
Rohan Paul

COL333/671: Introduction to AI
Semester II, 2020

Solving Problems by Searching
Informed Search

1

Outline

• Last Class
• Uninformed Search

• This Class
• Informed Search

• Key idea behind Informed Search
• Best First Search
• Greedy Best First Search
• A* Search: evaluation Function

• Reference Material
• AIMA Ch. 3

2

Acknowledgement
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina
Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy
and others.

3

Uninformed Search

• Uniform Cost Search
• Expand the lowest cost path
• Complete
• Optimal

• Problem
• Explores options in every “direction”
• No information about goal location

• Informed Search
• Use problem-specific knowledge beyond the

definition of the problem to guide the search
towards the goal.

4

…

c £ 3
c £ 2

c £ 1

Recall: Tree Search

5

Best First Search

6

• Best First Search
• Always choose the node from frontier that has the best evaluation (according

to a function).
• The search orders nodes in the frontier (via priority queue) for expansion using

this evaluation.

• Incorporate an evaluation of every node
• Lets say we evaluate a node with a function f() value.
• Estimates the desirability of a node for the purposes of potentially reaching

the goal. A search strategy is defined by picking the order of node expansion.
• Expand most desirable unexpanded node. Order the nodes in frontier in

decreasing order of desirability.

Evaluation Functions for Uninformed and
Informed Search

• Uninformed search methods expand nodes based on the distance of the
node from the start node, d(s0, s)
• Informed search methods also use some estimate of the distance to the

goal, d(s, sg)
• What if we knew the exact distance to goal d(s, sg), then we would not

need to search
• Then there is no need to search, we could just be greedy!
• In practice, we do not know that exactly and must make an “estimate”.

7

What is a Heuristic?

• Informally, it is an intuition about “approximate cost to goal”
• Even if we do not know d(s, sg) exactly, we often have some intuition

about this distance. This intuition is called a heuristic, h(n).
• Heuristic
• h(n) = estimated cost of the cheapest path from the state at node n to a goal

state.
• Heuristics can be arbitrary, non-negative, problem-specific functions.
• Constraint, h(n) = 0 if n is a goal.

8

Example Heuristic – Path Planning

• Consider a path along a road
system
• What is a reasonable heuristic?

• The straight-line Euclidean distance
from one place to another

• Is it always, right?
• Certainly not – actual paths are

rarely straight!

9

h(x)

Example Heuristic – 8 Puzzle

10

Example Heuristic – 8 Puzzle

11

Greedy Best-First Search

• Best-First Search
• At any time, expand the most promising node on the frontier according to the

evaluation function f(n).

• Greedy Best-First Search
• Best-first search that uses h(n) as the evaluation function,
• The evaluation function is, f(n) = h(n), the estimated cost from a node n to the goal.
• Only guided by “cost to go” (not “cost so far”).

12

Greedy Best-First Search

• Which path does Greedy Best-First Search return?

13

A* Search

• Core Idea
• Combine the greedy search (the estimated cost to go) with the uniform-search

strategy (the cost incurred so far).
• Minimize estimated path costs. Avoid expanding paths that are already

expensive.
• Always expand node with lowest f(n) first, where
• g(n) = actual cost from the initial state to n.
• h(n) = estimated cost from n to the next goal.
• f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n.

• Can I use any heuristic?
• Any heuristic will not work. [properties soon]

• Uniform-cost orders by path cost, or backward cost g(n)
• Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

Example: UCS , Greedy and A* Search

Example

Which path will A* search find?

Effect of heuristic function on search

• For the following choices, would the
optimal solution be found?
• h(A) = 1
• h(A) = 2
• h(A) = 3

• Can we put conditions on the choice
of heuristic to guarantee optimality?

Admissible Heuristics

• Let h∗(n) be the actual shortest path from n to any goal state.
• Heuristic h is called admissible if h(n) ≤ h∗(n) ∀n.
• Admissible heuristics are optimistic, they often think that the cost to

the goal is less than the actual cost.

• If h is admissible, then h(g) = 0, ∀g ∈ G
• A trivial case of an admissible heuristic is h(n) = 0, ∀n.

Admissible or not?

Straight line distance

A* Search: Route Finding Example

A* Search: Route Finding Example

A* Tree Search will find the optimal
path if the heuristic is admissible.

Consistency (monotonicity)

• An admissible heuristic h is called consistent if for every state s
and for every successor s’, h(s) ≤ c(s, s’) + h(s’)
• This is a version of triangle inequality

• Consistency is a stricter requirement than admissibility.

• If h is a consistent heuristic and all costs are non-zero, then f
values cannot decrease along any path:
• Claim f(n’)>= f(n), where n’ is the successor of n.

• g(n’) = g(n) + c(n, a, n’)
• f(n’) = g(n) + c(n, a, n’) + h(n’) >= f(n)

Admissibility and Consistency

• Main idea: estimated heuristic costs ≤ actual costs

• Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

• Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

3

A

C

G

h=4 h=1
1

h=2

Search Contours
• UCS Search Contours

• A* Search Contours

Start Goal

…
b

…
b

GoalStart

A* Search Properties

• Optimality
• Tree search version of A* is optimal if the heuristic is admissible.
• Graph search version of A* is optimal if the heuristic is consistent.

• Completeness
• If a solution exists, A* will find it provided that:

• every node has a finite number of successor nodes (b is finite).
• there exists a positive constant > 0 such that every step has at least cost
• Then there exists only a finite number of nodes with cost less than or equal to C*.

25

�
<latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit>

�
<latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit>

A* Search Properties

• Exponential worst-case time and space complexity
• Let e = (h* - h)/h* (relative error)
• Complexity O(bed) where be is the effective branching factor.
• With a good heuristic complexity is often sub-exponential

• Optimally efficient
• With a given h, no other search algorithm will be able to expand fewer nodes

• If an algorithm does not expand all nodes with f(n) < C* (the cost of the optimal
solution) then there is a chance that it will miss the optimal solution.

• Main Limitation: Space Requirement
• The number of states within the goal contour search space is still exponential

in the length of the solution.

26

A* Search may still take a long time to find
the optimal solution

How to reduce memory requirement for A*?

27
Adapted from Maxim Likhachev

Iterative Deepening A* (IDA*)

• Idea
• Use an f-value limit, rather than a depth limit.

Expand all nodes up to f1, f2,
• Keep track of the next limit to consider (so we

will search at least one more node next time).
• If the depth-bounded search fails, then the next

bound is the minimum of the f-values that
exceeded the previous bound.

• Properties
• IDA*]checks the same nodes as A* but

recomputes them using a depth-first search
instead of storing them.

• IDA∗ has the same properties as A∗ but uses
less memory.

28

IDA* example
• If f1 = 4, then which nodes are searched?
• If f2 = 8, then which nodes are searched?

Weighted A*

• Key Idea
• Optimal solution requires large

effort.
• Can we quickly find sub-optimal

solutions?
• Expand states in the order of
• f’(n) = g(n) + w*h(n) values,
• where w > 1.0
• Create a bias towards expansion of

states that are closer to goal.
• Orders of magnitude faster than

A*
29

Adapted from Maxim Likhachev

A weighted heuristic accelerates the search by
making nodes closer to the goal more attractive,
giving a more depth first character.

Weighted A*

• f’(n) is not admissible but finds good sub-optimal solutions quickly.
• If h(n) is admissible then the sub-optimality is bounded.
• Cost(solution)) ≤ ε·cost(optimal solution) where ε = w – 1.0.

• Trade off between search effort and solution quality.

30
Adapted from Maxim Likhachev

Anytime Search

• Anytime search with weighted A*
• find an approx. solution quickly; and then continue the search to find improved

solutions and and improve the bounds on sub-optimality.
• Run a series of weighted A* searches with decreasing w.

31
Adapted from Maxim Likhachev

W = 2.5 W = 1.5 W = 1.0

How are heuristics motivated?

• Prior knowledge about the problem
• Exact solution cost of a relaxed version of the problem

• E.g., If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1 gives the
shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then h2 gives the shortest
solution

• From prior experience.

32

Admissible Heuristics from Relaxed Problems

33

• Problem Relaxation
• Ignore constraints/rules
• Increase possibilities for actions.

• State space graph for the relaxed problem
is a super-graph of the original state space
• The removal of restrictions adds more edges.
• Easier to find a solution.

366

Permitting straight line movement adds edges to
the graph.

Admissible Heuristics from Relaxed Problems

34

• Optimal solution in the original problem is also a solution for the relaxed
problem.
• Cost of the optimal solution in the relaxed problem is an admissible

heuristic in the original problem.
• Finding the optimal solution in the relaxed problem should be “easy”

• Without performing search.
• If decomposition is possible, it is easier to directly solve the problem.

Effective branching factor

35

• Let A* generate N nodes to find a goal at depth d
• Let b* be the branching factor that a uniform tree of depth d would have in

order to contain N+1 nodes.

• Varies across problem instances, but nearly constant for hard problems.
• A measure of a heuristic’s overall usefulness. A way to compare different

heuristics.

dd

d

d

NbbN

bbN
bbbN

»Þ»

--=+

++++=+
+

**)(

)1*/()1*)((1
)(...)(*11

1

2

Comparing Heuristics

36

Effective branching factors for A* search for
the 8-puzzle:

Comparison of two heuristics: Misplaced tiles
(h1) and Manhattan distance (h2)

Heuristic (h2) expands fewer nodes and has a
lower effective branching factor

Reference: AIMA

Dominance

37

• Heuristic function h2 (strictly) dominates h1 if
• both are admissible and
• for every node n, h2(n) is (strictly) greater than h1(n).

• A* search with a dominating heuristic function h2
will never expand more nodes that A* with h1.

• Domination leads to efficiency
• Prefer heuristics with higher values, they lead to

fewer expansions and more goal-directedness during
search.

Combining admissible heuristics

38

• Heuristic design process
• We may have a set of heuristics but not a single

“clearly best” heuristic.
• Have a set of heuristics for a problem and none of

them dominates any of the other.

• Combining heuristics
• Can use a composite heuristic
• Max of admissible heuristics is admissible when the

component heuristics are admissible.
• The composite heuristic dominates the component

heuristic.

Slide adapted from Dan Klein

Combining admissible heuristics

39

• Heuristics form a semi-lattice structure
• Some heuristics can be compared to others via

dominance.
• There may be others not comparable.
• Can create composites by combining component

heuristics.

• Bottom of lattice is the zero heuristic
• No or little computation effort
• Not useful during search

• Top of lattice is the exact heuristic
• A lot of computation effort
• Really useful during search (give the exact cost)

Slide adapted from Dan Klein

40
Slide adapted from Mausam

Trade off

Effectiveness of the heuristic
(reduced search time with the
heuristic) vs. effort required to
compute the heuristic

