of the distance to the 

goal, d(s, sg) 
• What if we knew the exact distance to goal d(s, sg), then we would not 

need to search 
• Then there is no need to search, we could just be greedy!
• In practice, we do not know that exactly and must make an “estimate”. 
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What is a Heuristic? 

• Informally, it is an intuition about “approximate cost to goal”
• Even if we do not know d(s, sg) exactly, we often have some intuition

about this distance. This intuition is called a heuristic, h(n).
• Heuristic
• h(n) = estimated cost of the cheapest path from the state at node n to a goal 

state. 
• Heuristics can be arbitrary, non-negative, problem-specific functions. 
• Constraint, h(n) = 0 if n is a goal.
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Example Heuristic – Path Planning

• Consider a path along a road 
system
• What is a reasonable heuristic?

• The straight-line Euclidean distance 
from one place to another

• Is it always, right?
• Certainly not – actual paths are 

rarely straight!
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Example Heuristic – 8 Puzzle
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Example Heuristic – 8 Puzzle
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Greedy Best-First Search

• Best-First Search
• At any time, expand the most promising node on the frontier according to the 

evaluation function f(n).

• Greedy Best-First Search
• Best-first search that uses h(n) as the evaluation function, 
• The evaluation function is, f(n) = h(n), the estimated cost from a node n to the goal.
• Only guided by “cost to go” (not “cost so far”). 
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Greedy Best-First Search

• Which path does Greedy Best-First Search return?

13



A* Search

• Core Idea
• Combine the greedy search (the estimated cost to go) with the uniform-search 

strategy (the cost incurred so far). 
• Minimize estimated path costs. Avoid expanding paths that are already 

expensive. 
• Always expand node with lowest f(n) first, where
• g(n) = actual cost from the initial state to n.
• h(n) = estimated cost from n to the next goal.
• f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n. 

• Can I use any heuristic?
• Any heuristic will not work. [properties soon]



• Uniform-cost orders by path cost, or backward cost  g(n)
• Greedy orders by goal proximity, or forward cost  h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)
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Example

Which path will A* search find?



Effect of heuristic function on search

• For the following choices, would the 
optimal solution be found?
• h(A) = 1
• h(A) = 2 
• h(A) = 3 

• Can we put conditions on the choice 
of heuristic to guarantee optimality?



Admissible Heuristics

• Let h∗(n) be the actual shortest path from n to any goal state.
• Heuristic h is called admissible if h(n) ≤ h∗(n) ∀n.
• Admissible heuristics are optimistic, they often think that the cost to 

the goal is less than the actual cost. 

• If h is admissible, then h(g) = 0, ∀g ∈ G
• A trivial case of an admissible heuristic is h(n) = 0, ∀n.



Admissible or not?

Straight line distance



A* Search: Route Finding Example



A* Search: Route Finding Example

A* Tree Search will find the optimal 
path if the heuristic is admissible. 



Consistency (monotonicity)

• An admissible heuristic h is called consistent if for every state s 
and for every successor s’, h(s) ≤ c(s, s’) + h(s’)
• This is a version of triangle inequality

• Consistency is a stricter requirement than admissibility. 

• If h is a consistent heuristic and all costs are non-zero, then f 
values cannot decrease along any path:
• Claim f(n’)>= f(n), where n’ is the successor of n.

• g(n’)  =  g(n) + c(n, a, n’)
• f(n’) = g(n) + c(n, a, n’) + h(n’) >= f(n)



Admissibility and Consistency

• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)
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Search Contours
• UCS Search Contours

• A* Search Contours

Start Goal

…
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A* Search Properties

• Optimality
• Tree search version of A* is optimal if the heuristic is admissible. 
• Graph search version of A* is optimal if the heuristic is consistent. 

• Completeness
• If a solution exists, A* will find it provided that:

• every node has a finite number of successor nodes (b is finite).
• there exists a positive constant > 0 such that every step has at least cost 
• Then there exists only a finite number of nodes with cost less than or equal to C*.
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A* Search Properties

• Exponential worst-case time and space complexity
• Let e = (h* - h)/h* (relative error)
• Complexity O(bed) where be  is the effective branching factor. 
• With a good heuristic complexity is often sub-exponential

• Optimally efficient
• With a given h, no other search algorithm will be able to expand fewer nodes

• If an algorithm does not expand all nodes with f(n) < C* (the cost of the optimal 
solution) then there is a chance that it will miss the optimal solution.

• Main Limitation: Space Requirement
• The number of states within the goal contour search space is still exponential 

in the length of the solution.  
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A* Search may still take a long time to find 
the optimal solution

How to reduce memory requirement for A*?

27
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Iterative Deepening A* (IDA*)

• Idea
• Use an f-value limit, rather than a depth limit. 

Expand all nodes up to f1, f2, . . . . .  
• Keep track of the next limit to consider (so we 

will search at least one more node next time). 
• If the depth-bounded search fails, then the next 

bound is the minimum of the f-values that 
exceeded the previous bound.  

• Properties
• IDA* ]checks the same nodes as A* but 

recomputes them using a depth-first search 
instead of storing them.

• IDA∗ has the same properties as A∗ but uses 
less memory.
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IDA* example
• If f1 = 4, then which nodes are searched? 
• If f2 = 8, then which nodes are searched? 



Weighted A*

• Key Idea
• Optimal solution requires large 

effort. 
• Can we quickly find sub-optimal 

solutions?
• Expand states in the order of 
• f’(n) = g(n) + w*h(n) values, 
• where w > 1.0 
• Create a bias towards expansion of 

states that are closer to goal. 
• Orders of magnitude faster than 

A*
29

Adapted from Maxim Likhachev

A weighted heuristic accelerates the search by 
making nodes closer to the goal more attractive, 
giving a more depth first character. 



Weighted A*

• f’(n) is not admissible but finds good sub-optimal solutions quickly. 
• If h(n) is admissible then the sub-optimality is bounded. 
• Cost(solution) ) ≤ ε·cost(optimal solution) where ε = w – 1.0.

• Trade off between search effort and solution quality. 

30
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Anytime Search

• Anytime search with weighted A*
• find an approx. solution quickly; and then continue the search to find improved 

solutions and and improve the bounds on sub-optimality. 
• Run a series of weighted A* searches with decreasing w.

31
Adapted from Maxim Likhachev

W = 2.5 W = 1.5 W = 1.0



How are heuristics motivated?

• Prior knowledge about the problem
• Exact solution cost of a relaxed version of the problem

• E.g., If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1 gives the 
shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then h2 gives the shortest 
solution

• From prior experience.
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Admissible Heuristics from Relaxed Problems
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• Problem Relaxation
• Ignore constraints/rules
• Increase possibilities for actions. 

• State space graph for the relaxed problem 
is a super-graph of the original state space
• The removal of restrictions adds more edges. 
• Easier to find a solution.

366

Permitting straight line movement adds edges to 
the graph. 



Admissible Heuristics from Relaxed Problems
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• Optimal solution in the original problem is also a solution for the relaxed
problem.
• Cost of the optimal solution in the relaxed problem is an admissible

heuristic in the original problem. 
• Finding the optimal solution in the relaxed problem should be “easy”

• Without performing search. 
• If decomposition is possible, it is easier to directly solve the problem. 



Effective branching factor
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• Let A* generate N nodes to find a goal at depth d
• Let b* be the branching factor that a uniform tree of depth d would have in 

order to contain N+1 nodes.

• Varies across problem instances, but nearly constant for hard problems. 
• A measure of a heuristic’s overall usefulness. A way to compare different 

heuristics.
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Comparing Heuristics
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Effective branching factors for A* search for 
the 8-puzzle: 

Comparison of two heuristics: Misplaced tiles 
(h1) and Manhattan distance (h2)

Heuristic (h2) expands fewer nodes and has a 
lower effective branching factor

Reference: AIMA



Dominance
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• Heuristic function h2 (strictly) dominates h1 if 
• both are admissible and 
• for every node n, h2(n) is (strictly) greater than h1(n). 

• A* search with a dominating heuristic function h2
will never expand more nodes that A* with h1. 

• Domination leads to efficiency
• Prefer heuristics with higher values, they lead to 

fewer expansions and more goal-directedness during 
search.  



Combining admissible heuristics
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• Heuristic design process
• We may have a set of heuristics but not a single 

“clearly best” heuristic. 
• Have a set of heuristics for a problem and none of 

them dominates any of the other. 

• Combining heuristics
• Can use a composite heuristic
• Max of admissible heuristics is admissible when the 

component heuristics are admissible. 
• The composite heuristic dominates the component 

heuristic. 

Slide adapted from Dan Klein



Combining admissible heuristics
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• Heuristics form a semi-lattice structure
• Some heuristics can be compared to others via 

dominance. 
• There may be others not comparable.
• Can create composites by combining component 

heuristics. 

• Bottom of lattice is the zero heuristic 
• No or little computation effort 
• Not useful during search

• Top of lattice is the exact heuristic 
• A lot of computation effort
• Really useful during search (give the exact cost)

Slide adapted from Dan Klein
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Slide adapted from Mausam

Trade off

Effectiveness of the heuristic 
(reduced search time with the 
heuristic) vs. effort required to 
compute the heuristic


