COL333/671: Introduction to Al

Semester 11, 2020

Solving Problems by Searching
Informed Search

Rohan Paul

Outline

e Last Class
 Uninformed Search

* This Class

* Informed Search

* Key idea behind Informed Search
* Best First Search

* Greedy Best First Search

* A* Search: evaluation Function

 Reference Material
 AIMA Ch. 3

Acknowledgement

These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina

Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy
and others.

Uninformed Search

e Uniform Cost Search
* Expand the lowest cost path
 Complete
e Optimal

* Problem

* Explores options in every “direction”
* No information about goal location

* Informed Search

* Use problem-specific knowledge beyond the
definition of the problem to guide the search
towards the goal.

Recall: Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove 1t from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Best First Search

* Best First Search
* Always choose the node from frontier that has the best evaluation (according

to a function).
 The search orders nodes in the frontier (via priority queue) for expansion using

this evaluation.

* Incorporate an evaluation of every node
e Lets say we evaluate a node with a function f() value.
* Estimates the desirability of a node for the purposes of potentially reaching
the goal. A search strategy is defined by picking the order of node expansion.
 Expand most desirable unexpanded node. Order the nodes in frontier in

decreasing order of desirability.

Evaluation Functions for Uninformed and
Informed Search

* Uninformed search methods expand nodes based on the distance of the
node from the start node, d(s,, s)

* Informed search methods also use some estimate of the distance to the
goal, d(s, s)

* What if we knew the exact distance to goal d(s, s,), then we would not
need to search

* Then there is no need to search, we could just be greedy!
* |In practice, we do not know that exactly and must make an “estimate”.

What is a Heuristic?

* Informally, it is an intuition about “approximate cost to goal”

* Even if we do not know d(s, s;) exactly, we often have some intuition
about this distance. This intuition is called a heuristic, h(n).

 Heuristic

* h(n) = estimated cost of the cheapest path from the state at node n to a goal
state.

* Heuristics can be arbitrary, non-negative, problem-specific functions.
e Constraint, h(n)=0if nis a goal.

Example Heuristic — Path Planning

* Consider a path along a road
system

 What is a reasonable heuristic?
e The straight-line Euclidean distance
from one place to another
* Is it always, right?

e Certainly not — actual paths are
rarely straight!

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

h(x)

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
30
199
374

Example Heuristic — 8 Puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

What would be good heuristics for this problem?

Example Heuristic — 8 Puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

Consider the following heuristics:

e h; = number of misplaced tiles (=7 in example)

e h, = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

11

Greedy Best-First Search

Sstart S Send

O O O

PastCost(s) FutureCost(s)

e Best-First Search

* At any time, expand the most promising node on the frontier according to the
evaluation function f(n).

* Greedy Best-First Search
* Best-first search that uses h(n) as the evaluation function,
* The evaluation function is, f(n) = h(n), the estimated cost from a node n to the goal.
e Only guided by “cost to go” (not “cost so far”).

12

Greedy Best-First Search

 Which path does Greedy Best-First Search return?

2
START A B C

h

4 h=3 h=2 h=1

13

A* Search

 Core ldea

 Combine the greedy search (the estimated cost to go) with the uniform-search
strategy (the cost incurred so far).

* Minimize estimated path costs. Avoid expanding paths that are already
expensive.
* Always expand node with lowest f(n) first, where
e g(n) = actual cost from the initial state to n.
* h(n) = estimated cost from n to the next goal.
* f(n) = g(n) + h(n), the estimated cost of the cheapest solution through n.

e Can | use any heuristic?
* Any heuristic will not work. [properties soon]

Example: UCS, Greedy and A* Search

* Uniform-cost orders by path cost, or backward cost g(n)
* Greedy orders by goal proximity, or forward cost h(n)

e A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Example

Which path will A* search find?

START

-2
I
H

Effect of heuristic function on search

* For the following choices, would the
optimal solution be found?

« h(A) =1
* h(A) =2
e h(A) = 3

* Can we put conditions on the choice
of heuristic to guarantee optimality?

Admissible Heuristics

* Let h*(n) be the actual shortest path from n to any goal state.

* Heuristic h is called admissible if h(n) < h*(n) Vn.

* Admissible heuristics are optimistic, they often think that the cost to
the goal is less than the actual cost.

* If h is admissible, then h(g) =0, Vg € G

A trivial case of an admissible heuristic is h(n) =0, Vn.

Admissible or not?

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

Consider the following heuristics:

e h; = number of misplaced tiles (=7 in example)

e hy = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

Straight line distance

A* Search: Route Finding Example

(a) The initial state
366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

447=118+329 449=75+374

526=366+160 417=317+100 553=300+253

A* Search: Route Finding Example

(e) After expanding Fagaras

447=118+329 449=75+374

501=338+253 450=450+0 526=366+160 417=317+100 553=300+253
(f) After expanding Pitesti Arad D
sibiu_> imisoar; CZerind >
447=118+329 449=75+374

646=280+366 671=291+380
G G (Caodd (P> Cobu
591=338+253 450=450+0 526=366+160 53=300+253

418=418+0 615=455+160 607=414+193

A* Tree Search will find the optimal
path if the heuristic is admissible.

Consistency (monotonicity)

* An admissible heuristic h is called consistent if for every state s
and for every successor s, h(s) < c(s, s’) + h(s’)
* This is a version of triangle inequality

* Consistency is a stricter requirement than admissibility.

 If his a consistent heuristic and all costs are non-zero, then f
values cannot decrease along any path:
e Claim f(n’)>=f(n), where n’ is the successor of n.

* g(n’) = g(n) +c(n, a,n’)
* f(n’) =g(n) +c(n, a, n’) + h(n’) >=f(n)

Admissibility and Consistency

e Main idea: estimated heuristic costs < actual costs
* Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

* Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

Search Contours

 UCS Search Contours

Stz@ Goal

o AX
A* Search Contours Start Goa| /@\

A* Search Properties

* Optimality
* Tree search version of A* is optimal if the heuristic is admissible.
* Graph search version of A* is optimal if the heuristic is consistent.

 Completeness

* If a solution exists, A* will find it provided that:
* every node has a finite number of successor nodes (b is finite).
* there exists a positive constant 0> 0 such that every step has at least cost §
* Then there exists only a finite number of nodes with cost less than or equal to C*.

A* Search Properties

* Exponential worst-case time and space complexity
* Let e = (h* - h)/h* (relative error)
e Complexity O(b®d) where be is the effective branching factor.
* With a good heuristic complexity is often sub-exponential

* Optimally efficient
* With a given h, no other search algorithm will be able to expand fewer nodes

 |f an algorithm does not expand all nodes with f(n) < C* (the cost of the optimal
solution) then there is a chance that it will miss the optimal solution.

* Main Limitation: Space Requirement

 The number of states within the goal contour search space is still exponential
in the length of the solution.

A* Search may still take a long time to find
the optimal solution

for large problems this results in A™ quickly
running out of memory (memory: O(n))

How to reduce memory requirement for A*?

27
Adapted from Maxim Likhachev

Iterative Deepening A* (IDA*)

* |dea

e Use an f-value limit, rather than a depth limit.
Expand all nodesup to f1,f2,.....

» Keep track of the next limit to consider (so we
will search at least one more node next time).

* |f the depth-bounded search fails, then the next
bound is the minimum of the f-values that
exceeded the previous bound.

* Properties IDA* example
e IDA®]checks the same nodes as A” but * If f;=4, then which nodes are searched?
recomputes them using a depth-first search * Iff,=8, then which nodes are searched?

instead of storing them.

* |IDA* has the same properties as Ax but uses

less memory.
28

Weighted A*

* Key ldea G
SStart
* Optimal solution requires large S 0al
effort.
. . . A weighted heuristic accelerates the search by
* Ca n V_Ve q u ICkly fl nd Su b-OptI mal making nodes closer to the goal more attractive,
solutions? giving a more depth first character.

* Expand states in the order of
* f’(n) =g(n) + w*h(n) values,
e wherew > 1.0

* Create a bias towards expansion of
states that are closer to goal.

* Orders of magnitude faster than
A* .

29
Adapted from Maxim Likhachev

Weighted A*

* f'(n) is not admissible but finds good sub-optimal solutions quickly.

* If h(n) is admissible then the sub-optimality is bounded.
e Cost(solution)) < e-cost(optimal solution) where e =w —1.0.

* Trade off between search effort and solution quality.

Adapted from Maxim Likhachev

Anytime Search

* Anytime search with weighted A*

 find an approx. solution quickly; and then continue the search to find improved
solutions and and improve the bounds on sub-optimality.

* Run a series of weighted A* searches with decreasing w.

W=25 W=1.5 W=1.0

13 expansions 15 expansions 20 expansions
solution=11 moves solution=11 moves solution=10 moves

Adapted from Maxim Likhachev

How are heuristics motivated?

* Prior knowledge about the problem

* Exact solution cost of a relaxed version of the problem

* E.g., If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h, gives the
shortest solution

* If the rules are relaxed so that a tile can move to any adjacent square, then h, gives the shortest
solution

* From prior experience.

32

Admissible Heuristics from Relaxed Problems

* Problem Relaxation
* Ignore constraints/rules
* Increase possibilities for actions.

* State space graph for the relaxed problem
is a super-graph of the original state space

* The removal of restrictions adds more edges.

Permitting straight line movement adds edges to

the graph.
e Easier to find a solution.
(5] <] [][22
Lo Il 4]
s 2] e]

Consider the following heuristics:

e h; = number of misplaced tiles (=7 in example)

e hy = total Manhattan distance (i.e., no. of squares from desired location
of each tile) (= 2+3+3+2+4+2+0+2 = 18 in example)

-

Admissible Heuristics from Relaxed Problems

e Optimal solution in the original problem is also a solution for the relaxed
problem.

* Cost of the optimal solution in the relaxed problem is an admissible
heuristic in the original problem.

* Finding the optimal solution in the relaxed problem should be “easy”
* Without performing search.
* |f decomposition is possible, it is easier to directly solve the problem.

34

Effective branching factor

* Let A* generate N nodes to find a goal at depth d

* Let b* be the branching factor that a uniform tree of depth d would have in
order to contain N+1 nodes.

N +1=14+b*+(b*)" +...+ (b*)*
N +1= (""" =1)/(b*-1)
N~ (%) = b*~ YN
* Varies across problem instances, but nearly constant for hard problems.

* A measure of a heuristic’s overall usefulness. A way to compare different
heuristics.

Comparing Heuristics

Effective branching factors for A* search for o d = distance from goal
the 8—puzz|e: @ Average over 100 instances
. L. . . Search Cost (nodes generated) Effective Branching Factor

Comparison of two hgurlstlcs: Misplaced tiles y IDS [A*(h1) | A"(hz) || 1DS | A" (hn) | A" (ha)

(hl) and Manhattan distance (hz) 2 10 6 6 || 245 | 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30

Heuristic (h,) expands fewer nodes and has a 13 4333'; ;g §2 g;’g 1;: ig;
14 - 539 113 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.47
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

36
Reference: AIMA

Dominance

* Heuristic function h, (strictly) dominates h, if
* both are admissible and
e for every node n, h,(n) is (strictly) greater than h,(n).

* A* search with a dominating heuristic function h,
will never expand more nodes that A* with h;

 Domination leads to efficiency

e Prefer heuristics with higher values, they lead to
fewer expansions and more goal-directedness during
search.

Typical search costs:

d=14 IDS = 3,473,941 nodes

37

Combining admissible heuristics

e Heuristic design process

* We may have a set of heuristics but not a single
“clearly best” heuristic.

* Have a set of heuristics for a problem and none of
them dominates any of the other.

* Combining heuristics h(n) = max(hq(n), hy(n))

e Can use a composite heuristic

e Max of admissible heuristics is admissible when the
component heuristics are admissible.

* The composite heuristic dominates the component
heuristic.

38
Slide adapted from Dan Klein

Combining admissible heuristics

exact
* Heuristics form a semi-lattice structure |
e Some heuristics can be compared to others via
dominance. max(ha’ hb)

* There may be others not comparable.
* Can create composites by combining component

heuristics. hq hb
* Bottom of lattice is the zero heuristic |
* No or little computation effort
* Not useful during search hC
* Top of lattice is the exact heuristic \

* A lot of computation effort

. _ <€ETO0
* Really useful during search (give the exact cost)

39
Slide adapted from Dan Klein

Trade off

Effectiveness of the heuristic
(reduced search time with the
heuristic) vs. effort required to
compute the heuristic

curred in search

of computing

e heuristic

Cost of searching
with the heuristic

Reduced level of
abstraction
(i.e. more and more concrete)

Not always clear where the total minimum
occurs
* Old wisdom was that the global min was

"“~--- closer to cheaper heuristics

* Current insights are that it may well be far
from the cheaper heuristics for manv problems

40
Slide adapted from Mausam

