
Rohan Paul

COL333/671: Introduction to AI
Semester I, 2021

Solving Problems by Searching
Uninformed Search

1

This Class

• Reflex Agents
• Problem Solving as search
• Uninformed Search

• Reference Material
• AIMA Ch. 3

2

Acknowledgement
These slides are intended for teaching purposes only. Some material
has been used/adapted from web sources and from slides by Doina
Precup, Dorsa Sadigh, Percy Liang, Mausam, Dan Klein, Nicholas Roy
and others.

3

Last time: Agent View of AI

Ag
en

t ?

Sensors

Actuators

Environm
ent

Percepts

Actions

• An agent is anything that can be viewed
as perceiving its environment through
sensors and acting upon that
environment through actuators.
• Examples
• Alexa
• Robotic system
• Refinery controller
• Question answering system
• Crossword puzzle solver
• ……

4

Simple Reflex Agents

• A Reflex Agent
• Selects action based on the current percept.
• Directly map states to actions.

• Operate using condition-action rules.
• If (condition) then (action)

• Example:
• An autonomous car that is avoiding obstacles.
• If (car-in-front-is-braking) then (initiate-braking)

• Problem: no notion of goals
• The autonomous car cannot take actions that will

lead to an intended destination.

5

From Reflex to Problem Solving Agents

• Reflex agents
• Directly map states to actions.
• No notion of goals. Do not consider

action consequences.

• Problem Solving Agents
• Adopt a goal
• Consider future actions and the

desirability of their outcomes
• Solution: a sequence of actions that

the agent can execute leading to the
goal.

• Today’s focus.

6

Example – Route Finding

• Problem:
• Find a solution i.e., a sequence of

actions (road traversals) that can
take the agent to the destination
in minimum time.

• Search
• Process of looking for a sequence

of actions that reaches the goal
• Note: as we will see search problems

are more general than path finding.

7

Search Problem Formulation

Many problems in AI can be modeled as search problems.

Transition model or successor function

8

Formulating a Search Problem

• Find a solution which is a sequence of actions that
transforms the start state to a goal state.
• Search is the process of looking for a sequence of

actions that reaches the goal.
Route finding in a map.

9

Example – Route Finding
• State space:

• All the cities on the map.

• Actions:
• Traversing a road: Going to an adjacent city.

• Cost:
• Distance along the road

• Start state:
• Arad

• Goal test:
• Is state == Bucharest?

10

Modeling Assumptions

11

• Environment is observable
• The agent always knows it current state.

• Discrete states and actions
• Finite number of cities.
• At any given state there are a finite number of actions.

• Known and Deterministic action outcomes
• The agent knows which sates are reached by each action.
• Action has exactly one outcome when applied to a state.

Example – The Eight Puzzle

13

Example – Block Manipulation

A B C

A B
C

A B
C

A

B
C

Put C on B

Put C on A

Put B on C

Put C on A

A

B
C

Put A on C

Actions: Put X on Y

14

State Space Graphs
• A representation of a search problem

• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)
• Each state occurs only once

• The full graph is usually too large.
• The graph is built and explored implicitly by

applying actions on states.

15

Searching for a solution

16

• Once the problem is formulated, need to
solve it.
• Solution – action sequences. Search

algorithms work by considering various
possible action sequences.

• A search tree: A “what if” tree of plans and their outcomes
• The start state is the root node
• Check if the node contains the goal.
• Other wise, “expand” the node

• Apply legal actions on the current state to generate new set of states.
• Frontier

• All the nodes available for expansion.
• In a Search Tree, nodes show states, but correspond to PLANS that achieve those states

Search Trees

Current state

Possible actions will take
to possible future states

17

State Space Graph vs. Search Tree

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

• Each NODE in in the search tree is an entire PATH in the state space graph.

• Construct both on demand and construct as little as possible.

Search TreeState Space Graph

18

Tree Search

19

Infrastructure for Search Algorithms

20

Search Tree

21

• The process of expansion while
constructing the search tree.
• Note that Arad appears again.

• Loops lead to redundancy
• Why? Path costs are additive.

• Can we remember which nodes
were expanded?

The Eight Puzzle – State Space (Fragment)

22

Examples – Assembly Planning

23

Possible assemblies

Revisiting States

• What if we revisit a state that was already
expanded? Redundancy.
• Maintain an explored set (or closed list) to store

every expanded node
• Worst-case time and space requirements are O(|S|)

where |S| is the number of states.

24

Graph Search

25

Newly generated nodes
that match the frontier
nodes or expanded nodes
are discarded.

Notion of a Frontier

• How to manage generated nodes?
• Need a data structure for managing nodes as

they are generated.
• Queue (characterized by the order win which

they store the inserted nodes).
• Frontier

• Separates the explored and unexplored
nodes.

• Also called open list
• Search Strategy

• Search algorithms vary in their “strategy” to
decide which nodes to explore?

• We will see examples soon.

Progression
of search

26

Measuring problem-solving performance

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths
• d is the depth of the shallowest goal node

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)
• Each node can generate the b new nodes

…
b1 node

b nodes

b2 nodes

bm nodes

m is max
depth

d depth of the
shallowest goal

27

Properties of Search Algorithms

• Completeness
• Is the search algorithm guaranteed to find a solution when there is one?
• Should not happen that there is a solution but the algorithm does not find it

(e.g., infinite loop in a part of the state space)

• Optimality
• Is the plan returned by the search algorithm the optimal ?

• Time Complexity
• The number of nodes generated during search.

• Space Complexity
• The maximum number of nodes stored in memory during search.

28

Search Algorithms

• The strategy for exploration of nodes leads to a variety of search
algorithms
• Uninformed Search
• Only use information about the state in the problem definition.
• Generate successors and distinguish goal states from no-goal states.

• Informed Search
• Use problem-specific knowledge beyond the problem definition
• Heuristics for more efficient search

29

Breadth-First Search (BFS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a shallowest unexplored node
first.

All the successors of a node are expanded,
then their successors and so on.

Implementation: Frontier is a FIFO queue

30

Breadth First Search (BFS) Properties
• Expansion Strategy

• Expands the shallowest unexplored node in
the frontier of the search tree.

• Time Complexity
• Search takes time O(bd)

• Space Complexity
• Frontier nodes O(bd)
• Explored nodes O(bd-1)
• Memory requirement is a problem.

…
b

1 node
b nodes

b2 nodes

bm nodes

d is the
depth of
the
shallowest
goal

bd nodes

31

Breadth First Search (BFS) Properties

32

Time and memory requirements for BFS. Branching factor b = 10. 1 million nodes per second
and 100 bytes per node.

Take away - Memory requirement is a big problem for BFS.

Breadth First Search (BFS) Properties
• Is it complete?

• Yes.
• The shallowest goal is at a finite depth, d
• If the branching factor, b, is finite then BFS

will find it.

• Is it optimal?
• Yes. If the path cost is a non-decreasing

function of depth.
• For example, if all edge costs are equal.

…
b

1 node
b nodes

b2 nodes

bm nodes

d is the
depth of
the
shallowest
goal

bd nodes

33

Depth-First Search (DFS)

S

G

d

b

p q

c

e

h

a

f

r

34

Depth-First Search (DFS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a deepest node first

Implementation: Frontier is a LIFO
stack

35

Depth First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m is max
depth

• Expansion Strategy
• Expands the deepest unexplored node in the

frontier of the search tree

• Time Complexity
• Worst case: processes the whole tree.
• If m is finite, takes time O(bm)

• Space Complexity
• Frontier stores:

• Single path from the root to the leaf node.
• Sibling nodes on the path that are unexplored.

• Memory requirement is low O(bm)

• Is it complete?
• Yes, if m is finite. Eventually, finds the path.

• Is it optimal?
• No, it finds the “leftmost” solution, regardless

of depth or cost 36

Note: Variant of graph search where the goal test
is applied at node generation time. Space saving.

Reducing DFS memory requirements

• Backtracking search
• Only one successor is generated at a time rather than all successors
• Each partially expanded node remembers which successor to generate next.
• Memory saving by modifying the current state description directly rather than

copying.

37

Depth-Limited Search

• Problem
• Depth First Search fails when the maximum goal depth is not known ahead of

time for a domain

• Solution
• Depth Limited Search

• Restrict the depth of search (supply a depth limit, l)
• Search depth-first, but terminate a path either if a goal state is found or if the maximum

allowed depth is reached.
• Equivalently, nodes at l have no successors.

38

Depth Limited Search (DLS) Properties
• Termination

• Always terminates.

• Time Complexity
• Worst case: processes the whole tree till l.
• Time O(bl)

• Space Complexity
• Frontier is managed like Depth First Search.
• Memory O(bl).

• Is it complete?
• Not complete when goal depth is greater than

the limit (d>l)

• Is it optimal?
• Not optimal when the limit is greater than the

goal depth (l > d) 39

bd shallowest
goal depth l depth limit

bd shallowest
goal depth l depth limit

Not complete

Not optimal

Iterative Deepening Search

…
b• Combine DFS’s space advantage with BFS’s

shallow-solution advantages
• Run a DLS with depth limit 1. If no solution…
• Run a DLS with depth limit 2. If no solution…
• Run a DLS with depth limit 3. …..

40

Iterative Deepening: Example

Adapted from Prof. Mausam’s slide
41

Iterative Deepening: Example

Adapted from Prof. Mausam’s slide
42

Iterative Deepening: Example

Adapted from Prof. Mausam’s slide
43

Iterative Deepening: Properties

• Is it wasteful to generate nodes
again and again?
• Not really!
• The lowest level contributes the

maximum. Overhead is not
significant in practice.

• Asymptotic time complexity is
same as BFS: O(bd)

Adapted from Prof. Mausam’s slide
44

No. of times generated.

Iterative Deepening Properties
• Time Complexity

• Time O(bd)

• Space Complexity
• Memory O(bd)
• Linear memory requirement like DFS

• Is it complete?
• Yes. Complete like BFS

• Is it optimal?
• Yes. Optimal like BFS (if costs are non-

decreasing function of path length)

• Relevance
• Preferred method for large state spaces where

maximum depth of a solution is unknown
45

L = 0

L = 1

L = 2

L = 3

Two small search trees instead of one large?

46

Bi-directional Search
• Run one search forward from

the initial state.
• Run another search backward

from the goal.
• Stop when the two searches

meet in the middle.

Bi-directional Search

47

• Space and time complexity
• O(bd/2)
• bd/2 + bd/2 is smaller than bd

• 108+108 =2.108 << 1016

• Needs an efficiently computable
Predecessor() function
• Difficult: e.g., predecessors of

checkmate in chess?
• What if there are several goal

states?
• Create a new dummy goal state

whose predecessors are the actual
goal states.

Guiding search by costs instead of depth

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

48

• Till now, the cost on the edges
was not considered
• Worked with solution depths.

• Solution was found in terms of
number of actions.
• Did not find the least-cost path.
• BFS, DFS ….

• Next
• Cost-sensitive search

Uniform Cost Search (UCS)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a “cheapest” cost
node first:

Frontier is a Priority Queue (Priority:
cumulative cost so far) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost contours
during search

2

49

Intuition, the low-cost plans
should be pursued first.

Uniform Cost Search (UCS)

50

• The first goal node generated
may be on the sub-optimal path.

• If the new path is better than
the old path, then discard the
old one.

Uniform Cost Search (UCS) Properties

…

• What nodes does UCS expand?
• Guided by costs and not the depth.
• If that solution costs C* and action cost at least e , then the

“effective depth” is roughly C*/e
• Takes time O(bC*/e) (exponential in effective depth)

• How much space does the frontier take?
• O(bC*/e)

• Is it complete?
• Yes. Assuming best solution has a finite cost and minimum arc

cost is positive, yes!

• Is it optimal?
• Yes. (Proof via contradiction)

b

C*/e “tiers”
c £ 3

c £ 2

c £ 1

51

What if we bound the frontier size?

52

Beam Search
• Keep a maximum size of the frontier.

• Only keep the k best candidates for expansion, discard the rest.
• Advantage:

• More space efficient
• Disadvantage

• May throw away a node that is on the solution path
• Complete? No.
• Optimal? No.
• Very popular in practice

Summary Table

53

• The comparison is for the tree-search version of the algorithms.

• For graph searches, DFS is complete for finite state spaces and that the space time complexities
are bounded by the size of the state space.

• Source: AIMA

Towers of Hanoi problem
Repeated States

55

• Reversible actions can lead to
repeated states.
• Reversible actions, e.g., the 8

puzzle, tower of hanoi or route
finding.

• Lead to loopy or redundant*
paths in the tree search.

* Each additional path found is going to be longer.

Importance of detecting repeated states

If we did not check for duplicate states, then the tree size is exponential in the number of states. If we
do check for repeated states, then our tree is much smaller (linear).

Search tree without checking revisited states. Original graph

Handling Repeated States – Remember all the
visited nodes

• Never generate states that have
already been generated before.
• Maintain an explored list (Graph search)
• Optimal approach
• Memory inefficient, why?

• Exponential number of nodes in the tree
• E.g., 8-puzzle problem, we have 9! = 362,880

states.
• Duplicate checking of states also adds time.

Handling Repeated States – Use efficient data
structures

• Use efficient data structures to
keep the explored nodes.
• Hash Tables

• Insertion and look up in constant
time.

• Duplicate checking
• Canonical form, sorted list or other

efficient methods.

Handling Repeated States – Check for some of
the cases

• Never return to the state you have just come from
• Prevent the node expansion function from generating any node successor

that is the same state as the node’s parent.

• Never create search paths with cycles in them
• The node expansion function must be prevented from generating any node

successor that is the same state as any of the node’s ancestors

• Practical techniques but sub-optimal

Uniformed Search Issues
• Uninformed search explores options in

every “direction”
• For example, UCS explores increasing cost

contours

• Does not make use the goal information.

Start Goal

…

c £ 3
c £ 2

c £ 1

61

Summary

• Algorithms that are given no information about the problem other
than its definition.
• No additional information about the state beyond that provided in the

problem definition.
• Generate successors and distinguish goal from non-goal states.
• Hence, all we can do is move systematically between states until we stumble

on a goal
• Search methods are distinguished by the order in which the nodes are

expanded.

• Next time: Informed (heuristic) search uses a guess on how close to
the goal a state might be.

62

